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Abstract: Path-following steering control has many applications in autonomous
driving, which may one day lead to cars running on autopilot. The developed
controller addresses the path-following task by the required path curvature to
reach a single preview point ahead of the vehicle as input to the controller. A
pre-defined non-linear map of steering angle vs. curvature and vehicle speed is
used to calculate the required steering angle. Calibration of the controller is done
by performing a simple steady-state circle manoeuvre. The controller is evaluated
using both simulations and experiments. Excellent path-following performance
is achieved all the way up to the limit of adhesion. The actuation is smooth and
the error rarely exceeds 1 m even at lateral acceleration levels of up to 10 m/s>.
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1 Introduction

Path-following steering control has many applications in autonomous driving (Hattori
et al., 1992), which may one day lead to cars running on autopilot. Additionally, to
complement human test drivers, using a robot to control steering during vehicle dynamics
testing is useful (Tseng et al., 2005). Using a robot improves repeatability and the
possibility to perform very precise manoeuvres, such as the sine-with-dwell manoeuvre
(NHTSA, 2008). A robot is also capable of performing inputs faster than a human driver.
This enables evaluation of not yet existing active safety systems.

Within this paper, the controller will be referred to as a closed-loop path controller.
Longitudinal control of the vehicle, i.e. accelerating and braking, is not handled by the
developed closed-loop controller. Similar controllers are often referred to as driver
models when used in vehicle dynamic simulations (Plochl and Edelmann, 2007).
However, an important distinction from a classic driver model is that the closed-loop
path controller aims at performing optimal vehicle control, with little consideration to
human resemblance.

The controller shall follow a path at a wide range of speeds. This includes robust
driving up to the limit of adhesion, and repeatability is more important than absolute
path-following precision. The demands on the controller performance have been set to
fulfil the needs of future users. In order to be integrated into the current user interface and
combined with open-loop manoeuvres, certain demands are also set on the controller
structure. These demands on path following are such that:

e A track shall be simple to define. The target track will be made up of several
segments.

e All computations are to be performed in real time, i.e. closed-form expressions are
preferred.

e  The controller shall be able to cope with a wide range of operating conditions, such
as speed, friction and levels of lateral acceleration.

e  The controller shall be able to handle sudden disturbances, both to the input signals
and to the vehicle itself.
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Many steering controllers are proposed in the literature. Examples include Edelmann
et al. (2007) who use a layered approach with both feedback and compensatory feed-
forward based on the prediction from an advanced vehicle model. Other examples
include Falcone et al. (2008) where model predictive control is proposed, using an
advanced non-linear internal vehicle model to find the optimal future steering inputs.
Most of these controllers rely on a preview error, heading error, distance error or multiple
distance errors as in the case of Sharp et al. (2000). An issue with these feedback signals
is, however, that there is no direct relationship between these factors and the steering
angle. Similar to this paper, a kinematic relationship between the vehicle position and the
target point is used by Kanayama et al. (1990). This paper, however, does not address the
highly non-linear dynamics of the vehicle, required for robust tracking performance over
the entire operating region of an automobile. Finally, how to parameterise the track and
subsequently find which track segment must be tracked is not discussed in the above-
mentioned papers. In order to address the problems indicated above, a simple track
segment identification scheme and the concept of preview curvature are devised in this
paper. The preview curvature is here defined as the curvature of an arc that intersects the
track at a pre-defined preview distance. The necessary steering angle to follow this
preview curvature is subsequently obtained from a steady-state map created by a simple
calibration manoeuvre. The novelty of this concept is thus the direct relationship between
the required steering angle relative to the deviation from the target path and the lateral
acceleration. A further contribution of this paper, unlike all of the above-mentioned
papers, is that experiments in a real vehicle are performed to demonstrate the path-
tracking capability of the proposed method.

The outline of the paper is such that first the necessary sensors and actuators
(inputs/outputs) of the controller are described. Next, the structure of the controller is
described in terms of how the track is defined, how the deviation from the track is
determined and what the control strategy is to follow the track. Subsequently, path
following and accuracy and stability and disturbance robustness are evaluated using
software-in-the-loop simulation. Next, physical test results from path-tracking and lane-
change tests are reported. Finally, conclusions are made and future work is identified.

2 Sensors and actuators

The steering controller in this paper uses feedback from the position, heading (yaw)
angle, speed, yaw rate and lateral acceleration of the vehicle. For the sake of brevity, a
planar surface is assumed in this work. For driving on banked curves and slopes,
however, also this information must be incorporated.

As for the accuracy of the sensor information, it is obvious that the tracking accuracy
of the controller is primarily dependent on the position accuracy of the positioning
system. It is assumed that a 20—100 Hz Differential Global Positioning System (DGPS) is
used for accurate speed and positioning. The yaw rate and lateral acceleration can readily
be obtained using Inertial Measurement Unit (IMU). It is further recommended by the
authors to use sensor fusion between the DGPS and IMU systems in order to improve
the positioning accuracy, for instance, during poor satellite visibility, and to obtain an
accurate heading angle of the vehicle.
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The control signal from the proposed controller is the steering wheel angle. In this
paper, the required steering wheel angle is assumed to be achieved by a steering robot,
but other actuators, such as the steering assist motor, are also possible.

3 Track parameterisation

Tracks are, in this paper, divided into lines and arcs as shown in Figure 1. Line segments
are parameterised by the segment length, L, > 0. Arc segments are parameterised by the
segment radius, R, > 0, and the angle §. The direction of the first segment is given by the
angle y. All subsequent track segments inherit the initial angle from end direction of the
previous segment.

The starting point of the current segment (k) is given by the coordinates (x,(k), y,(k)).
The current segment is defined by the segment within which the preview point lies.

Figure 1 Track parameterisation into line and arc segments (see online version for colours)
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of the next segment) is
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4 Path control

The basic structure of the controller is shown in Figure 2. Each part of the controller will
be described in detail in the following subsections.
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Figure 2 Basic structure of the controller (see online version for colours)
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The controller consists of an outer loop and an optional inner loop. The outer loop
computes the preview curvature shown in Figure 3, which is the reciprocal of the radius
required to reach the preview point. Before the computation of the preview curvature, a
non-trivial check to ascertain if the preview point is within the current segment is
performed.

Figure 3 Concept of preview curvature (see online version for colours)
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Apart from the steering angle, computed by the feed-forward control, an optional inner-
loop feedback control is added. This inner-loop feedback control is only needed to
eliminate a steady-state error in the control when the track curvature does not change for
a long time. One example of such a situation is steady-state circular driving.

4.1 Preview point

Since the vehicle needs time to react to changes in the track and/or deviations from the
track, the distance to the track at a preview distance from the vehicle is used as a control
reference.
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This preview point, shown in Figure 3, is a point along the heading direction at a
speed-dependent look-ahead distance from the vehicle:

M0z
Yo Y. siny

where
Lp =Lp0 +7,v 4)

where L, is the minimum preview distance, 7, is the preview time and v is the vehicle
speed.

4.2 s the preview point within segment?

Prior to determining the distance of the preview point to the track, the controller checks if
the preview point is within the current segment. This procedure is different depending on
whether the segment is a line or an arc segment. If the preview point is not within the
current segment, the next subsequent segment is checked. The computation of deviation
from the preview point to the track can then be performed on the correct segment.

4.2.1 Line segments
For line segments, the preview point is within the current line if

0<L <L, 6)
where

L,=(xp—xs)cosy+(yp—ys)sin7 (6)

i.e. the projected length of the preview point relative to the starting point of the segment.

4.2.2 Arc segments

Knowing if the preview point lies within an arc segment is less straightforward than for
line segments, and two projections instead of one is required. For this purpose, we first
create the unit vectors # and v shown in Figure 4. With these unit vectors, we can locate
the position of the preview point (x,, ,) from equation (3) relative to the arc endpoint
(x5, y5) from equation (2) and the arc radius R as the vector w, which is

X, —X,
w=| " -Ru (7
yp_ys

where

. siny
u =signé ()
—cosy
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Figure 4 Preview point segment check for arc segments (see online version for colours)
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Projections of the vector w onto the unit vectors u and v are used to check if the preview
point lies within the arc segment. The first projection is compared to the length of the
vector w relative to the angle 6 of the arc. An additional check is whether the vector w
lies in the direction of vector v or opposite to it. Different conditions apply for segments
which are smaller than a half circle and those that are larger. Now, the preview point is
within an arc segment with |6’| <z if

w-u<|w|c059/\w-v>0 9
where
, {"f’sq (10)
sin y

For segments where 7 < |H| <27 , the preview point is within the arc segment if
w~u>|w|cos0vw~v>0 an

In equations (9) and (11), A denotes a conjunction (AND) and v a disjunction (OR).

4.3 Nearest point on the track from the preview point

Next, the nearest point from the preview point to the track is found by building on
the previous calculations. The preview curvature, used for the steering control, is the
curvature necessary to reach this point.

The nearest point from the preview point to a line segment is

L]
V. s y
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where L, is computed in Section 4.2.1.
The nearest point from the preview point to an arc segment is

F}:Rvi (13)
vl

where R, and w are shown in Figure 4.

4.4 Preview curvature

The preview curvature (see Figure 3) is obtained by knowing that

=| " |+R, (14)
Yol Ve —cosy

and that

2

(%o =% ) + (3 =) =(x =% ) +(3.—») (15)
Combining (14) and (15) gives
(x, —x,)siny —(y, —y,)cosy

1
K, =—=2 (16)
! RP (xc_xr)z—i_(yc_yr)z

which contains only known parameters obtained from our previous calculations. Next is
applying the right steering input to follow the preview curvature. As before, this
curvature can be interpreted as the curvature necessary to reach the track within the given
preview distance.

4.5 Feed-forward control

The steering wheel angle which is necessary to reach the preview curvature is

2
K'pV

HE

Oy =liglK, +is gk atanh a7

for
vaz <ug (18)

where is is the steering ratio, / the wheel base, Ky, the understeer gradient, 4 the surface
friction and g the gravitational acceleration. These parameters can, for instance, be found
by a parameter identification from a steady-state circular driving manoeuvre (ISO 4138,
2004).

Linearising the above expression, we arrive at the familiar steady-state steering
expression for a linear bicycle model:

Oy =is (14K )k, (19)
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Both expressions are drawn in Figure 5 where the solid line corresponds to equation (17)
and the dashed line to equation (19).

Figure 5 Steering as function of lateral acceleration (see online version for colours)
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4.6 Feedback control

For the optional inner-loop feedback control, the current steady-state yaw rate is used:
k=L (20)

The control error then becomes

e=k,-kK, (21)

The controller is designed as a PI controller with anti-windup (Astrom, 2002).

4.7 Preview distance and corner cutting

For the Preview Curvature Controller, the only tuning parameter is the preview time.
The resulting reference curvature calculated, as described in the previous section,
becomes larger as preview time is decreased. The track curvature changes in steps,
because lines and arcs are used to define the track, meaning that a short preview time will
lead to a rapid change in the desired curvature. Since the preview point enters the curve
before the vehicle does, the preview curvature will cut the corner with a large
radius starting before the track bend begins. A long preview will hence lead to a
smoother controller, but also to a larger corner cutting and larger deviations from the
reference track (see Figure 6). The user has to make the trade-off between precision and
smoothness by tuning the preview time.

Again, the benefit of this corner cutting is that the preview curvature increases
smoothly up to the curvature of the curve when approaching a curve. That is, the preview
curvature (and the corresponding steering angle) changes smoothly even though the
curvature of the track changes step-wise.
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Figure 6 Corner cutting because of preview (see online version for colours)

5 Simulation results

This section presents the results from simulations of track driving and the control of
specific manoeuvres. The purpose of these simulations was to determine the influence of
the preview time on the tracking accuracy vs. stability of the control and to understand
the robustness of the controller to changes in the track, road conditions and external
disturbances.

5.1 Effect of preview time on precision vs. stability

The track driving simulations in IPG CarMaker (Wittenburg, 2008) have been performed
on the Hockenheim track using IPG Driver for longitudinal control.

As the velocity of the car will be controlled by a human driver when testing the
controller in a vehicle, IPG Driver was used for longitudinal control in simulations. As
IPG Driver is completely decoupled from the steering controller, it will not perform very
well, meaning that the car might be braking or accelerating while turning and thereby at
times destabilising the vehicle. This is a weakness in the simulations although the
disturbances caused by the longitudinal controller do test the ability of the steering
controller to stabilise the vehicle with such disturbances. The destabilising behaviour of
the longitudinal controller can also be mitigated by lowering the acceleration limits in
IPG Driver resulting in more careful driving in curves.

As mentioned above, there is a trade-off between the tracking error and control signal
smoothness as function of the preview time. The simulations shown in this section aim at
determining the effects of the preview time on these two parameters. Subsequently, a
subjective evaluation of the control signal activity is made to determine the desired
preview time.

Figure 7 shows the effect of changing the preview time on deviation from the centre
line of the track. With 0.6 seconds’ preview time, the controller is oscillating around the
reference path, as can be seen in Figures 7 and 8. Figure 9 shows how the mean deviation
from the centre line increases with preview time.
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Figure 7 Deviation from centre of track vs. time. Notice the difference in the scale of the y axis;
the deviation from the centre line is approximately four times larger with the longest
preview time compared to the shortest. IPG driver is set to drive at a constant speed,
50 km/h (see online version for colours)
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Figure 8 Steering angle over time for different preview times. At 0.6 seconds’ preview time, the
steering wheel oscillates considerably (see online version for colours)
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From the simulation results shown in Figures 7-9, it can be seen that there is a trade-off
between steering oscillation and corner cutting, resulting in track deviation. For this
work, it was decided that a preview time of 0.8 seconds gave a good path-following
performance without excessive control signal activity.
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Figure 9 Mean deviation from track centre line at different preview times. The mean deviation
increases almost linearly with preview time (see online version for colours)
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5.2 Steady-state circle results

The cascaded steady-state cornering controller introduced above has been tuned
and evaluated only in simulations. The reason for evaluating only the controller in
simulations was the lack of access to a large enough vehicle handling area to perform the
steady-state cornering manoeuvre. However, the resulting gain schedule for required
steering gain generated from the steady-state cornering simulations have been used with
good result when evaluating the track driving controller. The performance (the radius
error) of the steady-state circle controller is shown in Figure 10. The highest integrator
gain (K; = 0.01) in the figure is the highest gain that does not make the vehicle unstable.

Figure 10 Radius error over time for different integrator gains (X;). Further increasing the gain
causes the steering to oscillate. Only an approximated value of the steering gain and
wheel base is used for the preview gain (see online version for colours)
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6 Experimental results

The experimental testing of the controller has been made at the Rédda Air Base (shown in
Figure 11), which is a decommissioned air field. The Rada Air Base suits the needs for
the evaluation of the controller since it is off-limits for general traffic and is also an open
field with minimum disturbances to the GPS signal. The track shown in Figure 11 has a
long straight, a couple of narrow turns and a large radius curve to enable evaluation of
the controller performance in all these situations.

The vehicle used in the validation is a four-wheel-driven MY’09 Saab 9-5 sedan with
a 190 HP diesel engine.

The preview time used in all physical tests is 0.8 seconds, as in the simulations.
Although it is not given that the preview distance found in simulations also gives
the desired performance in vehicle tests, simulations can be used to find a good starting
value for the preview time. Additionally, the minimum preview distance was limited
to 10 metres in order to limit the hand wheel angles at low speed.

Figure 11 The track driven at Rada Air Base (see online version for colours)

6.1 The steering robot

The steering control is performed by a steering robot which consists of an electric drive
unit that is mounted at the windscreen of the vehicle using vacuum cups. The drive is
connected to the original steering wheel via a geared ring mounted behind the original
steering wheel. The steering wheel can be operated as usual when the robot is not active
and therefore the vehicle can be controlled by a driver until the start of a robot-controlled
manoeuvre. The robot is controlled by a real-time computer running a real-time operating
system. The real-time computer generates a control signal which is transferred into a
pulse-width-modulated signal by power electronics fed with power from the 12-volt
system of the vehicle.

The robot is programmed by the test engineer using a windows-based graphical user
interface running on an external computer. The real-time computer also has a CAN
interface which can be used for connection of external sensors. The two main inputs to
the controller, the position and heading angle of the vehicle, are measured by a GPS
system and an IMU, respectively. The speed of the vehicle in its course direction is also
measured by the GPS. The GPS system used for the experiments is a VBOX III system
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from RaceLogic. It has an update frequency of 100 Hz and provides the location of
the receiver as well as an exact velocity measurement. The IMU which was used is an
iDis-FMS IMU with optical gyros from iMAR GmbH.

To improve the position measurement from the GPS, measurements from the IMU
are taken into account using sensor fusion (see Olsson and Sandberg, 2011, for more
details).

6.2 Precision

The precision of the controller is very high when driving on straight segments.
In Figure 12, for instance, it can be seen that the deviation on the long straight segment
(from 15 to 25 seconds) is below 0.1 metres. When cornering, the preview causes the car
to cut the corners (Figure 13). However, the vehicle still stays within 1.2 metres from the
centre line of the track at all times. In longer bends, as the one opposite to the long
straight in Figure 11, the deviation from the centre line decreases over time, as seen in
Figure 12 (between approximately 53 and 57 seconds).

Figure 2 The deviation from the track during one lap of the Rada track. The deviation is shown
relative to the lateral acceleration of the vehicle. The speed was high, exceeding
100 km/h on the straight. The speed was kept high enough to reach lateral accelerations
of 8-10 m/s in all bends (see online version for colours)
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6.3 Control signal activity

The control signal has proven to be very smooth during the physical testing. In Figure 14,
the control signal from the same lap around the Réda track from which the data presented
in Figure 12 were recorded is shown. As seen in the left plot of Figure 14, the control
signal is smooth and the mechanics of the actuator can in the right close-up be seen to
filter out the noise in the control signal.
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Figure 13 Vehicle position relative to the track when cornering at high speed. The lateral
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acceleration of the vehicle is between 0.8 and 1 g. Preview time is 0.8 seconds, with a
minimum preview distance of 15 metres. The difference in path is due to different
speeds; the path closest to the track is driven at the highest speed with the front tyres
entering saturation
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Figure 14 Control signal during one lap on the Rada track. The peaks in steering wheel angle are a
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version for colours)
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6.4 Double lane-change test

Although the double lane-change manoeuvre has not been considered specifically during
the development, a brief test was made using the standard Preview Curvature Controller.
During the test, the car was equipped with all-season tyres. The cones were positioned
roughly as the ISO-17387 lane-change standard.

The most important result from the lane-change test is that the controller proved to
execute very repetitive and precise control. The maximum possible entry speed was
65 km/h limited by the chosen all-season tyres. Figure 15 shows 13 runs of the lane
change with speeds from 45 to 65 km/h. Although the front tyres partly saturated in the
first turn at 65 km/h, it can be seen from Figure 15 that the repeatability is still very good.
Once the reference track had been adjusted to achieve a good path through the cones, the
controller drove nearly the same path at all tested speeds, up to the lateral grip limit.

Figure 15 Lane-change test. The figure shows 13 runs with speeds from 45 to 65 km/h (see online
version for colours)
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7 Discussion

The developed Preview Curvature Controller shows good performance and definitely
fulfils the aims and demands of the paper. As discussed briefly above, the controller
will not give absolute precision, due to corner cutting. However, since it is developed
for driving at a track with margins, the advantage of a more smooth control, due to
corner cutting, is deemed more important than the track deviation of up to 1.5 metres. As
long as the tyres are not saturated, 1.5 metres has been the largest error observed during
testing.

Also, instead of absolute precision, repeatability is a more important performance
criterion of the controller. The repeatability of the presented controller was demonstrated
in the previous section as it was possible to perform a double lane change at almost as
high speed as an experienced test driver could perform it (65 km/h) after only 30 minutes
of adjusting the reference track. The speed itself is not what was found most impressive,
but rather that the same path was followed in all test runs, which is an important
difference to human drivers.

The developed controller does have very good performance and would be ready for
use as designed. However, before commercialisation, it would be necessary to add more
safety functions for system failures, etc. Furthermore, the coupling with a longitudinal
vehicle controller and use of other measurement systems are necessary to study in order
to commercialise the controller.
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An obvious extension of the lateral vehicle controller presented in this paper is to
couple it with longitudinal control. Such a longitudinal controller would obviously
require additional actuators, such as pedal actuators.

Creating a reference track relative to a physical track to be followed was shown to be
a rather time-consuming task in the paper. The task was performed by using an aerial
photo of the track and then measuring the radius and degrees of the turns and the length
of the straights. To make this task more time-efficient, either an automated way of
creating a track from a picture or a function to rerun a manually driven track should be
implemented.

8 Conclusions

The controller developed during this paper uses a new method of feedback path control
which continuously changes the reference signal based upon vehicle location. The
controller calculates the curvature required to arrive at a preview point on a pre-defined
track ahead of the vehicle. Compared to the related steering controllers, found in previous
research, the newly developed controller uses a more straightforward way of calculating
controller inputs from track deviation and vehicle states. The controller also uses a
simple yet effective way of, given a reference input, calculating the required steering
angle using an exponential function. Additionally, a method to parameterise the track and
find out on which segment of the track the preview point is located was developed.

The absence of multiple controller inputs gives a great advantage since it is easy to
analyse and understand why the controller behaves as it does, and how to customise it for
specific demands that may differ from the current ones. For example, the fact that the
parameterisation of the controller consists of physical units such as steering ratio, wheel
base, understeer gradient and maximum lateral acceleration and preview time also makes
the controller intuitive and easy to calibrate to different cars and tracks.

Despite its relative simplicity and low computational demand ,the Preview Curvature
Controller shows very good performance both in simulations and in physical testing.
Driving on a narrow track at high speed, the deviation from the defined track has been
kept below 1.5 meters, but more importantly, the repeatability is close to absolute. It has
also been proven to be stable for disturbances to input signals and to the vehicle itself.
The actuation of the steering has during the testing been perceived to be smooth by the
operators.
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