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ABSTRACT 

Swallowing disorders, termed ‘dysphagia’, are more common in the elderly but can also affect younger 

persons. Approximately, 8% of the world’s population suffers from dysphagia. A Texture Modified Diet 

(TMD), which increases bolus viscosity to adjust for the sluggish bolus handling mechanism, is the most 

common intervention. Other rheological properties, such as bolus elasticity, shear rate, and yield stress, 

are often ignored. TMDs, which often comprise gum- and starch-based thickeners, were characterised for 

their rheological properties. The gum-based thickeners were considerably more elastic and exhibited a 

mild yield stress, showing a fine-stranded network structure on the nanoscale length when visualised by 

electron microscopy, as compared to the starch-based thickeners. Among the rheological properties, 

elasticity is cited as the most important for safe swallowing. Therefore, an in vivo study was performed in 

which fluids that have elastic properties were assessed for efficacy of safe swallowing in patients with 

dysphagia. These fluids showed easy swallowability, in terms of the sensory response and transit times 

during the oral and pharyngeal stages. While clinical examination is the standard and most appropriate 

way to diagnose dysphagia, difficulties arise in relation to the use of contrast media, ethics, and patient 

discomfort. To overcome these difficulties and to reduce the frequency of clinical analysis, an in vitro 

approach was adopted. And an in vitro swallowing model was developed that can be used to perform 

experimental bolus visualisation and manometry, mimicking the in vivo counterpart of video fluoroscopy 

and manometry. To study bolus transport, Pulsed Ultrasound Doppler Velocimetry was used. Pressure 

sensors were embedded in the model pharynx body to measure the bolus pressure during transit. The 

device delivers the bolus, at an appropriate speed and volume, and can handle boluses with different 

consistencies. In the device, bolus velocities ranging from 0.04 m/s to 0.48 m/s were measured, while 

bolus consistency was varied from nectar-thick to pudding-thick following National Dysphagia Diet scale. 

These velocities are within the range that is often reported for in vivo experiments. The acquired velocities 

yielded shear rates in the range of 13–229 s
-1

, which is both lower and mostly higher shear rates than 50s
-1

 

commonly referred to for deglutition. Similarly, when gum and starch-thickened boluses were injected 

into the model pharynx, the starch-thickened bolus often disintegrated, leaving residues in the model 

pharynx. When thickened boluses were analysed using manometry, by varying the bolus composition, 

shape, and volume, the pressure values at different locations in the model pharynx were in the range often 

noticed in clinical assessments. The device can simulate abnormal swallowing conditions, such as delayed 

epiglottis and Upper Esophageal Sphincter (UES) closure. Simulations of abnormal UES conditions, i.e. 

reduced UES area, yielded different pressure values in the lower pharynx. Therefore, the device can be 

used as a pre-clinical study tool to elucidate the relationship between bolus rheology and deglutition. 

Keywords: Bolus rheology, dysphagia, in vitro simulations, in vivo analysis, ultrasound viscometry, extensional 

rheology, in vitro manometry, microstructure analysis, thickened fluids 
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1. INTRODUCTION  

 

Deglutition or swallowing, which is the final stage of oral processing, is aimed at ensuring smooth 

transport of the orally processed food towards the stomach for further digestion. Swallowing is an 

involuntary action that occurs about 1,000 times a day, both voluntarily when we eat or drink 

foodstuffs or involuntarily when we swallow our own saliva (Mowlavi et al., 2016) . Swallowing is 

composed of four stages: oral preparatory; oral; pharyngeal; and esophageal stage. Of these four stage, 

the pharyngeal stage of swallowing is the most crucial, as the pharynx is partly shared by the airways 

and food-swallowing tract (McFarland et al., 2016). Misdirection of the bolus at the pharyngeal stage 

results in the bolus entering the airways, causing aspiration and possibly, pneumonia. Swallowing 

disorders (dysphagia) are estimated to affect 8% of the world population (Steele, 2015). Dysphagia is 

a growing concern in the developed world due to its ageing population. According to estimates, in 

Europe about 17% of the population is aged >65 years. The population of Sweden is expected to 

comprise 20% senior citizens (>65 years) by 2020. Epidemiological studies suggest that dysphagia 

occurs in up to 22% of people aged >50 years, while 40% of individuals who are more than 65 years 

old and are registered at the health-care centres suffer from dysphagia (Ekberg et al., 2002). 

The Modified Textured Diet is used to manage and nourish individuals who are suffering from 

dysphagia. The most commonly used approach is to increase the bolus viscosity using a thickener 

(gum- or starch-based) that is often available in the powdered form. The underlying theory is that a 

viscous food bolus travels at a lower velocity, thereby providing more time for the oropharyngeal 

apparatus to handle the bolus flow (Moret-Tatay et al., 2015; C. Steele et al., 2015; Tashiro et al., 

2010). The physiological responses of individuals who are suffering from dysphagia with neurological 

conditions or due to age-related impairment are insufficient for facilitating the rapid flow of foods or 

liquids through the oropharynx. Therefore, thickeners are added to the fluids to slow the bolus flow. 

Both gum and starch-based thickeners primarily increase the bolus consistency, although the 

mechanisms of thickening are different. Starch-based thickeners swell upon hydration, while gum-

based thickeners form a network that retains water and increases the fluid viscosity.  

Thickened fluids shear thins during flow, i.e., the perception of thickness decreases with increasing 

speed of deformation (Popa Nita et al., 2013). The prediction of consistency during bolus transport 

requires appropriate knowledge of the shear rate during swallowing. A shear rate of 50 s
-1

, taken from 

oral processing, is currently assumed to be the dominant parameter in pharyngeal swallowing. 

However, pharyngeal swallowing is rapid and shear rates higher than 50 s
-1

 have been predicted in 

some simulation studies. This results in a bolus of much lower consistency than is expected or 

suggested to the patients. In contrast, a bolus with high viscosity requires the exertion of a greater 

tongue propulsion force to push the bolus through the pharynx. High-viscosity boluses pushed by the 

tongue have been shown to increase the risk of post-swallow residues (Clavé et al., 2006; C. Steele  et 

al., 2015).  



INTRODUCTION 

2 

 

A thickened fluid is normally designated so as to assist the health-care professional in preparing 

boluses of appropriate consistency for patients with swallowing disorders. Various countries, such as 

Japan, Australia, Denmark, Sweden, Ireland, the UK and US, have developed food consistency scales 

to characterise the textural properties of the dysphagia diet. Among these scales, the most noteworthy 

is the one implemented in the US as the National Dysphagia Diet (NDD). The NDD guidelines refer to 

the given range of consistencies at a shear rate of 50 s
-1

, with 25ºC used as the reference temperature. 

The scale classifies fluids according to the following four consistencies:  

1) Thin: 1–50 cp (0.001–0.05 Pa.s) 

2) Nectar-like: 51–350 cp (0.05–0.35 Pa.s) 

3) Honey-like: 350–1750 cp (0.35–1.75 Pa.s) 

4) Spoon-thick: >1750 cp (>1.75 Pa.s) 

The tools that are most often used by clinicians to examine dysphagia are manometry and video 

fluoroscopy, both of which are invasive techniques. Manometry is based on the insertion of a probe 

into the patient’s pharynx, which may obstruct the bolus flow (Morinière et al., 2013) and cause 

discomfort. Similarly, while performing video fluoroscopy, the swallowing of fluids is monitored 

using x-ray imaging, whereby the entire swallowing process is recorded, enabling the examiner to 

follow the swallowing sequence frame by frame (Bülow, 2003). Video fluoroscopy necessitates the 

use of contrast media, which are radio-opaque and alter the bolus rheology (Ekberg et al., 2010).  

The European Society for Swallowing Disorders (ESSD) in its recently published white paper 

(Newman et al., 2016) has suggested the taking into acccount of rheological parameters, such as shear 

rate, the properties of non-Newtonian fluids, yield stress, elasticity, and density, in addition to the 

well-recognised parameter of shear viscosity (Gallegos  et al., 2016; Newman  et al., 2016). As the 

testing of these parameters directly in humans is problematic due to the lack of highly skilled 

operators, patient discomfort, and ethical issues, alternative methods are needed. 
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2. AIM AND OBJECTIVES  

 

The main aim of this project was to develop a device that allows the examination of non-invasive in 

vitro swallowing, so as to elucidate the linkages between rheology and dysphagia management. The 

developed device should be able to simulate thickened bolus formation, bolus flow, and bolus 

measurements, i.e., similar to the tests performed in clinical studies.  

 

Additional objectives were to characterise and examine the possibilities for applying other rheological 

parameters, such as shear rate, elasticity, and yield stress in both model and thickened fluids, and to 

test the potential of elasticity with respect to safe swallowing in cases of dysphagia.  

 

To achieve this aim and objectives, a comprehensive approach was applied that can be broadly divided 

into: 

 

 Clinical examination of the malfunctioned swallowing process 

 To elucidate the linkages between fluid elasticity and safe swallowing (Paper I). 

 

 Characterisation of the model fluids (composed of elasticity-providing ingredients) and 

thickened fluids (composed of gum- and starch-based thickeners) 

 Characterisation of model fluids using extensional rheology, including shear rheology, 

microstructure characterisation, and yield stress measurements (Paper II).  

 

 In vitro device construction and validation 

 The in vitro swallowing model was constructed by taking into account the human pharyngeal 

geometry, the nature of bolus injection, simulations of actual physiological processes such as 

the closing of the vocal chords, the UES, the epiglottis, the opening of the nasopharyngeal 

passage upon bolus exit, and visual observations of the bolus.   

 Bolus velocimetry and consequent shear rate measurements were performed during 

swallowing, for which a stand-alone ultrasound sensor system was developed. 

 Non-invasive in vitro manometry was carried out using pressure sensors embedded into the 

model pharynx walls (Paper III). 

 

 Application 

 The developed device was used to simulate bolus flow in an in vitro analysis that mimics the 

in vivo counterpart. These analyses included manometry and bolus visualisation, using most of 

the consistencies mentioned in the NDD standards set by the American Dietetic Association 

(Paper IV).  
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3. BACKGROUND 

 

3.1 Rheology  

Rheology is the branch of science that deals with “the flow and deformation of matter”. Rheology 

finds extensive applications in studies of polymers, foodstuffs, pharmaceuticals, and the interfacial 

interactions of materials. All types of shear behaviours, ranging from that of an ideal viscous liquid to 

the deformation of an ideal solid, can be described rheologically. When sheared under stress, an ideal 

viscous liquid, e.g., mineral oil, will deform irreversibly, i.e., all the mechanical energy supplied will 

be dissipated. An ideal solid material will store all the mechanical energy supplied, and it will recover 

completely and instantaneously once the stress is removed. However, all real-life materials exhibit 

both viscous and elastic behaviours, so they are viscoelastic (R. Paul Singh et al., 2014). 

Fluids can be deformed in shear and in extension. Shear rheology is a well-known for its beneficial 

effects phenomenon that is often used in the management of dysphagia, whereas extensional rheology, 

which is as important given that the bolus undergoes both shear and extensional deformations during 

swallowing, is often ignored. Extensional rheology is overlooked probably due to complications 

related to measuring material elongation properties.  

 

3.1.1 Shear deformation 

The concept of shear deformation can be explained by imagining a cube of fluid under flow (Fig. 1) 

that is deformed along its upper part. The given force, measured in Newtons (N), that deforms the 

material over a given area (m
2
) is called the shear stress (𝜎), and it is expressed as F/A and measured 

in Pascals (N/m
2
). 

 

Figure 1: Cube fluid deformation upon application of a shear force. 



BACKGROUND 

6 

 

The speed (v) with which this deformation takes place over a given height (h) is called the shear rate, 

which is expressed in 1/s (�̇� = 𝑣/ℎ) for an infinitely small cube. In other words, the shear rate is the 

derivative of the velocity profile, as described in Eq. [3.1]: 

 

�̇� =  −
𝑑𝑣(𝑟)

𝑑𝑟
  [3.1] 

 

The ratio of the two parameters of shear stress and shear rate provides the most familiar term in 

rheology: the shear viscosity 𝜂 = 𝜎/�̇� (expressed in Pa.s). Traditionally, shear rheology is measured 

using rotational rheometers. Various measurement geometries, such as cone-plate, plate-plate, and 

concentric cylinders, can be used depending on the type of sample being analysed.  

 

In the research for this thesis, cone-plate or plate-plate geometry was mainly used to measure the shear 

viscosity owing to the samples being highly soluble and homogeneous in general. A schematic of 

these two geometries is given in Fig. 2. 

 
Figure 2: Cone plate (left) and plate-plate geometries used for shear rheology measurements. 

Besides the traditional laboratory-based rheometry, Doppler Ultrasound Viscometry+Pressure Drop 

(UVP+PD), which can be considered as an advanced version of tube viscometry, was used in the in 

this work. Many biological fluid flows, such as blood flow in arteries and veins, air flow in pulmonary 

airways, and bolus flow during swallowing, occur in a tubular fashion. The application of Doppler 

ultrasound to measure blood flow is well-established in medical ultrasound examinations (Nahar et al., 

2012). Measurements of bolus/fluid flow during swallowing are not performed as commonly and, to 

the best of our knowledge, have not been investigated previously. 

  

3.1.2  Tube viscometry and pulsed ultrasound velocimetry   

In traditional tube viscometry pressure difference over a fixed distance of pipe and volumetric flow 

rate is used to determine the shear rheology. The concept of basic tube viscometry was used to develop 

the advanced Ultrasound Velocity Profiling (UVP) plus Pressure Drop (PD) system. Fluid flow in the 

pipes or capillaries over its length is caused by the pressure drop (∆P) over the length (L) of the pipe. 

This relationship was first described by Hagen (1839) and Poiseuille (1840) independently, and 
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therefore is called the Hagen-Poiseuille law. The shear stress at the wall 𝜎𝑤 is determined by the 

pressure difference (∆P) over a fixed distance of pipe (L): 

𝜎𝑟 =
𝑟∆𝑃

2𝐿
      [3.2] 

Equation [3.2] provides a measurement of shear stress at a single point of the capillary. Similarly, the 

shear rate at the wall is determined by flow rate Q as: 

�̇�𝑤 =  
4𝑄

𝜋𝑅4     [3.3] 

where Q represents the volumetric flow rate (m
3
/s).  

The difference between a capillary and a pipe is that the diameter of the latter is much larger. In case 

of capillaries, the diameter ranges from 0.1-0.4mm, while pipes used in food application have 

diameters typically between 12-32mm (Steffe, 1996). 

For simple Newtonian fluids, the rheology is determined based on the volumetric flow rate and the 

pressure drop over a fixed distance of pipe. This method, which is known as tube viscometry, enables 

determination of the shear viscosity at a single point in a capillary. To tackle the problem of single 

point measurements and to study non-Newtonian fluids, the parameter of Q, which provides the 

average velocity, has to be replaced by a method that determines the velocity profile over the entire 

cross-section of a pipe. Typically, the shear stress distribution in a pipe flow is represented by a 

straight line (Fig. 3). The velocity profile across a pipe diameter, v(r), represents the instantaneous 

velocity distribution in a pipe diameter. The differentiation of velocity distribution at every radial 

position yields the shear rate distribution, as described in Eq. [3.1]. 

The apparent shear viscosity for a Newtonian fluid is calculated as; 

𝜂 =
𝜎

�̇�
     [3.4] 

where 𝜂 is the apparent viscosity, σ is the shear stress, and �̇� is the shear rate.  

 

Figure 3: Fluid flow through a pipe under a laminar flow regime for a Newtonian fluid. It is clear from the 

figure that the maximum velocity is at the centre of the pipe (zero velocity at the wall), while the shear stress is 

maximum at the wall and zero at the centre of the pipe. 
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3.1.3  Flow characteristics of non-Newtonian fluids in pipes  

Isaac Newtonian first observed that a shearing stress (σ) will cause a proportionally increasing 

deformation rate 

𝜎 𝛼 �̇�   or    𝜎 𝛼 
𝑑𝑣

𝑑𝑦
         [3.5] 

which is the relative change in the velocity (v) due to the applied shear force divided by the distance 

between the walls holding the fluid (y).   

Removing the proportionality to introduce a constant (𝜂),Eq. [3.5] becomes: 

𝜎 =  𝜂 
𝑑𝑣

𝑑𝑦
      [3.6] 

Common examples of Newtonian fluids in food are water, honey, coffee, and carbonated beverages. In 

contrast to Newtonian fluids, non-Newtonian fluids do not follow Eq. [3.6], i.e., the relationship 

between the shear stress and shear rate is non-linear. Examples of non-Newtonian fluids are cosmetics, 

soap solutions, butter, jam, yoghurt, soup, and thickened fluids used for the treatment of dysphagia. 

In the case of a non-Newtonian fluid, the flow properties can often be described using the Power-law 

model:  

𝜎 = 𝐾(�̇�)𝑛 or 𝜂 = 𝐾�̇�𝑛−1          [3.7] 

where n is the flow index representing Newtonian (n=1), shear-thinning (n<1), and shear-thickening 

(n>1) fluids, and K is the consistency index. Figure 4 represents the velocity profiles of typical Power-

law fluids flowing through circular tubes, under a laminar flow regime. A Newtonian fluid (n=1) will 

flow with a characteristic parabolic velocity profile, whereas shear-thinning fluids (n<1) have velocity 

profiles that are much flatter.  

 

Figure 4: Shape of the velocity profile in a tube based on the Power-law model. 

To calculate the shear rate and shear viscosity at radial position (r) for a Power-law fluid within a pipe, 

Eqs. [3.2] and [3.7] are combined and integrated: 

�̇� =  (
𝑟∆𝑃

2𝐿𝐾
)

1/𝑛
                  [3.8] 
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𝜂 = 𝐾 (
𝑟∆𝑃

2𝐿𝑘
)

1−1/𝑛
   [3.9] 

3.1.4 Ultrasound pulsed velocimetry+pressure-drop method for measuring shear viscometry 

Ultrasound Velocity Profiling (UVP) is a technique that measures an instantaneous velocity profile in 

a fluid flow along the pulsed ultrasonic beam axis. The derivative of the measured velocity profile is 

used to determine the shear rate distribution across the beam axis. The average shear rate was 

determined with UVP for a bolus flow in this work. Ultrasound Velocity Profiling (UVP) can be 

combined with Pressure Drop (PD) measurements to determine rheological properties. The PD is used 

to determine the shear stress at the wall and the UVP+PD method is used to determine shear viscosity 

and yield stress measurements. Most of the work in this thesis is based on the UVP technique, except 

the work in Paper II, for which both the UVP and PD components are used. 

The UVP technique detects the relative time lags between pulse emissions that are echoed by particles 

present in the fluid as a function of time. While the technique was originally developed to measure 

blood flow, it has been adapted to measure the flows of other fluids in research and engineering. The 

underlying principle is described in detail elsewhere (Takeda, 1995). A simplified schematic of the 

UVP technique is presented in Figure 5. An ultrasound transducer is mounted on a pipe of known 

length and diameter at an angle that ensures a measurable velocity component in the direction of the 

measuring line. The angle between the moving scattering particles and the inclination angle is called 

the ‘Doppler angle’.  

 

 

 

 

Figure 5: Schematic of the UVP method used to measure the velocity profile in the model pharynx.  

The transducer emits a pulse train through the acoustic coupling and wall material into the sample 

fluid, which contains moving particles (or more precisely, micron-sized reflective surfaces) that are 

suspended in the flowing liquid (Fig. 5). 

The echo that returns after collision with the moving reflectors in the fluid is sampled in a small time-

window after each transmitted pulse. This small time-window is called a gate or a channel. A gate 

represents the range of widths from which the Doppler signals are acquired using a pulsed wave, while 

the width of each (w) channel is calculated from Eq. [3.10]: 
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    𝑤 = 𝑐
𝑛

2𝑓𝑜
      [3.10] 

where w is the width of the channel, c is the sound velocity (m/s), n is the number of cycles, and f0 is 

the transmitting frequency (Hz). If the reflector is moving with a non-zero velocity into the ultrasound 

beam-axis there will be a shift in the position of the reflector between consecutive pulses. This shift is 

detected by the pulsed ultrasound system and is called a ‘Doppler shift’, although this is a matter of 

debate given that it is the shift in position of the reflector and not the shift in emitted frequency that is 

detected. This is discussed in detail by Jensen (Jensen, 1996). However, following convention, we use 

the term ‘Doppler shift’ in the present work. The Doppler-shifted frequency is determined by 

demodulation using time-domain or frequency-domain signal processing with the Incipientus ® 

equipment and the following expression: 

     𝑓𝑖𝐷𝑜𝑝𝑝𝑙𝑒𝑟 =
2𝑓0𝑉𝑖𝑐𝑜𝑠𝜃

𝑐
  [3.11] 

Meanwhile, the local velocity of the given fluid is determined by re-arranging Eq. [3.11] as follows: 

       𝑉𝑧 =
𝑐.𝑓𝐷

2𝑓𝑜 cos 𝜃
                       [3.12] 

 

where 𝑐 is the ultrasound velocity, 𝑓𝐷 is the Doppler frequency shift, 𝑓𝑜 is the frequency emitted by 

the ultrasound transducer, and cos 𝜃 is the Doppler angle. 

 

 

The distance from the transducer face to the reflecting particle located along the given measuring line 

is determined by the time of flight as described in Eq. [3.13]. The time required for a pulse to reach the 

gate and return is converted into a physical distance, as described by the following equation:  

𝑆 =
𝑐.𝑡

2
    [3.13] 

where S is the distance from the gate, t is the time interval, and c is the sound velocity. In this way, the 

velocities in space along the measuring line are calculated at multiple points, such that a complete 

velocity profile is established. 

The velocity profiles in the current work are presented as Power spectra proportional to the energy of 

the Doppler-shifted signal. In the UVP method, only half of the velocity profile from the wall to the 

center of the pipe is required to calculate the rheological parameters (Fig. 6). 

 
 

  Pipe radius pipe diameter    Pipe radius pipe diameter 

Figure 6: Schematic showing the flow of a typical shear thinning fluid. Schematic (left panel) further shows that 

half of the velocity profile is needed (from the transducer side) for shear rate determination (red line shows 

velocity and green line shear rate distribution). The secondary axis shows the shear rate distribution from the 
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wall to the centre of the pipe. The panel on the right shows the actual power spectra and the far side of the pipe 

where the velocity profile is assumed symmetrical. 

Measurement artefacts in pulsed Doppler ultrasound (aliasing) 

The term ‘aliasing’ refers to the artefact that is noted when the detected Doppler-induced frequency 

shift exceeds one-half of the instrument’s Pulse Repition Frequency (PRF). In other words, the 

maximum detectable Doppler frequency shift is half of the PRF, i.e., PRF=2fd(max). In pulsed Doppler 

systems (but not in continuous wave Doppler), aliasing is an inherent artefact that occurs at high flow 

rates. 

Aliasing results in the frequency shift (velocity profile) folding back into the lower regions of the 

frequency (Fig. 7), and it can be avoided by increasing the PRF to compensate for the higher 

frequencies.  

 

Figure 7: An example of an aliased velocity profile acquried at low PRF. 

3.2 Extensional rheology  

Besides their deformation under shear forces, fluids deform in the extension. Knowledge of 

extensional rheology is necessary for the processing and quality control of different products. Well-

known examples of this for foodstuffs are flows through extruders or heat exchangers that involve an 

abrupt change in geometery accompanied by a sudden loss of water. Other examples where a food 

material undergoes extension include fibre spinning of soy proteins, dough sheeting, and finally bolus 

swallowing, as the food is squeezed between the back of the tongue and the palate. Therefore, 

extensional rheology is also considered in the present work. Mathematically, extensional viscosity can 

be defined as: 

𝜂𝐸 =  
𝜎𝐸 (𝑡)

�̇�
   [3.14] 

Unlike shear, extensional viscosity is difficult to determine experimentally. Complications, such as 

shearing at the boundary, gravitational/inertial effects, and sample gripping, commonly arise. Various 

experimental techniques have been developed that are suitable for characterising from very-low-

viscosity dilute solutions to very-high-viscosity polymeric melt materials. These techniques include: 

stagnation point flows; contraction flows; filament stretching; squeeze flow; fibre spinning; and 

Meissner extensional rheometry. The applicability of these techniques to different fluids at a range of 

zero shear viscosities is described in Figure 8 (Różańska, 2017). Zero shear viscosity is used here as a 
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reference to estimate the approximate point at which the given extensional rheology technique is 

applicable.  

 

Figure 8: Range of zero shear viscosities at infinitely low deformation rates and the methods used for 

extensional viscosity measurements. The figure is adapted from (Różańska, 2017). 

 

During “stagnation point based flow” the extensional deformation is evaluated in stagnation flows, 

which are normally created by colliding two jets at a 90º angle. Very high extension rates can be 

achieved at the stagnation point. The opposed jet technique and four-roll mill are examples of 

stagnation flow extensional viscosity measurement methods. In the opposed jet technique, two 

nozzles are aligned opposite to each other in a container that is composed of the fluid being tested. The 

sample is either pumped into or sucked out of the nozzle, so as to create a stagnation point around 

which the extensional flow takes place. The main drawback of stagnation point techniques is the lack 

of homogeneity of the flow. Pure extensional deformation is only possible close to the stagnation area, 

while shear flow predominates along the nozzle. Contraction flow techniques, such as the Hyperbolic 

Contraction Flow (HCF) used here, are based on creating a fluid flow through an abrupt contraction as 

presented later in Figure 10. The pressure drop and flow rate are measured as the fluid flows through 

the orifice. This technique is ideal for fluids of medium viscosity. 

 

                                       
  

 

 

Figure 9: Illustration of the techniques used to measure extensional viscosity 

 

In the filament stretching technique, a filament is created from the sample being tested by placing 

the sample between two parallel plates. The lower plate remains stationary, while the upper plate is 

raised rapidly to stretch the sample. During the measurement, the change in filament diameter is 

monitored with a high-speed camera or laser. For the filament technique to be effective, the sample 

must be viscous and sufficiently sticky to be stretched. The Capillary Breakup Extensional Rheometer 

(CaBER), as mentioned briefly in this study, is one example of filament stretching. In the squeezed 

flow technique, the cylindrical plate is placed between two plates and squeezed, so as to create a 

biaxial extension. A limitation of the technique is that only H1 is applicable due to a high level of 

   Filament 

stretchin

g 

Opposed jet Squeeze flow     Meissner rheometer     Fiber spinning 
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friction. Another technique for measuring extensional viscosity is the Meissner extensional 

rheometer, in which the sample is stretched by two sets of oppositely rotating toothed belts, ensuring 

a constant extension rate and H=7. The stress applied is recorded on one set of rollers, while the 

extension rate is recorded with a video camera. Detailed discussions of these techniques can be found 

in a previously published review (Kocsis, 1995). The HCF and CaBER methods used in this study are 

briefly discussed below. 

During fibre spinning, the sample being tested is deformed based on its spin-ability, e.g., the spin-line 

rheometer shown in Figure 9. The fluid that is passing through a thin-walled tube is pumped from a 

nozzle mounted at the end of the thin-walled tube. The fluid filament is elongated by a rotating drum. 

During this process, the force exerted on the thin-walled tube is calculated based on how much this 

tube has deflected. Elongation of the filament is photographed, which serves as the basis for 

calculating the extension rate. The draw-back of fibre spinning is that only low-viscosity samples are 

measurable (1-10 Pa.s) (Różańska, 2017). 

3.2.1 HCF technique 

In the HCF technique for extensional viscosity measurements, a hyperbolically shaped nozzle (Fig. 

10) ensures steady-state extension of the given fluid. 

 

 
Figure 10: Illustration of the hyperbolic contraction flow nozzle.   

  

This technique was first utilized by David James (James, 1991), while Leif Bohlin (Bohlin, 1999) 

presented an analytical solution for David Bindings analysis of the extensional flow of a Power-law, 

and designed a measuring system that contained a hyperbolic nozzle (Binding et al., 1989).  

 

Assuming a Power-law fluid, 𝜎 = 𝐾𝛾�̇�, the constant extension rate throughout the nozzle (Fig. 11) is 

given by:  

 

𝜀̇ =  −2
3𝑛+1

𝑛+1

𝑄

𝜋𝑟3

𝑑𝑟

𝑑𝑧
   [3.15] 

 

This constant extension rate has been confirmed by others (Nyström et al., 2017).  

While the radius of the nozzle (Fig. 11) at any point Z along the height of the nozzle (H) is expressed 

(Wikström & and Bohlin, 1999) as: 
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𝑟(𝑧) =  
𝒓𝟎

√
𝒛  

𝑯 
.[

𝒓𝟎𝟐

𝒓𝟏
𝟐 ] +𝟏

        [3.16] 

 

where r0 and r1 are the inlet radius and outlet radius, respectively, of the hyperbolic contraction nozzle, 

and H is the height of the nozzle.  

 
Figure 11: Illustration of the contraction nozzle. Taken from (Wikström & Bohlin, 1999) 

During contraction flow beside involving extension, a fluid will also experience shear, which is 

calculated as (Wikström  et al., 1999): 

 

σ𝐬hear =

 4𝐻(𝟑+
𝟏

𝒏
)𝒏(

𝑲

𝝅
) 

𝒏
(𝝅𝒓𝒐𝟐𝒗)𝒏(

𝟏

𝒓𝟎𝟑𝒏+𝟏) [(
𝒓𝟎𝟐

𝒓𝟏𝟐)

𝟑𝒏+𝟑
𝟐

−𝟏]

(𝟑𝒏+𝟑)(
𝒓𝟎𝟐

𝒓𝟏𝟐− 𝟏)
 [3.17] 

  

The final extensional viscosity, reported as the corrected extensional viscosity, is obtained by 

subtracting the shear stress contribution in the HCF nozzle from the ratio of stress σ measured by the 

load cell (F/A) to the rate of extension  

 

𝜂𝒆 =  
σmeasured  – σ Shear

ε̇              [3.18] 

 

3.2.2 Measurement of extensional properties using capillary break-up 

Extensional deformation can be measured with CaBER. The technique is based on monitoring the 

dynamics of a fluid thread during short-duration, rapid deformation. The deformation results in 

necking and an unstable geometric shape of the fluid element. This unstable fluid shape is allowed to 

relax and break apart under capillary forces. The extensional stress in the fluid resists the filament 

break-up, which is characteristic for a given fluid. To monitor the changes in filament diameter over 

time at the mid-point, 𝐷𝑚𝑖𝑑(𝑡) , a laser micrometer targeted at the centre of the filament is used.  

 

The Hencky strain in CaBER is measured from the logarithmic evolution of the mid-point diameter 

over time with respect to the original diameter:  

 

𝜀𝐻 = 2ln(𝐷0/𝐷𝑚𝑖𝑑(𝑡)      [3.19] 

 

To obtain the extensional viscosity in the CaBER, the following relation is used: 

 

𝜂𝑎𝑝𝑝(𝜀)  =  
2𝜎/𝐷𝑚𝑖𝑑(𝑡)

⌊
−2 

𝐷𝑚𝑖𝑑
  

𝑑 𝐷𝑚𝑖𝑑
𝑑𝑡

⌋
= −

𝜎
𝑑 𝐷𝑚𝑖𝑑

𝑑𝑡

     [3.20] 
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In the equation, the 𝜎 term represents the surface tension, which cannot be measured directly in the 

CaBER and therefore has to be measured separately and inputted to the software; the terms shown in 

brackets represent the extension rate 𝜀̇(𝑡).  

 

The results obtained from the CaBER are often represented as the normalised logarithmic diameter 

D(t)/D0 recorded during thinning as a function of time (s), where D0 is the filament diameter at time 

zero and D(t) is the change in filament diameter over time. Figure 12 shows a typical example of how 

a Newtonian syrup filament diameter evolves over time. 

 

 

 

 

Figure 12: Schematic of filament evolution in the CaBER: (a) loaded; (b) during stretching; (c) shortly after 

stretching is stopped; (d) during capillary drainage; and (e) after breakup of the Newtonian syrup with 0.55 Pa.s 

of shear viscosity.  

3.3 Physiology of swallowing 

Normal swallowing involves rapid transport of food or liquids from the mouth towards the stomach, 

where the goal is to guide the food safely towards the stomach without entrance into the airways. 

Swallowing consists of four stages: the oral preparatory stage; the oral stage; the pharyngeal stage; and 

the oesophageal stage (Bulow, 2003; (Nishinari et al., 2011). Twenty-eight different muscles are 

involved in the transport of a bolus from the oral cavity to the oesophagus (Ekberg, 1997). These 

muscles ensure that the bolus does not enter the airways.  

3.3.1 Oral Preparatory stage: 

The oral preparatory stage, which is also called the bolus-forming stage, starts with the sight or smell 

of the food. In this stage, food/drink received by the mouth is masticated and mixed with saliva in 

order to form a bolus, which has a consistency that makes it readily swallow-able. The posterior of the 

tongue and the soft palate ensure that the food does enter the pharynx prematurely. The cheek muscles 

restrict lateral movement of the food, while the lips prevent the frontal escape of the food from the 

mouth. Normal breathing continues at this stage of swallowing (Bulow, 2003). 

3.3.2 Oral stage: 

In this stage, the bolus is displaced backwards by the tongue toward the pharynx (Fig. 13). The tongue 

executes the pushing function through a stripping action against the hard palate. This promotes the 

posterior mobility of the bolus towards the pharynx. The oral stage terminates when the bolus reaches 

the back of the tongue close to the faucal arches.   
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3.3.3 Pharyngeal stage: 

This is the first involuntary stage of swallowing. It starts with the activity of the hyoid bone. The hyoid 

bone starts to move upwards and forward. This helps to expand the pharynx, resulting in the pharynx 

adopting an elliptical shape as it receives the bolus. The epiglottis tilts back and down, to seal off the 

airways and to prevent the entrance of food into the airways, which means that breathing is stopped 

momentarily. Once the pharyngeal cycle is over, the hyoid bone returns to its original position (F. J. 

Chen et al., 2012). As the pharynx is partly shared by the airways and food-swallowing tract, a 

misdirected bolus can enter the airways, resulting in aspiration. Thus, the pharyngeal stage of bolus 

transport is the most crucial. Nevertheless, it is relatively poorly studied, especially during in vitro 

modeling, as compared to the oral and esophageal stages. 

3.3.4 Esophageal stage: 

This is the final stage of swallowing. Similar to the pharyngeal stage, the stage is involuntary. It starts 

at the upper esophagus sphincter where the bolus enters. The peristaltic action on the bolus of the 

circular muscles pushes the bolus slowly downwards to the lower oesophageal sphincter, and 

thereafter towards the stomach (F. J. Chen  et al., 2012; Yang et al., 2007); Bulow, 2003)  

 

Figure 13: Voluntary and involuntary stages of swallowing: the oral, pharyngeal, and oesophageal stages (left 

to right). Note the position of the epiglottis and movement of the bolus during the different stages. The arrow 

indicates the air flow regulation during the different stages.  
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4. RHEOLOGICAL AND MICROSTRUCTURAL PROPERTIES OF 

THE MODEL FLUIDS AND FOOD THICKENERS   

 

Texture modification through increasing bolus viscosity is one of the most common type of 

intervention in dysphagia management (Tobin et al., 2017). Other rheological properties, such as bolus 

elasticity (bolus cohesion), yield stress (level of force needed to initiate the flow), and the 

microstructural description of the flow of thickened fluids have been studied to lesser extents. 

Therefore, this section is mainly concerned with characterising the starch- and gum-based thickeners 

for extensional rheology, and yield stress, and with understanding the microstructural features 

responsible for rheological properties (Paper II). As a starting point to model the pharynx, the UVP 

method was used for fluid flow visualisation, to study the in-line rheology and compare it with the 

traditional laboratory-based rheometry. The measured fluids were both model fluids and those 

thickened with powders for dysphagia management (Paper II).  

4.1 Materials 

Five commercial thickeners and three model fluids were characterised for: shear viscosity (using the 

UVP-PD method and laboratory-based viscometry), microstructure, and extensional viscosity. The 

thickeners come in two major formulations: gum-based and starch-based. The gum-based thickeners 

were: Nutilis (Nutricia Nordic AB, Stockholm, Sweden); Nestlé Clear (Nestlé Health Science Centre, 

Stockholm, Sweden); and Fresubin Clear (Fresenius Kabi GmbH, Bad Homburg, Germany). The 

starch-based thickeners were: Nestlé Thicken-up (Nestlé Health Science Centre); and Findus thickener 

(Findus Sweden AB, Malmö). To make the relevant comparisons, the viscosities of the two major 

classes of thickeners (gum-based and starch-based) were set to be always within the range of Honey 

consistency (0.351–1.750 Pa.s) on the NDD scale, and more specifically, 0.55±0.03 Pas at50 s-1, 

which is the shear rate that is believed to govern the oral and pharyngeal swallowing stages. 

 

Model fluids, which are fluids of known composition, serve as references to distinguish between, for 

example, pure elastic and pure viscous effects. In the current project, three model fluids (Newtonian, 

Boger, and shear-thinning) were created. Similar to the thickeners, the consistencies of the model 

fluids were set at 0.55 Pa.s at a shear rate of 50 s
-1

. The Newtonian fluid used in Paper II was based 

on a diluted syrup, called Lys syrup (84% sugar; (Dansukker, Malmö, Sweden). The Boger fluid used 

in Paper II was prepared by dissolving a small amount (150 ppm) of pre-dissolved polyacrylamide 

(PAA) in diluted syrup, while the shear-thinning fluids (Paper II) were made from either PAA or 

xanthan gum by dissolving the respective polymers in water to the appropriate consistency (Table 1). 

The xanthan gum used in this study was Grinsted Xanthan CLEAR 80 (Danisco France SAS, Melle, 

France), and the PAA was supplied by ACROS Organics (Geel, Belgium). 
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Procedure for preparing the model fluids (Paper II) 

The model Newtonian, Boger, and shear-thinning fluids were made by diluting the syrup with water to 

the targeted viscosity of 0.55 Pa.s at a shear rate of 50 s
-1

. In the cases of the Boger and shear-thinning 

fluids, mixing with a concentrated solution of either the xanthan gum or PAA polymer (Table 1) was 

performed for 48 hours at room temperature (23°C) until the samples were completely dissolved. 

 

Procedure for preparation of commercial thickeners in water 

A large volume of the thickener solution (~2 L) was mixed with tap water according to the 

manufacturer’s guidelines to achieve a honey-like consistency, and agitation was applied with a 

magnetic stirrer until the thickener was completely dissolved (about 1 hour). The amount of powder 

that was added to the water to achieve a viscosity of 0.55±0.03 Pa.s at a shear rate of 50s
-1

 is listed in 

Table 1. In general, the thickeners were highly soluble in water. 

 

Table 1: Amounts of thickeners added to achieve a viscosity of approximately 0.55 Pa.s at a shear rate of 50 s-1. 

Thickener  Amount (g) of thickener added1 to 
achieve a viscosity of ~ 0.55 Pa.s at 
shear rate of 50 s-1 

 Thickening agent(s)  

Nutilis  4.0 maltodextrin, modified starch, 
xanthan gum, guar gum 

Fresubin Clear 4.0 modified starch, xanthan, 
maltodextrin, modified cellulose 

Nestlé Thicken-
up 

5.15 modified maize starch 

Nestlé Clear 5.7 maltodextrin, xanthan gum 

Findus  25.0 maize starch 

Newtonian fluid - - 

Boger fluid 150 ppm PAA 

Shear-thinning 
fluid 

2% xanthan gum 

1
During preparation of the different batches, a standard deviation of ±0.05 g was noticed. Units other than 

grams are designated in the table. 

 

4.2 Light and electron microscopy 

Light Microscopy (LM) and Transmission Electron Microscopy (TEM) were used to analyse the 

structural properties of the starch-based and gum-based thickeners (Paper II). LM was the preferred 

technique for analysing the starch-based thickener owing to its larger granular size. Starch granules 

typically swell during hydration, thereby increasing the contributing to the viscosity of the material. 

Swollen starch granules can be stained with iodine and visualised by light microscopy upon hydration. 

However, since the structure of xanthan-gum is too fine to be viewed under LM, a more sensitive 

technique, such as TEM, is required. TEM is an electron-based technique. Electrons, which have 

shorter wavelengths than light, provide better resolution, typically up to 5×10
-10 

m. Unlike LM, TEM 

requires a controlled environment, as under normal atmospheric conditions the electrons react with 

ordinary gases in the air. Therefore, TEM is carried out under a vacuum, with measures taken to 

ensure that the sample does not evaporate. This means that the sample has to be prepared prior to 

analysis using well-controlled preparation techniques that do not alter the sample structure. The 
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preparation technique used here was freeze-fracture replication. The procedures used for the 

performance of LM and TEM are described below.  

Procedure for LM visualisation 

 

The solutions were analysed both as a solution and dried on an objective glass on a heating stage set at 

~40°C. The staining solution was either added to the solution and analysed or added to the dried film 

of the solution on the objective glass. Staining involved the addition of Lugol’s iodine solution or a 1:1 

mixture of Lugol’s iodine and Light Green solution. Lugol’s iodine stains amylopectin a pink-to-

brownish colour and stains amylose purple. Lugol’s iodine stains proteins yellow, while Light Green 

stains proteins green, which makes the latter more suitable for protein visualisation. The staining 

solutions were added to the samples and a cover glass was placed on top. The cover glass was sealed 

to the objective glass with nail polish, to prevent evaporation of the iodine. Differential Interference 

Contrast (DIC) was used to enhance visualisation of the interfaces. The LM used a Nikon Microphot-

FXA microscope (Nikon, Tokyo, Japan), equipped with an Olympus Altra 20 colour camera 

connected to a computer and operated using the Olympus Cellsens Dimension software (Olympus Soft 

Imaging Solutions, Münster, Germany). 

 

Procedure for TEM visualisation 

 

Three different xanthan-based thickeners were analysed using the mica sandwich freeze-etching 

preparation method, in which 7 µl of a thickener (diluted to the appropriate concentration) were placed 

between two newly cleaved mica sheets. The sheets with the sample were placed together as a 

sandwich and then rapidly frozen by immersing the mica sandwich in liquid nitrogen. The mica sheets 

were separated under liquid nitrogen, and one of the sheets with a thin layer of the sample was quickly 

transferred to a vacuum chamber that contained a pre-cooled Balzers freeze-etching unit at -170ºC 

(Balzers BAF 400; Balzers Union Aktiengesellschaft, Balzers, Liechtenstein). When a vacuum was 

created in the chamber the temperature was increased to -90ºC and the sample was left for 2 hours for 

the water to sublimate. A metal replica of the sample was created by shadowing a ~0.8-nm-thick layer 

of platinum at an angle of 6º, followed by shadowing a ~20-nm-thick layer of carbon at an angle of 80º 

on the surface of the sample. The thickness of the metal replica was controlled by a quartz crystal 

monitor. Only the platinum layer gives contrast in the image, while the carbon layer is a support for 

the very thin metal layer when it is analysed using TEM. The replicas were then removed from the 

mica sheets and cleaned from the sample by immersing them first in deionised water followed by 

H2SO4 (70%) and several washes with deionised water. Prior to the TEM analysis, the samples were 

placed on copper grids. The TEM used for analysing the replicas was the LEO 706E (LEO Electron 

Microscopy Ltd., Cambridge, England), which was operated at an accelerating voltage of 80 kV. 

4.3 Results and discussion on the rheological properties and microstructure 

In the following sections, the rheological properties of the thickeners and model fluids are briefly 

described, while the thickeners are also evaluated by microscopy to understand the structural 

differences that determine the rheological properties. 

4.3.1 Shear viscosity  

The procedure that was followed to measure the steady-state flow curves is described in Paper II.  

The gum-based thickeners were found to be more shear-thinning (Fig. 14; upper panel), with flow 

curves that were steeper than the starch-based thickeners. The Power-law flow index (n), which is an 

indicator of the degree of shear-thinning, supports this finding, as presented in Paper II. Nestlé Clear 
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and Fresubin Clear are shear-thinning to the same extent, with n=0.19 for both thickeners, followed by 

Nutilis, with n=0.33. In comparison, starch-based thickeners are less shear-thinning, with n=0.39 for 

Nestlé Thicken-up and n=0.61 for Findus thickener, respectively. Figure 14 shows the flow curves for 

the model PAA- and xanthan gum-based shear-thinning agents, Boger fluids (PAA-based), and the 

corresponding Newtonian fluid (composed of syrup). The Newtonian fluid shows its characteristic 

rheological property, in that its viscosity is independent of the applied shear rate (n=1), as is evident in 

Figure 14 (lower panel) with Power-law index n=~1. In contrast, the Boger fluid demonstrates the 

expected independence of viscosity in relation to shear rate (n=0.98). The main difference is when the 

two fluids are characterised by large-scale deformation, as discussed in the next section.  

 

 

 
 

 
Figure 14: Flow curves of the thickeners used for dysphagia management (top panel) and of the model fluids   

(bottom panel). The viscosities of all the fluids are set to ~0.55±0.03 Pa.s at a shear rate (SR) of 50 s
-1

. 
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There was slight shear thinning of the Boger fluid at very low shear rates, which occurred due to 

adjustments to the initial polymer structure, as also noted in previous studies (Anne Laure Koliandris, 

2010). Of the two shear-thinning model fluids, the xanthan gum-based fluid was more shear-thinning 

(n= 0.22) than the model PAA-based shear-thinning fluid. The model fluids used here mainly serve as 

references, as they have standard compositions and known rheological behaviours. This helps to 

eliminate any effects from other ingredients used in thickened fluids. Model fluids were used in Paper 

I to study the relationship between elasticity and safe swallowing in patients. Moreover, the PAA used 

in this study was not food-grade, and so is not of any immediate direct value. The use of PAA in this 

work was primarily motivated by its high-level elasticity. Even though it was added in a small amount, 

the PAA induced highly elastic effects. This allows thickener manufacturers to define where the 

currently used elastic polymer, xanthan gum, resides on the elasticity scale. In the future, we expect 

fluid elasticity to become a key factor (in addition to shear viscosity) when designing diets for persons 

with dysphagia. Therefore, food industry needs to have the possibility to develop new ingredients with 

equivalent rheological properties. The structures and rheological features of the PAA- and xanthan 

gum-based thickeners are described in detail in the next section. 

 

Thickeners have traditionally used starch as the viscosity-enhancing ingredient, due to its easy 

dissolution and low cost. Starch-based thickeners, however, have the inherent disadvantage of 

susceptibility to amylase action during oral processing, which may reduce their viscosity (Leonard et 

al., 2014).  

4.3.2 Extensional viscosity in HCF  

As proposed in Paper 1, elasticity exerts an influence on safe swallowing. Therefore, all the 

thickeners used in dysphagia management were characterised in terms of extensional rheology using 

the HCF technique (Fig. 15). The extension rate was varied from 1 s
-1 

to 100 s
-1

. In general, the 

thickeners composed of xanthan gum were more elastic than the ones that have starch as the thickener.  

Furthermore, both the gum-based and starch-based thickeners behaved as extension-thinning fluids, 

which does not accord with what is expected for a typical shear-thinning polymer in large-scale 

deformation. A material that is shear-thinning often behaves as an extension-thickening, although it is 

not a rule of thumb (H.A. Barnes et al., 1997). The behaviour of the polymer is largely dependent 

upon the technique used for measurement. The theory states that polymer molecules that are originally 

in coiled form, when added to a solution, become stretched out and aligned in the direction of the 

flow. As the polymer molecules become aligned in the flow direction, they offer less resistance to 

shear deformation, which is manifested as a shear-thinning behaviour. Similarly, the same polymer 

molecules when stretched out (extensionally deformed) will align in this direction, as they are now 

deformed in extension mode, such that the resistance to extensional deformation increases, i.e., the 

extensional viscosity increases with increasing deformation rate, as noted here.  
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Figure 15: Extensional viscosities (Pa.s) of thickener-based dysphagia-management aqueous solutions for 

different extension rates: Fresubin Clear ; Nestlé Clear ; Nutilis Δ; Nestlé Thicken-up ; and Findus 

thickener ×. 

A similar extension-thinning behaviour was observed for the model xanthan gum fluid, which was 

dissolved in water and deformed extensionally (Fig. 16). Therefore, in the HCF method, a xanthan 

gum-based thickener exhibits extension thinning. The Trouton ratio (𝑇𝑟 = 𝜂𝑒
𝜂

) was considered for the 

fluids characterized here. The Tr was non-dimensionalised as: K*/K, where K* and K are the 

consistency indices under extensional deformation and shear deformation, respectively. The non-

dimensionalised values for the gum-thickened fluids were in the order of: Nutilis powder (Tr=57); 

Nestlé Clear (Tr=45); and Fresubin Clear (Tr=41). Similarly, the Trouton ratios for the starch-

thickened fluids were: Nestlé Thicken-up (Tr=43); and Findus thickener (Tr=40). One would expect 

the Trouton ratios to be much higher for the more-elastic gum-thickened fluids. However, application 

of the Tr is valid only at low extension rates; the ratio may not give accurate results at higher extension 

rates, as discussed previously (Petrie, 2006). Similarly, the Trouton ratio is dependent upon the 

technique used for the measurement and the extension rates. The HCF technique is not suitable for 

predicting Tr when sufficiently low extension rates are not achievable. 

 

One of the primary aims of this thesis was to observe the effect of elasticity on safe swallowing in 

patients with dysphagia using a fluid that is purely elastic in nature. Food-grade polymers that provide 

high-level elasticity are scarce, and the most well-known thickener is xanthan gum, which was used in 

the clinical study described in Paper 1. Non-food-grade ingredients, such as PAA, can be used in 

much lower concentrations to create a Boger fluid with elasticity that is many times higher. Thus, only 

150 ppm (0.015%) PAA needed to be dissolved in syrup to create a highly elastic Boger fluid (Fig. 

16), while 0.2% PAA was used to create even more potent elastic effects and shear-thinning 

behaviours during experiments with shear deformation.  
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Figure 16: Apparent extensional viscosities of the model fluids: Boger  (0.015% PAA in syrup); shear-thinning 

food-grade  (2% xanthan gum in water); and shear-thinning non-food-grade  (0.2% PAA in syrup).  

In contrast to the extension-thinning behaviour seen for the model xanthan gum fluids and the 

thickeners with the same polymer, extension-thickening behaviours were observed for the PAA-based 

model fluids. These results are consistent with the results in the literature (Ferguson et al., 1990). The 

two polymers behave differently during large-scale deformation due to differences in their structural 

architectures. Xanthan gum is in the form of a rigid rod, while PAA is a coiled polymer. The rigid, 

rod-like conformation of xanthan gum results in faster alignment in the extensional direction. As a 

consequence, xanthan gum offers less resistance in extension at high extension rates, and thus shows 

an extension-thinning behaviour. In contrast, PAA behaves as an extension-thickening agent due to its 

coiled structure, which means that the polymer requires greater strains to uncoil and align it in the 

stretching direction (Ferguson  et al., 1990). This shows that extensional deformation provides a better 

explanation for the structural properties of large, complex polymers. To complement the elastic 

properties seen in HCF, CaBER was used, as mentioned below. 

  

4.4 Yield stress and microstructural properties 

Certain materials exhibit solid-like behaviours unless a finite stress, called ‘yield stress’, is applied to 

achieve a flow. Typical examples of yield stress fluids in the food industry are mayonnaise and 

ketchup. A fluid that has a yield stress (Ty ) is believed to promote internal binding of the bolus, 

thereby maintaining the integrity of the bolus during pharyngeal swallowing such that bolus 

disintegration is avoided during flow (Marcotte, 2001; Steele et al., 2014). This property of yield 

stress is more important in individuals who are suffering from dysphagia. Therefore, the two major 

classes of thickeners (gum-based and starch-based) were analysed for their yield stress properties. A 

fluid that has a Ty flows with a characteristic plug velocity profile in the centre of the pipe. The 

diameter of this plug is proportional to the yield stress of the fluid (Fig. 17).  
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Figure 17: Yield stress measurement using the PUV+PD method, obtained from the plug of the velocity profile 

in the fluid flow and pressure drop. The right panel shows the actual yield stress measured by the UVP+PD 

method. 

The velocity profiles obtained when pumping different fluids and conducting UVP+PD measurements 

can be used to estimate the characteristic yield stress value as:  

𝜎0 =
�̇�∆𝑃

2𝑙
   [4.1] 

where ΔP is the pressure drop across the pipe length (l), and �̇� is the radius of the plug for a given 

fluid.  

The yield stress values for the thickened fluids measured with the UVP+PD method were compared 

with the values measured with a stress-control rheometer, Reologica StressTech HR (Reologica 

Instruments AB, Lund, Sweden) (Table 2). Details of the method followed are provided in Paper II.  

 

 

Table 2: Yield stress values for the thickener measured with PUV+PD and the Reologica Stresstech rheometer 

Sample name UVP PD (Pa) StressTech (Pa) Composition based 
on: 

Fresubin Clear 13.5±0 11.83±0.24 Xanthan gum 
Nutilis 4.43±0.37 2.23±0.97 Xanthan gum 
Nestlé Clear 10.83±4.05 12.05±0.07 Xanthan gum 
Nestlé Thicken-
up 

0 0 Starch 

Findus thickener 1.87±0 0 Starch 

 

Our results show that the samples with xanthan gum have a mild yield stress, with the highest values 

seen for Fresubin Clear and Nestlé Clear (Ty=~12, StressTech), followed by Nutilis (Ty =~2, 

StressTech). For the starch-based thickeners, the yield stress value was found to be negligible using 

the two methods for measuring Ty.  

To understand why the gum-based thickeners show a yield stress and the starch based-thickeners do 

not, microstructural analyses were performed using LM and TEM. The acquired images are shown in 

Figure 18. The xanthan gum-based thickeners of Fresubin Clear (Fig. 18 A), Nestlé Clear (Fig. 18 B), 

and Nutilis (Fig. 18 C) formed transparent solutions, which meant that no microstructure could by 

detected by LM due to the limiting resolution of about 1 mm. To visualise the main structural 

component, i.e., xanthan gum, TEM was used. As electrons have a shorter wavelength than ordinary 

light, they provide better resolution than LM, typically to the nanometre scale. In the TEM analysis, a 
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meshed network structure was observed for all the xanthan gum-based thickeners (Fig. 18 A-C). This 

meshed structure probably is the reason for the minor yield stress seen for xanthan gum-based 

thickeners, and it was not present in the starched thickeners (Fig. 18 D and E). The starch-based 

thickener was too heterogeneous to be studied using TEM.  

   
 

  
Figure 18: TEM micrographs of the xanthan gum-based thickeners: Fresubin Clear (A), Nestlé Clear (B), and 

Nutilis (C), and LM images of the thickeners: Nestlé Thicken-up (D) and Findus thickener (E). Note that the 

scale bars in panels A, B and C is 50 nm, and those in panels D and E are 50 μm. 

For the starch based-thickeners, LM was the preferred technique due to the large structure of the starch 

granules (typically in the micrometre range). In the sample of Nestlé Thicken-up, swollen starch 

granules were detected. These swollen starch granules were light-brown in colour, indicating the 

presence of amylopectin (the principal component of a starch structure). In addition, there were some 

purple-stained starch granules, suggesting that an amylose fraction had leached out (indicated by 

arrows in Fig. 18 D). The remaining starch-based thickener, Findus thickener (Fig. 18 E), contains fats 

and proteins, in addition to starch. The proteins were stained green, while the fats were unstained in 

the sample. In the present study, the gum-based thickeners were found to have a low yield stress due to 

characteristic fine network structure on the nanometre scale, as seen with the TEM technique.  

In the case of the starch-based thickeners, the principal structure was the swollen starch granules on 

the micrometre scale, as visualised in the LM study.  

The reason for measuring the Ty here was mainly to assess which of the two categories of thickeners 

(starch-based or gum-based) possess Ty. The Ty values reported here are too low and therefore unlikely 

to influence the overall swallowing process, given that the bolus is never static during the oral and 

pharyngeal stages and is subject to stresses that are much higher than those indicated by the Ty values 

calculated here. 
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5. IN VIVO APPROACH TO STUDY DEGLUTITION 

 

 

This section investigates the role of rheology (or more precisely, fluid elasticity) in safe swallowing. 

During bolus transport in the pharyngeal phase, the bolus is subject not only to shear but also to 

extension deformation, as it is squeezed between the tongue and the palate (Adam S Burbidge, 2016). 

modification of shear viscosity is known to confer beneficial effects, on the contrary it extensional 

rheology has not been studied well enough for its beneficial effects; to our knowledge, this study is the 

first to examine the impact of bolus elasticity on safe swallowing. This study involved actual patients, 

so it is of high relevance in the context of this thesis. This section provides an overview of the model 

fluids used in the clinical study, their rheological characteristics, and how model fluids with elastic 

properties affect patients who have a malfunctioning mechanism for swallowing.  

5.1 Model fluids  

Model fluids, which are fluids of known composition, are used here as a reference to distinguish pure 

elastic effects from pure viscous effects. In the current project, three model fluids (Newtonian, Boger, 

and shear-thinning) were created. These model fluids were used in the sensory analysis and in the 

clinical studies (Paper I). 

Newtonian fluids 

In Paper I, a model Newtonian fluid was constructed from maltodextrin. Maltodextrin forms a 

Newtonian solution and is not as sweet as syrup, so it could be used in the sensory study. 

Boger fluids 

Boger fluids (named after David Boger who introduced them in 1977) are fluids that have a constant 

shear viscosity, i.e., one that is independent of the shear rate. The main differences between 

Newtonian and Boger fluids is that Boger fluids are highly elastic at room temperature. Moreover, 

Boger fluids have a relaxation time that is similar to that of a molten polymer. Boger fluids are 

prepared by dissolving a very small amount of non-Newtonian fluid, typically of high molecular 

weight, in a viscous Newtonian solvent. The viscosity of the solvent masks the shear-thinning effects 

while maintaining the long relaxation time. A Boger fluid can be used to separate the pure elastic 

effects from the pure viscous effects, as compared to its Newtonian counter-part fluid. The Boger fluid 

used in Paper I comprised a maltodextrin solution as the Newtonian solvent and xanthan gum as the 

elasticity agent and a food-grade polymer. 

Shear-thinning fluids 
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In Paper I, the edible shear-thinning fluids comprised maltodextrin and a higher concentration of 

xanthan gum. Thus, shear-thinning fluids are in practice more elastic than the Boger fluids, which 

means that they are likely to confer even better swallowing effects in patients. 

5.2 Rheology of model fluids 

The steady-state flow curves of the model fluids that were used in the clinical examination are 

presented in Figure 19. The model fluids (Paper I) needed to be radio-opaque, so as to allow video 

fluoroscopic visualisation. This meant that contrast media (barium- or iodine-based) had to be added 

to the model fluids. As barium-based contrast media are non-water-soluble, they were not suitable for 

use in the current study. Therefore, water-soluble iodinated contrast media were used in the model 

fluids for video fluoroscopy.  

Xanthan gum, which to our knowledge is the most suitable elasticity-providing, food-grade polymer, 

was used to allow the model fluids to be used in the clinical experiments. The shear-thinning and 

Newtonian model fluids showed the expected behaviours of shear rate dependence (n=0.64) and shear 

rate independence (n=0.98), respectively. The Boger fluid showed a low level of shear thinning 

(n=0.87) at low shear rates due to the use of the contrast media. Nevertheless, its behavior is 

Newtonian, i.e., the flow curves converge with the Newtonian counter-part at shear rates ≥50 s
-1

, 

which are the shear rates that are likely to occur during the swallowing process. 

 
Figure 19: Flow curves of the following iodinated model fluids: shear-thinning fluid containing 500 ppm 

xanthan gum; Boger fluid with 200 ppm xanthan gum; and the non-elastic Newtonian counter-part (without 

xanthan gum). 

 

To demonstrate that the iodine-containing model fluids were sufficiently elastic to confer health 

benefits, they were characterised in extensional deformation using the HCF technique (as mentioned 

earlier). The shear-thinning (iodinated) sample had an extensional viscosity in the range of 103–310 

Pa.s when the extension rate was varied between 8 s
-1 

and 57 s
-1

 (Fig. 20), while the extensional 

viscosity of the iodinated Boger fluid varied in the range of 6.5–8.0 Pa.s (in the extension rate range of 

13–27 s
-1

). This indicated a substantial disparity between the two model fluids, even though the 

difference in the used concentrations of the elasticity-providing polymer, xanthan gum, was relatively 

small (500 ppm and 200 ppm). The disparity is attributed to an increased shear contribution in the 

hyperbolic nozzle as the Power-law flow index n approaches 1, resulting in a lower estimated 
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extensional viscosity. Thus, Power-law assumptions may not be appropriate for these types of model 

fluids. 

 

 
Figure 20: Apparent extensional viscosities of the iodine-based model fluids used in the clinical examinations. 

Shown are the results for: the shear-thinning fluid (500 ppm xanthan gum) (squares); and Boger fluid (200 ppm 

xanthan gum) (open circles). The lines inside the symbols represent the standard deviation 

 

The main aim here was to demonstrate that the model fluids that contain xanthan gum are more elastic 

than the non-elastic Newtonian counter-part, and are therefore likely to exert effects in clinical studies. 

To validate the HCF results, a CaBER analysis was performed on the Boger and Newtonian fluids that 

were used in the clinical study (applying the experimental parameters listed in Table 3). 

 

Table 3: Experimental parameters in the CaBER experiments 

Model fluid ho hf Hencky 
strain (1/s) 

Surface tension (mN/m) T (°C) 

Newtonian 3 8.4 1.336 70.5 22 

Boger 2 8.4 1.43 71.5 22 

The diameter of the two piston was 1.2mm, h0 and hf referring to the initial height and final height, respectively,  

 

 In Figure 21, the filament-normalised diameters of the model fluids (averages of several 

measurements) reveal a longer capillary break-up time for the Boger fluid when compared to its 

Newtonian counter-part. The extensional viscosity calculated by CaBER was ~9 Pa.s (ε=6.4 s
-1

) and 

1.93 Pa.s (5.4s
-1

) for the Boger and Newtonian fluids respectively.  
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Figure 21: Filament-normalised diameter evolution of the model fluids over time at 25°C. The Newtonian 

sample (composed of maltodextrin) is shown in green, and the Boger fluid (60% maltodextrin and 0.02% 

xanthan gum) is shown in blue.  

Unfortunately, the iodine-based shear-thinning fluid was not measured in CaBER. However, the first 

normal stress difference (N1), which is also an indicator of the elastic behaviour of a fluid, was 

followed during the shear viscosity measurement, as reported in Paper I. The value of N1 increased 

with increasing shear rate, and the increase was more pronounced in the shear-thinning fluid than in 

the Boger fluid. In this study, the shear-thinning fluid was more elastic (500 ppm), i.e., contained a 

higher concentration of xanthan gum than the Boger fluid (200 ppm). Increasing the shear rate did not 

affect the value of N1 for the Newtonian fluid, indicating that the Newtonian fluid lacked elasticity, as 

expected. The Trouton ratios for the shear-thinning fluid and Boger fluid were 168 and 5, respectively, 

i.e., higher than the Newtonian limit of 3, which means that a reasonable experimental elastic 

contribution was detected in the model elastic fluids.  

5.3  Sensory evaluations performed for healthy subject and for patients 

A thorough sensory analysis was performed on the model fluids by a trained panel, to identify sensory 

attributes with respect to oropharyngeal bolus handling. Details of the sensory procedure applied by 

the trained panel and the panel of patients are given in Paper I. The results acquired by the sensory 

panel (Fig. 22 A) and the panel of patients (Fig. 22 B) are presented below.  

During the sensory testing of the healthy subjects, shear-thinning effects appeared to predominate.  

The healthy panel could not distinguish the elastic model fluids with respect to ease of swallowing due 

to the swallowing process being involuntary. Overall, mouth-feel attributes predominated over 

swallowing attributes in the healthy subjects. This was evidenced by the “thickness” attribute scoring 

the highest for the shear-thinning model fluid, which might be due to the low shear rates in the sensory 

tasting conducted by the health panel.  
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Figure 22: A) Spider plot showing ‘mouth feel’ and ‘ease of swallowing’ for the model fluids (Newtonian, blue 

line; Boger, green line; and shear-thinning, red line). B) Ease of swallowing responses of patients who have a 

swallowing disorder, represented as the total score on a scale of 1–5, where 1 is ‘very difficult to swallow’ and 5 

is ‘very easy to swallow’. 

In contrast, the patients with dysphagia scored elastic fluids as being ‘slightly easy to swallow’ (Fig. 

22 B). Thus, the highest scores for ease of swallowing were recorded for the elastic shear-thinning and 

Boger fluids (scores of 37 and 35, respectively), as compared to the Newtonian fluid (score of 32). 

This is understandable, given that these patients are more susceptible to misdirected bolus flow and are 

therefore more aware when swallowing fluids with different consistencies. However, as only twelve 

patients participated in the clinical study, the results obtained are not statistically significant (P>0.05). 

In addition, quantitative video fluoroscopy was performed, to assess further the effect of elasticity on 

safe swallowing. Fluids with elastic properties, the Boger and shear-thinning fluids were relatively 

easy to swallow. 

5.4 Quantitative video fluoroscopy 

The results for the patients with dysfunctional swallowing, quantified as Oral Transit Time (OTT) and 

Pharyngeal Transit Time (PTT), are presented in Figure 23.  

There is some debate as to whether a fluid that transits faster during oropharyngeal swallowing 

promotes safe swallowing or has the opposite effect. The literature associates faster transit times with 

safe swallowing (Bulow 2003) (J. Chen et al., 2011), probably because the liquid is recognized as 

being safe to swallow by the sensory receptor responses of the patients. In our tests, the average OTT 

was shortest for the elastic Boger fluid (indicating better swallowing) and longest for the non-elastic 

Newtonian fluid. The more important parameter of PTT was also shorter for two elastic fluids, the 

Boger and shear-thinning fluids (1.43 and 1.41 seconds, respectively) than for the Newtonian fluid 

(1.62 seconds). The PTTs recorded here are still much longer than those observed in clinical 

examinations with liquid foods (0.22±0.09 seconds) (Cassiani et al., 2011).  

As the study was performed with twelve patients, individual patients might show results that are 

different from the overall picture, as seen in the Figures. Regarding the influences of the model fluids 

on individual patients, five patients had the shortest PTT with the shear-thinning fluid and four of 

them had a short PTT with the Boger fluid. Only three patients had a shorter PTT with the non-elastic 
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Newtonian fluid. This indicates that fluids with elastic properties, regardless of the amount, are 

relatively easy to swallow.  

 

Figure 23: Average Oral and Pharyngeal Transit Times (in seconds) for the different fluids applied to the 

patients with dysphagia in the clinical study. 

Note that the shear-thinning fluid, in this case, is even more elastic, since it only differs from the 

Boger fluid in that it has a higher concentration of xanthan gum (500 ppm). The observed differences 

were not statistically significant (P>0.05), highlighting the difficulties associated with testing the new 

hypothesis. The depth of penetration of the fluids into the airways and retention of contrast media in 

the pyriform sinuses were also studied. Both parameters are markers of misdirected swallow and bolus 

entry into the airways (Paper I). Three patients suffered aspiration into the sub-epiglottic region (mild 

aspiration). This was noticed for all the model fluids. Similarly, four out of twelve patients 

experienced mild pharyngeal retention, while one of the patients experienced severe pharyngeal 

retention with all the model fluids (Fig. 24). 

  
Figure 24: An example of normal swallowing in a healthy individual when a bolus is located in the pharynx 

while the epiglottis is closing (left panel), and an example of severe dysphagia (right panel), in which the model 

fluid enters the airways while the epiglottis remains open during bolus movement. 

Note: In the example of normal swallow (left panel), a bolus volume of 15 ml and in the example of abnormal 

swallow (right panel) a bolus volume of only 5 ml was used. 

0

0.5

1

1.5

2

2.5

3

3.5

4

Newtonian Boger Shear thinning

Tr
an

si
t 

ti
m

es
 (

s)
 

Oral Transit time (s)

Pharyngeal transit time (s)



IN VIVO APPROACH TO STUDY DEGLUTITION 

33 

 

 

Pharyngeal retention is an indication of weak pharyngeal muscles, which may lead to the appearance 

of residues from the swallowed food, as noted in some of the patients here. Overall, even though the 

fluids with elastic properties had positive effects, these effects were not apparent in some patients who 

were very severely affected by dysphagia. Various problems were experienced during the clinical 

studies including: the recruitment of a sufficient number of patients; categorisation of the patients into 

sub-groups; the use of contrast media, patient discomfort; and ethical issues. 

 

These challenges made it very difficult to test the novel hypothesis that might confer beneficial effects 

as suggested in the recently published White Paper by the ESSD. For example safe swallowing in 

dysphagia promoted by fluid elasticity and the fluid yield stress or the shear rate range during 

swallowing. The alternative approach is to perform computational studies. However, the complexity of 

the human swallowing process makes this very difficult, and many assumptions have to be made 

during such studies, as discussed in detail elsewhere (Qazi & Stading, 2017). This provides the 

motivation for performing swallowing studies with respect to bolus rheology in an in vitro swallowing 

model that provides balances the two extremities of simulations and medical tests. In the following 

sections, we present the in vitro swallowing model, termed The Gothenburg Throat, as a pre-clinical 

study tool to study the linkages between bolus rheology and safe swallowing.  
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6. DEVELOPMENT OF THE IN VITRO DEVICE 

 

The previous sections gave an overview of the rheology of thickened fluids. This was followed by a 

clinical study, which looked at the effects of fluid rheology on healthy individuals and on patients 

suffering from dysphagia. During the clinical study, a number of issues arose, which have been 

discussed earlier. The following sections describe in detail the construction and validation of the in 

vitro swallowing simulator, together with a discussion of the results acquired with the device. 

Taking into account some of the shortcomings of the previous in vitro models mentioned in the book 

chapter (Qazi & Stading, 2017) , the Gothenburg throat was designed based on the following 

considerations: 

 A geometry similar to the human pharynx in distended form, with dimensions taken from the 

literature; 

 Simulation of the physiological processes that occur during swallowing, i.e., the closing of the 

vocal chords and the upper oesophageal sphincter (UES), opening and closing of the 

epiglottis, and opening to the nasopharyngeal channel;  

 Monitoring of the bolus velocity profile during swallowing; 

 Pressure measurements at different locations of interest, i.e., at the entrance to the pharynx, at 

the entrance to the trachea, mid-pharynx before the UES, and in the nasopharynx;  

 A transparent pharyngeal channel for visual observations; and 

 A temperature control system  

An overview of the in vitro model is shown in Figure 25, and the individual components are described 

in detail below. 

 
Figure 25: Schematic of the model in-vitro swallowing simulator showing the different parts. 
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6.1 Model pharynx material properties, components, software, and temperature 

control system 

The material chosen for the device was Accura® ClearVue, which is a commercially available 

polycarbonate-like, 3D-printable, plastic material from 3D Systems (Rock Hill, South Carolina, USA). 

The model Pharynx was 3D-printed from a 3D drawing, which was based on geometrical 

specifications taken from the literature. 

 

The material was chosen owing to its suitability for usage in medical models, its transparency 

(allowing fluid flow visualisation), and its resistance to liquids. This material is also suitable for 3D 

printing. Additional, smaller components used to construct the device are listed in Table 1 of Paper 

III.  

The software used to control the device regulates various components, such as the tank holding the 

fluid, the syringe, valves, lids, and movement of the ultrasound transducer.  

The interval between bolus injections can be set in seconds. Measurements can be stopped at any time 

during bolus flow. Opening and closing of the structures (epiglottis, glottis, nasopharynx, UES, and 

slide valve) can be timed to reflect different physiological conditions. The software executes all the 

necessary control functions, including: 1) regulation of the motions of the structures of the 

nasopharynx, trachea, and UES; 2) control of the valves for the trachea and nasopharynx; and 3) 

control of the pneumatic operation of the syringe and slide valve responsible for injection of the bolus.  

Between batches, cleaning is performed by attaching the bolus tank to a source of tap-water, and 

flushing with water at a constant flow that is regulated by the software.  

 

To mimic accurately body temperature, channels are installed that circulate temperature-controlled 

warm water from a water bath around the model pharynx and into the syringe that delivers the bolus 

(Section 6.4; Fig. 27). The propelling of the syringe can be regulated by either force or a speed-based 

control system. 

6.2 Simulation of bolus injection  

The operation of the model starts with bolus injection, assuming that the bolus is already prepared. A 

syringe pump delivers a bolus of defined volume (5–30 ml) with a defined speed (~0.5–1.0 ms
-1

) to the 

pharynx, which is equivalent to the thrusting action of the tongue. The bolus is loaded from a tank, 

enabling automated, repetitive measurements. A sliding valve is located after the syringe, before the 

entrance to the pharynx, to prevent gravity-induced flow before active bolus delivery.  

6.3 Dimensions of the model pharynx  

The dimensions of the model pharynx were taken mostly from the literature, while minor adjustments 

were made to accommodate the functioning of the mechanical parts. Thus, the pharynx in the model is 

elliptical in shape (Fig. 26), with a length of 6.3 cm, as described in a previous study (Walsh et al., 

2008), and a width of 2.8–3.0 cm at its widest point (Salinas-Vázquez et al., 2014). The entrance to the 

pharynx has a circular area of 314 mm² (diameter of 20 mm). The circular entrance area is a 

compromise solution so that a syringe pump with a circular cross-section can be used for bolus 

delivery. The epiglottis in the model has a length of approximately 11.3 mm, maximum diameter of 

12.5 mm, and average thickness of 1.87 mm (Kano et al., 2005).  

The junction between pharynx and esophagus in the current model is 4.3 cm in length with an 

elliptical entrance (area of196 mm
2
), as described in literature (Morinière  et al., 2013). The 
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esophageal structure is modelled by a transparent rubber tube that is 20 cm in length and 1.7 cm in 

diameter, mimicking the human physiology (W. J. Dodds, 1989). The nasal cavity has a circular cross-

sectional area of 78 mm² (diameter of 10 mm) and length of 40 mm. The model trachea is 57.13±7.32 

mm in length, with a circular shape with diameter of 12 mm and internal diameter of 12.3 mm (Joshi 

et al., 2011).  

 

Figure 26: Dimensional specifications of the model pharynx and adjacent structures. 

6.4 Simulation of the different entrances and exits to and from the model pharynx  

As mentioned in the previous section, the bolus is injected into the model pharynx using a syringe 

pump. There are three exits from the pharynx, resembling the biological counter-part. These exits are 

located at the nasal cavity, larynx, and UES, as the bolus is transferred towards the oesophagus. The 

exit at the nasal cavity can be opened and closed by a valve (Fig. 27), while a revolving lid controlled 

by a motor that can open and close provides further control for air release. Actual swallowing is 

followed by expiration and the released air contains flavour compounds, which are transported to the 

nasal cavity to provide the characteristic flavour of a given food. At the exit of the nasal cavity, a 

connection that is attachable to a Tenax
®
 tube is made to enable capture of the released air, thereby 

allowing flavour chemistry studies. The second exit in the model pharynx is towards the model 

trachea, which although it is static in the model as opposed to dynamic in actual swallowing is 

protected from bolus leakage by the epiglottis and a solenoid valve that prevents air-flow through the 

trachea. The third exit is the esophageal exit, which is also the normal path that a bolus takes when 

transported towards the stomach. The bolus has to pass through the all-important UES junction before 

entering the esophagus. The UES, which is normally in a closed position, thereby protecting the 

airways from any reflux of stomach contents, opens momentarily (for 415±66 ms) (Morinière  et al., 

2013) to allow passage of the bolus. The model UES junction is regulated using a pneumatic pinch 

valve that can be timed for periods up to milliseconds and for several repetitions in the case of 

multiple bolus injections.   
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Figure 27: Schematic of the modelled epiglottis (yellow), nasal cavity, upper esophageal sphincter (circled), 

opening/closing function of the UES controlled by a clamp valve (blue), pressure transducers (green), the warm 

water channel (red), and the part of the trachea that recovers the leaked fluid when abnormal swallowing is 

simulated. 

6.5 Pressure and UVP measurements in the model  

The present project was designed to perform in vitro measurements of the in vivo counter-part, 

invasively in the developed swallowing device. This capability is not featured in any of the previous in 

vitro devices/simulations. A detailed discussion of in vitro swallowing studies is provided in the book 

chapter (Qazi & Stading, 2017). The analysis of in vivo swallowing is performed using two 

techniques, manometry and video fluoroscopy, whereby the latter allows the examiner to follow the 

sequence of events occurring during pharyngeal bolus transport. In the present work, apart from the 

performance of manometry using a pressure sensor embedded in the model pharynx wall, bolus 

velocimetry was performed using the UVP technique, which traces bolus movement non-invasively. 

The results presented in Papers, III and IV are based on measurements taken with the UVP 

technique. To detect and present physical activities, including bolus transport and the pressure applied, 

a transducer system was designed and installed in the model pharynx, as shown in Figure 27. A brief 

description of these pressure transducers is presented in the following sections. 

6.5.1  Pressure transducers  

Pressure transducers from TE Connectivity (Paris, France) were installed in the model at four 

locations: the pharyngeal entrance; the mid-pharynx; near the UES; and the nasal cavity (Fig. 27). The 

pressure transducer can measure in the range of 1±48 kPa with the given electronic settings, which is 

sufficient to mimic most of the pressure values reported during human swallowing, which are typically 

around 48 kPa for men and 42 kPa for women (Alsanei et al., 2014).  
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6.5.2 Pressure measurements during continuous and bolus flows 

Pressure measurements were performed using pressure transducers and an oscilloscope with 

monitoring software from Pico Technology. The linear range of the voltage that corresponds to the 

pressure (kPa) as an output is defined in the Pico Scope 6 software. To measure the dynamic pressure 

applied by the bolus, the electronics are set to filter out the static pressure using a high-pass filter. 

However, the high-pass filter is not installed on the transducer that is installed on the nasal cavity. This 

transducer acts as a control, as it does not come in direct contact with the bolus. The pressure recorded 

at this location is subtracted from the acquired values, to calculate the final pressure values as the 

corrected pressure in the model pharynx, as is done in Papers III and IV.  

A T-connection (Fig. 28) was built such that the pressure transducer in the mid-pharynx was 

connected on one end, and a calibrated digital reference pressure transducer, DPI 705 (Amtele 

Engineering AB, Stockholm Sweden), was connected on the other end. Compressed air was 

introduced into the T-connection. The pressure output (on the digital screen) from the reference 

transducer was compared with the pressure values displayed in the Pico Scope software from the 

model pharynx transducer. The compressed air flow was gradually increased from 1 kPa to 48 kPa, to 

cover the entire range of pressures that is measurable inside the model pharynx. The method was 

repeated several times to ensure repeatability. 

 

Figure 28: Calibration of pressure transducers against the reference pressure transducer DPI 705. Schematic of 

the T-connection (left panel), demonstrating the result on a PC with the reference transducer (middle panel), 

and the overall calibration curve for the reference and the pressure transducer used in the model (right panel).  

A difference of only <6% was noted when applying a least-squares regression line, i.e., R
2
=0.955. 

Since all the transducers are designed in the same way, it is assumed that every transducer installed in 

the model pharynx will provide an output of similar accuracy. The results obtained from the in vitro 

manometry are presented in Papers III and IV.  

 6.6 UVP measurement in continuous fluid and bolus flows inside the model pharynx 

Flow visualisation was performed using the Ultrasound Velocity Profiling (UVP) technique with a 

commercial UVP system that includes the electronics, software, and US transducers (Incipientus
TM

; 

Ultrasound Flow Technologies AB, Gothenburg, Sweden).  

6.6.1 Experimental loops used to measure continuous fluid flows  

To measure the rheological characteristics of the thickeners used in dysphagia management (Paper 

II), and to validate the velocity profiling in an elliptical geometry, two different flow loops were 

constructed. The flow loop described in detail in Paper II was based on two transducers of frequency 

8 MHz, installed at an angle of 20º on a stainless steel pipe with length of 0.6 m and radius of 0.011 m. 

The flow loop used in Paper III is shown in Figure 29 and is described briefly below. 
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The fluids were continuously pumped in the model throat from a tank using a rotatory lobe pump. The 

pump was operated at two different speeds, corresponding to two flow rates expressed in litres/min in 

this study (Paper III). While pumping proceeded, the entire model was filled with the fluid and the 

valves on the larynx and nasal cavity were closed prior to performing the measurements, to avoid the 

escape of the liquid into these cavities. Thus, the liquid flowed continuously in a loop from the model 

pharynx to the tank through a pipe. 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 29: The flow loop used to measure the velocity profiles and manometery during continuous pumping of 

fluids. The left panel shows a schematic of the measurement set-up. The upper-right panel is an image of the 

actual measurement set-up, while the lower-right panel is an image of the ultrasound transducer that was 

designed to measure the velocity profiles inside the model pharynx. 

The ultrasound transducer, which was designed specifically for the in vitro swallowing model, is non-

invasive; it was operated at a frequency of 5 MHz for five cycles per pulse.  

To ensure firm contact between the transducer face and the model, the US transducer is attached to the 

model through a mechanical holder. To facilitate optimal transmission of the acoustic waves, 

appropriate acoustic coupling media were added between the transducer face and the model pharynx 

block. The temperature of the fluid was strictly followed - it varied between 20.5˚C and 22.0˚C during 

the measurements. The voltage and gain settings were varied depending on the fluids examined and 

the formation of any air bubbles during the flow.  

6.6.2 Methodology for UVP measurements inside the model pharynx  

A common problem encountered with 3D printing is that the dimensions may not be exactly the same 

as initially defined. In UVP measurements, precise knowledge of the location of the initial and final 

positions (channels) on the ultrasound beam axis within a cavity is of primary importance. The two 

positions are used to convert the measuring channels into radial positions, so as to integrate the 

velocity profile. This enables determination of the volumetric flow rate, which is needed as an input to 

calculate the final rheological parameters.  

Therefore, the inner distances (a and b) inside the model pharynx were determined using an echo 

signal acquired from the inner wall of the given geometry and the conventional time-of-flight method: 

𝑠 =
𝑐𝑡

2
   [6.1] 
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where s represents the distance, t is the total time between the transmitted and received US pulse, and 

c represents the sound velocity. While sending the ultrasound beam the model pharynx cavity was 

filled with water, as the velocity of water is a known value. Based on the ultrasound analysis, the 

elliptical pharyngeal dimensions in the final model were 8.4 mm (short-axis) and 18.2 mm (long-axis), 

indicating a geometric variation of ~5%, which was taken into consideration when performing 

calculations on the acquired results.  

Furthermore, in the measurement setup, the ultrasound beam passes through the polyamide material of 

the model pharynx into the actual fluid flow (Fig. 30). This means that the ultrasound beam is 

refracted inside the pharynx where the fluid flow is taking place. Therefore, the angle needs to be 

determined correctly, to ensure the accuracy of the velocity and shear rate measurements. The Doppler 

angle, i.e., the angle between the fluid flow and the ultrasound beam, was measured using a reference 

90° ultrasound beam and the transducer designed for the model that operates at an angle. The two 

values were utilised to determine the angle inside the model pharynx for the test fluids. 

  

Figure 30: Schematic of the device for the measurement of the correct distance and angles for given fluids, 

inside the model pharynx. Two sensors with frequencies of 5 MHz and 2 MHz attached to the wall send the US 

pulses at an angle (broken yellow line) and in a straight line (black line), respectively.  

Finally, the velocity of sound in the test fluids was measured off-line inside a stainless steel cell/block 

using the time-of-flight method. The sound velocity could be calculated by re-arranging Eq. [6.1]. On 

average, 64 velocity profiles were used to determine the volume flow rate and shear rate. A Doppler 

angle of 60˚ was determined, while the sound velocities in rapeseed and Fresubin Clear were 1443.6 

m/s and 1560 m/s, respectively. The base frequency of the non-invasive ultrasound sensor was 5 MHz 

and five cycles per pulse were used for the velocity profile measurements. The voltage and gain 

settings varied depending on the fluid being tested and whether any air bubbles were present in the 

mixture. 
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7. EXPERIMENTAL VALIDATION OF THE IN VITRO MODEL 

 

Various approaches were applied to validate the flow measurements inside the model pharyngeal 

cavity. These included running model fluids in continuous flow using externally connected pumps 

with different flow rate capacities, and running model Newtonian, shear-thinning fluids to evaluate the 

shapes of the acquired velocity profiles. The accuracy of the velocity measurements made inside the 

model pharynx were compared with gravimetric flow rate measurements (Paper III). To validate the 

velocity profiles using UVP and subsequent rheological measurements, the results acquired for 

different fluids (Newtonian, Power-law shear-thinning, and yield stress fluids) were compared with the 

results obtained using conventional rheometers. In addition, in vitro manometry was validated by 

applying a known external pressure and comparing the outcome with the results provided by the 

transducers installed in the model pharynx. Furthermore, the differences between the fluid pressures 

and atmospheric pressure with respect to flow rates were validated through comparison with 

theoretical pressure drops, e.g., according to the Hagen-Poiseuille law.  

 

7.1 Validation of the UVP method by comparing with results from conventional 

rheometry  

UVP+PD has been developed and demonstrated to measure the real-time rheologies of many industrial 

fluids (Wiklund et al., 2007; Wiklund et al., 2008). Industrial fluids are conventionally pumped in 

pipes of larger diameter, which are usually circular in shape. The UVP+PD technique was designed to 

measure the velocity profile during bolus flow and in the model pharynx, the size of which is smaller 

and more complex than many industrial pipes. Therefore as a starting point, a circular pipe of much 

smaller diameter (0.011 m) was used, as described in Figure 1 of Paper II. Thickeners were used in 

the study owing to their direct connections with dysphagia. The acquired results were compared with 

those acquired using conventional ARES-G2 (TA Instruments, Newcastle, DE, USA) measured under 

similar conditions of temperature (25ºC) and with almost identical range of shear rates. The resulting 

flow curves are presented in Figure 31, A and B, and the Power-law parameters in Paper II. The 

rheological behaviours of the fluids are discussed in Paper II. The focus here is on the goodness of 

the fit of the two methods for rheology measurements. 
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Figure 31. (A) Shear viscosities (Pa.s) of xanthan gum-based thickeners in water. (B) Shear viscosities (Pa.s) of 

starch-based thickeners in water. 

  

The flow curves derived using the UVP+PD method overlapped almost perfectly with the flow curves 

acquired using laboratory-based rheometry. The two methods agreed very well (R
2
>0.99) when 

comparisons were made at the same shear rates. Similarly, the comparison of Power-law parameters 

(Paper II) showed good agreement with a slight discrepancy in some samples, probably due to uneven 

mixing or the remnants of residues in the UVP+PD pipes/connections from samples of different 

consistencies measured in previous batch(es). Moreover, with the UVP+PD method, not many 

velocity points could be measured, especially in the low-shear-rate region, mainly due to the inherent 

inaccuracy of the manual control of the pump that regulates the flow rate.   

 

Furthermore, the yield stress measurement, carried out with UVP+PD and compared with 

conventional rheometry (Section 4.3), is more reliable as there is no wall slippage. In the UVP+PD 

method, the yield stress is measured from the plug of the velocity profile in the middle of pipe and the 

pressure drop, as shown in Figure 17. This avoids direct contact with the geometrical walls. During 

conventional rheometry, wall slip is commonly encountered in geometries for rheological 

measurements, due to the presence of a wall. Wall slip results in displacement of the dispersed phase 

(which has higher viscosity) away from the wall, resulting in a depleted layer of low viscosity at the 

wall (Howard A Barnes, 1995). 
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7.2 Validation of bolus velocity using the UVP method in comparison with X-ray video 

fluoroscopy 

 The UVP method has been verified clinically against the standard method of swallowing examination, 

which is video fluoroscopy during bolus transport. A 15-ml bolus thickened to a consistency of 0.15 

Pa.s (at 50 s
-1

) using a commercial thickener mixed with water and an iodine-based contrast media was 

swallowed by a volunteer and examined simultaneously with video fluoroscopy and the UVP method. 

For this examination, a 4-MHz UVP transducer connected to the UVP measurement box was utilised 

(Fig. 32).  

Two different types of velocities were compared: the maximum velocity, which is the distance 

travelled by the bolus head; and the velocity of the contract wave. These velocities were estimated 

from the distance travelled and the frame rate in video fluoroscopy. 

 

 
 

Figure 32: Velocity profile recorded during bolus transport using the UVP method and the corresponding image 

showing the bolus flow of the same swallow recorded with video fluoroscopy. 

The highest velocities acquired from UVP and video fluoroscopy were 1.16 m/s and 0.87 m/s, 

respectively, yielding a variation of ~30%, which is quite reasonable considering that the UVP method 

has a much better time resolution of 47 ms than video fluoroscopy (62.5 ms) (videos were recorded at 

16 FPS). Another interesting comparison of the two techniques was made for the velocity of the 

contraction wave that follows bolus transportation. Based on a previous report (Mashimo, 2006), this 

contraction wave is much more consistent and is independent of the bolus properties. The velocities of 

the contraction waves measured using the UVP method and video fluoroscopy were 0.15 m/s and 0.18 

m/s, respectively, revealing a difference of only ~18%. This comparison was consistent for fluids 

having different consistencies and tested on different subjects. Further details are provided in a 

separate paper that is not part of this thesis work (manuscript under preparation). The results obtained 

here indicate high sensitivity for the UVP method. Therefore, the UVP method is a valuable tool to 

perform velocimetry and subsequent rheological calculations during bolus transport, as discussed 

below. 
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7.3 Study of velocity profiles in continuous flow while pumping Newtonian and non-
Newtonian fluids  

Fluid flow in a pipe of circular geometry is manifested with a characteristic velocity profile, under 

laminar conditions. In the centre of the pipe, particles travel at high velocities, while the particles 

located at the wall of the pipe remain almost stationary. Measurement of velocity profiles in a 

geometry that is not entirely circular is not very common. In this section, the velocity profiles of 

model fluids in a circular geometry are presented. Thus, maltodextrin (Newtonian fluid), water 

(Newtonian), and ketchup (yield stress fluid) were pumped into the model pharynx geometry (Fig. 

33A–C). The resulting velocity profile measured with the UVP technique for maltodextrin (Fig. 33 A) 

was parabolic, as expected in the case of Newtonian fluids with Power-law index (n) of 1.  

Ketchup is generally considered as a yield stress fluid (Berta et al., 2016). When pumped into the 

model pharynx, ketchup was expected to present a plug-shape velocity profile, as shown in Figure 33 

B.  

To examine the velocity profile of water under a turbulent flow regime, a low number of particles 

were seeded into water such that the viscosity was not overly affected. When the seeded water was 

pumped through the model pharynx, the recorded velocity profile (Fig. 33C) was much flatter due to 

the turbulent flow behaviour of water (Reynolds number >2,500). When a fluid flows through a pipe 

under a turbulent flow regime, such as the seeded water in this case, the velocity profile acquired is 

often flatter in the centre of the pipe, as was the case here. The resulted velocity profile is best 

expressed by the Power-law velocity profile as: 

𝑣

𝑣𝑚𝑎𝑥
= (1 −

𝑟

𝑅
)

1/𝑛
   [7.1] 

The exponent n is a constant whose value depends on the Reynolds number and is often equal to 7 for 

turbulent flow in most applications. The index, which generally predicts many turbulent flows, is also 

referred to as the 1/7
th
 Power-law velocity profile (R.P. Singh et al., 2009). 

 

      

 

 
Figure 33: Typical shapes of the recorded velocity profiles for: (A) maltodextrin; (B)  ketchup; and (C) and 

water seeded with particles. Negative velocities indicate fluid flows away from the ultrasound transducer. 

A B 

C 



EXPERIMENTAL VALIDATION OF THE IN VITRO MODEL 

47 

 

 7.4 Volume flow rate in elliptical geometry: theoretical considerations 

The volumetric flow rate can be determined through integration of the velocity profile. This requires 

calculation of the total flow rate based on the correct velocity distribution inside the ellipse geometry. 

However, the literature regarding ultrasound velocity profiling in ellipses is scarce. Only one 

published article (John, 2007) has taken the Newtonian velocity profile into account. 

L. Johan (John, 2007) described the total flow rate in an ellipse for a Newtonian flow using the 

flow/area distributions shown in Figure 34 and Eq. (7.2): 

𝑄 =  
𝜋

2
𝑉𝑎𝑏    (7.2) 

where V is the maximum velocity in the ellipse, and a and b are the dimensions of a given ellipse, in 

this case 8.4 mm and 18.2 mm, respectively. 

However, since a non-Newtonian fluid was used in the present work, the flow rate had to be 

determined using the measured velocity profile and numerical integration. The volumetric flow rate 

(Q) is calculated using Eq. (7.3): 

𝑄 = 𝑉. 𝐴    (7.3) 

where V is the velocity, and A is the total area of the geometry within which the flow is taking place.  

To calculate a flow rate from the velocity profiles measured inside the ellipse geometry, separate flow 

rates were calculated for each area/flow segment and summed to yield the total volume flow rate: 

𝑄 = ∑ (𝑉𝑛𝐴𝑛)𝑁
𝑛=1    (7.4) 

where 𝑉𝑛 is the measured velocity in the area segment 𝐴𝑛 of the ellipse geometry of the pharynx model 

and N represents the number of segments.  

The area of an ellipse is given by: 

𝐴 = 𝜋𝑎𝑏     (7.5) 

where a is the shorter and b is the longer axis of the ellipse. Equation (7.5) was incorporated into Eq. 

(7.4) to determine the correct flow rate inside the ellipse. 

Figure 34 shows the different area segments (An) used in the ellipse geometry, together with the actual 

dimensions (a and b) and the ultrasound sensor position (measuring line). Each area segment (An) has 

the same velocity distribution (obtained using UVP), and these were then summed to determine the 

total volume flow rate using Eqs. (7.3) and (7.4). 
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Figure 34: Schematic of the elliptical-shaped pharynx in the in vitro model (left) and the geometry showing the 

dimensions (a and b) and area distributions for the flow rate calculations (right). The velocity profile is 

measured across the short axis a, where the ultrasound sensor is positioned.  

7.4.1  Verification of the flow in the elliptical channel using the gravimetric method 

(reference method) 

The conventional gravimetric method was used as a reference to compare the flow rates and, thereby, 

validate the acquired velocity profiles in the model pharynx. Initially, the mass flow rate (ṁ), 

following the gravimetric method, was calculated, and this was then converted to the volumetric flow 

rate Q̇. Direct measurement of (ṁ) has the advantage over volumetric flow rate that the mass is 

conserved during flow, whereas volumetric flow rate is subject to changes depending on physical 

properties such as pressure and temperature. Details of the gravimetric method, the results, and the 

comparison made with the integration of velocity profiles acquired with the UVP method are provided 

in Paper III.  

7.5 Validation of pressure monitoring 

The pressure validation set used to measure bolus thrust yielded reasonably good agreement 

(R
2
=0.95), as discussed in Section 6.5.2. Validation was performed by applying a known pressure and 

measuring the elicited responses from the pressure transducers in the model pharynx. Slight variations 

were noticed in the upper region of the applied pressure. These were mainly attributed to the manually 

controlled applied pressure valve, the control of which was difficult at the upper limit of the pressure 

applied. Similarly, good agreement (<10% variation) was noted when Newtonian and shear-thinning 

fluids were pumped at two different flow rates and the resulting pressure drop was dimensionalised 

according to Hagen-Poiseuille law, as discussed in Paper III.   

  

Transducer 
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8. BOLUS FLOW IN THE “GOTHENBURG THROAT” 

 

So far, our discussion has been mainly related to the in vivo analysis, the rheology of the fluids, and 

the construction and validation of the device. This section presents the results from the in vitro device 

with respect to bolus consistency, velocity, and shear rate. Moreover, the results obtained from in vitro 

manometry analyses (Paper IV) and how they are influenced by bolus consistency and volume at 

different locations in the model pharynx are discussed. The results are complemented with images 

acquired using the camera and the analysis of these images.   

8.1 Velocity profiles of boluses thickened with a commercial thickener  
 

Thickened boluses produced by major manufacturers, i.e., Nestlé Thicken-up (Nestlé), Nutilis 

(Nutricia Nordic AB), and Fresubin Clear (Fresenius Kabi GmbH), were injected into the model 

pharynx (15-ml volume). The preparation method used is described in Paper II. The resulting velocity 

profiles (Fig. 35) showed moderate shear-thinning behaviours, similar to those recorded in a 

continuous flow. In general, a broader velocity distribution was observed for all the thickened boluses, 

as compared to, for example, a fluid in continuous flow. This is due to the incorporation of air during 

mixing at the bolus formation and pumping stages. Thickener powders are generally composed of 

several ingredients apart from the main thickening agent, i.e., gum or starch. Of these ingredients, 

starch in its modified form has surface-active properties that result in air bubbles becoming entrapped 

in the bolus (Murray et al., 2011). 

   
Fresubin Clear 

 
Nestlé Thicken-up 

  
Nutilis 

Figure 35: Velocity profiles of the boluses made with different commercial thickeners.  
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An appropriate bolus volume is required to be exposed to the transmitted ultrasound pulses, ensuring 

that the cavity is filled (no vacuum) while the ultrasound pulses hit the fluid in motion. The ultrasound 

sensor is vigilantly placed on the dorsal side of the model pharynx, so that there is maximum contact 

with the bolus during the flow and also that it resembles the bolus flow in human swallowing. The 

velocity profiles of the Thicken-up and Nutilis samples are distorted and incomplete on the far wall 

(right-hand side of the dividing line in the image; Fig. 35) due to multiple scattering. This is not a 

concern in the UVP technique, as half of the velocity profile, from the wall to the centre of the pipe is 

needed for the rheological calculation.   

 

8.2 Materials and methods for velocity profiling and the resulting shear rate, following the 
NDD guidelines for bolus consistency 
 

To perform further bolus analyses, the Nutilis thickener powder was used in the experiments in the 

rest of the bolus analysis (in Paper IV), due to its easy availability and versatility. As Nutilis contains 

both gum and starch as ingredients, it expresses a broad range of fluid properties, such as amylase 

resistance and easy solubility. The given powdered thickener was dissolved in water in the amounts 

listed in Table 4, while the mixing process used was the same as that described in Paper II. 

The powdered thickener Nutilis was used in the experiment. Five different bolus consistencies were 

mixed (Table 4) with the given thickener. The thickener was added to water such that the consistency 

was in the range of 0.14–2.0 Pa.s at a shear rate of 50 s
-1

, thereby covering the consistency range 

(NDD scale) from Nectar-thick (51–350 mPa.s) to pudding-thick (>1750 mPa.s). As the three 

viscosities used in the experiments lie in the honey-thick range (351–1750 mPa.s), this range of 

consistencies is further categorised into low, medium, and high consistencies to simplify the 

interpretation in the Discussion. 

 

Table 4: Amount of thickener powder added to 100 ml water to achieve the different viscosities. 

Viscosity at 50 s-1 (Pa.s) Added powder (g) NDD description 

0.14±0 4.2 Nectar-thick 
0.5±0.01 4.9 Low honey-thick 
1.0±0.0 5.8 Medium honey-thick 
1.5± 0.076  7.15 High honey-thick 
2.0±0.09 7.8  Pudding-thick 

 

8.3 Bolus velocity profiles and resulting shear rate measurements during model 
swallowing 
The measured velocity profiles of the boluses thickened to consistencies of 0.2, 0.5, 1.0, 1.5 and 2.0 

Pa.s (at 50 s
-1

) are reported in Figure 36 (A–E) as power spectra, in which the brightness level is 

proportional to the power of the Doppler signal component at a given depth. The range of 

consistencies was selected following the NDD scale and covering all the consistencies from nectar-

thick to pudding-thick, with the exception of the thin-liquid consistency, which was too thin for the 

current in vitro model to handle. The bolus of thin-liquid consistency often experienced a flow due to 

gravity, so it was not considered for further analysis. The velocity profiles presented in Figure 36 (A–

E) were measured from the transducer side to the centre of the model pharynx, while the bolus flow 

was measured downwards away from the transducer depicted in negative values for the velocities.  
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Figure 36: Velocity profiles acquired with ultrasound velocimetry using the Nutilis thickener to generate five 

different viscosities at 50 s
-1

: 0.2, 0.5, 1.0, 1.5, and 2.0 Pa.s 

 

During the measurements performed at constant velocity of the syringe (1.25±0.03 m/s), the average 

fluid velocities ranged from 0.046±0.02 m/s to 0.48±0.05 m/s, increasing in the order of increasing 

bolus consistency (Table 5). In general, the increased velocity that resulted from a low viscosity 

yielded higher shear rates, as expected. The variation in shear rate along the radial direction was 

calculated from the gradient of the acquired velocity profile (R
2
~0.99). The calculated maximum shear 

rate (229±45 s
-1

), as determined from the gradient of the recorded velocities at the wall, was highest 

for the nectar-thick formulation, which was the bolus with the lowest consistency (0.14 Pa.s). The 

bolus with pudding consistency (viscosity of 2.0 Pa.s at 50 s
-1

), which was the highest consistency 

level used in the current work, yielded the lowest shear rate of 13±6 s
-1

. This was followed by the high 

A B 

C D 
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honey-thick consistency (1.5 Pa.s at 50 s
-1

), yielding a wall shear rate of 24±4 s
-1

, while the boluses 

with medium and low honey-thick consistencies gave wall shear rates of 74±20 s
-1 

and 209±46 s
-1

, 

respectively.  

It is noteworthy that the level of brightness, which is an indicator of the quality of the measurement, 

was very high in the pudding-consistency sample (2.0 Pa.s at 50 s
-1

). The quality of the signal 

deteriorated proportionally as the bolus consistency decreased, as seen for the bolus with nectar 

consistency, which had the lowest viscosity level used in the current work. There could be several 

reasons for this, such as a lower number of reflecting particles in low-viscosity fluids, excessive air 

accumulation while pumping the bolus, and the use of a lower number of pulses (128) to capture the 

average velocity profiles. Bolus transport is a rapid process, taking place in less than 1 second in 

healthy subjects and in the in vitro model used here. Therefore, much faster data acquisition is needed 

than, for example, what is required for a continuous fluid flow, as presented earlier (Section 7.3, 

laminar flow profiles), whereby the average profiles were based on 65,536 pulses. Furthermore, with 

increasing fluid velocities, the spectrum broadens due to presence of a wider range of velocities. Slight 

aliasing was noticed for the least-viscous fluid (Fig. 37 A) due to a mismatch between the PRF and 

observed fluid velocities.  

 The acquired bolus head velocities (0.48±0.05 m/s) observed here (Table 5) are comparable to those 

recorded in clinical studies. Tashiro and colleagues (Tashiro  et al., 2010) noted that the bolus velocity 

during pharyngeal flow varied from 0.246 m/s to 0.488 m/s. Hasegawa and co-workers (Hasegawa et 

al., 2008) recorded an average velocity of 0.46 m/s for water, which decreased to 0.2 m/s upon the 

addition of thickeners to the water. Both studies used the Pulsed Ultrasound Doppler technique, the 

same method as used in the current sudy.  

Typical values from most studies of velocity in the pharynx lie in the range of 0.1–0.5 m/s (Zhu et al., 

2014). In the present work, the ultrasound beam was directed towards the bolus flow above the 

epiglottis, i.e., in the meso-pharynx region. Knowledge regarding the velocity profile and subsequent 

shear rate in the meso-pharynx region is of clinical relevance owing to the higher risk of bolus 

misdirection in individuals who have a malfunctioning mechanism for air-ways closure.  

Table 5: Shear viscosities, maximum velocities acquired, and the corresponding shear rates of boluses thickened 

to different consistencies according to the NDD scale. 

Shear viscosity (Pa.s) at 
50 s-1 

Maximum velocity 
(m/s) 

Wall shear rate (1/s) Description as per 
NDD 

0.14 0.48±0.05 229±45 Nectar-thick 

0.50 0.39±0.14 209.00±46 Low honey-thick 

1.00 0.21±0.09 74.00±20 Medium honey-
thick 

1.50 0.09±0.020 22.00±5 High honey-thick 

2.00 0.04±0.00 13.00±6 Pudding-thick 

 

To our knowledge, only two studies have reported the bolus shear rate during pharyngeal swallowing: 

the study of Zhu et al. (Zhu  et al., 2014); and a simulation-based analysis conducted by Salinas and 

co-workers (Salinas-Vázquez  et al., 2014). Zhu et al. performed their study using video flouoscopy 
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on three human volunteers. The average shear rate reported was120 s
-1

. Salinas et al. reported a higher 

shear rate (200 s
-1

) along the pharyngeal wall. These values are in the vicinity of the current study.  

Our results regarding shear rate during swallowing suggest that while the shear rate of 50 s
-1

 

recommended by NDD is a reasonable value for fluids that are thickened to medium honey-thick 

consistency, the shear rate value, 50s
-1

 should carefully be used in boluses of lower consistencies such 

as in the case of nectar-thick and thin consistencies on the NDD scale.  

For example, assuming a shear rate of 50 s
-1

 for every consistency of a fluid, a patient who swallows 

thinner fluids, i.e., in the range of low honey-thick or nectar-thick, will encounter much higher 

velocities (and therefore, higher shear rates) than those recommended by NDD, and this might result 

in aspiration. 

For future interventions for patients with swallowing disorders, we propose that for each 

recommended bolus consistency, the expected shear rates reported here should be considered, so as to 

avoid over-estimation or under-estimation of the apparent consistency during swallowing.  

8.4 Injection pump control and optical bolus visualization using fast camera 

The swallowing mechanism in humans adjusts itself to the bolus consistency, i.e., the tongue can 

generate a certain level of force to push the bolus through the pharynx, thereby acting as a stress 

control device (Mackley et al., 2013). Ideally, a pressure sensor at the syringe in the model was 

desirable to measure and control the pressure applied on the bolus. Unfortunately, on the model 

syringe, there is no pressure sensor that measures the applied pressure. Therefore, the rate-controlled 

approach, whereby the speed with which the piston moves to push the bolus and which is regulatable 

from the installed compressed air regulator, was applied.  

8.4.1 Injection pump control  

A camera (Sony, DSC-RX100M5, Tokyo, Japan) installed at a distance of 10 cm from the flow 

injection pump was used to record the syringe speed, which was maintained at 1.5±0.03 m/s 

irrespective of the bolus volume and viscosity. During the acquisition of the sequential photographic 

images of the bolus flow (Fig. 37), the camera was operated in a high frame rate mode, capturing 

images at 500 frames per second, while the bolus was dyed blue or orange for enhanced visualisation. 

The acquired slow-motion videos were analysed using the Media Player, MPC-HC ver. 1.7.13 

software in the high-precision mode to determine transit times. This is discussed very briefly below in 

the context of bolus flow and consistency. 

8.4.2 Optical bolus visualisation 

The model pharynx is transparent, which allow direct visualisation of the bolus transport. Therefore, 

bolus velocity was visualised with the camera mentioned earlier by a sequence of photographic images 

of the bolus flow. As shown in Figure 38, the model pharynx was empty at t=0 ms. The bolus 

progressively entered the pharynx, passed through, and exited at the UES. The bolus with viscosity of 

1.0 Pa.s (at 50 s
-1

) presented a shorter transit time of 374 ms upon exit (Fig. 37; upper panel). In 

contrast, the bolus with pudding consistency (Fig. 37; lower panel) having a viscosity of 2.0 Pa.s (50 s
-

1
) exhibited slower movement, resulting in a delayed pharyngeal exit and a transit time of ~ 1 second.  
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Figure 37: Photographic sequence of bolus ejection over time for boluses with viscosities of 1 Pa.s (upper panel) 

and 2 Pa.s (lower panel), at a shear rate of 50 s
-1

. 

As we have knowledge of the model pharynx geometry, as well as the average and maximum 

velocities calculated in UVP, the resulting transit times are approximately ~0.25 seconds and ~1 

second, respectively, for the two displayed consistencies of 1.0 Pa.s and 2.0 Pa.s. Pharyngeal transit 

times that are typically reported from clinical studies range from 100 ms (Olthoff et al., 2014) to 1 

second as the bolus consistency increases. Therefore, the transit times reported here are in the range 

observed in clinical examinations.  

 8.5 In vitro manometry analysis 

The pharyngeal swallow, which is a pressure-driven event that is initiated by the thrust of the tongue, 

requires complex co-ordination of different muscles to ensure safe bolus transport. Manometry is an 

important tool for examining abnormal swallowing processes in clinical studies. It is influenced by 

factors such as bolus consistency, volume, stenosis, and applied lingual pressure, among others. In the 

current in vitro model, the intra-bolus pressure, which is the pressure recorded as the fluid (bolus) 

comes in contact with the transducer, is measured. During clinical studies, there is often confusion in 

relation to distinguishing the contact pressure (the pressure recorded as the pressure transducer hits the 

pharyngeal wall) from the intra-bolus pressure. Inexperienced operators of manometry may easily 

confuse these two acquired values. In the following sections, bolus properties such as composition, 

consistency, and bolus volume are studied with respect to the pharyngeal pressures at different 

locations inside the in vitro model. 

 

8.5.1 Manometry recorded using different thickeners during in vitro bolus flow 

Table 6 presents a comparison of the pressures recorded by the transducers installed at the following 

locations in the model pharynx: pharynx entrance, mid-pharynx, and the UES. Of the three thickeners 

measured, Fresubin clear and Nutilis contain xanthan gum, while Nestlé Thicken-up contains starch as 

the thickener. The viscosities of the given fluids were set to 0.55 Pa.s (honey-thick consistency) at a 

shear rate of 50 s
-1

. In general, the pressure applied in the model pharynx was significantly different 

(p<0.05) for boluses made from the three different thickeners, even though the viscosities were set to 

be similar at a shear rate of 50 s
-1

. This was due to the compositions of the thickened fluids examined. 

Significantly (p<0.05) higher pressures were applied by the xanthan gum-based thickeners. In this 

category, Fresubin Clear recorded higher pressures (33.43±5.19–32.93±5.91 kPa) during model 
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swallowing than did Nutilis (21.43±0.06–17.75±2.56 kPa). The starch-based thickener, Nestlé 

Thicken-up, recorded significantly lower (p<0.05) pressures compared to the two gum-based 

thickeners used here. The reason for this is that a starch-thickened bolus stays together as a single 

mass and therefore applies a higher pressure (P=F/A) during swallowing than a bolus that is 

fragmented into many small parts.  

 

Table 6: Manometry analysis of thickeners  

Transducer location in the 
model pharynx  

Fresubin clear (xanthan 
gum-based) 

Nutilis (xanthan 
gum-based) 

Nestlé Thicken-up 
(starch-based) 

Pharyngeal entrance 33.43a±5.191 21.43b±0.061 13.15c±6.81 

Mid-pharynx 32.64a±5.761 19.47b±0.161 6.12c±4.382 

 Close to the UES 32.93a±5.911 17.75b±2.561 7.60c±2.9823 

Note: The different letters in the rows represent a statistically significant difference (p<0.05) among different 

thickeners, while the different numbers in the columns (after the standard deviation) represent a statistically 

significant difference (p<0.05) at different locations in model pharynx.  

 

Furthermore, the pressure differences recorded at different locations in the model pharynx were noted 

to be smaller, and insignificantly different (p<0.05) for Fresubin Clear and Nutilis. This was not the 

case for the starch-thickened sample (with Nestlé Thicken-up), where a significant difference (p<0.05) 

was seen between the different locations, i.e., between the pharyngeal entrance and mid-pharynx and 

between the pharyngeal entrance and exit (Close the UES). Furthermore, during optical visualisation it 

was noticed that the starch-thickened bolus fell apart (due to having less elasticity) during the flow, 

resulting in smaller individual volumes and the appearance of residues on the pharyngeal walls (Fig. 

38). As a consequence, significantly (p<0.05) lower pressure values were recorded for this category of 

thickener composition compared to the other gum-thickened compositions. 

 

Figure 38: Photographic images showing (from left to right): the empty pharynx; a bolus inside the mid-

pharynx; and bolus residues on the back and front walls at the exit of the model pharynx (coloured orange). The 

blue circles indicate the locations of residues of the disintegrated bolus (middle and right-most images). These 

residues are not visible in the blue circles in the left-most image, as the bolus had not yet been injected. The 

arrows in image shows normal bolus path 
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Clinical studies (Vilardell et al., 2016) have shown that the use of starch-thickened boluses often leads 

to residues, and that the amounts of residues increase as the bolus consistency is increase to spoon-

thick consistency (Newman  et al., 2016). Another study has reported that bolus residues increase 

when starch-thickened boluses with increasing volume are applied (Hadde, 2017), as was also noticed 

here (data not reported). The residue phenomenon detected with starch-thickened boluses in vivo is 

confirmed here during visualisation of the bolus path (Fig. 38). This was confirmed by the discovery 

of a lower pressure being exerted at the pharyngeal exit due to the bolus splitting into smaller volumes, 

as reported in Table 6. 

A search of the literature for relevant in vitro studies revealed only one in vitro study (Redfearn et al., 

2018), which reported the pressure that resulted from applying a starch-thickened bolus was increased 

more than that for a gum-thickened bolus, as the area between the tongue and palate decreased. The 

mentioned literature study focused on manometry during the oral phase of swallowing of swallowing 

and therefore is not directly comparable to the current study. 

 

8.5.2 Effect of bolus consistency using starch thickened boluses 

Boluses that were thickened with a starch-based thickener (Nestlé Thicken-up) were further 

characterised by preparing formulations with different consistencies, ranging from Thin-liquid to 

Pudding-thick, according to the NDD scale. This was achieved by adding to water the powdered 

thickener at different concentrations (following the manufacturer’s guidelines). This was done to study 

the influence of bolus consistency on the in vitro manometry during swallowing, while the starch-

thickened boluses were used to explore further the observations described in the previous section 

(appearance of residues with starch-thickened fluids).  

Our results show that bolus consistency increases the pharyngeal pressure (Fig. 39). The values were 

higher at the pharyngeal entrance, with the exception of the bolus with thin-liquid consistency (1–50 

mPa.s) for which higher pressures were recorded at the mid-pharynx (2.31 kPa) and the UES (1.56 

kPa), as compared to the pressure values at the pharyngeal entrance (1.26 kPa). This is due to free flow 

(gravity induced) of the thin consistency bolus. For this reason, boluses of thin consistency were not 

analysed further in the model, as the model is not capable of handling lower-level consistencies 

(similar to that of water). 

 

Significantly (p<0.05) lower pressure values were recorded in the mid-pharynx for bolus consistencies 

in the higher range (honey and pudding), as compared to the pressure at the pharyngeal entrance. 

These differences were not statistically significant (p<0.05) at the mid-pharynx and the UES.  

These findings further strengthen our argument that a starch-thickened bolus disintegrates during 

pharyngeal transport, resulting in residues being formed in the pharynx. As a consequence, there 

appears a smaller-volume bolus fraction, which applies lower pressures in the mid-pharynx and at the 

UES. This behavior of starch-thickened boluses needs to be confirmed in clinical studies. To the best 

of our knowledge, not a single study with similar focus has been published to date. 
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Figure 39: Influence of bolus consistency on the pressures recorded at different locations in the model pharynx 

during the pumping of starch-thickened boluses (Nestlé Thicken-up). 

 

Bolus consistency is an important variable to consider in dysphagia management. The use of an 

appropriate bolus consistency improves the safety of swallowing in individuals who are suffering from 

malfunctioning deglutition (Yue et al., 2017). While the results of clinical studies are more directly 

relevant to these patients they do not provide consistent conclusions. For example, Butler and co-

workers (Butler et al., 2009) reported no significant association between bolus consistency and 

pressure applied in the pharynx, whereas Yue et al. (Yue  et al., 2017) reported that the bolus pressure 

increased with decreasing bolus consistency. Ryu and colleagues (Ryu et al., 2016) found the highest 

pressures, in the range of 210–232 mmHg (~28–31 kPa) for bread and thin-fluids, respectively, 

indicating no significant (p<0.05) differences between the consistencies of a 5-ml bolus. Similarly, 

research conducted by Lin and co-workers (Lin et al., 2014) on boluses of different consistencies, i.e., 

water, and thick and paste-like boluses gave pressure values of 191, 173 and 181 mmHg (~25, 23, and 

24 kPa), respectively. These differences in pressure are not significant (p<0.05) with respect to the 

different bolus consistencies  

 

8.5.3 Effect of bolus volume  

Since bolus volume is a vital factor in abnormal deglutition examinations, it has been considered in 

several in vivo research studies (W. Dodds et al., 1988; Hoffman et al., 2010; Lin  et al., 2014; 

Nascimento et al., 2015). In clinical studies, a bolus volume of up to 20 ml has been reported 

(Hoffman  et al., 2010). In the current study (Paper IV), when the bolus volume was varied in the 

range of5–25 ml (which corresponds to a normal bolus volume) it was observed that changing the 

bolus volume had an impact on the pressure recorded at different locations in the model pharynx (Fig. 

40). The Nutilis powder was used as the thickener for studying the bolus volume, so as to maintain the 

viscosity in the honey-thick-consistency range, specifically at ~0.50 Pa.s at 50.s
-1

. 
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Figure 40. Means and standard deviations of the pressures recorded as a function of bolus volume (using Nutilis 

as the thickener) at different locations inside the model pharynx: A, pharynx entrance; B, mid-pharynx; and C, 

and close to the UES. Significantly different results with respect to the volume at Transducer A are lettered as 

follows: 
a
p<0.05 vs 5-ml bolus; 

b
p<0.05 vs 10-ml bolus; 

c
p<0.05 vs 15-ml bolus; and 

d
p<0.05 vs 20-ml bolus.  

The volumes of bolus injected into the model pharynx could be categorised into two sets; low bolus 

volumes of 5, 10, and 15 ml; and high bolus volumes of 20 and 25 ml. In the low-bolus-volume 

category, the pressure values increased slightly but not significantly (p<0.05; Transducer A) due to 

their being too little a difference in the individual bolus volumes. Within the high-bolus-volume 

category, the pressure values were significantly different (p<0.05; Transducer A) between the 20-ml 

and 25-ml volumes. When a comparison was made between the low and high categories of bolus 

volumes, a significant difference (p<0.05; Transducer A) was observed. A similar trend of high 

volume and high pressure was noticed at the mid-pharynx transducer and at the pharyngeal exit 

transducer.  

The recorded pressures were lower at the mid-pharynx with bolus volumes of 5, 10, 15 and 20 ml, due 

to the location of the transducer. The mid-pharynx transducer is located behind the epiglottis, and the 

epiglottis was closed to prevent fluid flow into the model airways, thereby restricting air-flow and 

resulting in lower measured pressures. The pressure values at the UES were higher than those in the 

mid-pharynx and lower than those at the model pharynx entrance, with respect to different fluid 

volumes.  

A clinical study conducted by Lin and co-workers (Lin  et al., 2014) found pressure values of 202 

mmHg and 173 mmHg (~27 and 23 kPa) for boluses of volumes of 5 ml and 10 ml, respectively. This 

meant that lower pressure values were recorded with increasing bolus volume. Similarly, studies 

carried out by Butler (Butler  et al., 2009) and Ryu (Ryu  et al., 2016) did not notice any significant 

association between the bolus volume and the pressure applied during pharyngeal bolus transport. In 

both of these instances, bolus volumes of 5 ml and 10 ml were used. However, Hoffman and 

colleagues (Hoffman  et al., 2010) noticed an increase in pharyngeal pressure accompanied by 

prolonged UES opening and longer pharyngeal pressure duration, when the bolus volume was 

increased to 20 ml 
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Clearly, the use of a higher bolus volume is more practical, even though this is avoided in clinical 

studies due to the discomfort experienced by the subjects. In contrast, in the simulator, bolus volumes 

up to 25 ml can be pumped in multiple times.  

The clinical studies that have been performed to date have examined various aspects of swallowing, 

such as examinations of the bolus consistencies and biomechanical events, i.e., UES 

opening/contraction, duration of UES relaxation, pharyngeal peristaltic waves, and the onset of hyoid 

bone elevation while swallowing boluses of different volumes. Obviously, these biomechanical events 

cannot be mimicked in the current in vitro model. Moreover, the manometry results acquired here are 

not directly comparable to the results obtained from clinical manometry. The pressure values recorded 

in most clinical studies are within the range of 10–40 kPa, which overlaps to a large extent with the 

range of pressure values (~3–36 kPa) recorded here. 
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9. CONCLUSIONS  

The work described in this thesis encompasses the methodology used and results obtained for a device 

that was developed to facilitate non-invasive, in vitro examinations of deglutition. In addition, the 

work elucidates the linkages between food bolus rheology and dysphagia management.  

Fluid elasticity, i.e., the ability of a fluid to resist elongation, was studied as a factor for safe 

swallowing in individuals with malfunctioning deglutition. Model Boger fluids (elastic fluids with 

fixed viscosity) and fluids with even higher elasticity that were shear-thinning were comparatively 

easy to swallow, as evidenced by quantitative video fluoroscopy and when the patients were asked for 

sensory feedback on the ease of swallowing.  

Fluids that are used for dysphagia management were further characterised for rheological properties 

that might influence the safety of swallowing in patients, such as extensional viscosity and yield stress, 

as well as the relatively well-known attribute of shear viscosity. Gum-based thickeners were found to 

be more elastic and more shear-thinning with a mild yield stress, as compared to starch-based 

thickeners. The yield stress noted for the gum-based thickener is attributed to a stranded, weak 

network structure that is visible on the nanometre scale in electron microscopy.  

 

To overcome some of the challenges related to developing new treatments for patients with dysphagia, 

including issues of ethics and patient discomfort, an in vitro swallowing device was designed based on 

the human geometry that generates a realistic bolus flow and takes into account parameters of clinical 

interest, such as bolus velocity, bolus viscosity, and bolus volume. The device, the Gothenburg 

Throat, is the first of its kind that allows the performance of non-invasive bolus velocimetry and 

manometry simultaneously. The device can simulate various physiological actions such as 

opening/closing of the airways and UES and post-swallowing air release. To perform measurements 

inside the model pharynx, a comprehensive ultrasound velocimetry method based on a non-invasive 

transducer system was developed. Similarly, pressure transducers with the ability to measure intra-

bolus pressure in the range reported from clinical studies were installed at different locations, at the 

pharyngeal entrance mid-pharynx, nasopharynx, and pharyngeal exit. Initially, both the ultrasound 

method and pressure transducers were validated during the continuous flow of fluids with different 

rheological properties and pumped at different flow rates. Thereafter, measurements of the bolus flow 

properties were performed.  

 

The ultrasound velocimetry preformed here provides information about bolus transport similar to that 

obtained in clinical examinations using video fluoroscopy. While performing velocimetry on boluses 

thickened to consistencies listed in the NDD scale, the shear rates during bolus flow were observe to 

range from 13 s
-1

 for the pudding-thick consistency to 230 s
-1

 for the nectar-thick consistency, 

representing a much wider range of shear rates than that currently recognized by the NDD i.e., 50 s
-1

. 

The optical observations were complemented by experiments of in vitro deglutition to capture other 

relevant features, such as the appearance of bolus residues during transit. It was found that a starch-

thickened bolus often disintegrate during flow, leaving residues on the walls of the model pharynx. In 
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contrast, the gum-thickened boluses stay together as a single mass and do not deposit residues during 

pharyngeal transport. Similarly, the pressure transducers perform the clinical equivalent of manometry 

measurements. The manometry results acquired here for different thickeners, bolus consistencies, and 

bolus volumes are similar to those obtained with in vivo manometry. Therefore, the simulator is a 

promising tool for use by industry when designing food products for patients who are suffering from 

dysphagia. 



FUTURE OUTLOOK 

63 

 

10. FUTURE OUTLOOK 

 

The results of the current project can be extended and refined in many directions in the future, some of 

which are discussed below. 

 

The Gothenburg throat model device can be further refined and improved to provide even more 

accurate measurements. An extra pressure transducer should be installed to measure the applied 

pressure on the bolus, thereby conferring better control over the data obtained for the applied pressure. 

The air-ways closing mechanism should be improved to achieve better simulation of abnormal 

deglutition. This would enable the study of elastic fluid flows during in vitro deglutition, while 

simulation studies could be performed in parallel to compare the results.  

 

The simulator has a built-in nasal cavity to recover flavour compounds upon post-swallow air release 

Experiments were performed on flavour release in the model (which are not reported here as this topic 

is beyond the scope of this thesis) by capturing the released air and analysing it using gas 

chromatography. The results confirm the release of the flavour compound that was added to fluids 

thickened to different consistencies and that had different compositions. Further studies should be 

performed to build knowledge as to how the rheology of a matrix influences the flavour release afrer 

the swallowing thrust triggered by the tongue and at body temperature. This would open the possibility 

to tailor food products that are not only safe for swallowing but also have high palatability.  

 

Similarly, when using ultra-sonics, the shear rate should be measured at other locations, such as in the 

hypopharynx and at the UES, as the areas and velocities vary significantly in these regions. The UVP 

software should be upgraded to perform fast data acquisition and to have an improved graphical 

display, especially during analyses of bolus transport. This would allow real-time observations of 

bolus transport. The current system is restricted to post-processing of the acquired data.  

 

The pharyngeal phase is followed by the esophageal phase, which should be rather easy to simulate 

given that a flexible model esophageal tube is already connected to the model pharynx. Peristaltic 

movement of the bolus can be simulated in the model esophagus tube by connecting a series of motor-

controlled rollers.  
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