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Summary
Human activities in building structures may vary to a great extend and daily mobility may be the
cause of noise and vibrations. We focused on walking sound to identify different individuals based on
airborne sound recordings. Our aim was to provide a description of high-level acoustical features that
corresponds to walking sound and person identification. We present two levels of abstraction. The
first level builds upon principal component analysis and provides the main sound characteristics of
walking activity. For the second level of abstraction we provide higher-level acoustical features that
better describe person identification.

PACS no. xx.xx.Nn, xx.xx.Nn

1. Introduction

Human gait carry valuable information which can be
used for a broad range of applications, from person
and gender identification, to diagnosis of Parkinson
disease [1, 2, 3]. Gait recognition first appeared in
computer vision with a view to provide human recog-
nition at a distance [4]. For applications in indoors
environments we can imagine that it can be cumber-
some to equip a building with a 100% camera coverage
system. This limitation does not apply for machine
listening applications because of the very nature of
sound propagation. As a result, there is a growing in-
terest for indoors audio-based smart applications.

From an evolutionary perspective our ability to
identify individuals using auditory cues is a crucial
skill which may have survival value. For example, we
have developed the ability to identify a person from
his voice without any visual stimuli. Occupants’ daily
activities, like indoors mobility, provide us with rich
auditory information. For example, we are listening to
walking sounds while shopping in a mall, working in
an open office, studying in the university library and
much more. In all aforementioned places human-made
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sounds like speech and walking sound may dominate
the social auditory scene. The major difference be-
tween speech and walking sound is that the latter do
not have any obvious tonal components and may be
the cause of impact sound transmision. In this study
we are focusing on airborne sound that is captured via
direct sound and its reflections. As a result, we do not
see the term walking sound as equivalent to footsteps
sound. For example walking sound might include the
sound of clothes and shoelaces or even the sound of
other accessories like a tinkling chain [5]. These are
by-products of human walking activity yet they are
indispensible part of walking sound.

In this experiment our aim was to identify individ-
ual persons based on airborne recordings of walking
sounds. We conducted an indoors experiment in which
four individuals were walking in a reverberant room
equiped with a wooden floor. The signal analysis was
based on magnitude analysis [6]. Our approach was to
extract acoustical events of walking sound and calcu-
late a characteristic data set of acoustic single quan-
tity indicators. We call this a feature space. In order to
identify individual walkers we then employed two fun-
damental techniques of statistical learning, principal
component analysis (PCA) and linear discriminant
analysis (LDA). Both aforementioned linear transfor-
mations can be used for dimensionality reduction of
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a high dimensional dataset and for classification. The
basic difference between PCA and LDA is that the
former is unsupervised whereas the latter is a su-
pervised classification technique. For example, PCA
perfoms clustering which means that it is agnostic
of class labels, whereas in LDA the class labels are
already known. In our analysis the agnostic parame-
ters were the higher-level characteristics of acoustical
events and the known parameters the class labels of
the individual walkers (ie. name of each person). The
high-level acoustical characteristics refer to the syn-
thesized acoustical features that we constructed using
PCA.

The idea to treat acoustical events as events that
are not necessarily related to footsteps is highly eco-
nomical in the computational analysis. It also has
great potential for applications with high ecological
validity. For example in [7] the authors applied acous-
tic gait recognition on a staircase in order to have a
predifined number of steps. In contrast our method
is footsteps agnostic, and the amount of acoustical
events does not necessarily has any relationship with
the actual amount of footsteps.

2. Methods

2.1. Recording room and equipment

The recordings were performed at RISE, Research In-
stitutes of Sweden. The recording room volume was
102:80m3 (h = 3:41m; b = 4:92m; d = 6:13m), and
the wooden floor was Cross Laminated Timbre (CLT)
with dimensions 4:0m�3:0m and thickness of 230mm
(see Figure 1). Two seperate elements were installed in
the lab each one of 1:5m width. The recording equip-
ment was two B&K (half-inch free-field microphone,
6.3 Hz to 20 kHz, 200V polarization) and a dummy
head (GRAS 45BB KEMAR Head & Torso). We
used RME QuadMicII pre-amplifier, a Macbook Air
(late 2010; El Capitan), and an EDIROL Hi-SPEED
USB AudioCapture UA-101 soundcard (10IN/10OUT
24bit 192kHz). The recording software was REAPER
v.5 digital audio workstation at 24bit/48kHz and
block size 512 samples.

2.2. Participants and procedure

Four adults (one female; three males) were asked to
follow an "hourglass" pattern and walk on the wooden
floor about 1 � 2 minutes. Using this pattern we were
able to record walking sounds on the diagonal, and
at the edges of the wooden floor. Each participant
performed one walking session. One male participant
was excluded from the analysis as an outlier due to the
fact that his recording session had several spikes that
exceeded the average magnitude levels. The cause of
these spikes in the signal is unclear but it might be
due to gravel sticked under the soles. Gravel is heavily
used in northern countries as an anti-slip measure and

Figure 1. Wooden floor during installation in the lab.
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Figure 2. The four steps of computational analysis of walk-
ing sound.

a way to protect walking activities of civilians due to
snow and ice weather conditions. The motivation to
exclude this participant as an outlier was due the fact
that we noticed high contributions in the variance of
the extracted features. That become obvious in the
principal component analysis.

2.3. Computational analysis

The computational analysis was based on magnitude
analysis of the signal [6] and had four main parts as
shown in Figure 2.

2.3.1. Acoustical events
Acoustic event detection of walking sounds was per-
formed using SuperCollider programming environ-
ment using SCMIR library [8] for music information
retrieval. The first step was to apply onsets detection
in order to estimate the beggining of transient sounds
[9]. Please note that the onsets do not necessary spot
timestamps that indicate contact of the shoe pad with
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the wooden floor. As we noted in the introduction
we use the term walking sound more broadly than
footsteps. Given this interpretation each onset might
be trigged from different sound sources, like clothes,
chains etc.

2.3.2. Feature extraction
The next step was to extract a set of 11 sin-
gle quantity acoustical features for each onset.
Specifically we extracted 11 acoustical features
using SCMIR library. The corresponding class
names in SuperCollider language are: Loudness,
SpectralEntropy, SpecCentroid, SpecPcile,
SpecFlatness, FFTCrest, FFTSpread, FFTSlope and
SensoryDissonance. The list below provides a short
descrption for each acoustical feature. For analytic
descritpion of each class please see the online help
file of SuperCollider.

1. Loudness: Variant of an MP3 perceptual
model

2. SpectralEntropy: General peakiness of the
spectral distribution

3. SpecCentroid: Spectral centroid, an indica-
tor of perceptual brightness

4. SpecPcile,0.99: Cumulative distribution of
the frequency spectrum, High values 0.95,
0.99 used for spectral roll-off

5. SpecFlatness: Has value of 0 for sine wave,
1 for white noise

6. FFTCrest,2,50: Spectral crest measure for
the frequency range 2 � 50Hz

7. FFTCrest,50,500: Spectral crest measure
for the frequency range 50 � 500Hz

8. FFTCrest,500,8000: Spectral crest mea-
sure for the frequency range 500 � 8000Hz

9. FFTSpread: Measure of spectral spread
(magnitude-weighted variance)

10.FFTSlope: Spectral slope, describes the re-
duction of spectral energy in high frequencies

11.SensoryDissonance: An indicator of per-
ceptual roughness

The selection of these 11 features was based pri-
marily on the available features of SCMIR library for
SuperCollider. We discarded features that are related
to tonality, like Chromagram and mel-frequency cep-
stral coefficients (MFCC), because walking sounds, as
opposed to speech, do not have any tonal components.
Furthermore, we didn’t take into account any onsets
statistics, like inter-onsets (IOI) mean and standard
deviation. This is because people use to change their
walking speed on different daily activities and walking
speed has an effect on walking variability [10, 11].

Before the feature extraction we had mixed all four
channels in REAPER DAW (2 low frequency range,
1 dummy head). On every mixed signal we applied
a second-order low pass filter with cutoff frequency
9600Hz to reduce any contribution of high frequency
noise that may cause high variations in PCA. We

choose this high frequency cutoff because the spectro-
gram indicated walking activity up to 8000Hz. Then
all audio signals we extracted a set of 11 acoustical fea-
tures for every acoustical event (onset). We extracted
1357 onsets and 11 acoustical features per onset. The
average recording time across all walking sessions was
123:67 seconds.

2.3.3. Dimensionality reduction based on PCA

From the two aforementioned steps (see Step 1 and
Step 2 in Figure 2) we generated a feature space
of acoustical features. This space has dimensions of
onsets�features (1357�11). On this feature space we
applied principal component analysis (PCA). This is
a commonly used approach to reduce the high dimen-
sionality of the data set. PCA is a linear transforma-
tion which creates a new synthetic feature subspace.
The first synthetic dimension explains the largest per-
cent of variance, the second principal component (ie.
synthetic dimension) explains the second largest per-
cent of variance and so on. Typical values of explained
variance include 90%, 95% and 99%. Here we will se-
lect the principal components that explain the 90% of
explained variance in order to generate the smallest
possible feature subspace. On this subspace we ap-
plied varimax rotation which is a rotation of the or-
thogonal coordinate system that maximizes the vari-
ance. We will then attempt to provide an interpreta-
tion of these synthetic dimensions in order to identify
which acoustical characteristics are better indicators
of idiosyncratic walking sound.

2.3.4. Classification of individuals using LDA

The last step in the analysis was to perform linear
discriminant analysis (LDA). The latter is one of the
most fundamental classification techniques which is
also used as an approach to reduce the total amount
of dimensions. LDA uses quantities as predictors and
predicts qualities, or nominal values. In our experi-
ment our classes are the names of the four individu-
als. Whereas PCA does not assumes normal distribu-
tions, LDA is based on assumption of Gaussian dis-
tributions. On the other hand experimental evidence
suggest that this assumption can be violated [12, 13].

That was the motivation to explore both normal-
ity and non-normality assumptions. For that purpose
we examined skewness values of the 11 acoustical fea-
tures and we assigned the absolute value of monad
as upper and lower threshold. Based on this assump-
tion we created a new feature space that has only five
acoustical features out of the 11 extracted features. In
the results section we will evaluate the performance
of both feature spaces (with 5 and 11 features).

The skewness values for the 11 features are shown
in the Table I below:
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Table I. Skewness values for the set of 11 acoustical fea-
tures.

Acousticalfeature Skewness

Loudness 1.366

SpectralEntropy 3.798

SpecCentroid 0.727

SpecPcile(0.99) 0.241

SpecFlatness 0.544

FFTCrest(2,50) 0.517

FFTCrest(50,500) 1.363

FFTCrest(500,8000) 1.160

FFTSpread 0.244

FFTSlope -1.151

SensoryDissonance 3.638

3. Results

3.1. Transformation of feature space

Figure 3 shows the principal components loadings ma-
trix for the 11 acoustical features that explain more
than 90% of the variance. On the X axis is shown the
percent of explained variance for each principal com-
ponent (PC). On the Y axis is shown the set of all ex-
tracted acoustical features. This visual representation
shows the contribution of each acoustical feature to
every principal component [14]. For example, the first
principal component (PC1) has major contributions
from the features of SpecPcile,0.99, SpecFlatness and
FFTSpread. The second has major contributions from
SpectralEntropy and the third from FFTCrest,2,50.

Figure 3. PC loadings matrix with 6 transformed features
based on varimax rotation. The percent of explained vari-
ance is shown for each PC.

Figure 4 shows the principal components loadings
matrix for the five dimensional feature space that ex-
plain more than 90% of the variance. We remind the

reader that this feature subset was created with a view
to approximate a normal distribution. We did that
by selecting the features that have low skewness val-
ues. Whereas the two feature spaces cannot be com-
pared in a quantitative manner, yet we see similarities.
For example PC1 has major contribution from Spec-
tralCentroid, SpecFlatness and FFTSpread. All these
features are present in PC1 of the PC loadings ma-
trix for the 11 acoustical features (see Figure 3). PC2
and PC3 are better described by FFTCrest,2,50 and
SpecPile,0.99 respectively. As a result, we see that all
aforementioned acoustical features are present in the
first three principal components in Figure 3. Follow-
ing this intuition we may assume that the 3D feature
subspace preserves the most important acoustic in-
formation of the 6D feature subspace. This is because
the first three PCs of the 6D feature subspace explain
more than 75% of variance of the 11D feature space.

Figure 4. PC loadings matrix with 3 transformed features
based on varimax rotation

3.2. Prediction of class labels

We build a classifier based on LDA to evaluate the
performance of both 3D and 6D the feature subspaces
that we synthesized based on the 5D and 11D feature
spaces. The LDA classifiers were build using 10-fold
crossvalidation on the 85% of the data set and we
estimated the misclassification error. Then we used
these classifiers to predict an unseen data set for the
remaining 15% of the data. The classification error
of our model for the 3D subspace was 22:81% and
the classification performance of the unseen data set
was 73:53%. On the other hand, for the 6D subspace
the classication error was 25:15% and the classifica-
tion performance on the unseen data set was 53:43%.
Figure 5 shows the projection of the unseen data set
(15%) on the linear discriminants.

3.2.1. Linear discriminant loadings
Figure 6 shows the linear discriminants loadings ma-
trix based on varimax rotation. This visual represen-
tation, similar to the principal components loadings

���µ�Œ�}�v�}�]�•�����î�ì�í�ô���r�����}�v�(���Œ���v�������W�Œ�}���������]�v�P�•

�r���í�ó�ï�ì���r



-2 -1.5 -1 -0.5 0 0.5 1 1.5

LD1 = 0.9225

-3

-2

-1

0

1

2

3

4

LD
2 

=
 0

.0
77

5

Projection of first and second LD components

Female
Male1
Male2

Figure 5. Projection of the unseen data set (15%) on the
linear discriminants.

matrix, shows the contribution of PC1, PC2 and PC3
to the linear discriminants (LD1 and LD2). This is the
next level of abstraction that corresponds to a newly
synthesized feature subspace that has only two com-
ponents. The first discriminant corresponds to 92.25%
percent and the second discriminant to 7.75% of the
acoustic information that is carried withing the 3D
feature subspace of PC1, PC2 and PC3. We see that
the first linear discriminant is negatively correlated
with PC1 and positively correlated with PC3. PC1 is
a combination of perceptual brightness, spectral flat-
ness and spectral spread. The second linear discrimi-
nant is dominated by PC2 which has major contribu-
tions from low frequency components.

4. Discussion

The comparison of the two synthesized feature sub-
spaces that we created based on PCA showed that
the 3D feature subspace is better predictor for identi-
fication of individuals. Following that linear transfor-
mation we provided a visual representation that shows
the contribution of this feature subspace to the linear
discriminants (see Figure 6).

Whereas previous studies in gait recognition have
been focused on classification performance our main
goal was to employ fundamental techniques that af-
ford high interpretability. Our motivation was to
present a methodogy that might be useful for appli-
cations across a broad range of applications. In the
context of building acoustics, sound sources related to
human activities may vary to a great extend. In our
methodology we demonstrate a manner that enable us
to construct high-level acoustical features that explain
the acoustical variation of walking sound. We provide
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Figure 6. Linear Discriminant loadings matrix based on
varimax rotation.

two levels of abstraction for the high-level acoustical
features. The first abstraction corresponds to the prin-
cipal components loadings matrices (see Figure 3 and
Figure 4) which provides an excellent visual represen-
tation of higher level acoustical indicators of walking
sound. The second level of abstraction corresponds to
higher-level acoustical features that better discrimi-
nate individuals. Figure 6 shows the contribution of
the principal components to the linear discriminants.
For example, that means that whereas PC2 has major
contribution in the variance of walking sounds char-
acteristics it does not play an important role in per-
son identification. We see that PC1 of the 3D feature
subspace is better described by perceptual brightness,
spectral flatness and spectral spread. We can possibly
interpret this component as “spectral richness”. Ulti-
mately, we see that this view is enhanced by the neg-
ative correlations that PC1 exhibits with PC3 in LD1
as we can interpret the latter as squeaking sounds.
These are sounds that are produced when we are do-
ing manoeuvres, like turning around, stop walking or
other highly idiosyncratic walking sounds.

The advantage of using linear transformations to
perform identification of walkers is that PCA and
LDA are “transparent” techniques that are easy to
interpret. For example, in [15, 16, 17] the classifica-
tion techniques are based on HMM, nearest neighbour
(NN) and hierarchical clustering. In HMM and NN
the interpretation is not straight forward, and in hi-
erarchical clustering the interpretability can be quite
difficult. This is known as trade-off between predic-
tion and interpretability. That means that we may
be able to develop a better prediction method using
HMM, NN or hierarchical clustering, yet we cannot
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seak for a straight forward interpretation of our pre-
dictive model.
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