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Hepatocellular carcinoma (HCC) is one of themost frequent forms of
liver cancer, and effective treatment methods are limited due to
tumor heterogeneity. There is a great need for comprehensive
approaches to stratify HCC patients, gain biological insights into
subtypes, and ultimately identify effective therapeutic targets. We
stratified HCC patients and characterized each subtype using tran-
scriptomics data, genome-scale metabolic networks and network
topology/controllability analysis. This comprehensive systems-level
analysis identified three distinct subtypes with substantial differ-
ences in metabolic and signaling pathways reflecting at genomic,
transcriptomic, and proteomic levels. These subtypes showed large
differences in clinical survival associated with altered kynurenine
metabolism, WNT/β-catenin–associated lipid metabolism, and PI3K/
AKT/mTOR signaling. Integrative analyses indicated that the three
subtypes rely on alternative enzymes (e.g., ACSS1/ACSS2/ACSS3,
PKM/PKLR, ALDOB/ALDOA, MTHFD1L/MTHFD2/MTHFD1) to cata-
lyze the same reactions. Based on systems-level analysis, we iden-
tified 8 to 28 subtype-specific genes with pivotal roles in controlling
the metabolic network and predicted that these genes may be tar-
geted for development of treatment strategies for HCC subtypes by
performing in silico analysis. To validate our predictions, we per-
formed experiments using HepG2 cells under normoxic and hypoxic
conditions and observed opposite expression patterns between
genes expressed in high/moderate/low-survival tumor groups in re-
sponse to hypoxia, reflecting activated hypoxic behavior in patients
with poor survival. In conclusion, our analyses showed that the
heterogeneous HCC tumors can be stratified using a metabolic
network-driven approach, which may also be applied to other can-
cer types, and this stratification may have clinical implications to
drive the development of precision medicine.

hepatocellular carcinoma | biological networks | personalized medicine |
genome-scale metabolic models | systems biology

Hepatocellular carcinoma (HCC) is a prevalent form of liver
cancer and the third-leading cause of cancer-related world-

wide mortality with an increasing prevalence globally (1). Due to
its large heterogeneity, a complete understanding of the molecular
mechanisms underlying HCC onset and progression remains elu-
sive. Comprehensive approaches capable of incorporating inter-
tumor variability, while providing biological insights, are thus of
great need for revealing the underlying molecular mechanisms of
HCC progression, characterization of HCC subtypes, and identi-
fying therapeutic targets for development of effective treatment
strategies for specific patient groups.
Systems biology approaches have been employed to character-

ize the tumors and study the altered biological processes (2–5).
Characterizations of HCC using omics data including genomics,
transcriptomics, proteomics, and metabolomics are currently
available (6–12). This integrative analysis enabled the identification

of markers associated with recurrence and poor prognosis (13–15).
Moreover, genome-scale metabolic models (GEMs), collections
of biochemical reactions, and associated enzymes and transporters
have been successfully used to characterize the metabolism of
HCC, as well as identify drug targets for HCC patients (11, 16–18).
For instance, HCC tumors have been stratified based on the uti-
lization of acetate (11). Analysis of HCC metabolism has also led
to identification of potential anticancer metabolite analogs that
would not be toxic for noncancerous liver tissues (16). These ob-
servations indicated the vital need for integrating large-scale omics
data and systems-level analyses. However, while these methods
implicitly consider metabolic network structure, they do not per-
mit stratifying tumors based on network heterogeneity itself, and
instead rely on identification of key genes/metabolites and tumor
stratification based on their expression levels. In turn, topology-
driven network analyses, including protein–protein interaction,
signaling, and transcriptional regulatory and metabolic networks
(19–21), provide an alternative view for characterizing tumors.
For instance, network analysis enabled the identification of es-
sential genes from a lethality perspective, as well as those capable
and indispensable for controlling networks (4, 22–25). However,

Significance

Hepatocellular carcinoma (HCC) is a heterogeneous and deadly
form of liver cancer. Here, we stratified and characterized HCC
tumors by applying graph and control theory concepts to the
topology of genome-scale metabolic networks. We identified
three HCC subtypes with distinct differences in metabolic and
signaling pathways and clinical survival and validated our re-
sults by performing additional experiments. We further iden-
tified HCC subtype-specific genes pivotal in controlling the
entire metabolism and discovered genes that can be targeted
for development of efficient treatment strategies for specific
HCC subtypes. Our systems-level analyses provided a system-
atic way for characterization of HCC subtypes and identifica-
tion of drug targets for effective treatment of HCC patients.

Author contributions: G.B. and A.M. designed research; G.B., R.B., and M.K. performed
research; G.B. and R.B. analyzed data; and G.B., R.B., M.K., C.Z., J.N., M.U., J.B., and A.M.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1G.B. and R.B. contributed equally to this work.
2To whom correspondence should be addressed. Email: adilm@scilifelab.se.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1807305115/-/DCSupplemental.

Published online November 27, 2018.

E11874–E11883 | PNAS | vol. 115 | no. 50 www.pnas.org/cgi/doi/10.1073/pnas.1807305115

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
H

A
L

M
E

R
S 

U
N

IV
E

R
SI

T
Y

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ja
nu

ar
y 

5,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

12
9.

16
.7

4.
39

.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1807305115&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:adilm@scilifelab.se
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807305115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807305115/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1807305115


topology-driven methods do not take into account biological
functionality, one important strength in GEM analyses.
While molecular classifications and identification of gene sig-

natures have undoubtedly provided important contributions for
revealing the underlying molecular mechanism involved in the
occurrence of HCC (12, 26, 27), a function-driven yet compre-
hensive characterization of HCC was lacking. Here, we used an
unsupervised and systematic method to take advantage of the
directed relationships in tumor metabolism. We integrated mul-
tiomics data with metabolic network-based analysis to introduce a
whole network-driven stratification of HCC tumors. We observed
consistent tumor stratification across different datasets consisting
of hundreds of HCC tumors. Through the utilization of the entire
metabolic network for tumor stratification, our method relied on
the network topology rather than the known signatures or mo-
lecular features. Importantly, though we have only considered the
metabolic network information, different HCC subtypes displayed
substantial differences at the metabolic, signaling pathways as
well as clinical survival. Additionally, we identified HCC subtype-
specific therapeutic targets that have important roles in controlling
the cancer network but not in noncancerous liver samples. Finally,
we experimentally observed that expression of genes associated
with good and poor prognosis tumors shows opposite responses
under hypoxic conditions.

Results
Functional Gene–Gene Networks for Characterizing Metabolic Heterogeneity
in HCC. We retrieved The Cancer Genome Atlas (TCGA)
transcriptomics and clinical data for 369 HCC individuals, along
with 50 matched noncancer liver samples from the Genomic Data
Commons portal (12). We split this transcriptomics dataset into
two parts: a test set, consisting of 186 patients with detailed clinical
information for clinical and signature data analysis, and a valida-
tion set, consisting of 183 patients with detailed clinical informa-
tion. We integrated the transcriptomics data in the test set with
an HCC-specific genome-scale metabolic model (16) to generate
patient-specific HCC and nontumor liver GEMs (HMR2; SI Ap-
pendix, Materials and Methods). After excluding 10 nonfunctional
GEMs (<6%), we constructed personalized directed “functional”
gene–gene networks (fGGNs), a novel approach introduced here
for revealing the importance of a metabolic gene in HCC (SI Ap-
pendix, Figs. S1 and S2) inspired by a previous approach (28) (de-
tails are in SI Appendix,Materials and Methods). Throughout, fGGNs
present gene–gene–directed networks (thus detailing a clear signal
flow between genes), where genes (enzymes) are nodes connected
by edges if a metabolite product of a gene’s reaction serves as a
substrate for the reaction driven by the other gene, or if the two genes
are required for the reaction to occur (SI Appendix, Fig. S2).
After validation of fGGNs against randomly generated net-

works (SI Appendix, Fig. S3A), we compared heterogeneity
across patients by testing fGGN similarity within and between
HCC versus noncancer liver. We investigated genes based on
their network centrality, given that central nodes tend to act as
hubs with higher biological importance (21, 24, 29, 30). For in-
stance, we evaluated (Dataset S1) their degree centrality (num-
ber of genes associated with every gene), betweenness centrality
(number of gene-connecting shortest paths that pass through a
gene), eccentricity centrality (maximum distance between a gene
and other genes), and closeness centrality (length of the shortest
path between a gene and all other genes). Comparison of these
scores within HCC and noncancer groups indicated that the
former group is substantially more heterogeneous than the latter,
where the median node absolute deviation for each of the pa-
rameters tends to be larger in HCC compared with nontumor
samples (Fig. 1 A and B). In turn, between-group comparison
showed substantial differences between HCC and nontumor
samples at the network level (SI Appendix, Fig. S3B). Overall, all
tested parameters showed that noncancer fGGNs are more

similar to each other in comparison with HCC fGGNs at the
network level.
We then identified genes that are pivotal in controlling the full

networks using a network controllability approach. For instance,
based on control theory, one may define the minimum driver node
sets (MDSs) as those nodes that influence the dynamics of a di-
rected network as previously defined (22, 31). Based on this no-
tion, nodes (genes) may be classified as indispensable, neutral, and
dispensable, namely those whose removal from the network re-
spectively increase, do not change, or decrease the minimum
number of MDSs. One prime example of their importance was
shown for indispensable proteins, which are commonly targeted by
disease-causing mutations (22). Importantly, in a network, a gene
may be classified either as indispensable, neutral, or dispensable
based on its role in affecting the MDS number. Here, we took
advantage of the curated, directed, and comprehensive features of
GEMs to characterize the gene–gene relationship which captures
metabolic associations and their functionality. We identified MDSs
and node dispensability at the gene–gene level by using fGGNs,
and further defined “controlling genes” as those with a pivotal
importance in controlling network dynamics, that is, MDSs or in-
dispensable genes. The approach used here to systematically and
functionally characterize metabolism may also be extended to
other cancers and diseases.
We found 224 and 313 genes in HCC and noncancerous

fGGNs, respectively, which identified as MDS in >80% of the
networks. These genes are associated with transport reactions,
fatty acid metabolism, oxidative phosphorylation, nucleotide
metabolism, and carnitine shuttle (Dataset S2). Among the MDS
genes, 85 and 68 are exclusive to HCC and noncancerous
networks, respectively.
Next, we identified 188 indispensable genes in ≥80% of the

HCC fGGNs, whereas 248 indispensable genes in ≥80% of the
noncancerous networks. Our observations indicated that in-
dispensable genes tend to be connected to a higher number of
genes (i.e., higher degree), indicative of high centrality in both
HCC and noncancerous networks (Q < 10−7, Mann–Whitney U
test; Fig. 1C). In HCC, indispensable genes are connected to 32
other genes (median degree), as opposed to neutral and dis-
pensable genes, which respectively show median degrees of 17
and 9, respectively. We also found qualitatively similar obser-
vations in noncancerous networks for genes that are indispens-
able (median degree 34), neutral (median degree 22), and
dispensable (median degree 11). Our analysis suggested that
indispensable genes tend to be involved in a higher number of
reactions (Dataset S2), thus displaying higher importance for
controlling network dynamics. However, dispensable and in-
dispensable genes may show similar degrees, indicating that not
all highly connected genes (i.e., hubs) have network-controlling
properties. Nevertheless, most indispensable genes are more
central in both HCC and noncancerous networks. Among the
412 and 429 controlling genes (MDSs and indispensable) in HCC
and noncancerous fGGNs, we identified 116 HCC-specific and
133 noncancerous-specific controlling genes. Reaction-level
dispensability and controllability are detailed in Dataset S2.
We performed in silico gene essentiality analysis using per-

sonalized GEMs. Essentiality analysis of all 2,892 metabolic
genes in GEMs showed that >95% of HCC samples have not
grown when MDSs or indispensable genes are silenced, much
higher than the observed fractions of silencing of other genes
(<50%) (Fig. 1C). Based on the controllability and MDS clas-
sifications, we also observed clear separation of HCC and non-
cancer fGGNs as indicated by principal component analysis (Fig.
1D), otherwise not achieved when solely considering gene ex-
pression (SI Appendix, Fig. S3C). These observations showed
that despite the high heterogeneity expressed at the gene level in
HCC, network analyses identified distinct and important genes
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that may be used to efficiently stratify HCC and noncancer samples
based on network controllability.

Network-Based Stratification Reveals Biological and Clinical Survival
Differences in HCC. After identifying the general features of
fGGNs in terms of gene centrality, dispensability, and controlla-
bility, we used these concepts for in-depth characterizations of
HCC and HCC subtypes. We stratified and characterized the
HCC subtypes using the complete metabolic network as described
above. To do so, we introduced the utilization of fGGNs to stratify
tumors based on gene expression data and techniques previously
employed to stratify tumors based on somatic mutations (32). We
combined the personalized fGGNs into a single generic fGGN,
which is representative of the features of all 186 patients and
consists of 1,972 metabolic genes (SI Appendix, Materials and
Methods), and used this generic fGGN for stratification of HCC
patients. Through integration of patient transcriptomics data with
the generic fGGN and employment of network smoothing to
spread the influence of each expression profile on the neighbor-
hood of the network, we generated expression profiles that reflect
the fGGN structure. These expression profiles were subsequently
stratified using nonnegative matrix factorization.
We identified an optimum number of three HCC subtypes (SI

Appendix, Fig. S3D), each consisting of 85, 49, and 52 patients
with substantial gene expression, biological process, and clinical
survival differences (Fig. 2 and Dataset S3). These subtypes are
henceforth termed iHCC1, iHCC2, and iHCC3. We also per-
formed tumor stratification using Recon3D (33) as a reference
model rather than HMR2-derived (34, 35) stratification. We
obtained relatively good agreement with the Recon 3D stratifi-
cation: 81, 83, and 75% of samples are respectively categorized
as iHCC1, iHCC2, and iHCC3 by both HMR2 and Recon3D (SI
Appendix, Fig. S4), even though Recon3D does not include
∼37% of the metabolic genes in HMR2.
We performed differential expression analysis based on the

RNA-sequencing data of HCC subtypes and identified 2,409
differentially expressed genes between iHCC2 versus iHCC3,
2,318 genes between iHCC1 versus iHCC3, and 1,115 genes
between iHCC1 versus iHCC2 (Q < 0.05; SI Appendix, Dataset
S3). Cancer hallmark gene set enrichment analysis (36) high-
lighted significant differences in hallmarks of cancer (Q < 0.01;
Fig. 2A). For instance, iHCC3 displayed up-regulation of bi-
ological processes associated with E2F targets, mTOR, MYC,
inflammatory response, mitosis, G2M checkpoint, and DNA
repair compared with iHCC1/iHCC2. iHCC2 also showed acti-
vation of the WNT/β-catenin pathway. We also found that bi-
ological processes associated with mitosis and the cell cycle are
down-regulated in iHCC2 compared with iHCC1/iHCC3 and
inflammation is up-regulated in iHCC1/iHCC3.
Among the differentially expressed genes between the low-

and high-survival iHCC3 and iHCC1 groups, we identified sev-
eral prognostic markers (SI Appendix, Fig. S5 and Dataset S3).
For instance, compared with iHCC3, tumors from iHCC1 displayed
up-regulated expression of 64 favorable prognostic markers and
down-regulated expression of 45 unfavorable prognostic markers
(Q < 0.05; SI Appendix, Fig. S5), among the 469 metabolic genes
previously identified as prognostic markers in liver cancer (15).
In turn, iHCC2 showed mixed up- and down-regulation of these
prognostic markers. iHCC3 tumors additionally presented down-
regulated expression of 123 (out of 157) liver-specific genes (Q <
0.05; Dataset S3), up-regulation of genes associated with previously
identified immune signatures (37), and metastasization such as
HIF1α, IL1, TNFα, NFκB, and TGFβ (Dataset S3).
We also observed that survival differences of the three groups

are consistent with expression of prognostic markers, where
iHCC1 presents the highest survival rate, followed by iHCC2,
and iHCC3 (log-rank P < 0.001; Fig. 2B). Though differences are
observed between the three groups, iHCC3 tumors are markedly
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Fig. 1. Network-based approaches to identify driver genes involved in pro-
gression of HCC. (A) Radar plot of median node absolute deviation for be-
tweenness, closeness, degree, and eccentricity indicates a larger variability in
the HCC vs. noncancer networks. (B) Relation of degree centrality and con-
trollability in cancer and noncancerous samples. Groups of genes were classi-
fied based on their dispensability (indispensable, dispensable, neutral) when
identified in each category in >80% of the fGGNs for HCC and noncancerous
networks. Indispensable genes tend to be more central than neutral or dis-
pensable, in both HCC and noncancerous tissues (for all six comparisons, Q <
10−7, Mann–Whitney U test). For each group (indispensable vs. dispensable vs.
neutral), we observed no statistical differences in degrees of HCC vs. non-
cancerous for the three tested comparisons (Q > 0.2). (C) Silencing of con-
trolling genes leads to lethality in >95% of HCCs (vs. <50% for silencing of
other genes). In noncancerous samples, silencing either kills all or none of the
samples, where all controlling genes lead to lethality (48% for other genes).
Both comparisons show statistically significant differences (Q < 10−100, Mann–
Whitney U test). (D) Principal component analysis of cancer and noncancer for
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is identified at this confidence level).
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distinct from those of iHCC2 and iHCC1. We found that a larger
number of genes are differentially expressed between iHCC3 and
iHCC1/iHCC2 compared with iHCC1 versus iHCC2, and several
cancer hallmarks are simultaneously enriched in iHCC3 in com-
parison with either iHCC1 or iHCC2 (Fig. 2A). For instance,
iHCC3 tumors presented down-regulation of oxidative phosphory-
lation, fatty acid metabolism, and adipogenesis, and up-regulation
of DNA repair, G2M checkpoint, epithelial-to-mesenchymal

transition, and inflammation compared with iHCC1 or iHCC2
(Dataset S3).
We also performed gene set enrichment analysis using Piano (36)

and biological processes terms retrieved from the Molecular Sig-
natures Database (MSigDB) to reveal iHCC subtype-specific re-
sponses (Dataset S4). For instance, iHCC1 displayed up-regulated
tryptophan and indole metabolism and down-regulated noncoding
RNA metabolism and ribosome biogenesis (Q < 0.05) compared
with tumors of iHCC2 and iHCC3. Tumors of iHCC2 displayed
(Q < 0.05) up-regulated heme metabolism, glutamine metabolism,
drug metabolism and transport, and oxidative demethylation, but
down-regulated cell development and G protein-coupled recep-
tor signaling, compared with iHCC3 and iHCC1. Tumors of
iHCC3 displayed the largest changes in biological processes com-
pared with iHCC1 or iHCC2, with up-regulation of multiple pro-
cesses associated with cell proliferation, cell-cycle progression
and mitosis, development, chromosome segregation, cytoskeleton
organization, immune response, DNA replication, and recombina-
tion (Q < 0.05). In turn, iHCC3 displayed down-regulated fatty acid
β-oxidation, lipid oxidation, small-molecule biosynthesis and ca-
tabolism, metabolism of several amino acids including glycine,
glutamate, glutamine, serine, and aspartate, drug catabolism, and
response to xenobiotic stimulus (Dataset S4). Consistent with the
substantial differences between iHCC3 and the two other tumor
groups, iHCC2 tumors displayed similar metabolic behavior to those
of iHCC1 (Dataset S5), and their gene expression is more similar to
those of iHCC1 than to those of iHCC3 (Fig. 2B; mean Spearman’s
ρ ∼ 0.9 iHCC1 vs. iHCC2, <0.8 iHCC3 vs. iHCC1 or iHCC2).
Comparison of personalized fGGNs in each subtype further sup-
ported the results of our analysis (SI Appendix, Fig. S6).
Importantly, our stratification method highlighted several

“stratifying” genes whose expression is substantially different
between the three iHCC groups. This is the case of XDH, KMO,
TDO2, and SC5D in iHCC1; GLUL, AQP9, RHBG, SLC1A2,
SLC13A3, ACSS3, AOX1, and CYP3A4 in iHCC2; and PKM,
G6PD, PGD, ENO1, SRM, and ALDOA in iHCC3 (Fig. 3 A and
B and SI Appendix, Fig. S7). Other genes such as MTHFD1,
ALDH6A1, and ACSM2B are similar in both iHCC1 and iHCC2
but differ significantly in comparison with iHCC3.

The Association Between Metabolic, Wnt/β-Catenin, and PI3K/AKT/
mTOR Signaling Pathways. The above results indicated that the
iHCC subgroups present specific features at the survival re-
currence signature, gene expression, prognostic marker, and
metabolic level identified solely based on network analysis.
These tumors are also differentially associated with known HCC
properties such as HIPPO signature, hypermethylation, DNA
copy number, cholangiocarcinoma-like traits (6), RS65 gene-
based risk scores (38), and HB16 signature (7) (Fig. 3A and
Dataset S3). For instance, 84% of iHCC2 subjects are men (vs.
∼50% in other iHCCs), and about half of the patients in
iHCC2 and iHCC3 displayed alcoholic liver disease, much higher
than the <25% observed in iHCC1 (Q < 0.01). Additionally,
iHCC2 tumors also showed lower genome doubling, higher
hypermethylation, and CDKN2 silencing (Fig. 3A; Q < 10−4),
and all iHCC2 tumors showed α-fetoprotein (AFP) <300 ng/mL.
iHCC1 and iHCC2 tumors are associated (Q < 10−4, χ2 test) with
markers of hepatocyte differentiation (>54% tumors display
Hoshida 3) (8) and maturity (>79% HB16 C1). In turn, no
iHCC3 tumors showed differentiation markers (0% Hoshida 3)
and instead are associated with known markers of low survival
(Q < 0.05, χ2 test; Fig. 3A and Dataset S3) including National
Cancer Institute proliferation (NCIP) subtype score A (>96%),
high recurrence risk Seoul National University recurrence
(SNUR) subtype (>76%) (14), and high expression of recurrence
risk marker CD24 (log fold change ∼2.55 for comparison vs.
iHCC1, Q < 0.00085). The lower survival and predominance of
aggressive tumors in iHCC3 are associated with the significantly
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Fig. 2. Network-based approaches identified three different HCC subtypes.
(A) Gene set-enriched biological processes (Q < 0.05) in different HCC subtypes
including iHCC1, iHCC2, and iHCC3. Arrows indicate direction of change (e.g.,
iHCC2 shows up-regulated hememetabolism compared with iHCC1). (B) Kaplan–
Meier survival analysis shows significant differences in patient survival between
the three HCC subtypes (iHCC1 > iHCC2 > iHCC3). (C) Correlation plot between
tumors and mean gene expression in iHCC1 and iHCC3 (Q < 0.01) showed that
iHCC2 tumors tend to be more similar to iHCC1 than iHCC3. This is reinforced by
the higher Euclidean distance between iHCC3 fGGNs and other fGGNs in this or
the two other subtypes, compared with distances within or between iHCC1 and
iHCC2 (SI Appendix, Fig. S6). EMT, epithelial-to-mesenchymal transition; ROS,
reactive oxygen species.
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(Q < 0.02, χ2 test) larger proportion of advanced tumors in this
group [>51% grade (G) 3, <49% G1 and G2] compared with
iHCC2 (30%G3, <70% G1 and G2) or iHCC1 (<22% G3, >77%
G1 and G2). iHCC2 also showed altered cytochrome P450 and
xenobiotic metabolism in comparison with the two other clusters
(SI Appendix, Figs. S8 and S9).
Interestingly, we had several observations associate altered

Wnt/β-catenin and PI3K/AKT/mTOR signaling with the novel
iHCC phenotypes described here. Most iHCC3 tumors were

associated with MYC and AKT activation, as indicated by
the high incidence of Hoshida 2 (in 96% of tumors; Fig. 3A).
Additionally, we identified the top 25 genes coexpressed with
stratifying/controlling genes in each iHCC for 360 TCGA tumors,
and observed positive coexpression of AKT1 and MTOR and
stratifying/controlling genes in iHCC3 and their coexpressed genes
(Pearson’s r > 0.32, Q < 0.01; Fig. 4). AKT1 and MTOR were
negatively coexpressed with stratifying/controlling genes in iHCC1
and iHCC2. In turn, Hoshida signatures were not substantially
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different between iHCC1 and iHCC2 (22 and 11% Hoshida 1,
respectively, Q > 0.3, χ2 test).
The following five observations suggested a strong association

between disturbed Wnt signaling and the iHCC2 phenotype.
First, 75% of iHCC2 tumors showed mutations in CTNNB1, a
gene that codes for β-catenin in the Wnt pathway (Fig. 3A),
substantially higher than the <13% observed in iHCC1 and
iHCC3 (Q < 10−5, χ2 test). Second, iHCC2 tumors also showed
up-regulated expression of β-catenin target genes, for instance
glutamine synthetase GLUL, glutamate transporter SLC1A2,
and ornithine aminotransferase (SI Appendix, Fig. S7). Third,
coexpression analysis indicated that stratifying/controlling genes
in iHCC2 and their coexpressed genes are positively coexpressed
with CTNNB1 (Pearson’s r > 0.32, Q < 0.01; Fig. 4). This is not
observed in the case of iHCC3/iHCC1 genes, which are nega-
tively coexpressed with AKT1 or MTOR (Pearson’s r < −0.2,
Q < 0.01). Fourth, the association between Wnt signaling in
iHCC2 and AKT activation in iHCC3 was also identified using
an independent dataset of 91 HCC microarray samples and as-
sociated immunohistochemistry (SI Appendix, Fig. S10). Associ-
ations between different HCC tumors and IFN, proliferation
(PI3K/AKT activation), CTNNB1 phosphorylation/mutation
(i.e., Wnt signaling), or chromosome 7 polysomy were previously
identified (10). Using the authors’ previously defined classes

(Gene Expression Omnibus accession no. GSE9843), we observe
that all tumors with CTNNB1-phosphorylating activation and
mutation showed high expression of iHCC2-stratifying genes.
Additionally, tumors showing RPSA, AKT, or IGFR activation
showed high expression of iHCC3-stratifying genes, thus reinforc-
ing the relationship between PI3K/AKT/mTOR signaling activa-
tion and iHCC3. Tumor stratification based on iHCC-stratifying
genes showed differential distribution in the HCC subgroups pre-
viously identified (10) (Dataset S6). Lastly, a transcriptomics dataset
with four HCC samples displaying CTNNB1 mutation (27) showed
high expression of many iHCC2-stratifying genes including GLUL,
RHBG, SLC13A3, and ACSS3 (SI Appendix, Fig. S11). These ob-
servations thus indicated distinct genomic features for the iHCC2
and iHCC3 phenotypes, respectively associated with aberrant Wnt
signaling and PI3K/AKT/mTOR signaling activation. Interestingly,
three stratifying genes (TDO2, KMO, XDH) and two coexpressed
genes (AADAT, ACMSO) are involved with the kynurenine path-
way (KP) (Fig. 4), a metabolic pathway leading to NAD+ production
and associated with tryptophan metabolism (39). iHCC1 also shows
up-regulated tryptophan metabolism in comparison with the two
other iHCC groups (Dataset S4).
Together with the above observations, the validations in three

independent datasets at the genomic, transcriptomic, and pro-
teomic level (10, 13, 26, 27, 40) additionally reinforced our
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Fig. 4. Coexpression analysis highlights the association between stratifying and controlling genes in iHCC subtypes. Stratifying and controlling genes for
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of 369 HCC tumor samples. We additionally included AKT1 and MTOR, transcription factors involved in PI3K/AKT/mTOR signaling, and CTNNB1, which en-
codes for the transcription factor β-catenin in the Wnt signaling pathway. Edges indicate positive (red) or negative (blue) Pearson correlations (Q < 0.01).
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confidence in the stratifying genes and survival differences in
iHCC1, iHCC2, and iHCC3. Specifically, the metabolic network-
derived antagonistic expression of stratifying genes identified in
186 HCC tumor transcriptomics data is consistently observed in
(i) a validation transcriptomics dataset of 183 HCC tumors
attained from TCGA (SI Appendix, Fig. S12A); (ii) a microarray
dataset consisting of 221 HCC samples (SI Appendix, Fig. S12B);
(iii) coexpression analysis of 369 HCC tumors from TCGA (Fig.
4); (iv) a microarray dataset comprising 91 HCC tumors (SI
Appendix, Fig. S10); and (v) a comparison of CTNNB1 mutant
versus a noncancerous transcriptomics set (SI Appendix, Fig.
S11). Additionally, survival analysis performed on the validation
TCGA dataset or an additional dataset (13, 26) (SI Appendix,
Fig. S12) was consistent with the observed survival differences in
iHCC1 > iHCC2 > iHCC3 (Fig. 2B).

Alternative Metabolic Differences Between HCC Subtypes. We fur-
ther identified metabolic differences between iHCC1, iHCC2,
and iHCC3 at a pathway- and reaction-centered level using GEMs.
GEMs were generated for each cluster through MADE (41) and
TIGER (42), using as input the differentially expressed genes and
considering maximization of biomass as an objective function. We
found that fluxes in each of the models (Fig. 5A) were consistent
with the hallmarks of cancer identified above (Fig. 2A) and with the
expression data mapped onto Kyoto Encyclopedia of Genes and
Genomes (KEGG)metabolic pathways (Dataset S3), as well as with
the substantial metabolic differences between iHCC3 and iHCC1 or
iHCC2. Specifically, iHCC3 GEMs showed lower fluxes in metab-
olism of amino acids, cofactors and coenzymes, pyruvate, fatty acid
oxidation, carnitine shuttle, steroids, and oxidation phosphorylation
compared with iHCC1/iHCC2, and lower in iHCC2 than iHCC1.
Compared with iHCC1/iHCC2, iHCC3 showed higher glycolytic
but lower citric acid cycle (TCA) fluxes consistent with a strong
Warburg effect, as well as higher fluxes of fatty acid biosynthesis.
Additionally, differences in the gene expression indicated that

the three iHCC groups rely on alternative enzymes for catalyzing
the same reactions (Fig. 3B and 5B). For instance, acetate is
converted to acetyl-CoA by acetyl-CoA synthases; the reaction
is catalyzed by ACSS1, ACSS2, and ACSS3. iHCC1 expresses
ACSS2, localized in the cytoplasm, whereas iHCC2 and iHCC3
express ACSS3 and ACSS1, respectively, which are localized in
the mitochondria (SI Appendix, Fig. S13). Cleavage of fructose-
1,6-bisphosphate is catalyzed by aldolase and the reaction is
catalyzed by ALDOA, ALDOB, and ALDOC. While iHCC1 highly
expresses the liver-specific ALDOB, iHCC3 highly expresses the
nonspecific ALDOA, and iHCC2 shows similar expression for both
genes. Alternative utilization of pyruvate is also observed. iHCC1/
iHCC2 show high expression of the liver-specific PKLR, whereas
iHCC3 shows high expression of PKM. PKLR has recently been
identified as a liver-specific target for effective treatment of fatty
liver disease and HCC (43). Our analysis enabled the identification
of the right patient population where PKLR or PKM inhibitors can
be used for effective treatment of patients.
Glucokinase in iHCC1 is switched to hexokinase 2 in iHCC3

whereas ENO3 is substituted for ENO1. Additionally, PFKFB4,
HSD17B6, and GLYATL2 in iHCC3 are switched to PFKFB1,
HSD17B1, and GLYAT in iHCC1 and iHCC2, respectively. We
also had similar observations of expression of genes that encode
for aldehyde dehydrogenases (e.g., ALDH1B1, ALDH9A1, ALDH2,
ALDH3A2, ALDH3B1), among others (SI Appendix, Fig. S13).
A number of amino acids, sugars, cofactors, and hormone trans-
porters are also differentially expressed between the three clusters,
and in particular between iHCC3 and iHCC1/iHCC2 (Fig. 5B).
These observations translated into distinct central metabolism,
particularly between the high- and low-survival groups including
iHCC1 and iHCC3, while iHCC2 shared many of these properties
with iHCC1. Several membrane transporters including amino
acid, glucose and monosaccharide, choline, butyrate, and citrate

transporters also showed substantial switching between iHCC1
and iHCC3.
Controlling genes are also differentially expressed between the

three HCC subtypes (Dataset S6), indicating different control-
lability metabolic behavior between them. For instance, in fatty
acid elongation, ELOVL6 is a controlling gene in iHCC2 but
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Fig. 5. iHCC subgroups rely on alternative enzymes catalyzing the same re-
actions and display specific synthetic lethal genes. (A) Flux balance analysis
performed on iHCC-specific models shows that iHCC1 or iHCC3 displays the
highest reaction fluxes, followed by iHCC2. The predominant color in each box
shows the iHCC subtype that displays the highest flux. (B) Metabolic genes
involved in transport, glycolysis, and the TCA colored according to expression
in each subgroup. (C) Numbers of synthetic lethal genes found in iHCC sub-
groups are shown, highlighting five synthetic lethal genes per subgroup. No
synthetic lethal genes are simultaneously identified in iHCC1 and iHCC3, but
several are found between iHCC2 and the other subgroups.
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ELOVL5 is a controlling gene in iHCC1 and iHCC3. In glyc-
erolipid metabolism, PLA2G12B is a controlling gene in iHCC1,
PLA2G16 is a controlling gene in iHCC3, and both are controlling
genes in iHCC2. In purine and pyrimidine metabolism, NME6 and
NT5E are controlling genes in iHCC3 but not in iHCC1/iHCC2,
which showed another NME as a controlling gene. In glycolysis,
PKLR and BPGM are controlling genes in iHCC1/iHCC2, but
PKM and PGAM1 are controlling genes in iHCC3. In histidine
metabolism, NAA15 and SLC40A1 are controlling genes in iHCC1
and SLC11A2 is a controlling gene in iHCC2, whereas NAA30 and
SLC40A1 are controlling genes in iHCC3.
We showed the importance of controlling genes. Next, we

performed synthetic lethality analysis for those stratifying and
controlling genes that were found just in HCC networks. This
enabled the identification of several potential therapeutic targets.
Among controlling and stratifying genes, we find 8, 9, and 28 subtype-
specific genes in iHCC1, iHCC2, and iHCC3, respectively, whose in
silico knockout leads to lethality in their respective subtype but not in
the others (Fig. 5C). Among these, we identified ALDOB, TDO2,
and KMO in iHCC1, ACSS3, SQLE, and LIPT1 in iHCC2, and
ACSS1, ALDOA, and G6PD in iHCC3. Knockout of 12 controlling/
stratifying genes simultaneously leads to lethality in iHCC1 and iHCC2
and includes IDH1, SORD, and ARG1. Several of these synthetic
lethal genes are known targets of DrugBank drugs, including some
Food and Drug Administration (FDA)-approved drugs (Dataset S7).
These observations pointed toward several HCC-specific potential
therapeutic targets that may be used to target low- (iHCC3), in-
termediate- (iHCC2), and high- (iHCC1) survival groups. We
identified FDA-approved drugs and kinase inhibitors, among other
drugs, whose known targets include these genes (Dataset S7).

Poor Survival-Associated Genes Showed Hypoxic Behavior. Several
stratifying genes in the three iHCC groups are associated with
redox metabolism (Fig. 3 and SI Appendix, Fig. S10) such as
G6PD, PKM, and ALDOA in iHCC3, or ALDH2 and MTHFD1
in iHCC1 and iHCC2. Gene expression differences translated into
altered redox metabolism (Fig. 2A) and antioxidant defenses (e.g.,
catalase or glutathione-based H2O2 scavenging; Dataset S5). Ad-
ditionally, we have previously observed stratification of HCC
samples based on acetate metabolism and hypoxia (11). Indeed,
the expression of HIF1A is substantially higher in iHCC3 than in
iHCC1 or iHCC2 (log2 fold change ∼ 1, Q < 0.05).
We performed a transcriptomics analysis of HepG2 cells

grown under hypoxia and normoxia (SI Appendix, Fig. S14). We
found (SI Appendix, Fig. S14C; Q < 0.01) that differentially
expressed genes are associated with responses to stress and
oxygen, NADH, ADP, and RNA metabolism. We found that
immune system and tissue development biological processes
are up-regulated under hypoxia. In turn, DNA metabolism,
replication and repair, and cell cycle-related processes are up-
regulated under normoxia. Further, among the differentially
expressed genes, the expression of the stratifying genes PKM,
ALDOA, MTHFD1L, ENO1, and PDE9A and controlling
genes in iHCC3 is significantly higher under hypoxic than
normoxic conditions (Q < 0.01; Fig. 6A). Interestingly, stratifying
and controlling genes in iHCC2 or iHCC1 are either unchanged or
show down-regulated expression under hypoxia (Fig. 6 B and C,
respectively). Additionally, among the 28 controlling genes ex-
clusive to iHCC3 (Fig. 5C), we find that the expression of OCRL,
PTPN12, HPSE, ACLY, LPCAT1, RRM2, and SPTLC2 is up-
regulated under hypoxia (Fig. 6A). Among those stratifying/con-
trolling genes up-regulated under hypoxia in iHCC3, we found
multiple up-regulated biological processes that also involve these
genes, including those involved in energetic, carbohydrate, and
nucleotide metabolism and tissue development (Fig. 6D). These
observations indicate that stratifying and controlling genes in
iHCC3 and iHCC1/iHCC2 tumors respond strongly and antago-
nistically to hypoxic behavior.

Discussion
Given the high heterogeneity in HCC, previous studies stratified
HCC patients through unsupervised clustering of tumors based
on genomics and transcriptomics data (6, 7, 13). This led to the
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Fig. 6. Stratifying and controlling genes in iHCC3 show specific responses to
hypoxia. HepG2 cell lines were grown under normoxic or hypoxic conditions
(n = 6 per condition) and transcriptomics data were generated. Expression of
stratifying and controlling genes in iHCC3 (A), iHCC2 (B), and iHCC1 (C), and
gene association with enriched biological processes (D; Q < 0.05). All genes
with the exception of CYP3A4, GLUL, XDH, KMO, and TDO2 (Q > 0.01) are
differentially expressed between hypoxia and normoxia. NMP, NDP, and NTP
indicate nucleoside mono, di-, and triphosphate, respectively.
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valuable discovery of many patient group-specific differences
such as cholangiocarcinoma-like feature traits (6), hepatic stem-
like phenotypes (7), signaling differences (8–10), recurrence risk
(14, 38), and metabolism (11). In our study, we introduced an
fGGN-based characterization and stratification of HCC patients.
We combined objective-dependent and -independent approaches
to perform a functional metabolic network-based stratification of
hundreds of HCC patients. Our analyses combined genomics,
transcriptomics, proteomics, and clinical data across four datasets
with hundreds of HCC tumors, in silico analysis including genome-
scale metabolic modeling, gene silencing, coexpression and net-
work analysis, and additional cell-line experiments. We identified
distinct differences in metabolic and signaling pathways and in
clinical survival between three major HCC subtypes, iHCC1 to
iHCC3. The three iHCCs presented 18 metabolic genes highly
expressed by one group but not the others, namely stratifying
genes. Our analyses showed that these genes can be consistently
used for stratifying HCC tumors in independent cohorts. We have
additionally identified 32 controlling genes, those that display
pivotal roles in controlling networks and whose targeting would
lead to lethality in one of the HCC subtypes.
Tumors in the low-survival and progressive (higher-grade)

iHCC3 group showed several signatures of low survival and high
recurrence (13, 14) and high expression of markers of poor
survival (15). In turn, the high- and moderate-survival groups
iHCC1 and iHCC2 were associated with markers of low re-
currence, high survival, hepatocyte differentiation, and maturity
(8, 14, 38). iHCC1, iHCC2, and iHCC3, respectively, displayed
high expression of genes involved in acetate metabolism,
ACSS2, ACSS3, and ACSS1. These observations are consistent
with our previous analyses which showed that HCC tumors can
be stratified based on acetate metabolism (11). ACSS2 is highly
expressed by healthy liver tissue (11), consistent with the high
expression displayed by the high-survival iHCC1 group. On the
other hand, ACSS1 is highly expressed in iHCC3, consistent with
previous observations in a low-survival group (11). Finally, we iden-
tified that iHCC2 displays high expression of ACSS3, unlike
other iHCCs.
In turn, iHCC3 tumors showed high expression of ACSS1 and

are associated with hypoxic environments. Experiments with
HepG2 cells additionally showed strong and opposing responses
to hypoxia by different iHCCs. Stratifying and controlling genes
in iHCC3 are up-regulated under hypoxia compared with nor-
moxia. This is opposed by those in iHCC1 and iHCC2, which are
either unchanged or show decreased expression under hypoxic
conditions. These observations indicated opposing hypoxic re-
sponses under low and high survival.
iHCC1 is the tumor group with the highest survival, and

showed a high inflammation response compared with iHCC2.
Interestingly, several stratifying genes or their coexpressed genes
are involved in the KP. This pathway is found upstream of NAD
biosynthesis, and is the main tryptophan sink in the cell (39).
Several of its genes are up-regulated in adipose tissue in obesity
(44, 45), consistent with the observation that 56% of patients in
iHCC1 are obese or overweight. Several metabolites of the KP
have been associated with inflammatory and immune responses,
for instance in the induction of cytokines and macrophage-
induced chemokines (46). Interestingly, KP overactivation has
been observed in type 2 diabetes (T2D) and is one of the T2D-
driving mechanisms observed in prediabetic patients (47). The
observation that T2D is one of the risk factors for HCC (47)
raises the possibility that the iHCC1 phenotype is associated with
T2D, unlike other iHCCs. This is reinforced by the observation
that the genes TDO, KMO, AADAT and ACMSD, and IL6R,
stratifying genes in iHCC1 or their coexpressed genes, are up-
regulated in obesity or T2D (47). Finally, both T2D and obesity
showed activated fatty acid oxidation, similar to iHCC1, which
displayed the highest fatty acid oxidation of the three iHCCs,

suggesting a potential association between those diseases and
iHCC1 tumors. Overall, iHCC1 showed the highest fluxes in
metabolism of amino acids, cofactors and coenzymes, pyruvate,
fatty acid oxidation, carnitine shuttle, steroids, TCA, and oxidative
phosphorylation.
iHCC2 showed higher similarity to iHCC1 compared with

iHCC3, but also exhibited specific features including lower fatty
acid biosynthesis and high glutamine metabolism, and β-catenin–
associated up-regulated fatty acid oxidation. One of the main
features of iHCC2 tumors is the association with β-catenin
pathway alterations. CTNNB1 encodes for β-catenin, which is
mutated in ∼20% of HCCs (48) (SI Appendix, Fig. S15). Muta-
tions in this gene are associated with increased concentration of
nuclear β-catenin and its target genes (e.g., glutamine synthetase
GLUL and glutamate transporter SLC1A2) and lower patient
survival (49, 50). Glutamine synthetase is involved in ammonia
detoxification, and β-catenin–controlled induction of GLUL
leads to autophagy in HCC (51). β-Catenin controls mitochon-
drial homeostasis by regulating the TCA and fatty acid oxidation,
and protects against alcohol-induced liver injury or ethanol-
induced metabolic stress (SI Appendix, Fig. S16) (52). This is
consistent with the overactivation of the pathways involved in
detoxification, that is, drug and xenobiotic metabolism in com-
parison with other subtypes. β-Catenin also regulates the expres-
sion of acetaldehyde dehydrogenases (e.g., ALDH2, ALDH3A1,
and ALDH3A2) (52), thus controlling TCA fluxes, as well as the
stratifying gene acyl-CoA oxidase (AOX1), which is involved in
fatty acid β-oxidation (53). Our modeling analyses additionally
indicated that iHCC2 showed low fatty acid biosynthesis fluxes,
consistent with the negative regulation of this process by β-catenin.
Sorafenib, a drug that targets expression of liver-related Wnt-
target GLUL and leads to higher sensitization in HCC tumors
with high β-catenin activation (54), thus presents as a potential
drug in iHCC2 but not in the other tumor groups.
Finally, iHCC3 tumors were associated with multiple features

of malignant tumors, including hypoxic behavior, epithelial-to-
mesenchymal transition, higher fluxes in fatty acid biosynthesis,
and a strong Warburg effect. For instance, TGF-β, HIF-α, and
NF-κB genes associated with hypoxic response, metastasis, and
malignancy are up-regulated in iHCC3, and iHCC3 shares sev-
eral signature activities of metastatic tissues (55). One of the
main features of this tumor group is the association with PI3K/
AKT/mTOR signaling activation. It also showed downstream
activation of asparagine synthetase (ASNS), glycolysis, and the
pentose phosphate pathway by PI3K/AKT/mTOR signaling (56),
consistent with our observation in iHCC3 (SI Appendix, Fig.
S16). Up-regulation of ASNS in iHCC3 is significantly correlated
with metastatic potential, and overexpression of ASNS promotes
metastatic progression (57). Drugs targeting PI3K/AKT/mTOR
signaling or these processes, such as L-asparaginase, rapamycin,
or their analogs, thus arise as potential therapeutics for the
treatment of iHCC3 but not the other iHCCs.
Overall, these observations highlighted distinct differences in

metabolic and signaling pathways in HCC tumors that stem from
the high intertumor heterogeneity and were associated with pa-
tient survival. In silico predictions enabled identification of sev-
eral HCC subtype-specific potential therapeutic gene targets that
offer full control over the metabolic network. Revealing the
mechanistic differences between HCC subtypes, together with
the identification of HCC subtype-specific drug targets, may
foster the development of efficient treatment strategies and
precision medicine for HCC patients.

Materials and Methods
All of the materials and methods in this study are detailed in SI Appendix,
Materials and Methods, including gene expression retrieval, processing, and
validation datasets; generation of personalized and subtype GEMs; construc-
tion of personalized and generic directed functional gene–gene networks;
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centrality and controllability of personalized fGGNs; identification of control-
ling genes through in silico gene silencing analysis; network-based stratifica-
tion of fGGNs; generation of fGGNs and tumor stratification based on
Recon3D; differential expression and gene set enrichment analysis; KEGG
pathway analysis; coexpression analysis; identification of potential drugs

targeting synthetic lethal genes; validation; hypoxia experiments in HepG2
cells; and statistics.

ACKNOWLEDGMENTS. This work was financially supported by the Knut and
Alice Wallenberg Foundation.

1. Ferlay J, et al. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN
2008. Int J Cancer 127:2893–2917.

2. Mardinoglu A, Boren J, Smith U, Uhlen M, Nielsen J (2018) Systems biology in hep-
atology: Approaches and applications. Nat Rev Gastroenterol Hepatol 15:365–377.

3. O’Day E, et al. (2018) Are we there yet? How and when specific biotechnologies will
improve human health. Biotechnol J, e1800195.

4. Najafi A, Bidkhori G, Bozorgmehr JH, Koch I, Masoudi-Nejad A (2014) Genome scale
modeling in systems biology: Algorithms and resources. Curr Genomics 15:130–159.

5. Benfeitas R, Uhlen M, Nielsen J, Mardinoglu A (2017) New challenges to study het-
erogeneity in cancer redox metabolism. Front Cell Dev Biol 5:65.

6. Woo HG, et al. (2010) Identification of a cholangiocarcinoma-like gene expression
trait in hepatocellular carcinoma. Cancer Res 70:3034–3041.

7. Cairo S, et al. (2008) Hepatic stem-like phenotype and interplay of Wnt/beta-catenin
and Myc signaling in aggressive childhood liver cancer. Cancer Cell 14:471–484.

8. Hoshida Y, et al. (2009) Integrative transcriptome analysis reveals common molecular
subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–7392.

9. Sohn BH, et al. (2016) Inactivation of Hippo pathway is significantly associated with
poor prognosis in hepatocellular carcinoma. Clin Cancer Res 22:1256–1264.

10. Chiang DY, et al. (2008) Focal gains of VEGFA and molecular classification of hepa-
tocellular carcinoma. Cancer Res 68:6779–6788.

11. Björnson E, et al. (2015) Stratification of hepatocellular carcinoma patients based on
acetate utilization. Cell Rep 13:2014–2026.

12. Cancer Genome Atlas Research Network (2017) Comprehensive and integrative ge-
nomic characterization of hepatocellular carcinoma. Cell 169:1327–1341.e23.

13. Lee JS, et al. (2004) Classification and prediction of survival in hepatocellular carci-
noma by gene expression profiling. Hepatology 40:667–676.

14. Woo HG, et al. (2008) Gene expression-based recurrence prediction of hepatitis B
virus-related human hepatocellular carcinoma. Clin Cancer Res 14:2056–2064.

15. Uhlen M, et al. (2017) A pathology atlas of the human cancer transcriptome. Science
357:eaan2507.

16. Agren R, et al. (2014) Identification of anticancer drugs for hepatocellular carcinoma
through personalized genome-scale metabolic modeling. Mol Syst Biol 10:721.

17. Folger O, et al. (2011) Predicting selective drug targets in cancer through metabolic
networks. Mol Syst Biol 7:501.

18. Bidkhori G, et al. (2018) Metabolic network-based identification and prioritization of
anticancer targets based on expression data in hepatocellular carcinoma. Front
Physiol 9:916.

19. Lv W, et al. (2016) The drug target genes show higher evolutionary conservation than
non-target genes. Oncotarget 7:4961–4971.

20. Guney E, Menche J, Vidal M, Barábasi AL (2016) Network-based in silico drug efficacy
screening. Nat Commun 7:10331.

21. Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: A network-based ap-
proach to human disease. Nat Rev Genet 12:56–68.

22. Vinayagam A, et al. (2016) Controllability analysis of the directed human protein
interaction network identifies disease genes and drug targets. Proc Natl Acad Sci USA
113:4976–4981.

23. Yuan Z, Zhao C, Di Z, Wang WX, Lai YC (2013) Exact controllability of complex net-
works. Nat Commun 4:2447.

24. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein
networks. Nature 411:41–42.

25. Yu H, et al. (2008) High-quality binary protein interaction map of the yeast inter-
actome network. Science 322:104–110.

26. Lee JS, et al. (2006) A novel prognostic subtype of human hepatocellular carcinoma
derived from hepatic progenitor cells. Nat Med 12:410–416.

27. Ding X, et al. (2014) Transcriptomic characterization of hepatocellular carcinoma with
CTNNB1 mutation. PLoS One 9:e95307.

28. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by
using metabolic network topology. Proc Natl Acad Sci USA 102:2685–2689.

29. Barabási AL, Oltvai ZN (2004) Network biology: Understanding the cell’s functional
organization. Nat Rev Genet 5:101–113.

30. Junker BH, Schreiber F (2011) Analysis of Biological Networks (John Wiley & Sons,
Hoboken, NJ).

31. Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473:
167–173.

32. Hofree M, Shen JP, Carter H, Gross A, Ideker T (2013) Network-based stratification of
tumor mutations. Nat Methods 10:1108–1115.

33. Brunk E, et al. (2018) Recon3D enables a three-dimensional view of gene variation in
human metabolism. Nat Biotechnol 36:272–281.

34. Mardinoglu A, et al. (2013) Integration of clinical data with a genome-scale metabolic
model of the human adipocyte. Mol Syst Biol 9:649.

35. Mardinoglu A, et al. (2014) Genome-scale metabolic modelling of hepatocytes reveals
serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:
3083.

36. Väremo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-
wide data by incorporating directionality of gene expression and combining statis-
tical hypotheses and methods. Nucleic Acids Res 41:4378–4391.

37. Yoshihara K, et al. (2013) Inferring tumour purity and stromal and immune cell ad-
mixture from expression data. Nat Commun 4:2612.

38. Kim SM, et al. (2012) Sixty-five gene-based risk score classifier predicts overall survival
in hepatocellular carcinoma. Hepatology 55:1443–1452.

39. Badawy AA (2017) Kynurenine pathway of tryptophan metabolism: Regulatory and
functional aspects. Int J Tryptophan Res 10:1178646917691938.

40. Weinstein JN, et al.; Cancer Genome Atlas Research Network (2013) The Cancer Ge-
nome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120.

41. Jensen PA, Papin JA (2011) Functional integration of a metabolic network model and
expression data without arbitrary thresholding. Bioinformatics 27:541–547.

42. Jensen PA, Lutz KA, Papin JA (2011) TIGER: Toolbox for integrating genome-scale
metabolic models, expression data, and transcriptional regulatory networks. BMC
Syst Biol 5:147.

43. Lee S, et al. (2017) Network analyses identify liver-specific targets for treating liver
diseases. Mol Syst Biol 13:938.

44. Favennec M, et al. (2015) The kynurenine pathway is activated in human obesity and
shifted toward kynurenine monooxygenase activation. Obesity (Silver Spring) 23:
2066–2074.

45. Moriya C, Satoh H (2016) Teneligliptin decreases uric acid levels by reducing xanthine
dehydrogenase expression in white adipose tissue of male Wistar rats. J Diabetes Res
2016:3201534.

46. Opitz CA, et al. (2011) An endogenous tumour-promoting ligand of the human aryl
hydrocarbon receptor. Nature 478:197–203.

47. Oxenkrug GF (2015) Increased plasma levels of xanthurenic and kynurenic acids in
type 2 diabetes. Mol Neurobiol 52:805–810.

48. Forbes SA, et al. (2017) COSMIC: Somatic cancer genetics at high-resolution. Nucleic
Acids Res 45:D777–D783.

49. Kim YD, et al. (2008) Genetic alterations of Wnt signaling pathway-associated genes
in hepatocellular carcinoma. J Gastroenterol Hepatol 23:110–118.

50. Zucman-Rossi J, et al. (2007) Differential effects of inactivated Axin1 and activated
beta-catenin mutations in human hepatocellular carcinomas. Oncogene 26:774–780.

51. Sohn BH, Park IY, Shin JH, Yim SY, Lee JS (2018) Glutamine synthetase mediates
sorafenib sensitivity in β-catenin-active hepatocellular carcinoma cells. Exp Mol Med
50:e421.

52. Liu S, et al. (2012) β-Catenin is essential for ethanol metabolism and protection
against alcohol-mediated liver steatosis in mice. Hepatology 55:931–940.

53. Lehwald N, et al. (2012) β-Catenin regulates hepatic mitochondrial function and en-
ergy balance in mice. Gastroenterology 143:754–764.

54. Lachenmayer A, et al. (2012) Wnt-pathway activation in two molecular classes of
hepatocellular carcinoma and experimental modulation by sorafenib. Clin Cancer Res
18:4997–5007.

55. Robinson DR, et al. (2017) Integrative clinical genomics of metastatic cancer. Nature
548:297–303.

56. Düvel K, et al. (2010) Activation of a metabolic gene regulatory network downstream
of mTOR complex 1. Mol Cell 39:171–183.

57. Knott SRV, et al. (2018) Asparagine bioavailability governs metastasis in a model of
breast cancer. Nature 554:378–381.

Bidkhori et al. PNAS | vol. 115 | no. 50 | E11883

SY
ST

EM
S
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
H

A
L

M
E

R
S 

U
N

IV
E

R
SI

T
Y

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ja
nu

ar
y 

5,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

12
9.

16
.7

4.
39

.


