Radar Communications: A solution for mitigating automotive radar interference

DEPARTMENT OF ELECTRICAL ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY

Financial support:
Marie Curie Individual Fellowships (H2020-MSCA-IF-2016)
Chalmers E2 Interdisciplinary Seed Grant

Canan Aydogdu
(Wireless networking)

Nil Garcia
(mmWave communications)

Henk Wymeersch
(Cooperative localization)
Outline

- Problem: Mutual radar interference
- Background: Automotive radars
- Proposed solution: Radar Communications
- Results
- Conclusions
Problem

- Mutual radar interference
 - Interference has higher power than target itself
 - Interference range is twice radar range \((2d_{max})\)
 - Safety ↓
 - Radars per vehicle ↑
 - Vehicles with radars/ Autonomous vehicles ↑

Interference = ghost target

Increased noise floor
When do we have mutual radar interference?

- **Facing radars** (radars receiving each other’s direct or reflected radar signals)

- Facing radars transmit during a ‘vulnerable period’
Background

- **Automotive radars**
 - 77 GHz (76-77) - used today most frequently
 - 79 GHz (77-81)
 - The most common modulation format used for automotive radars is **frequency modulated continuous-wave (FMCW)**
 - Inefficient spectrum use
 - Idle time for processing, i.e. **inefficient use of time**
Proposed Solution

- **Radar Communications (RadCom)**
 - Single hardware for two functions

- Data communication (See-through driving, radar map dissemination, etc.)

- Removal of mutual interference
Radar Communications

- **How can RadCom remove mutual interference?**
 - Make use of idle times
 - Squeeze other radars into one chirp sequence
 - But be cautious!
 - Is it enough for 'gray regions' not to overlap?

![Diagram showing frame and half of ADC sampling frequency relates to idle time and ADC frame.]
Vulnerable Period

- **Vulnerable period V:** Set of τ, given FMCW transmissions start at
 - $t = 0$ for the ego vehicle and
 - $t = \tau$ for the facing vehicle

- Imperfect ADC low-pass filters lead to mutual interference for negative frequencies also

- Counting for propagation delay, Doppler, imperfect filtering:
 - $V = \frac{2T}{BT_s}$
 - T: Chirp duration, B total bandwidth, T_s: ADC sampling period

© Canan Aydogdu, 2018
Vulnerable period:
- \(V = \frac{2T}{BT_s} \)

Extended vulnerable period:
- \(V_{ext} = 2NTV \), \(N \) number of chirps per frame

Probability of interference without Radar Communication:
- \(p_{int}^f = \frac{V_{ext}}{T_f} \) per frame
- \(P_{int} = 1 - (1 - p_{int}^f)^M \), \(M \) facing vehicles
One proposal:
- Use different frequency bands for radar (B_r) and communication (B_c)
- Switch in time between radar and communication

Radar Medium Access: rTDMA
- Different radars allocated rTDMA slots

Communication Medium Access for scheduling radars:
- Non-persistent CSMA with backoff (no ACK)
Radar Communications

- Overall time-frequency domain for the proposed RadCom
Non-persistent cCSMA:
- Used to broadcast rTDMA slots
- No ACKs (due to high mobility)
- CommTO: timeout for communication
- RadarTO: timeout for radar transmission

State Diagram for proposed Radar Communications:

1. **(rIDLE,cIDLE)**
 - If CommTO = 0
 - Start backoff counter
 - Decrement counter at each idle comm slot
 - Set RadarTO

2. **(rTX/RX,cIDLE)**
 - Broadcast RadarTO

3. **(rIDLE,cTX)**
 - Broadcast RadarTO

4. **(rIDLE,cRX)**
 - Freeze counter
 - Update RadarTO

5. **(rTX/RX,cTX)**
 - Comm. reception ends
 - CS=1

6. **(rTX/RX,cRX)**
 - Comm. transmission ends
 - CS=0

7. **(rIDLE,cTX)**
 - Comm. transmission ends
 - RadarTO expires
 - Radar transmission ends

8. **(rIDLE,cRX)**
 - Freeze counter
 - Update RadarTO
Assumptions/Parameters

- Automotive radars
 - Homogeneous
 - FMCW
- Single-hop network

TABLE I
SIMULATION PARAMETERS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chirp duration (T)</td>
<td>20μs</td>
</tr>
<tr>
<td>Frame duration (T_f)</td>
<td>20 ms</td>
</tr>
<tr>
<td>Time slots per frame (K)</td>
<td>10</td>
</tr>
<tr>
<td>Radar bandwidth</td>
<td>0.96 GHz–1 GHz</td>
</tr>
<tr>
<td>d_{max} for $B_c = 0$</td>
<td>150 m</td>
</tr>
<tr>
<td>v_{max}</td>
<td>140 km/h</td>
</tr>
<tr>
<td>P_{tx}</td>
<td>11 dB</td>
</tr>
<tr>
<td>SNR</td>
<td>10 dB</td>
</tr>
<tr>
<td>N</td>
<td>99</td>
</tr>
<tr>
<td>f_c</td>
<td>77</td>
</tr>
<tr>
<td>T_s</td>
<td>0.01 μs</td>
</tr>
<tr>
<td>Chebyshev low-pass filter order</td>
<td>13</td>
</tr>
<tr>
<td>Thermal noise temperature</td>
<td>290 K</td>
</tr>
<tr>
<td>Receiver’s noise figure</td>
<td>4.5 dB</td>
</tr>
<tr>
<td>Communication bandwidth B_c</td>
<td>20 MHz, 40 MHz</td>
</tr>
<tr>
<td>Packet size (N_{pkt})</td>
<td>4800 Bits</td>
</tr>
<tr>
<td>Modulation</td>
<td>16-QAM</td>
</tr>
<tr>
<td>MAC</td>
<td>non-persistent CSMA</td>
</tr>
<tr>
<td>SlotTime</td>
<td>10μs</td>
</tr>
<tr>
<td>Backoff window size</td>
<td>6</td>
</tr>
</tbody>
</table>

© Canan Aydogdu, 2018
Results

- Probability of interference without Radar Communications

- Mutual interference is not negligible for automotive radars
Results

- Probability of false alarm

- Vulnerable period is observed to be complaint to calculations
Conclusions

Radar Capability

- Coordinated radar sensing (reduced mutual interference)
- Uncoordinated radar sensing

Safety

Efficiency (cost + spectral)

Current System

- Omni-directional
- Low throughput

RadCom

- Directional (low packet loss + low interference)
- High throughput

V2V Communication Capability
Future Work

- **FFI Project funded** (Träskäret och automatiserade fordon) “Combined Radar-Based Communication and Interference Mitigation for Automotive Applications”
 - Chalmers (coordinator), Volvo Cars, Autoliv, SAAB, QamCom, Halmstad
 - **Goal:** Hardware implementation of RadCom
Questions?

Contact info:

- canan@chalmers.se