Radar Communications: A solution for mitigating automotive radar interference

DEPARTMENT OF ELECTRICAL ENGINEERING CHALMERS UNIVERSITY OF TECHNOLOGY

Financial support: Marie Curie Individual Fellowships (H2020-MSCA-IF-2016) Chalmers E2 Interdisciplinary Seed Grant

Canan Aydogdu (Wireless networking)

Nil Garcia (mmWave communications)

Henk Wymeersch (Cooperative localization)

Outline

- Problem: Mutual radar interference
- Background: Automotive radars
- Proposed solution: Radar Communications
- Results
- Conclusions

Problem

Mutual radar interference

Increased noise floor

- Interference has higher power than target itself
- ▶ Interference range is twice radar range $(2d_{max})$
- ► Safety↓
 - ► Radars per vehicle ↑
 - Vehicles with radars/ Autonomous vehicles 1

Problem

When do we have mutual radar interference?

 Facing radars (radars receiving each other's direct or reflected radar signals)

Facing radars transmit during a 'vulnerable period'

Background

Automotive radars

- ▶ 77 GHz (76-77) used today most frequently
- ▶ 79 GHz (77-81)
- The most common modulation format used for automotive radar is frequency modulated continuous-wave (FMCW)
 - Inefficient spectrum use
 - Idle time for processing, i.e. inefficient use of time

Proposed Solution

Radar Communications (RadCom)

Single hardware for two functions

- Data communication (See-through driving, radar map dissemination, etc.)
- Removal of mutual interference

- Make use of idle times
- Squeeze other radars into one chirp sequence
 - But be cautious!
 - ▶ Is it enough for 'gray regions' not to overlap?

Vulnerable Period

Vulnerable period V: Set of *τ*, given FMCW transmissions start at

- t = 0 for the ego vehicle and
- $t = \tau$ for the facing vehicle
- Imperfect ADC low-pass filters lead to mutual interference for negative frequencies also
- Counting for propagation delay, Doppler, imperfect filtering:
 - $\blacktriangleright \quad V = \frac{2T}{BT_s}$
 - T: Chirp duration, B total bandwidth, T_s ADC sampling period

► Vulnerable period:

$$V = \frac{2T}{BT_s}$$

• Extended vulnerable period:

• $V_{ext} = 2NTV$, N number of chirps per frame

Probability of interference *without* Radar Communication:

•
$$P_{int}^f = \frac{V_{ext}}{T_f}$$
 per frame

•
$$P_{int} = 1 - (1 - P_{int}^f)^M$$
, *M* facing vehicles

One proposal:

- Use different frequency bands for radar (B_r) and communication (B_c)
- Switch in time between radar and communication
- Radar Medium Access: rTDMA
 - Different radars allocated rTDMA slots
- Communication Medium Access for scheduling radars:
 - Non-persistent CSMA with backoff (no ACK)

Overall time-frequency domain for the proposed RadCom

- ► Non-persistent cCSMA:
 - Used to broadcast rTDMA slots
 - No ACKs (due to high mobility)
 - CommTO: timeout for communication
 - RadarTO: timeout for radar transmission
- State Diagram for proposed Radar Communications:

Assumptions/Parameters

- Homogeneous
- ► FMCW

 Single-hop network

TABLE I		
SIMULATION	PARAMETERS.	

	Parameter	Value
	Chirp duration (T)	20 µs
adar	Frame duration (T_f)	20 ms
	Time slots per frame (K)	10
ы	Radar bandwidth	0.96 GHz-1 GHz
	d_{\max} for $B_c = 0$	150 m
	$v_{\rm max}$	140 km/h
	$P_{\rm tx}$	11 dB
	SNR	10 dB
	Ν	99
	f_c	77
	T_s	0.01 µs
	Chebyshev low-pass filter order	13
	Thermal noise temperature	290 K
	Receiver's noise figure	4.5 dB
ü	Communication bandwidth B_c	20 MHz,40 MHz
	Packet size $(N_{\rm pkt})$	4800 Bits
uo	Modulation	16-QAM
Ŭ	MAC	non-persistent CSMA
	SlotTime	10 µs
	Backoff window size	6

Results

Probability of interference without Radar Communications

Mutual interference is not negligable for automotive radars

© Canan Aydogdu, 2018

Results

Probability of false alarm

Vulnerable period is observed to be complaint to calculations

© Canan Aydogdu, 2018

Conclusions

Future Work

- FFI Project funded (Traksäkerhet och automatiserade fordon) "Combined Radar-Based Communication and Interference Mitigation for Automotive Applications"
 - Chalmers (coordinator), Volvo Cars, Autoliv, SAAB, QamCom, Halmstad
 - 1 Jan. 2019- 31 Dec. 2020
- **Goal:** Hardware implementation of RadCom

Questions?

Contact info:

canan@chalmers.se

© Canan Aydogdu, 2018