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Collision-Aware Communication for Intersection
Management of Automated Vehicles

Erik Steinmetz, Robert Hult, Zhenhua Zou, Ragne Emardson,
Fredrik Brännström, Paolo Falcone, and Henk Wymeersch

Abstract—Intersection management of automated vehicles re-
lies on wireless communication, whereby communication re-
sources should be allocated to vehicles while maintaining safety.
We present a collision-aware resource allocation (CARA) strategy
for coordination of automated and connected vehicles by a
centralized intersection manager. The proposed strategy is based
on a self-triggered approach and proactively reduces the risk of
channel congestion by only assigning communication resources to
vehicles that are in critical configurations, i.e., when there is a risk
for a future collision. Compared to collision-agnostic communi-
cation strategies, typically considered for automated intersection
management, the CARA strategy aims to bridge the gap between
control, sensing and communication. It is shown to significantly
reduce the required amount of communication (albeit with a
slight increase in the control cost), without compromising safety.
Furthermore, control cost can be reduced by allowing more fre-
quent communication, which we demonstrate through a trade-off
analysis between control performance and communication load.
Hence, CARA can operate in communication-limited scenarios,
but also be modified for scenarios where the control cost is of
primary interest.

I. INTRODUCTION

One of the most pressing issues in road transport sys-
tems is safe and efficient coordination of vehicles in traffic
zones where roads cross or merge, such as intersections, on-
ramps and roundabouts. Automated intersection management
methods promise to provide safe and efficient intersection
crossing, and have been the subject of recent research [1]–[4].
Such methods rely on a central controller, which periodically
receives state information (ranging from position and velocity
to HD video) from each vehicle, and then issues control
commands which minimize a measure of cost (e.g., fuel con-
sumption) while allowing safe passage. However, automated
intersection management approaches have mainly focused on
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different control and coordination methods while few have
specifically looked at how to optimize the use of the wireless
spectrum for these coordination scenarios. This is especially
important when state information requires significant amounts
of data. In general, wireless links in networked control systems
are affected by (i) limited bandwidth; (ii) delays; (iii) packet
dropouts [5]. Optimal use of the spectrum would thus be
beneficial to reduce the channel load and efficiently use the
available bandwidth. Furthermore, it would make it possible
to support higher densities of vehicles compared to a fixed
schedule. As the methods from [1]–[4] largely considers the
control, sensing and communication systems as separate enti-
ties that provide services to each other without much mutual
knowledge, there are limited options to reduce the channel
load. However, when communication is aware of the control
entity [6], communication losses and information losses can be
tolerated to some extent. This leads to the problem of optimally
assigning communication resources, without compromising
safety and severely affecting control performance.

The type of problem described above is closely related to
resource allocation and state-based scheduling for networked
control systems, which have been studied extensively, see e.g.,
[7]–[17]. Out of these works, the majority [7]–[12], [14]–
[16] focus on the communication between the sensor and the
controller, while [13] considers the communication between
the controller and the actuator. We can further group these
works based on the mechanisms behind the resource alloca-
tion. In [7], [8], [11]–[14], [16], communication resources are
assigned based on self- or event-based triggers, and agents
only transmits when specific triggering conditions are met. The
works [9], [15], [17], on the other hand, focus on the problem
of how to optimally schedule a group of agents over a limited
number of channels, i.e., how to optimally use the available
communication resources in each time slot. Another important
consideration is whether the decision to transmit is made in a
distributed fashion (i.e., locally by each agent) or by a central
unit, and what information the decision to transmit is based
on. The works [7], [9], [10], [14], [16] consider distributed
protocols while [12], [15], [17] consider centralized solutions.
Regarding what the decision is based on, the majority of
the works rely on solutions where observations of the state
are continuously available and needed for the decision of
when to transmit. Only few works [15]–[17] consider the
case relevant to our setting, when observations are partially
available or not available at all, and the decision has to be
based on predictions of the state. Out of these, [15] rely
on a concept referred to as cost of information loss (CoIL)
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to determine which group of agents that should transmit in
each time slot, while the resource allocation in [17] is based
on the principle of maximum predicted error first (MPEF).
In contrast, [16] focus on a distributed setting where agents
makes promises to each other regarding their intentions. These
promises, which can be anything from loose descriptions of
reachability sets to tight state trajectories are then used in an
event- and self-triggered fashion to determine when agents
should request and send updated information to each other.
Besides this, [14] studies the problem of designing a self-
triggered communication scheme for an encoder/decoder pair
while ensuring stochastic stability of a vehicular system.

In this paper, we aim to understand if it is possible to de-
velop a communication strategy for safe intersection manage-
ment, in order to minimize the communication resources. We
achieve this through a self-triggered approach [16], specialized
for a safety-critical scenario, in which vehicles send state
information in the uplink and a controller issues commands
in the downlink. Our specific contributions are
• A novel optimization formulation for uplink scheduling

over a time horizon for remote intersection management,
compatible with standard controllers (e.g., model predic-
tive control).

• A novel efficient method to characterize the possibilities
of collision in the presence of state uncertainties.

• A collision-aware resource allocation (CARA) strategy,
which is based on the possibilities of collision, and
takes into account the coupling in the dynamics between
vehicles (due to safety constraints) by assigning commu-
nication resource in a receding horizon fashion.

The proposed CARA strategy is evaluated for a two-vehicle
scenario and is demonstrated to lead to significant reductions
in communication load, without compromising safety, though
at an increased control cost.

The rest of the paper is organized as follows. Section II,
describes the particular scenario that we consider in detail
and introduces the system model. In Section III, we charac-
terize the pairwise possibilities of collision between vehicles
required for the resource allocation. Section IV, details the
proposed resource allocation procedure, as well as a brief
example to provide some intuition. In Section V, we perform
a more in depth analysis of the performance of the proposed
resource allocation procedure for a simplified two vehicle
scenario. Finally, in Section VI we conclude and summarize
the paper, and discuss directions for future work.

Notation: In this paper matrices are denoted by uppercase
bold letters, e.g., X, vectors are denoted by lowercase bold
letters, e.g., x, and sets by calligraphic letters. e.g., X . Fur-
thermore, to separate between vectors and intervals we write
row vectors as [a b] while intervals are written as [a, b] . The
transpose of a matrix A is denoted by AT, Conv(·) is the
convex hull operator, and the set of positive real numbers is
denoted by R+.

II. SYSTEM MODEL

We consider an intersection and N vehicles. The intersec-
tion is operated by an intersection manager (IM), comprising
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Figure 1. Schematic illustration of the intersection with definitions. The black
lines illustrates the path of the vehicles and the red square is the area where
collisions between vehicles on different roads can occur.

a traffic controller, used to orchestrate the flow of the vehi-
cles, and a resource allocator, used to assign communication
resources to vehicles. As our focus is on the scheduling of
the communication to reduce the overall communication load,
we will consider the wireless channels to be error-free and
with negligible delay. This assumption is usually implicit
in contributions focusing solely on the control side of the
intersection problem (e.g., [18]–[20]), and is in fact not so
far fetched as upcoming 5G networks aim at providing ultra-
reliable and low latency services [21].

A. Vehicles and Intersection

We assume that the vehicles move along predefined and
fixed paths and that their motion therefore can be considered
one-dimensional, as illustrated in Figure 1. This is a standard
assumption for autonomous vehicles moving in a structured
environment, like an urban area [19], [22], [23]. As a matter
of fact, in urban scenarios collisions with other vehicles and
pedestrians are likely to be avoided by braking intervention,
to a larger extent then steering, as lateral vehicle manoeuvres
may increase the risk of collision with oncoming traffic in the
opposite direction.

Furthermore, we model the vehicles as point-masses with
state xi(t) = [pi(t) vi(t)]

T, where pi(t) and vi(t) represent
the scalar position and velocity of vehicle i along its fixed
path, respectively. In particular, we model the vehicle motion
using a stochastic linear differential equation

ẋi(t) = Aixi(t) + biui(t) + wi(t), (1)

where ui(t) ∈ [ui,min, ui,max] is the control input, Ai and
bi are known and of appropriate dimensions, and wi(t) is a
stochastic perturbation. For technical reasons we also assume
that the velocity is non negative, i.e, vi(t) ≥ 0 ∀t. Note that
this implies that the vehicles can not reverse.

As illustrated in Figure 1, we represent the intersection
as intervals on the path of each vehicle, with lower and
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upper bounds Li and Hi, respectively. Thus a vehicle is
inside the intersection if pi(t) ∈ [Li, Hi], and a collision
between two vehicles i and j has occurred at time t if
[pi(t) pj(t)] ∈ [Li, Hi]× [Lj , Hj ].

Furthermore, vehicles can at any time t generate noisy
observations

yi(t) = xi(t) + ni(t) (2)

of their state and send these to the IM on an uplink (UL) chan-
nel. We denote by ytot

i (t) the vector of noisy observations re-
garding vehicle i up to, and including, time t. The IM executes
a tracking filter to determine the distribution p (xi(t)|ytot

i (t))
of each vehicle’s state. Using this, the IM then computes and
broadcasts control signals on a downlink (DL) channel.

B. Traffic Controller

The traffic controller operates in receding horizon (with
finite time horizon KTs) fashion, and at discrete times kTs
solves an optimization problem of the form [1]

minimize
vehicle controls

performance criterion (3a)

subject to dynamics (3b)
safety constraints (3c)

based on the state estimates from the tracking filter. The output
of the traffic controller is thus a piecewise constant control
over the horizon [kTs, (k + K)Ts] , which can be described
by

ui,l, for l = 0, ...,K − 1. (4)

Note that l here refers to future time steps with respect to the
current time index k. The traffic controller is further assumed
to know the intersection geometry and vehicle dynamics. The
performance criterion in (3a) could include total consumed
energy, fuel consumption or deviation from target speed. The
safety constraints ensure that collisions are avoided. The traffic
controller is an off-the-shelf controller and is not aware of
any uncertainties in the system state (i.e., it only knows the
expected state) or how the underlying communication works.

Remark 1. Robust control formulations, which directly takes
into account uncertainties, could also be considered. Such
formulation would need little or no communication, but often
lead to an overly conservative behavior (see e.g., [24]), as
the control actions are based on predictions with increasing
uncertainties over time. Such robust formulations are not
considered in this work.

C. Resource Allocator

We introduce the collision possibility indicator (CPI),
Ci,j(k, l) ∈ {0, 1}, to indicate, as predicted by the IM at time
k, whether the states of vehicle i and j, l time steps in the
future may be such that the risk of collision can no longer
be excluded. For instance, when C1,2(k, 5) = 1, then the IM
predicts that 5 time steps in the future, vehicles 1 and 2 may
be in a configuration that leads them to a future collision. The
computation of Ci,j(k, l) is based on information available to
the resource allocator at time step k, such as uncertainties in

the vehicle states as well as the control signals from the traffic
controller, and will be described in Section III.

The goal of the resource allocator is to schedule communi-
cation between vehicles and IM so as to minimize communi-
cation resources, while avoiding possible collisions. Formally
this can be expressed as

minimize
si,l ∀i,l

N∑
i=1

K−1∑
l=1

si,l (5a)

s.t. si,l ∈ {0, 1}, ∀i, l (5b)∑
l̃≤l

si,l̃ ≥ Ci,j(k, l + 1), ∀i, j 6= i, l (5c)

si,l ≤ max
j
{Ci,j(k, l + 1)}, ∀i, j 6= i, l (5d)

where si,l indicates whether a certain vehicle i is assigned
communication resources at time (k+l)Ts. While the objective
is to minimize the amount of time slots used for commu-
nication, the constraint (5c) ensures that vehicle i (resp. j
) has communicated at least once with the IM before the
risk of a collision can no longer be excluded, i.e., before
Ci,j(k, l + 1) = 1. Furthermore, the constraint in (5d) makes
sure that no communication resources are allocated before it
is absolutely necessary.

In other words, we aim to minimize uplink communication
resources, while avoiding future collisions, and our goal will
be to design a resource allocator that makes sure that future
collisions can be avoided while accounting for state uncer-
tainty (from (1)–(2)).

While (5) corresponds to a relatively simple resource alloca-
tion problem, it can be generalized to account for bandwidth
limitations, deadlines, and randomness of the channel. Such
generalizations are beyond the scope of the current work.

III. CHARACTERIZATION OF POSSIBLE COLLISIONS

In this section we characterize the CPI, i.e., Ci,j(k, l),
which plays a central role in the optimization problem in Sec-
tion II-C. We associate with vehicle i the set Si(k) = Pi(k)×
Vi(k), representing the support of p (xi(kTs)|ytot

i (kTs)), as-
suming bounded uncertainties. However, distributions with
infinite support could also be considered, but require ap-
proximation of the uncertainty to evaluate Ci,j(k, l). This
could be done by considering expanded uncertainties with a
reasonable coverage factor (e.g., 3σ-regions) [25]. Given the
control command and the vehicle dynamics (1), we can then
describe the set Si(k, l), representing the possible values of the
vehicle state at time (k+l)Ts in open loop (i.e., in the absence
of further received information), derived from the predictive
distribution p (xi((k + l)Ts)|ytot

i (kTs)). Hence, it suffices to
determine whether the sets Si(k, l) and Sj(k, l) contain states,
which inevitably lead to a collision. As we determine the CPI
for any future time (k + l)Ts, we will drop the arguments k
and l.

A. Collision in the Absence of Uncertainties

When there are no uncertainties, the sets Si and Sj collapse
to points. Thus, we can consider two vehicles with known
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combined state x̃ = [pi vi pj vj ]
T and determine whether this

state inevitably leads to collision. To this end, we introduce
x(t, x̃,u), denoting the future state at time t, from state x̃,
applying control input sequence denoted by u. Note that
x(t, x̃,u) can be seen as the continuous flow of the system
[26], [27]. A collision corresponds to the vehicles being in the
so-called bad set B, defined as

B = {x | [pi pj ] ∈ [Li, Hi]× [Lj , Hj ]}. (6)

For a collision to occur, the vehicles must be in a state x̃ at an
earlier time, for which a collision is unavoidable. These states
are characterized by the so-called capture set [26], [27]

C = {x̃ | ∀u,∃t ∈ R+s.t.x(t, x̃,u) ∈ B}, (7)

i.e., the set of states for which, no matter what control input
is applied, the vehicles will inevitably end up in a collision.
For computational reasons, slices of the capture set will be
considered (and also visualized) in position space:

C[vi vj ] = (8)

{[pi pj ] | ∀u,∃t ∈ R+, s.t.x(t, [pi vi pj vj ]
T
,u) ∈ B},

i.e., the set of positions that for fixed initial velocities vi and
vj inevitably will lead to a collision no matter what control
input is applied. We can thus in the absence of uncertainties
express the CPI as

Ci,j =

{
1 [pi pj ] ∈ C[vi vj ]

0 else
. (9)

Note that in the absence of uncertainties Ci,j = 1 implies that
a collision is unavoidable. An example of C[vi vj ] is shown in
Figure 2. We note that the capture set slice shrinks the further
the positions of the vehicles are away from the intersection.
The size of the capture set slices depends on the allowable
control signals (a larger control interval leads to a smaller
capture set slice as collisions are easier to avoid) as well as
the velocities (with increased velocities of both vehicles, the
capture set slice grows, while with increased velocity of one
vehicle, the capture set slice will move upward or downward).

B. Collision in the Presence of Uncertainties

In the presence of uncertainties, the sets Si and Sj describe
the possible vehicle states. We further decompose these sets
into intervals, i.e., pi ∈ Pi = [pLi , p

H
i ], pj ∈ Pj = [pLj , p

H
j ],

vi ∈ Vi = [vLi , v
H
i ], vj ∈ Vj = [vLj , v

H
j ]. This allows us to

consider uncertainty in the position and velocity separately,
and to form the set

CVi,Vj =
⋃

vi∈Vi,vj∈Vj
C[vi vj ], (10)

which can be interpreted as the set of positions for which there
exists a velocity pair [vi vj ] ∈ Vi × Vj that will inevitably
lead to a collision. In other words given the uncertainties in
the velocity there is a possibility that a collision may occur
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Figure 2. Illustration of the bad set B in position space, along with an
example of C[vi vj ]

, CVi,Vj , and Pi × Pj . The slice C[vi vj ]
is shown

for vi = 60 km/h and vj = 40 km/h, while CVi,Vj , and Pi × Pj are
shown for Vi = [56, 64] km/h, Vj = [36, 44] km/h, Pi = [−45,−35] m
and Pj = [−36,−28]. Note that these values are just chosen for illustration
purposes and are not the ones used in the simulations in Section V.

when the positions of the vehicles are in the set CVi,Vj . Thus,
the CPI can be expressed as

Ci,j =

{
1 Pi × Pj ∩ CVi,Vj 6= ∅
0 else

. (11)

An example of CVi,Vj and Pi × Pj is shown in Figure 2. As
can be seen, the two sets (visualized in blue and green) do not
intersect. Thus Ci,j = 0, which implies that for this particular
example there is at the moment no risk for a future collision.
However note that in the presence of uncertainties Ci,j = 1
(i.e., a non empty intersection) does no longer imply that a
collision is unavoidable, only that the possibility of a future
collision can not be excluded.

C. General Procedure for Computation of Capture Set Slices
In this section, we will show how to compute C[vi vj ] and
CVi,Vj . In particular we will focus on how to characterize the
boundaries of the two sets.

1) Computation of C[vi vj ]: It has been shown that for
monotone two-vehicle systems, considered here, the system
state is steered to B for all input choices if and only if it is
taken to B both when vehicle i applies maximum brake and
vehicle j applies maximum acceleration, and when vehicle
j applies maximum brake and vehicle i applies maximum
acceleration [26], [27]. Thus, by considering the two restricted
capture set slices Cu1

[vi vj ]
and Cu2

[vi vj ]
, defined as (8) but

fixing the control inputs to u1 = [ui,min uj,max]
T and

u2 = [ui,max uj,min]
T, we can compute the capture set slice

as
C[vi vj ] = Cu1

[vi vj ]
∩ Cu2

[vi vj ]
. (12)
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Figure 3. Illustration of the bad set B in position space, along with the four
curves l1 to l4, of which l2 and l3 characterizes the set C[vi vj ]

. The curves
are computed for double integrator dynamics, vi = 60 km/h and vj = 40
km/h, u1 = [−1 1] m/s2, and u2 = [1 − 5] m/s2.

Each of these sets can be characterized by two curves, starting
from [Li Hj ] and from [Hi Lj ] back-propagating with the
system dynamics and the constant extremal control inputs. An
illustration of the sets along with the four curves is shown in
Figure 3. As the intersection of the two sets defines C[vi vj ],
it is sufficient to compute the curves l2 and l3 and find their
intersection point I[vi vj ] in order to characterize its boundary.
More specifically, this can be done by either:
• Modifying Algorithm 1 in [26], such that the upper

left and lower right corner points are stored when back
propagating the bad set. By doing this, and making sure
that the algorithm terminates when the corner points (i.e.
the curves) get sufficiently close to each other, we obtain
both the two curves l2 and l3 as well as their intersection
point I[vi vj ].

• Using the analytic characterization of the two curves l2
and l3 that we provide in Appendix A, in combination
with fixed point iteration to find the intersection point
I[vi vj ].

The latter approach provides a more efficient way to charac-
terize the boundary of the capture set slice. However, it is in
comparison to the first approach less general, as the analytic
descriptions of the curves l2 and l3 provided in Appendix A
are for the specific case of double integrator dynamics.

2) Computation of CVi,Vj : Since CVi,Vj is not necessarily
convex and its computation involves infinitely many sets, it
is in general hard to compute. However, by discretizing the
velocity uncertainty intervals and sweeping over the different
speed combinations we can visualize CVi,Vj , see Figure 4. We
then note the following about CVi,Vj :
• The set itself, which is visualized in blue, is the union of

infinitely many capture set slices in position space. Five
of these are visualized using orange dashed lines.

• Its boundary is characterized by the curves l̃2 and l̃3, as
well as the two curves obtained by tracing the boundary
of the blue set between the three intersection points
I[vH

i vL
j ]

, I[vH
i vH

j ], and I[vL
i vH

j ]. For ease of notation,
we denote the latter two curves C1 and C2, where C1

corresponds to the curve between I[vH
i vL

j ]
and I[vH

i vH
j ],

and C2 corresponds to the curve between I[vH
i vH

j ], and
I[vL

i vH
j ].

• The curve l̃2 corresponds to the part of the previously
defined l2 curve that characterizes the capture set slice
C[vL

i vH
j ], i.e., the part between [Hi Lj ] and I[vL

i vH
j ].

Similarly, l̃3 is the part of the l3 curve that character-
izes the capture set slice C[vH

i vL
j ]

. Discretized versions,
i.e., point representations, of these curves can thus be
computed using the method described in Section III-C1.
The discretized versions of the curves are denoted l̃d2 and
l̃d3 .

• Discretized versions of the curves C1 and C2, denoted
Cd

1 and Cd
2 , can be obtained by discretizing the veloc-

ity uncertainty intervals, and then compute intersection
points while keeping one of the velocities fixed at its
maximum and sweeping the other over the discretized
interval. An example of how the discretized curves could
look is shown in the green approximation of the boundary.

• Based on the discretized curves for the boundary we can
then efficiently approximate CVi,Vj as

CapproxVi,Vj = Conv
(
l̃d2 ∪ l̃d3 ∪ Cd

1 ∪ Cd
2

)
. (13)

Remark 2. The approach presented above generally provides
a tighter approximation of CVi,Vj compared to if state uncer-
tainties are considered as described in [26].

IV. COLLISION-AWARE ALLOCATION OF
COMMUNICATION RESOURCES

Until here we have described the basic properties of the
system and characterized the CPI, i.e., the possibility of
collision between two vehicles. Based on this, we are now
ready to put everything together and explain the operation of
the IM, and detail a procedure for collision-aware resource
allocation (CARA) for the N vehicle scenario outlined in
Section II. Without loss of generality we will focus on an
arbitrary time instance kTs to describe the operation of the
resource allocator and the IM.

A. Resource Allocator

To start with, we assume that at time kTs the resource
allocator has access to the output from the traffic controller,
i.e., control signals [ui,0 · · · ui,K−1] for all vehicles i =
1, ..., N. Furthermore, the resource allocator has access to the
uncertainty in the vehicle states, in the form of sets Si(k),
which describe the possible states of all vehicles at the initial
time kTs. Recall that while the control signals are purely based
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on expected states, the sets Si(k) are based on the distribution
p (xi(kTs)|ytot

i (kTs)). The resource allocator takes the control
signals and the sets Si(k) as input and executes the following
procedure. First, it uses the control signals along with the
initial state uncertainty to compute the predictive distribution,
and to form the sets Si(k, l) for i = 1, ..., N and l = 1, ...,K,
i.e., it computes possible future states for all time instances
along the controller prediction horizon. Based on these sets
and the vehicle dynamics it then computes Ci,j(k, l) for
i = 1...N , j = i + 1...N and l = 1, ...,K using the
approximation introduced in (13). In other words it tabulates
the CPI for all vehicle pairs and time instances along the
prediction horizon. After doing this the resource allocator
solves the integer program (IP) in (5)1. The output from
the IP, which is s∗i,l ∀i, l, contains information about the
latest possible time that each vehicle need to send updated
information in order to make sure that future collisions can be
avoided. The steps of the resource allocator are summarized
in Algorithm 1.

B. Receding horizon IM

Based on the output form the traffic controller and the
resource allocator the IM then, at time kTs, broadcasts infor-
mation about when each vehicle is expected to communicate
the next time, along with control signals for each vehicle
up until then. However, as the possibility of collision is
evaluated pairwise between all vehicles and depends on the
uncertainty in the state of the involved vehicles, the assigned
communication slots might change when the IM receives

1Although IPs are generally NP-complete, (5) can be solved efficiently in
a time O(N2K), as will be illustrated in Section IV-C

Algorithm 1 Resource Allocator
Input: current state sets Si(k), control vector

[ui,0 · · · ui,K−1], and system parameters Ai,bi,Li,Hi

and [ui,max, ui,min] for i = 1, ..., N .
Output: si,l for i = 1, ..., N and l = 1, ...,K − 1

1: Compute Si(k, l) for l = 1, ...,K and i = 1, ..., N
2: Tabulate Ci,j(k, l) for l = 1, ...,K, i = 1, ..., N and j =
i+ 1, ..., N

3: Solve IP in (5)
4: return s∗i,l ∀i, l

updated information from the vehicles which are scheduled
to transmit earliest. For practical reasons, the proposed IM
thus operates in a receding horizon fashion, where both the
resource allocation and the control signals are revised in the
first time slot where updated information is received from any
of the vehicles. This means that in practice all vehicles except
the ones assigned to communicate first will receive updated
instructions before it is their time to communicate according to
the time slot assignment performed at time kTs. The operation
of the IM is summarized in Algorithm 2.

Algorithm 2 IM
1: for each time step k do
2: if new measurements are received then
3: Traffic Controller computes ui,l for l = 0, ...,K −

1,∀i
4: [s∗i,l]∀i,l=Resource Allocator([Si(k) ui,l]∀i,l)
5: Send [s∗i,l ui,l]∀l to vehicle i, ∀i
6: end if
7: end for

C. Example: 4 Vehicle Scenario

To get some intuition on how the collision-aware allocation
of communication resources works, we will now consider a
scenario with N = 4 vehicles, which at time kTs are located
as shown in Figure 1, i.e., three vehicles with approximately
the same distance to the intersection and a fourth vehicle
further away from the intersection. For simplicity, we assume
that all four vehicles previously have communicated with
the IM and that the current uncertainties about the vehicle
states are approximately the same. As previously described,
the traffic controller first computes control signals for the
whole prediction horizon. This information along with the
uncertainty in the vehicle states are then passed along to
the resource allocator, which propagates the uncertainty along
the prediction horizon and evaluates the CPI for all time
instances along the prediction horizon (Algorithm 1, step 2).
An illustration of how this could look, given the assumption
that the initial uncertainties are approximately the same, and
that the controller due to initial locations of vehicle 1, 2
and 4 has scheduled them to cross in rapid succession, is
shown in Table I. From this table we see, that the CPI is
zero for all vehicle pairs in the first three time steps along the
prediction horizon. However, at time step l = 4 in the future,
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Table I
PAIRWISE POSSIBILITIES OF COLLISION ALONG THE PREDICTION

HORIZON COMPUTED AT TIME STEP k.

1 2 3 4 5 6 7 8 ... K

C1,2(k, l) 0 0 0 1 1 1 1 1 1

C1,3(k, l) 0 0 0 0 0 0 1 1 1

C1,4(k, l) 0 0 0 1 1 1 1 1 1

C2,3(k, l) 0 0 0 0 0 0 1 1 1

C2,4(k, l) 0 0 0 1 1 1 1 1 1

C3,4(k, l) 0 0 0 0 0 0 1 1 1

Table II
RESULTING TIME SLOT ALLOCATION AT TIME STEP k.

1 2 3 4 5 6 7 8 ... K

s∗1,l 0 0 1 0 0 0 0 0 0

s∗2,l 0 0 1 0 0 0 0 0 0

s∗3,l 0 0 0 0 0 1 0 0 0

s∗4,l 0 0 1 0 0 0 0 0 0

the uncertainties, represented by sets of the form Si(k, 4),
of vehicles 1, 2 and 4, have increased to such an extent
that a collision can no longer be ruled out. At time step
l = 7, additionally, the uncertainties are so high that potential
collisions can occur between all vehicle pairs.

Correspondingly, Table II shows the resulting slot assign-
ment obtained by solving the IP in (5). To relate this table to
Table I, we first observe that as long as all the pairwise CPIs
are zero, none of the vehicles are assigned communication
resources in the previous time slots. Then, we note that in the
first time slot that the CPI between any two vehicles become
non-zero, both of these vehicles are assigned communication
resources in the time slot before this, given that they haven’t
already been assigned to communicate in an earlier time slot.
Thus, as the CPI between vehicle 1, 2, and 4 turn one in slot
l = 4, all three vehicles are assigned to communicate in slot
l = 3. Similarly, vehicle 3 is finally assigned to communicate
in slot l = 6. This procedure can be generalized to arbitrary
K and N , leading to a complexity of O(N2K). The assigned
communication slots along with the computed control signals
are then sent to the respective vehicles. However, note that
due to the receding horizon operation of the IM, vehicle 3
will not necessarily communicate in time slot l = 6, as both
the control signals and the slot assignment will be revised at
time (k+3)Ts when the IM receives updated information from
vehicle 1, 2, and 4.

V. NUMERICAL RESULTS

To more thoroughly demonstrate the concept of the
collision-aware resource allocation strategy, and to be able to
evaluate its benefits and drawbacks, we will study and compare
the impact of the following communication strategies:

• Baseline: The vehicles communicate updated information
every Ts. This is the situation that the controller was
designed for.

• Low rate: The vehicles communicate updated information
every 10Ts.

• CARA: The vehicles communicate updated information
according to the collision-aware resource allocation strat-
egy presented in Section IV.

• M-CARA: This is a modified version of the CARA pro-
tocol where a deadline time Td is the maximum time that
the vehicles wait to communicate updated information to
the IM. However, if there is a risk for a future collision
before the deadline has expired, the vehicles are assigned
to communicate earlier.

A. Simulation Setup

We consider an intersection scenario with N = 2 vehicles.
The simulations are discretized on a uniform time grid with
sample time Ts = 0.1 s and discrete time index k. The discrete
states xi,k = [pi,k vi,k]

Tof the two vehicles are assumed to
evolve according to double integrator dynamics, i.e.,

xi,k+1 =

[
1 Ts
0 1

]
︸ ︷︷ ︸

Ad
i

xi,k +

[
T 2
s /2
Ts

]
︸ ︷︷ ︸

bd
i

ui,k + wi,k, (14)

where Ad
i and bd

i are the discrete counter parts of Ai and
bi in (1), the control signal ui,k correspond to the demanded
acceleration, and wi,k is discretized process noise. For the
traffic controller, we use the receding horizon controller (RHC)
presented in [20, Problem 11], with stage cost

τ(k) =

N∑
i=1

(vi,k − vrefi )2Q+ u2i,kR,

which penalizes deviations from a desired reference speed vrefi

as well as control actions. We ensure that vehicle 2 passes
closely after vehicle 1 by adding a constraint

tin2 ∈ [tout1 + ε, tout1 + 2ε], (15)

where tout1 is the time vehicle 1 clears the intersection, tin2
is the time vehicle 2 enters the intersection, and ε is a
safety padding, which is set to achieve aggressive yet safe
behavior under the baseline communication strategy. To avoid
infeasibility, (15) is implemented as a soft constraint [28]. The
horizon length is set to K = 100 steps. Furthermore, we let
Li = 0 m and Hi = 10 m, and the initial conditions of
the vehicles are set such that the two vehicles will collide
if no control action is taken. More precisely, both vehicles
start 150 m away from the intersection with a speed of 70
km/h. The desired reference speed vrefi = 70 km/h, i.e., the
desired behavior is that the vehicles deviate as little as possible
from their initial speed. Also, we assume that independently of
which communication strategy we apply, the vehicles always
send observations of their initial state to the IM at k = 0. The
discrete process noise (which describes the mismatch between
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Table III
SIMULATION PARAMETERS

Parameters Values

Number of vehicles N = 2
Sample time (s) Ts = 0.1
Horizon length K = 100
Safety padding (s) ε = 0.02
Lower bound of intersection (m) Li = 0
Upper bound of intersection (m) Hi = 10
Penalty on deviation from vrefi [20] Q = 1
Penalty on ui,k [20] R = 200
Actuator constraints (m/s2) ui,k ∈ [−2 2]
Speed constraints (km/h) vi,k ≥ 0
Initial position along trajectory (m) pi,0 = −150
Initial speed (km/h) vi,0 = 70
Reference speed (km/h) vrefi = 70
Process noise on speed (km/h) ws = 0.36
Observation noise on position (m) np = 0.25
Observation noise on speed (km/h) ns = 0.5

the controller model and the true dynamics) and observation
noise are drawn from uniform distributions:

wi,k ∼ U
([

0
−ws

]
,

[
0
ws

])
, (16)

and

ni,k ∼ U
([
−np
−ns

]
,

[
np
ns

])
, (17)

where values on ws, np and ns are found in Table III.
We observe that, while the considered simulation setup

is limited to two vehicles for the sake of presentation, our
approach can be extended to any number of vehicles. Clearly,
the sets Ci,j must be calculated for all possible colliding
vehicles and Problem (5) grows in size, hence, in complexity.

B. Performance metrics

In the following section we present results from a set of
Monte Carlo simulations. However, before presenting these
results, we briefly introduce the performance metrics that we
will use to evaluate and compare the different communication
strategies:

• Probability of communication relates to a specific time
slot k and is defined as the fraction of realizations in
which the vehicles communicate in this time slot.

• Average control cost relates to a specific time slot k,
and is defined as the stage cost τ(k) evaluated on the
true vehicle states averaged over the number of Monte
Carlo realizations.

• Total average control cost is defined as the integral of
the average control cost, i.e, the total accumulated average
control cost over the length of the simulation.

• Average number of communication instances is defined
as the average number of times the vehicles communicate
until they have passed the intersection.

• Number of collisions is defined as the total number of
recorded collisions in a set of Monte Carlo Simulations.

0 10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1

textabcd

time step, k

Pr
ob

.o
f

C
om

m
.

Baseline Low rate CARA M-CARA

Figure 5. Probability of communication as a function of time for the four
different strategies. Each simulated point is based on 10000 realizations.

C. Results and Discussion

The performance of the different strategies are evaluated
and compared by running Monte Carlo simulations with 10
000 realizations for each of the four communication strategies.

1) Communication Performance: To understand the com-
munication behavior (i.e., when the vehicles communicate),
we visualize the probability of communication as a function of
time, see Figure 5. We observe that, as expected, the low rate
strategy communicates every 10Ts and the baseline strategy
communicates every Ts, except towards the end, as the time
for both vehicles to clear the intersection can vary depending
on the noise realizations. Under the CARA and M-CARA
strategies, vehicles communicate much less compared to the
baseline strategy, and in contrast to the low rate strategy,
the CARA strategy initially requires less communication and
later allocates more communication resources as the vehicles
gets closer to the intersection and thus are in a more critical
condition. In particular, we observe a communication peak
around time step k = 47, corresponding to the first time (after
the initial communication at k = 0, which is the starting point
for the propagation of the uncertainties and the computation
of the capture set) where a collision can occur. The next time
updated information is sent to the IM is around time step
k = 60, where we note a wider peak. The reason for this
is the effect the process noise has on the trajectory of the
two vehicles. More specifically, if the results of the process
noise is a trajectory that is further away from the capture set
around time step k = 47, the vehicles can safely wait longer
to send updated information to the IM. On the other hand, if
the trajectory is closer to the capture set, the vehicles need
to communicate sooner. After the three first peaks, there is
a wide peak before k = 80. This peak can be explained
by the fact that when the vehicles are very close to the
intersection, they need to communicate frequently to maintain
sufficiently low uncertainties to guarantee safe passage through
the intersection. The M-CARA strategy behaves similar to
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Figure 6. Control performance in terms of average control cost (a) and cumulative average control cost (b) as a function of time for the our different strategies.
Each simulated point is based on 10000 realizations.

the CARA strategy, except that the longest gap between
communications is limited to Td = 10Ts. Finally, we also
note that the probability of communication drops off earlier
for the CARA and M-CARA, since in both strategies there is
no need for communication as soon as the first vehicle has
cleared the intersection area, since there is no longer any risk
for a future collision.

2) Control Performance: To evaluate the impact the differ-
ent strategies have on the control of the two vehicles, Figure 6
shows the average control cost as well as the cumulative
average control cost. From Figure 6a, we observe that in
general the average control cost is low to start with and
then significantly increases as the vehicles get closer to the
intersection. This behavior is due to the specific setup, and
the fact that both process and observation noise have a larger
impact as the vehicles gets closer to the intersection, as the
relatively shorter time to compensate for potential deviation
requires larger control actions. Furthermore, we see that all
strategies perform rather similar in the beginning, but that
strategies where less communication resources are assigned
lead to a lower average control cost towards the end. This is
an effect of how the traffic controller is implemented, as more
feedback will result in a tin2 that is close to tout1 + ε and thus
a higher noise sensitivity. Moreover, we observe that for the
CARA strategy we have a larger average control cost when
the IM receives and update from the vehicles, which is due
to the fact that it is better to be conservative and immediately
apply a large control action to correct potential deviations than
letting the error accumulate over time. Finally, we also see in
Figure 6b, that the total average control cost is highest for the
CARA strategy and lowest for the low rate strategy.

3) Collision Occurrence: The above results may seem to
indicate that the low rate strategy is favorable from both a
communication and control perspective. However, Table IV,
which puts the communication and control performance in
relation to the number collisions for the different strategies,
demonstrates that the low rate strategy does not meet the

Table IV
RESULTS

Parameters Baseline Low Rate CARA M-CARA

Total Avg. Control Cost 3018 1878 3975 3241
Avg. No. of Comm. Inst. 85.9 9.0 8.9 12.9
No. Collisions 0 155 0 0

basic safety requirement. On the other hand, we see that
the CARA and M-CARA strategies reduce the amount of
required communication to similar levels as the low rate
strategy, but maintain the safety, i.e., the number of collision
is zero for both CARA and M-CARA. In fact, results not
included here have shown that even if the process noise is
increased (without adjusting the safety padding) such that the
collision rate becomes nonzero, the collision rate is similar
for the baseline, CARA and M-CARA strategies, while it
is significantly worse for the low rate strategy. Furthermore,
from this table we also note that the average number of
communications instances required are rather similar for the
CARA and M-CARA strategies in relation to the baseline,
even though the M-CARA strategy interestingly has a lower
total average control cost than CARA. In fact, it can be seen
in Figure 6 that in terms of control performance, the M-CARA
strategy performs similar to the baseline strategy, both in terms
of average control cost and cumulative average control cost.

4) Communication / Control Trade-off: To further inves-
tigate the fact that the M-CARA strategy has a lower total
average control cost compared to CARA, but still a signif-
icant reduction in the required amount of communication,
we study the relationship between total average control cost
and average number of communication instances required for
safe operation by varying the deadline time Td. The result is
shown in Figure 7, which indicates that more communication
generally leads to a lower total average control cost. However,
for the specific scenario under consideration, we observe that
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in terms of total average control cost there is an optimal
deadline time Td = 3Ts. This means that there is no meaning
in communicating more than this. Furthermore, for Td > 3Ts,
we observe a sharp increase in total average control cost.
This implies that CARA, which was designed to minimize the
communication load while avoiding collisions, is not optimal
in terms of total average control cost. On the other hand, M-
CARA can be applied to trade off control performance and
communication load, while still maintaining safety.

VI. CONCLUSIONS

We have presented a novel strategy for minimizing the
use of communication resources for intersection management
of automated and connected vehicles. The communication
strategy relies on a new concept referred to as collision
possibility indicator (CPI), which characterizes risk of future
collisions for pairs of vehicles. The CPI accounts for state
uncertainty as well as the dynamics of the vehicles. By
evaluating the CPIs over a prediction horizon, we establish
when it is necessary to communicate in order to rule out
the possibility of future collisions. The proposed strategy,
which allocates communication resources in a self-triggered
(proactive) manner based on the CPIs, is able to maintain
safety while significantly reducing the required amount of
communication compared to the baseline scenario with fixed
transmission intervals. Since the proposed strategy leads to an
increase in the control cost compared to the baseline scenario,
we also present a modified strategy where control performance
can be traded for increased communication load. In other
words, we show how the proposed strategy can be adapted
to both scenarios where communication resources are scarce,
and scenarios where communication resources are abundant
and control performance, such as low energy consumption or
passenger comfort, can be prioritized.

Possible avenues for future research include: (i) incorpora-
tion of bandwidth constraints such that only a limited number
of agents can transmit in each time slot; (ii) making the
collision-aware resource allocation strategy robust to com-
munication imperfections such as packet drops and delays;
(iii) investigate the feasibility for scenarios with multiple
vehicles on the same path; (iv) explicitly accounting for control
performance in addition to collision possibilities.

APPENDIX A
ANALYTIC CURVES

To derive analytic expression for the curves l2 and l3
presented in Figure 3, we start by letting Φi(t, vi, u) denote
the position of vehicle i at time t, provided that the vehicle
starts at position pi = 0 at time zero with velocity vi and
constant input ui. Given double integrator dynamics, we can
thus describe the evolution of the position when we apply
maximum brake (i.e., ui,min) as

Φi(t, vi, ui,min) (18)

=

{
vit+ 0.5ui,mint

2

−v2i /(2ui,min)

∀t ≤ −vi/ui,min

∀t ≥ −vi/ui,min

.
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Figure 7. Trade-off between average total cost and average number of
communication instances obtained by varying the deadline time Td. Each
simulated point is based on 10000 realizations. For none of these results,
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Note that the time t = −vi/ui,min corresponds to the time that
the vehicle speed reaches zero. Similarly if we apply maximum
acceleration the position evolve as

Φi(t, vi, ui,min) = vit+ 0.5ui,maxt
2, (19)

where we for simplicity of notation have assumed that there is
no upper limit on the vehicle speed. Furthermore, we introduce

Li(t, vi, ui) = Li − Φi(t, vi, ui), (20)

and
Hi(t, vi, ui) = Hi − Φi(t, vi, ui), (21)

which can be interpreted as the backward integration of the
upper and lower bounds, given initial velocities vi and constant
control inputs ui. We are now ready to describe the restricted
capture set slices. According to [26, Algorithm 1] they can
be computed by propagating the bad set B, which here is
the rectangle set characterized by the upper and lower bounds
Li and Hi, backwards with constant extremal control inputs.
Hence we get that for vehicle i and j,

Cu1

[vi vj ]
=
⋃
t

([Li(t, vi, ui,min), Hi(t, vi, ui,min)]

×[Lj(t, vj , uj,max), Hj(t, vj , uj,max)]) , (22)

and

Cu2

[vi vj ]
=
⋃
t

([Li(t, vi, ui,max), Hi(t, vi, ui,max)]

×[Lj(t, vj , uj,min), Hj(t, vj , uj,min)]) . (23)

From this we directly see that the curves l2 and l3 can be
characterized as

l2 = (Hi(t, vi, ui,max), Lj(t, vj , uj,min)),∀t, (24)

and
l3 = (Li(t, vi, ui,min), Hj(t, vj , uj,max)),∀t. (25)
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Note that the above curves are parameterized by time. By using
(18)–(21) and re-organizing the terms we can re-parameterize
the curve l2 such that we get pj (i.e., the position of vehicle
j ) as a function of pi (i.e., the position of vehicle i):

pj =

{
−vj p̃i − 0.5uj,minp̃

2
i + Lj ,

v2j /(2uj,min) + Lj

E ≤ pi ≤ Hi

pi ≤ E
,

(26)
where E = Hi + vivj/uj,min − 0.5ui,maxv

2
j /u

2
j,min and

p̃i = −vi
√
v2i − 2ui,max(pi −Hi)/ui,max. Similarly we can

express the curve l3 as

pi =

{
−vip̃j − 0.5ui,minp̃

2
j + Li,

v2i /(2ui,min) + Li

F ≤ pj ≤ Hj

pj ≤ F
,

(27)
where F = Hj + vjvi/ui,min − 0.5ui,maxv

2
i /u

2
i,min and p̃j =

−vi
√
v2j − 2uj,max(pj −Hj)/uj,max.

REFERENCES

[1] R. Hult, G. R. Campos, E. Steinmetz, L. Hammarstrand, P. Falcone,
and H. Wymeersch, “Coordination of cooperative autonomous vehicles:
Toward safer and more efficient road transportation,” IEEE Signal
Processing Magazine, vol. 33, no. 6, pp. 74–84, Nov. 2016.

[2] L. Chen and C. Englund, “Cooperative intersection management: A sur-
vey,” IEEE Transactions on Intelligent Transportation Systems, vol. 17,
no. 2, pp. 570–586, Feb. 2016.

[3] G. R. de Campos, P. Falcone, R. Hult, H. Wymeersch, and J. Sjöberg,
“Traffic coordination at road intersections: Autonomous decision-making
algorithms using model-based heuristics,” IEEE Intelligent Transporta-
tion Systems Magazine, vol. 9, no. 1, pp. 8–21, Spring 2017.

[4] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 5, pp. 1066–1077, May 2017.

[5] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, 2007.

[6] H. Wymeersch, G. R. de Campos, P. Falcone, L. Svensson, and E. G.
Ström, “Challenges for cooperative its: Improving road safety through
the integration of wireless communications, control, and positioning,”
in Computing, Networking and Communications (ICNC), 2015 Interna-
tional Conference on, Feb. 2015, pp. 573–578.

[7] M. H. Mamduhi, M. Kneissl, and S. Hirche, “Decentralized event-
triggered medium access control for networked control systems,” in 2016
IEEE 55th Conference on Decision and Control (CDC), Dec. 2016, pp.
513–519.

[8] A. Molin and S. Hirche, “On LQG joint optimal scheduling and control
under communication constraints,” in Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, Dec. 2009, pp. 5832–5838.

[9] A. Molin, C. Ramesh, H. Esen, and K. H. Johansson, “Innovations-
based priority assignment for control over can-like networks,” in 2015
54th IEEE Conference on Decision and Control (CDC), Dec. 2015, pp.
4163–4169.

[10] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Control-aware random access
communication,” in 2016 ACM/IEEE 7th International Conference on
Cyber-Physical Systems (ICCPS), Apr. 2016.

[11] A. Molin, H. Esen, and K. H. Johansson, “Event-triggered schedul-
ing for infrastructure-supported collaborative vehicle control,” IFAC-
PapersOnLine, vol. 49, no. 22, pp. 31–36, 2016.

[12] J. Wu, Q. S. Jia, K. H. Johansson, and L. Shi, “Event-based sensor
data scheduling: Trade-off between communication rate and estimation
quality,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp.
1041–1046, Apr. 2013.

[13] B. Demirel, V. Gupta, D. E. Quevedo, and M. Johansson, “On the trade-
off between communication and control cost in event-triggered dead-beat
control,” IEEE Transactions on Automatic Control, vol. 62, no. 6, pp.
2973–2980, June 2017.

[14] B. Hu, “Self-triggering in Vehicular Networked Systems with State-
dependent Bursty Fading Channels,” ArXiv e-prints, Aug. 2017.
[Online]. Available: http://arxiv.org/abs/1708.02347

[15] T. Charalambous, A. Ozcelikkale, M. Zanon, P. Falcone, and
H. Wymeersch, “On the resource allocation problem in wireless net-
worked control system,” in IEEE Conference on Decision and Control
(CDC), Dec. 2017.

[16] C. Nowzari and J. Cortés, “Team-triggered coordination for real-time
control of networked cyber-physical systems,” IEEE Transactions on
Automatic Control, vol. 61, no. 1, pp. 34–47, Jan. 2016.

[17] M. Vilgelm, O. Ayan, S. Zoppi, and W. Kellerer, “Control-aware uplink
resource allocation for cyber-physical systems in wireless networks,”
in European Wireless 2017; 23th European Wireless Conference, May
2017, pp. 1–7.

[18] A. Katriniok, P. Kleibaum, and M. Joševski, “Distributed model predic-
tive control for intersection automation using a parallelized optimization
approach,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5940 – 5946, 2017,
20th IFAC World Congress.

[19] A. A. Malikopoulos, C. G. Cassandras, and Y. J. Zhang, “A decentralized
energy-optimal control framework for connected automated vehicles at
signal-free intersections,” Automatica, vol. 93, pp. 244–256, 2018.

[20] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Primal decomposition of
the optimal coordination of vehicles at traffic intersections,” in 2016
IEEE 55th Conference on Decision and Control (CDC), Dec. 2016, pp.
2567–2573.

[21] 5G PPP Architecture Working Group, “View on 5G
architecture (Version 2.0),” White Paper, Jul. 2017.
[Online]. Available: https://5g-ppp.eu/wp-content/uploads/
2017/07/5G-PPP-5G-Architecture-White-Paper-2-Summer-2017_
For-Public-Consultation.pdf

[22] A. Colombo and D. Del Vecchio, “Least restrictive supervisors for inter-
section collision avoidance: A scheduling approach,” IEEE Transactions
on Automatic Control, vol. 60, no. 6, pp. 1515–1527, 2015.

[23] I. Batkovic, M. Zanon, M. Ali, and P. Falcone, “Real-time constrained
trajectory planning and vehicle control for proactive autonomous driving
with road users,” submitted to European Control Conference (ECC)
2019.

[24] A. Bemporad, “Reducing conservativeness in predictive control of
constrained systems with disturbances,” in Proceedings of the 37th IEEE
Conference on Decision and Control (Cat. No.98CH36171), vol. 2, Dec.
1998, pp. 1384–1389.

[25] Joint Committee for Guides in Metrology (JCGM/WG 1), “Evaluation
of measurement data - guide to the expression of uncertainty in
measurement,” jCGM 100:2008, GUM 1995 with minor corrections,
First Edition 2008, Corrected version 2010, Bureau International des
Poids et Mesures, France. [Online]. Available: http://www.bipm.org/
utils/common/documents/jcgm/JCGM_100_2008_E.pdf

[26] M. R. Hafner and D. D. Vecchio, “Computational tools for the safety
control of a class of piecewise continuous systems with imperfect infor-
mation on a partial order,” SIAM Journal on Control and Optimization,
vol. 49, no. 6, pp. 2463–2493, 2011.

[27] M. R. Hafner, D. Cunningham, L. Caminiti, and D. D. Vecchio, “Cooper-
ative collision avoidance at intersections: Algorithms and experiments,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3,
pp. 1162–1175, Sep. 2013.

[28] J. Maciejowski, Predictive Control with Constraints. England.: Prentice
Hall, 2002.



12

Erik Steinmetz received his M.Sc. degree in Electri-
cal Engineering from Chalmers University of Tech-
nology, Sweden, in 2009. He is currently a research
and development engineer with RISE Research In-
stitutes of Sweden. He is also affiliated with the
Department of Electrical Engineering at Chalmers
University of Technology, where he is working
towards his Ph.D. degree. His research interests
include positioning, sensor fusion, communication
and controls applied within the fields of intelligent
vehicles and cooperative automated driving.

Robert Hult received B.S. degree in Mechanical
Engineering in 2011, and the M.Sc. in Systems, Con-
trol and Mechatronics in 2013, both from Chalmers
University of Technology, Sweden, where he is
currently pursuing the Ph.D. degree. His current
research interests include distributed and cooperative
predictive control, in particular with applications to
cooperative vehicles and intelligent transportation
systems.

Zhenhua Zou received his Ph.D. degree at the
School of Electrical Engineering, KTH The Royal
Institute of Technology, Sweden in 2014. He was a
postdoc researcher at Chalmers University of tech-
nology in 2015. His research interest was about
control, optimization and learning algorithms over
communication networks. He is now at Ericsson
Research.

Ragne Emardson received his M.Sc. in Computer
Science and Engineering and Ph.D. in Electrical
Engineering from Chalmers University of Technol-
ogy in 1992 and 1998 respectively. From 1998 to
2000, he was a postdoctoral researcher with the
Jet Propulsion Laboratory, California Institute of
Technology. He has also held positions with Ericsson
Mobile Data Design, Saab Ericsson Space and RISE
Research Institutes of Sweden. Currently, he is dean
of faculty at University of Borås. His research in-
terests include Global Navigation Satellite Systems,

mathematical modeling, and measurement uncertainty evaluation.

Fredrik Brännström received the M.Sc. degree
from Luleå University of Technology, Luleå, Swe-
den, in 1998, and the Ph.D. degree in Communi-
cation Theory from the Department of Computer
Engineering, Chalmers University of Technology,
Gothenburg, Sweden, in 2004. From 2004 to 2006,
he was a Post-Doctoral Researcher at the Depart-
ment of Signals and Systems, Chalmers University
of Technology. From 2006 to 2010, he was a Prin-
cipal Design Engineer with Quantenna Communi-
cations, Inc., Fremont, CA, USA. He is currently

Professor and Head of Communication Systems Group, Department of Elec-
trical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
His current research interests include algorithms, resource allocation, synchro-
nization, antenna concepts, and protocol design for vehicular communication
systems, as well as different applications of coding.

Paolo Falcone received his Ph.D. degree in Infor-
mation Technology in 2007 from the University of
Sannio, in Benevento, Italy. He is a Professor at
the Department of Electrical Engineering, Chalmers
University of Technology, Sweden. His research
focuses on constrained optimal control, applied to
autonomous and semi-autonomous mobile systems,
cooperative driving and intelligent vehicles. He is
involved in several projects, in cooperation with in-
dustry, focusing on autonomous driving, cooperative
driving and vehicle dynamics control.

Henk Wymeersch (S’99, M’05) is a Professor
with the Department of Electrical Engineering at
Chalmers University of Technology, Sweden. Prior
to joining Chalmers, he was a postdoctoral re-
searcher from 2005 until 2009 with the Laboratory
for Information and Decision Systems at the Mas-
sachusetts Institute of Technology. Henk Wymeersch
obtained the Ph.D. degree in Electrical Engineer-
ing/Applied sciences in 2005 from Ghent University,
Belgium. He served as Associate Editor for IEEE
Communication Letters (2009-2013), IEEE Trans-

actions on Wireless Communications (since 2013), and IEEE Transactions on
Communications (since 2016). He is the author of Iterative Receiver Design
(Cambridge University Press, 2007). His current research interests include
cooperative systems and intelligent transportation.


