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Abstract—In the past, NLOS propagation was proven to be a
source of distortion for radio-based positioning systems due to
the lack of temporal and spatial resolution of previous cellular
systems. Hence every NLOS component was perceived as a
perturbation for localization. Even though 5G is not yet stan-
dardized, a strong proposal, which has the potential to overcome
the problem of limited temporal and spatial resolution, is the
massive MIMO millimeter wave technology. We reconsider the
role of NLOS components for position and orientation estimation
in 5G millimeter wave MIMO systems. Our analysis is based on
the concept of Fisher information. We show that, for sufficiently
high temporal and spatial resolution, NLOS components always
provide position and orientation information which consequently
increases the position and orientation estimation accuracy. Addi-
tionally, we show that the information gain of NLOS components
depends on the actual location of the reflector or scatter. Our
numerical examples suggest that NLOS components are most
informative about the position and orientation of a mobile
terminal when the corresponding reflectors or scatterers are
illuminated with narrow beams.

Index Terms—5G, millimeter wave communication, MIMO,
position error bound, Fisher information

I. INTRODUCTION

A. Motivation and State of the Art

IN many conventional wireless networks, multipath (MP)
propagation is considered as a distorting effect, which

cannot be leveraged for positioning of network nodes, when no
prior information regarding the location of the corresponding
point of incidence1 is available [1]–[5]. The reason is that
the information enclosed in the waveform of the received
signal is not rich enough to resolve the non-line-of-sight
(NLOS) components in space and time. The fifth generation
(5G) networks are expected to use signals in the millimeter
wave (mmWave) band [6] and employ massive multiple input
multiple output (MIMO) to compensate for the high path loss
[7], [8]. Particularly, mmWave MIMO systems operate at a
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1In order to cover both reflectors and scatterers, we use the term point of
incidence in place of the location of a scatterer and the point of reflection of
a reflector.

carrier frequency beyond 28 GHz using a large number of
antennas at the base station and the mobile terminal [6], [9]–
[12]. In the mmWave band, large contiguous frequency blocks
are available which enable the support of high data rates [8],
[13]. The large bandwidth in the mmWave band [12] results in
high temporal resolution [14]. Moreover, the short wavelength
of mmWave signals makes it possible to accommodate a
large number of antennas in a small area [9], [15]. Hence
large antenna arrays can be expected for base stations as
well as mobile terminals. Large antenna arrays, in turn, allow
for extremely narrow beams which enable accurate spatial
resolution in the angular domain [16], [17]. Even though the
positioning capabilities of mmWave MIMO in 5G are not
yet fully explored, the high temporal and spatial resolutions
of mmWave MIMO systems suggest that NLOS components
can be resolved and harnessed for position and orientation
estimation.

The fundamental limits of position and orientation estima-
tion using mmWave MIMO in 5G have been recently investi-
gated in [18]–[20]. In [18], a single anchor localization scheme
was presented for indoor scenarios. The Fisher information
matrix (FIM) of the position and orientation parameters as well
as the NLOS parameters was presented. Based on this FIM, the
position error bound (PEB) and orientation error bound (OEB)
were derived numerically for different array configurations. It
was shown in [18] that increasing the number of antenna array
elements increases the localization accuracy. In [19], the FIM
of all channel parameters was presented. Using the geometric
relationship of the channel parameters and the position and
orientation-related parameters, the FIM of the position and
orientation-related parameters was derived in closed-form.
Moreover, the PEB and the OEB were determined numerically,
and algorithms which attain the previously determined bounds
were also presented. It was shown numerically that even
in the absence of the line-of-sight (LOS) path, positioning
with reasonable accuracy is possible. In [20], fundamental
limits of position and orientation estimation for uplink and
downlink in 3D-space were presented. The FIM of the channel
parameters was derived in a closed form similar to [19], which
provided the FIM of the 2D channel parameters. Moreover,
the structure of this FIM was analyzed and it was shown to
become block diagonal when the bandwidth and the number of
receive and transmit antennas are sufficiently large. In contrast
to [19], which considered uniform linear arrays, [20] presented
the derivation of the PEB and the OEB in closed-form for
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arbitrary antenna array structure. The PEB and the OEB were
derived in a similar manner compared to [19]. In addition, the
influence of different array types on the PEB and the OEB was
investigated. Moreover, differences in the uplink and downlink
were also considered in [20].

NLOS components have already been proven to be useful
for indoor navigation [21]–[25]. In [21], [22], a two-stage
approach is adopted to estimate and track the position of
a mobile terminal and the positions of the so-called virtual
anchors. Virtual anchors mimic an LOS transmission for every
NLOS component. In the first stage of the approach in [21],
[22], the complex channel gains and delays are determined.
Based on these results, the position of the mobile terminal and
the locations of the virtual anchors are estimated and tracked.
The approaches in [23]–[25] leverage the huge bandwidth
of ultra-wideband (UWB) signals in order to resolve NLOS
components in time. NLOS components can be associated
with virtual anchors using, e.g., belief propagation [23] or
optimal sub-pattern assignment [24]. In order to reliably
associate NLOS components with virtual anchors, multiple
observations and mobility of the receiver are required. Virtual
anchors and the unknown position of the mobile terminal are
tracked over time using different filters such as, e.g., belief
propagation [23], [26] or the extended Kalman filter [24]. The
key difference of mmWave MIMO schemes in comparison to
the works in [21]–[25] is that the former methods do not rely
on the mobility of the mobile terminal to harness information
from NLOS components. A snapshot (one transmission burst
from the base station) is sufficient to exploit the information
which NLOS components provide.

B. Contribution and Paper Organization

In [18]–[20], it was numerically shown that position and
orientation estimation accuracy can benefit from NLOS com-
ponents. However, the influence of the location of the base
station, mobile terminal, and points of incidence of NLOS
components is not well understood. The convoluted structure
of the FIM of the channel parameters makes the analysis of
the impact of NLOS components complicated. In our work, we
build upon [20] and employ a simplified FIM of the channel
parameters. Using a geometric transformation like in [19],
[20], we obtain a simplified FIM in the position, orientation,
and points of incidence domain. In order to study the impact of
NLOS components on the position and orientation estimation
accuracy, we use the notion of the equivalent FIM (EFIM)
[27]. Firstly, we determine the EFIM of the position and
orientation. Then, we decompose this EFIM in order to analyze
and reveal the impact of NLOS components. Our contributions
are summarized as follows:

• Assuming a large number of receive and transmit anten-
nas as well as a large bandwidth, we derive an expression
for the EFIM of the position and orientation, and we
show that this EFIM can be written as the sum of rank
one matrices, where each NLOS component contributes

a distinct rank one matrix to the EFIM.2

• We show that this contribution from each NLOS com-
ponent increases the position and orientation information
content in the EFIM, and thus reduces the PEB and OEB.
We show that NLOS components provide significant
position and orientation information if and only if angle-
of-arrival (AOA), angle-of-departure (AOD), and time-of-
arrival (TOA) can be estimated accurately.

• We derive the amount and direction of information3 in a
closed form showing its relation to the geometry.

The rest of the paper is organized as follows. Section II
discusses our system model, and Section III reviews the
simplified FIM of the channel parameters from [20]. Our main
results are presented in Section IV, where we derive the EFIM
of the position and orientation, decompose the EFIM, and
present the information gain from NLOS components. Section
V contains numerical examples. The paper is concluded in
Section VI.

Notation: Throughout this paper, we will stick to the follow-
ing notational conventions. Scalars are denoted in italic, e.g., x.
Lower case boldface indicates a column vector, e.g., x, while
upper case boldface denotes a matrix, e.g., X. Matrix elements
are denoted by [X]i,j where i refers to rows and j refers to
columns, while [X]i:l,j:k selects the sub-matrix of X between
the rows i to l and the columns j to k. Matrix transpose is
indicated by superscript T, e.g., XT, while the superscript
H refers to the transpose conjugate complex. Matrix trace is
expressed by tr(X) and matrix determinant is indicated as
|X|. The Euclidean norm is denoted by ‖·‖, e.g., ‖x‖.

II. SYSTEM MODEL

In this section, we first describe the geometry of the
considered problem. Secondly, we specify the transmitter and
the channel models. We conclude the section with the model
of the receiver and a discussion on system-level aspects.

A. Geometry

We consider a mobile terminal which aims to estimate
its own location and orientation in 2D space, based on the
downlink signal received from the base station. The position
and orientation of the base station are perfectly known to the
mobile terminal. This information can be piggybacked in the
header of a package without increasing the overhead notably.
Even though our analysis is focused on downlink position and
orientation estimation, the estimation could also be carried out
in the uplink as presented in [20]. We assume that mobile
terminal and base station are synchronized4. An illustration
of the scenario is depicted in Fig. 1. The base station and

2Note that if a larger object is illuminated by the base station and multiple
paths are reflected towards the mobile terminal, each path will contribute a
distinct rank one matrix to the EFIM given that the paths are resolvable in
the temporal or angular domain.

3Since Fisher information is a multidimensional concept, information can
be represented as eigenvalue-eigenvector pairs of the (E)FIM [2], [3]. We refer
to the eigenvalue as the gain of information and the angle of the eigenvector
as the direction of information.

4The synchronization assumption can be eliminated by considering a two-
way protocol [28], [29].
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Fig. 1: Geometry of the scenario - A mobile terminal with unknown
position and orientation attempts to localize itself and determine its
orientation using the signal received from a base station. The base
station has known location and orientation. Single-bounce NLOS
paths and a direct path are considered.

mobile terminal are equipped with an array of NTX transmit
antennas and NRX receive antennas, respectively. The array of
the base station has arbitrary but known geometry. We denote
the orientation of the base station array by φ. The centroids
of the base station and mobile terminal arrays are located at
the positions q = [qx, qy]T and p = [px, py]T, respectively.
We assume that the array geometry of the mobile terminal is
known while the orientation α of the array is unknown.

B. Transmitter Model

We consider mmWave in combination with massive MIMO.
In particular, the transmitter transmits s̃(t) ,

√
EsFs(t),

where Es denotes the energy per symbol, F , [f1, f2, ..., fNB ]
is a precoding matrix with NB transmitted beams, and s(t) ,
[s1(t), ..., sNB

(t)]T is the vector of pilot signals. The pilot
signal of the lth beam is given by

sl(t) ,
Ns−1∑
m=0

dl,mp(t−mTs), (1)

where Ns denotes the number of pilot symbols per beam, Ts
is the symbol duration, dl,m the mth unit energy pilot symbol
which is transmitted over the lth beam with the unit energy
pulse p(t). We assume that the pilot symbols dl,m,∀l,m are
independent and identically distributed (IID) with zero mean
and known to the receiver. The lth column of F contains a
directional beam pointing towards the azimuth angle θBF,l

fl(θBF,l) ,
1√
NB

aTX,l(θBF,l), (2)

here, aTX,l is the unit-norm array response vector given by
[30]

aTX,l(θBF,l) ,
1√
NTX

exp(−j∆T
TXk(θBF,l)), (3)

where k(θBF,l) = 2π
λ [cos(θBF,l), sin(θBF,l)]

T is the
wavenumber vector, λ is the wavelength, ∆TX ,
[uTX,1,uTX,2, ...,uTX,NTX

] is a 2×NTX matrix which con-
tains the positions of the transmit antenna elements in 2D
Cartesian coordinates in its columns, i.e. the nth column of
∆TX is given by uTX,n , [xTX,n, yTX,n]T. To normalize the
transmitted power, we set tr

(
FHF

)
= 1 and E

{
s(t)s(t)H

}
=

INB
, where INB

is the NB-dimensional identity matrix.

C. Channel Model
We assume K ≥ 1 distinct paths between the base sta-

tion and the mobile terminal. When using mmWave massive
MIMO, the number of paths is small [9]. The LOS path - if
it exists - is denoted by k = 0, while k > 0 correspond to
NLOS components. Note that we assume perfect knowledge
regarding the presence of an LOS path. Due to the large path
loss in the mmWave band, the received power of NLOS paths
is significantly lower than that of the LOS path [31], and the
LOS path can be detected reliably. In addition, due to the
high path loss and the high directionality of the transmitted
beams, NLOS components are assumed to originate from
single-bounce scattering or reflection only [1], [18], [19], [32].
Scatterers are objects that are much smaller than the wave-
length of the signal, while reflectors are objects with a specific
reflection point that are much larger than the wavelength of
the signal. We denote the reflecting point and the location
of the scatterer by the point of incidence sk = [sx,k, sy,k]T.
Considering Fig. 1, it can be seen that each path is associated
with three distinct channel parameters, namely AOA, AOD,
and TOA, where AOA, AOD, and TOA of the kth path are
denoted by θRX,k, θTX,k, and τk, respectively. Assuming a
narrow-band array model5, the channel impulse response is
given by

H(t) =

K−1∑
k=0

√
NRXNTXhkaRX,k(θRX,k)aHTX,k(θTX,k)︸ ︷︷ ︸

Hk

× δ (t− τk) ,

(4)

where hk = hR,k + jhI,k is the complex path gain while
aTX,k(θTX,k) and aRX,k(θRX,k) denote the unit-norm array
response vectors of the kth path at the transmitter and receiver,
respectively. We emphasize that θBF,l determines the angle
of lth transmitted beam, while θTX,k describes the angle
between base station and the kth point of incidence. Note that
aTX,k(θTX,k) is explicitly defined in (3), while aRX,k(θRX,k)
can be defined analogously by (3) with appropriate subscripts.
Bear in mind that paths may have angular spreads which
can be included in the estimation problem [33]. However, no
angular spreads are considered in this work.

D. Receiver Model
The noisy observed signal at the receiver is given by

r(t) ,
K−1∑
k=0

√
EsHkFs(t− τk) + n(t), t ∈ [0, NsTs], (5)

5We assume that Amax << c/B, where Amax is the maximum array
aperture size, c is the speed of light, and B is the system bandwidth.
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where n(t) = [n1(t), n2(t), ..., nNRX
(t)]T is zero-mean ad-

ditive white Gaussian noise (AWGN) with power spectral
density (PSD) N0. Similar to [34], [35], we assume that a
low-noise amplifier and a passband filter are attached to every
receive antenna. This assumption might seem restrictive for
the practical application, yet it simplifies the analysis of the
EFIM. It can be regarded as the receiver architecture which
results in the lowest PEB and OEB.

E. System-Level Aspects

In this paper, localization is considered in the downlink. In
the uplink, the orientation of the mobile terminal influences the
positioning accuracy. In certain scenarios, similar results can
be obtained when compared to the downlink. A comprehensive
comparison of uplink and downlink localization in 5G is
considered in [20].

Localization can be performed during the initial access
or the in-service phase. During the initial access phase, the
environment is typically scanned by multiple beams in order
to identify suitable beam patterns [36]. In this phase, no
additional information regarding the location of the mobile
terminal or the scatterers or reflectors is necessary to perform
positioning. Only the multipath components of the reflectors or
scatterers which are illuminated by these beams are received
by the mobile terminal. From these components, the positions
of the respective reflectors or scatterers can be estimated and
stored in a map. If this map is known to the base station during
the in-service phase, the beamforming vectors can be chosen
such that the scatterers or reflectors are illuminated in order
to increase the positioning accuracy of the mobile terminal or
the capacity of the link.

III. FISHER INFORMATION MATRIX OF THE CHANNEL
PARAMETERS

In this section, we first define the estimation problem
and state the FIM of the channel parameters. We conclude
the section with a brief summary of the results from [20],
which allow for a simplification of the FIM of the channel
parameters.

A. Definition

We first define the vector of channel parameters

η , [θT
RX,θ

T
TX, τ

T,hT
R,h

T
I ]T, (6)

where we collect the AOAs, AODs, TOAs, and channel gains
in the vectors θRX , [θRX,0, θRX,1, ..., θRX,K−1]T, θTX ,
[θTX,0, θTX,1, ..., θTX,K−1]T, τ , [τ0, τ1, ..., τK−1]T, hR ,
[hR,0, hR,1, ..., hR,K−1]T, and hI , [hI,0, hI,1, ..., hI,K−1]T,
respectively. The corresponding FIM is given by

Jη ,


JθRXθRX JθRXθTX · · · JθRXhI

JT
θRXθTX

. . . · · ·
...

... · · ·
. . .

...
JT
θRXhI

· · · · · · JhIhI

 , (7)

where each entry of the FIM of the channel parameters can
be computed according to6 [37]

[Jη]u,v ,
1

N0

∫ NsTs

0

Ea

[
R

{
∂µH

η (t)

∂[η]u

∂µη(t)

∂[η]v

}]
dt. (8)

In (8), Ea [·] denotes the expectation with respect to the pilot
symbols, R {·} is the real part of the argument, and µη(t) is
defined as the noise-free observation which can be obtained
from (5) as

µη(t) =

K−1∑
k=0

√
EsHkFs(t− τk). (9)

The FIM is related to the estimation error covariance matrix
of any unbiased estimator via the information inequality [38]–
[40]

E
[
(η − η̂)(η − η̂)T

]
� J−1

η , (10)

where η̂ is the estimate of η and A � B is equivalent to
A−B being positive semi-definite. The inequality in (10) is
the well-known Cramér-Rao lower bound (CRLB).

B. Simplification

The blocks of the FIM in (7) obey certain scaling laws
when the number of receive and transmit antennas, as well
as the bandwidth become sufficiently large7. In particular, it
was shown in [20, Section III-B] that some blocks can be well
approximated by diagonal matrices, while others become zero
matrices. In the following, we provide a brief summary of the
results from [20].

Let IK and 0K be the K ×K identity and all-zeros matrix,
respectively. We denote the Hadamard product by �, and make
the following remarks:

1) Since the AOAs of the different paths are assumed to be
distinct, the steering vectors at the receiver do not inter-
act considerably with each other, i.e.

∥∥aH
RX,uaRX,v

∥∥�∥∥aH
RX,ua

H
RX,u

∥∥ , u 6= v. Hence AOAs can be estimated
independently, i.e. J̃θRXθRX ≈ IK � JθRXθRX .

2) The transmitted beams have no spatial cross-correlation
and hence AODs can be estimated independently, i.e.
J̃θTXθTX

≈ IK � JθTXθTX
.

3) The NLOS cross-correlation vanishes as the bandwidth
of the signal becomes large since the paths can be
resolved independently in time, i.e. J̃ττ ≈ IK � Jττ .

4) As a consequence of the previous results, the channel
gains can be estimated independently, i.e. J̃hRhR

≈ IK�
JhRhR

and J̃hIhI
≈ IK � JhIhI

.
5) All off-diagonal blocks, except for JθTXhR and JθTXhI ,

in (7) become zero. It was shown in [20] that the real and
imaginary parts of the kth channel gain couple only with
the AOD of the kth path, i.e. J̃θTXhR

≈ IK � JθTXhR

and J̃θTXhI
≈ IK � JθTXhI

.

6This result holds whenever the signal is observed under AWGN.
7It was shown numerically in [20] that the approximation error of the

PEB due to the simplification of the FIM is fairly small even under realistic
assumption on the bandwidth (B = 125 MHz) and the 2D array sizes
(NTX/RX = 12× 12).
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Thus, when the bandwidth of the signal is large and number
of receive and transmit antennas is also large, Jη can be well
approximated by

J̃η ,


J̃θRXθRX

0K 0K 0K 0K

0K J̃θTXθTX
0K J̃θTXhR

J̃θTXhI

0K 0K J̃ττ 0K 0K

0K J̃T
θTXhR

0K J̃hRhR
0K

0K J̃T
θTXhI

0K 0K J̃hIhI

 . (11)

IV. FISHER INFORMATION MATRIX OF THE
POSITION-RELATED PARAMETERS

Motivated by the findings discussed in the previous subsec-
tion, we first reorder the parameters of the simplified FIM J̃η

in (11). Subsequently, we transform the resulting FIM to the
position, orientation, and point of incidence domain. Then, we
determine the EFIM of the position and orientation, which we
decompose to analyze the impact of the LOS and NLOS paths.

A. Derivation of the EFIM

For mathematical convenience, we reorder the parameter
vector η as follows

η̃ ,
[
η̃T

0 , ..., η̃
T
K−1

]T
, (12)

where η̃k , [τk, θTX,k, hR,k, hI,k, θRX,k]T. Reordering the
parameter vector of the FIM results in a permutation of the
entries of the FIM in (11). The reordered FIM is given by

Jη̃ , PπJ̃η, (13)

where Pπ is a permutation matrix of size 5K × 5K which is
given by

Pπ , [Pπ,1, ...,Pπ,K ]T, (14)

where Pπ,i = [e2K+i, eK+i, e3K+i, e4K+i] and ek denotes
the kth unit vector of the standard basis of appropriate length.
Hence the FIM of the channel parameters has the following
structure

Jη̃ = blkdiag
(
Jη̆0

, ...,Jη̆K−1

)
. (15)

The FIM block Jη̃k of the kth path is given by

Jη̃k ,



σ−2
τk

0 0

0

 σ̃
−2
θTX,k

bR,k bI,k
bR,k σ−2

hR,k
0

bI,k 0 σ−2
hI,k


︸ ︷︷ ︸

JθTX,khk

0

0 0 σ−2
θRX,k


, (16)

where we abbreviate the diagonal entries of the reordered
FIM matrix of the channel parameters by the respective σ−2-
terms, while bR,k and bI,k denote the corresponding entries
of J̃θTXhR

and J̃θTXhI
, respectively. Since, for position and

orientation estimation, we are mainly interested in the triplets
of AOA, AOD, and TOA of every path, we combine the
uncertainty of hR,k and hI,k in the AOD-related term. For
that, we will use the notion of the EFIM to consider only
the information concerning AOA, AOD, and TOA. The EFIM

is a measure of the information corresponding to certain
parameters, while accounting for the uncertainties of other
(unknown) parameters.

Definition 1. Given a parameter vector ξ , [ξT
1 , ξ

T
2 ]T with

corresponding FIM

Jξ ,

[
Jξ1ξ1

Jξ1ξ2

JT
ξ1ξ2

Jξ2ξ2

]
, (17)

the EFIM of ξ1 is obtained by [41]

Je
ξ1

, Jξ1ξ1
− Jξ1ξ2

J−1
ξ2ξ2

JT
ξ1ξ2

. (18)

Intuitively, the fact that the parameters of ξ2 are not perfectly
known, leads to a loss in information which is quantified by
Jξ1ξ2

J−1
ξ2ξ2

JT
ξ1ξ2

.

Using (16) and (18), the EFIM of JθTX,khk with respect to
θTX,k is given by

Je
θTX,k

=
1

σ̃2
θTX,k

−
(
b2R,kσ

2
hR,k

+ b2I,kσ
2
hI,k

)
,

1

σ2
θTX,k

. (19)

Hence the (E)FIM8 of the kth path is given by
Jη̄k , diag

(
1/σ2

τk
, 1/σ2

θTX,k
, 1/σ2

θRX,k

)
, where

η̄k = [τk, θTX,k, θRX,k]T. For notational convenicence, we
define Jη̄LOS

, Jη̄0
and Jη̄NLOS

, blkdiag
(
Jη̄1

, ...,Jη̄K−1

)
.

Consequently, the FIM of all paths is given by

Jη̄ , blkdiag
(
Jη̄LOS

,Jη̄NLOS

)
. (20)

Each σ2-term reflects the quality of the parameter estimation
of the respective parameter, e.g., large σ2

τ0 means that the
TOA of the first path cannot be estimated accurately. Note
that the σ2-terms in (20) depend on the number of antennas,
beamforming, bandwidth, and receiver location, as evaluated
and analyzed in [20]. Note that our model assumes specular
reflection or scattering. However, if paths are close in angle
and delay, then they should be merged into a single path with
the sum of the complex gains or modeled as a cluster. The
Fisher information which is contributed by such a sum of
similar paths or a cluster would be smaller than the information
from a path with specular reflection or scattering. To account
for this, additional measurement noise can be considered, i.e.
the σ2-terms in (16) can be increased.

Finally, we transform the FIM in (20) to the position, orien-
tation, and point of incidence domain using the geometric rela-
tionships between the channel parameters η̄ = [η̄0, ..., η̄K−1]
and η̆ , [pT, α, sT

1 , ..., s
T
K−1]T. In particular, the FIM of the

position-related parameters is given by [37]

Jη̆ , TJη̄TT, (21)

where T , ∂η̄T

∂η̆ .
Remark: We normalize the units of the position-related and

orientation-related entries in the transformation matrix by 1
m and 1 rad, respectively, in order to avoid a mixed-units
FIM of the position, orientation, and points of incidence after
the transformation. After the (normalized) transformation, the

8We slightly abuse the notation here since we denote the EFIM Je
η̄k

by
Jη̄k and call it FIM to avoid confusion with another EFIM later on.
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Υn,m(θ, φ, ρ) ,

 cos2(θ + φ) (−1)n sin(θ) cos(θ) (−1)mρ sin(θ)
(−1)n sin(θ) cos(θ) sin2(θ + φ) (−1)m+1ρ cos(θ)

(−1)mρ sin(θ) (−1)m+1ρ cos(θ) ρ2

 (22)

FIM of the position, orientation, and points of incidence will
be dimensionless, which allows us to employ the standard
inner product (dot product) to define the norm of a vector. For
notational convenience, we omit the normalization constants
(1 m and 1 rad).

Lemma 1. The transformation matrix T is an upper triangle
block-matrix

T ,


T

(0)
P T

(1)
P · · · T

(K−1)
P

0 Ts1 · · · 0
...

...
. . .

...
0 0 · · · TsK−1

 ,

[
A B
0 D

]
, (23)

where [19]

T
(k)
P =

[
∂τk/∂p ∂θTX,k/∂p ∂θRX,k/∂p
∂τk/∂α ∂θTX,k/∂α ∂θRX,k/∂α

]
(24)

and

Tsk =
[
∂τk/∂sk ∂θTX,k/∂sk ∂θRX,k/∂sk

]
. (25)

The individual elements are summarized in Appendix A.

Lemma 2. The FIM of the position-related parameters is
given by

Jη̆ =

[
AJη̄LOS

AT + BJη̄NLOS
BT BJη̄NLOS

DT

DJη̄NLOS
BT DJη̄NLOS

DT

]
. (26)

Proof. Evaluate (21) using Lemma 1.

Defining η̆p,α , [pT, α]T, we obtain the EFIM of the
position and orientation using (18) and (26) from Lemma 2

Je
η̆p,α

= AJη̄LOS
AT︸ ︷︷ ︸

,Ã(G) - LOS info gain

+ BJη̄NLOS
BT︸ ︷︷ ︸

,B̃(G) - NLOS info gain

−BJη̄NLOS
DT(DJη̄NLOS

DT)−1DJη̄NLOS
BT︸ ︷︷ ︸

,B̃(L) - NLOS info loss

.
(27)

It becomes evident that the EFIM is composed of three terms.
The first term Ã(G) quantifies the information gain from the
LOS path. The second term B̃(G) quantifies the information
gain from the NLOS components. Finally, the third term
B̃(L) specifies the loss of information which accounts for the
fact that the points of incident of NLOS paths are unknown.
Considering the structure of Jη̄ and T the NLOS info gain
and loss can be written as

B̃(G) =

K−1∑
k=1

T
(k)
P Jη̄k

(
T

(k)
P

)T

, (28)

and

B̃(L) =

K−1∑
k=1

T
(k)
P Jη̄k (Tsk)

T
(
TskJη̄k (Tsk)

T
)−1

×TskJη̄k

(
T

(k)
P

)T

,

(29)

respectively.
Interpretation: The term in (28) reflects the gain of in-

formation from NLOS components if the positions of the
corresponding points of incident sk were perfectly known.
Since the position of each point of incidence has to be
estimated as well, the estimation uncertainty leads to a loss
of information which is quantified in (29).

Outline: In the following, we decompose the terms A(G)

and B(N) = B(G) −B(L) with the goal to express the EFIM
in (27) as the sum of rank one matrices, where each rank
one matrix is given by the outer-product of the unit-norm
eigenvector vk corresponding to the only non-zero eigenvalue
λk of the rank one matrix, i.e. Je

η̆p,α
=
∑
k λkvkv

T
k . We show

that each rank one matrix corresponding to an NLOS path is
positive semi-definite meaning that each NLOS path improves
the position and orientation estimation accuracy. For notational
convenience, we define the matrix template in (22) at the top
of this page.

B. LOS Information Gain

Using (23), the results from Appendix A, and by simple
algebra, the first term Ã(G) in (27) can be easily shown to be

Ã(G)=
1

σ2
τ0c

2
Υ0,0(θTX,0, 0, 0)︸ ︷︷ ︸

Ã
(G)
R

+
1

σ2
θTX,0

‖p− q‖2
Υ1,0(θTX,0, π/2, 0)︸ ︷︷ ︸
Ã

(G)
D

+
1

σ2
θRX,0

‖p− q‖2
Υ1,0(θTX,0, π/2, ‖p− q‖)︸ ︷︷ ︸

Ã
(G)
A

.

(30)

Proposition 1. The eigenvalues of the matrices Ã
(G)
R , Ã

(G)
D ,

and Ã
(G)
A are given by

λ
(G)
R,0 =

1

σ2
τ0c

2
, (31a)

λ
(G)
D,0 =

1

σ2
θTX,0

‖p− q‖2
, (31b)

λ
(G)
A,0 =

‖p− q‖2 + 1

σ2
θRX,0

‖p− q‖2
, (31c)

respectively. The corresponding eigenvectors are given by

v
(G)
R,0 = [cos(θTX,0), sin(θTX,0), 0]T, (32a)

v
(G)
D,0 = [− sin(θTX,0), cos(θTX,0), 0]T, (32b)

v
(G)
A,0 = v

(G)
A,0 [sin(θTX,0),− cos(θTX,0), ‖p− q‖]T , (32c)
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θTX,0 θRX,0 τ0 p α

×
√ √

× ×√
×

√ √
×√ √

× ×
√

TABLE I: Relationship between the channel parameters θTX,0, θRX,0,
τ0 and the identifiably of the position p and orientation α. For
instance (1st row), if θTX,0 cannot be estimated, neither the position
p nor the orientation α can be identified.

where v
(G)
A,0 =

√
1/(1 + ‖p− q‖2) ensures that v

(G)
A,0 is

unit-norm. It is immediately obvious that all eigenvalues are
positive.

Proof. See Appendix B.

Interpretation: TOA, AOD, and AOA of the LOS path
contribute information to the EFIM. Each of these quantities
provides information in one direction, where the direction is
given by the eigenvector corresponding to the non-zero eigen-
value. When the variance of a channel parameter (e.g, σ2

θTX,0
)

is finite, information is contributed to the EFIM. For infinite
variance, no information is contributed, i.e. the parameter is
missing in the estimation problem. We summarize the cases
where one parameter is missing in TABLE I, where ’×’ means
that the parameter is missing or cannot be determined and ’

√
’

means that the parameter is available or can be determined.
Note that these observations can also be obtained from the
equations which relate the channel parameters to the position
(p = q + τ0c[cos(θTX,0), sin(θTX,0)]T ) and the orientation
(α = π + θTX,0 − θRX,0). Considering (31b) and (31c),
we see that the information gain reduces as the separation
between base station and mobile terminal increases. For a large
separation, AOA provides only orientation information since
the x-y components of the eigenvector in (32c) go to zero. In
that case, the amount of orientation information is given by
1/σ2

θRX,0
.

C. NLOS Information Gain

Similar to the previous section, we decompose the informa-
tion matrices of NLOS paths using (23) and the results from
Appendix A.

Lemma 3. The NLOS information gain matrix is given by

B̃(G)=

K−1∑
k=1

1

σ2
τk
c2

Υ0,0(θRX,k, 0, 0)︸ ︷︷ ︸
B̃

(G)
R,k

.

+
1

σ2
θRX,k

‖p−sk‖2
Υ1,1(θRX,k, π/2, ‖p−sk‖)︸ ︷︷ ︸

B̃
(G)
A,k

.

(33)

Proof. See Appendix C-A.

Note that the matrices B̃
(G)
R,k and B̃

(G)
A,k have the similar

structure as Ã
(G)
R and Ã

(G)
A , respectively. Hence the eigen-

values and eigenvectors have similar structure as well, and are
given by

λ
(G)
R,k =

1

σ2
τk
c2
, (34a)

λ
(G)
A,k =

‖p− sk‖2 + 1

σ2
θRX,k

‖p− sk‖2
, (34b)

and

v
(G)
R,k = [cos(θRX,k), sin(θRX,k), 0]T, (35a)

v
(G)
A,k = v

(G)
A,k [− sin(θRX,k), cos(θRX,k), ‖p− sk‖]T , (35b)

respectively. The term v
(G)
A,k =

√
1/(1 + ‖p− sk‖2) normal-

izes the eigenvector.
Interpretation: AOA and TOA of each NLOS component

contribute to the EFIM. The eigenvalues can be interpreted as
the achievable information gains if the points of incidence
were perfectly known. From (35a), we see that TOA pro-
vides only position information. From (35b), we deduce that
AOA provides both position and orientation information. The
term in (34b) suggests that the information gain of NLOS
components decreases as the separation between the mobile
terminal and point of incidence increases. For large distances,
the information gain converges to the inverse of the AOA
estimation accuracy 1/σ2

RX,k. Observe that in this case, a
NLOS component provides mostly orientation information,
since the x-y components of the eigenvector in (35b) go
to zero. Note that AOD estimation does not provide any
information gain. However, we will see in the next section
that the quality of the AOD estimation strongly influences the
information loss.

D. NLOS Information Loss

The NLOS information loss matrix is not as obvious to
decompose as the previous decompositions since it involves
multiple matrix-matrix products including the inverse of a
matrix-matrix product. In the following, we will present the
results of the decomposition.

Lemma 4. The NLOS information loss matrix is given by

B̃(L) =

K−1∑
k=1

w
(L)
R,kΥ0,0(θTX,0, 0, 0)︸ ︷︷ ︸

B̃
(L)
R,k

+ w
(L)
A,kΥ1,1(θRX,k, π/2, ‖p− sk‖)︸ ︷︷ ︸

B̃
(L)
A,k

− γskB
(L)
k ,

(36)

where the weights9 w
(L)
R,k, w

(L)
A,k and γsk , and the matrix B

(L)
k

are defined in Appendix C-B.

Proof. See Appendix C-B.

9Each weight is a function of (θTX,k, θRX,k, τk, σ
2
θTX,k

, σ2
θRX,k

, σ2
τk
,p,

q, sk). To simplify notation, we dropped the arguments.
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λsk ,
2 + ‖p− sk‖2 (1 + cos(∆θk))

(1− cos(∆θk))c2σ2
τk

+ (1 + cos(∆θk))(‖p− sk‖2 σ2
θRX,k

+ ‖q− sk‖2 σ2
θTX,k

)
(37)

Interpretation: The information loss of each path is com-
posed of three terms. Comparing (33) and (36), we see that
the first two terms of every path k have the same structure.
In particular, the TOA information gain B̃

(G)
R,k and loss B̃

(L)
R,k

only differ in the weights. The same holds for the AOA
information gain B̃

(G)
A,k and loss B̃

(L)
A,k. Hence each information

gain and loss pair has eigenvectors that are pointing in the
same direction. Yet, the eigenvalues have opposite signs. For
these terms, net information gains are immediately given by
the differences of the respective weights. On the other hand,
the third term has eigenvectors which are not aligned with any
other eigenvectors. In the following subsection, we will show
that combining the gain and loss matrices of every NLOS
component results in a net information gain matrix which has
only a single non-zero, positive eigenvalue.

E. Net NLOS Information Gain

Lemma 5. The net NLOS gain matrix B̃(N) , B̃(G) − B̃(L)

is given by

B̃(N) =

K−1∑
k=1

εskΥ0,0(θRX,0, 0, 0)

+ βskΥ1,1(θRX,k, π/2, ‖p− q‖)
+ γskB

(L)
k ,

(38)

where εsk , 1
σ2
τk
c2 − w

(L)
R,k and βsk , 1

σ2
θRX,k

‖p−sk‖2
− w(L)

A,k.

Proof. Applying Lemma 3 and 4, we immediately obtain (38).

We define B̃(N) ,
∑K−1
k=1 Ψsk , where

Ψsk , εskΥ0,0(θTX,0, 0, 0)+

βskΥ1,1(θRX,k, π/2, ‖p− q‖) + γskB
(L)
k .

(39)

Theorem 1. The net information gain matrix Ψsk of the kth

NLOS component is rank one. The only non-zero eigenvalue
of Ψsk is always positive and given by (37) at the top of this
page with the corresponding unit-norm eigenvector

vsk , vsk

−
εsk
γsk

cos(θRX,k)− sin(θRX,k)

− εsk
γsk

sin(θRX,k) + cos(θRX,k)

‖p− sk‖

 , (40)

where ∆θk , θRX,k − θTX,k and10 vsk =√
(1 + cos(∆θk))/(2 + ‖p− sk‖2 (1 + cos(∆θk))).

Proof. Outline: using Lemma 5, it can be shown that Ψsk

is rank one. Hence the only non-zero eigenvalue is given by
λsk = tr (Ψsk). Positivity of λsk is readily seen since all

10The normalization constant vsk can be easily verified considering
εsk
γsk

=

1−cos(∆θk)
sin(∆θk)

.

terms in (37) are non-negative, i.e. (1+cos(θRX,k−θTX,k)) ≥
0, (1 − cos(θRX,k − θTX,k)) ≥ 0, and all other terms are
positive by definition. Finally, we show that the vector vsk

in (40) is in the null space of (λskI−Ψsk). Hence vsk is
the corresponding eigenvector. The details can be found in
Appendix C-C.

Interpretation: Each NLOS component provides one di-
mensional Fisher information for all three parameters (px,
py , and α). The information of all NLOS components is
additive and, thus, contributes to the EFIM which, in turn,
reduces the position and orientation error bound. Hence NLOS
components can be harnessed to increase the position and ori-
entation estimation accuracy in 5G mmWave MIMO systems.
The amount of information gained from a NLOS component
depends strongly on the geometry (this can be seen from the
cos(∆θk)-terms in (37)), i.e. points of incidence which are
located in certain areas provide more information than points
of incidence in other areas. From the denominator in (37),
it can be seen that NLOS components provide considerable
Fisher information if and only if TOA, AOD, and AOA
can be estimated sufficiently accurate. If any of the three
quantities cannot be estimated, e.g., AOD, this is equivalent
to σ2

θTX,k
→ ∞. Hence λsk → 0 which means that the

NLOS component does not provide useful information for
position and orientation estimation. Finally, we see that points
of incidence which are close to the base station or the mobile
terminal (i.e. with small ‖q− sk‖ or ‖p− sk‖, respectively)
are more informative than points of incidence which are farther
away. Intuitively, this observation makes sense because, for
a given angular estimation accuracy, the position of a point
of incidence can be estimated better if it is close the base
station. If it is far away from the base station, a small angular
estimation error translates into a large estimation error of the
point of incidence. The same holds for the path from the point
of incidence to the mobile terminal.

Corollary 1.1. The EFIM of position and orientation is given
by the sum of the outer-products of the eigenvectors weighted
by the corresponding eigenvalues, i.e.,

Je
η̆p,α

=
∑

j∈R,D,A
λ

(G)
j,0 v

(G)
j,0

(
v

(G)
j,0

)T

+

K−1∑
k=1

λskvskv
T
sk
. (41)

Proof. Considering Lemma 1 and Theorem 1, we know that
each matrix in (27) is rank one. Since any rank one matrix can
be written as the outer-product of the unit-norm eigenvector
with itself and weighted by the only non-zero eigenvalue, (41)
follows.

Interpretation: Note that the position and orientation of the
receiver can be determined if Je

η̆p,α
is non-singular. From (41),

we observe that even in the absence of the LOS component,
unambiguous position and orientation estimation is possible
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if at least three NLOS components with distinct points of
incidence contribute to the received signal.

For illustration purposes, we consider the position com-
ponents and the orientation component of the eigenvalue-
eigenvector product λskvsk separately. This can be interpreted
as the projection of the eigenvalue-eigenvector product on the
x-y plane (position components) and on the α line (orientation
component), respectively. After a few algebraic manipulations,
it can be shown that the length of the projected eigenvalue-
eigenvector product in the x-y plane is given by

λ̃sk , λsk

√
v2
sk,x

+ v2
sk,y , (42)

where vsk,x and vsk,y denote the first and second component
of vsk , respectively. The length of the projected eigenvalue-
eigenvector product along the α line is given by

λ̄sk , λskvsk,α , (43)

where vsk,α denotes the third component of vsk . Finally, the
position error bound is defined as

PEB =

√√√√tr

{[(
Je
η̆p,α

)−1
]

1:2,1:2

}
. (44)

F. Discussion and Implications

Our findings provide insights into the problem of position
and orientation estimation in 5G mmWave MIMO. Our results
may turn out to be useful for designing position and orienta-
tion estimators. For instance, Theorem 1 revealed that every
NLOS path provides position and orientation information,
and hence every NLOS path reduces the PEB. To maximize
the estimation accuracy, a position and orientation estimator
should be designed such that all NLOS paths are considered.
On the other hand, we know from Theorem 1 that the net
NLOS information gain among paths can vary strongly, i.e.
some NLOS paths provide significantly more information than
others. To reduce the complexity of an estimator, paths with
insignificant net NLOS information gain could be neglected by
an estimator without considerable losses in terms of accuracy.
For a given observation, the problem whether to consider or
neglect a NLOS path is still an open challenge, which requires
further research.

Theorem 1 inherently implies that the position of the point
of incidence of a NLOS path can be estimated. Thus, simul-
taneous localization and mapping (SLAM) can be performed
with single transmission burst. Moreover, our results expose
some explicit laws, e.g., (40) shows that a NLOS path, whose
point of incidence is far away from the mobile terminal,
contains mainly orientation information and only marginal
position information. From Corollary 1.1, it can be seen that in
the absence of the LOS path, at least three NLOS paths lead to
a full rank EFIM. Hence NLOS-only position and orientation
estimation are possible with solely a single anchor if at least
three NLOS are available.

V. NUMERICAL EXAMPLE

In this section, we provide numerical examples for position
and orientation estimation using mmWave MIMO with typ-
ical 5G parameters. First, we describe the simulation setup.
Subsequently, we present two examples which 1) discuss the
reduction of the PEB when an NLOS path is added to the LOS
path and 2) demonstrate LOS-free, single-anchor localization.

A. Simulation Setup

We consider a mobile terminal that is located at p = [5, 5]T

with an orientation angle of α = π/2, while the base station
in located at q = [0, 0]T. In contrast to [20], we consider uni-
form linear arrays (ULAs) with half-wavelength inter-element
spacing at the transmitter and receiver that consist of NTX

and NRX = 25 antennas, respectively. The operating carrier
frequency is fc = 38 GHz. Regarding the pilot signal, we con-
sider an ideal sinc pulse with B = 125 MHz, Es/Ts = 0 dBm,
N0 = −170dBm/Hz, and Ns = 16 symbols. We assume that
NB = 50 beams are transmitted which are uniformly spaced in
the azimuth domain. In particular, the beamforming vectors11

are given by fl(θBF,l) = 1/
√
NBaTX(θBF,l), where θBF,l is

the lth element of the vector θBF = π/50 · [1, ..., 50]T . The
complex channel gains for each path are generated according
to a geometric model [43]. The gain is proportional to the
path loss and the phase is uniformly distributed. In particular,
we assume that |h0|2 = (λ/4π)2/‖p− q‖2 for the LOS path
and |hk|2 = (λ/4π)2ΓR/(‖q− sk‖ + ‖p− sk‖)2, k > 0
for NLOS paths12, where ΓR = 0.7. The theoretical results
presented in the previous sections also hold for other sets of
parameters as long as the FIM of the channel parameters is
almost diagonal [20].

B. Example 1

We consider the LOS path and one NLOS path in this
example. The reflector, which causes the NLOS path, is moved
in the x-y plane between 0 < sx,1 ≤ 10 and 0 < sy,1 ≤ 10.
For every location s1 of the point of reflection, we determine
the net position information gain λ̃s1 , which is depicted in log-
scale in Fig. 2. The array of the mobile terminal is shown in
black. We consider different transmit array sizes to highlight
the effect of the beamwidth on the position information gain.
In particular, we choose NTX = 25 (Fig. 2 - left) and
NTX = 150 (Fig. 2 - right). Wider beams of the former
array result in a homogeneous illumination of the plane, which
makes it more obvious to point out the location dependency
of the point of incidence on the net position information gain.
Three main conclusions can be drawn:

1) First, the geometry of the scenario has a significant
impact on the net position information gain. The results

11We stress that our study can be applied to any kind of precoding. If hybrid
transceiver and receiver architectures are considered, the flexibility of the
beams that can be generated decreases compared to fully digital architectures,
leading to lower positioning accuracy [42]. In general, it can be observed that
wide beams result in lower position estimation accuracy compared to narrow
beams, as will be shown in Fig. 3.

12For the numerical examples, we consider the point of incidence of a
reflector as the source of the NLOS path.
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Fig. 2: Net position information gain - Narrower beamwidth caused by more transmit antennas (right) allows for larger net position
information gain when compared to wider beamwidth (left).
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Fig. 3: Reduction of the PEB - The patterns of the reductions of the PEBs closely resemble the patterns of the net position information gains
in Fig. 2.

in Fig. 2 (left) confirm our findings from the analysis
on the position information gain in section IV-E. In
particular, points of incidence that are close to the
transmitter and receiver provide large information gains.
One can observe in (42) that the net position gain is a
function of ∆θk, q, p, and sk. Hence the net position
information gain is a function of the geometry which
implies that certain NLOS paths result in larger net
position information than others. This can be deduced
from the inhomogeneous color pattern in Fig. 2.

2) Secondly, the illumination of the plane with the trans-
mitted beams has a major impact on the position infor-
mation gain of NLOS components. Generally, narrower
beams generated by larger apertures result in larger net
position information gains. Thus, the points of incidence
of NLOS paths should be illuminated with beams which

are as narrow as possible, in order to obtain the highest
increase in the positioning accuracy.

3) The fact that NLOS components provide information
regarding the position of the mobile terminal implies that
the points of incidence of NLOS paths themselves can be
estimated. Hence simultaneous localization and mapping
(SLAM) can be conducted with a single snapshot. Thus,
if SLAM is the goal on the system level, densely-
spaced narrow beams are preferable over wide beams
in order to accurately estimate the positions of the
reflectors and achieve high localization accuracy of the
mobile terminal. A synergy between communication and
environmental mapping can be identified. When highly
accurate maps of the environment have been obtained,
e.g., in the initial access phase, they can be stored in
a cloud database. Such a cloud database can, in turn,
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Fig. 4: Position information gain and direction - Left: position information gains and directions originating from TOA, AOD, and AOA of
the LOS path. Middle and right: net position information gains and directions of 3 NLOS paths. Accurate positioning is possible even in
the absence of the LOS path but positioning accuracy degrades as the reflectors become densely-spaced in the AOD-domain.

be used to support communication, since beams could
be intentionally steered towards points of incidence to
increase the capacity or reliably of the link.

Even though, we did not analytically show the reduction
of the PEB in the presence of a NLOS path, we provide
a numerical analysis. Note that the increased net position
information gain does not necessarily lead to a reduction of the
PEB since determining the PEB requires to take the trace of
the inverse of the EFIM. The EFIM also depends on the outer
products of the eigenvectors of the NLOS paths λskvskv

T
sk

and the outer products of the eigenvectors of the LOS path
λ

(G)
j,0 v

(G)
j,0 (v

(G)
j,0 )T, j ∈ {R,D,A}. Nonetheless, the Figs. 2 and

3 suggest that in many cases a large net position information
gain also results in a large reduction of the PEB. We determine
the reduction of the position error bound ∆PEB numerically
in the presence of a single NLOS paths and depict a heat
map in Fig. 3. We observe that the presence of the reflector
reduces the PEB by up to 25%. Narrower beams (Fig. 3 -
right) result in larger reductions of the PEB. Note that the
patterns in Fig. 3 closely resemble the patterns of the net
position information gain in Fig. 2, i.e. when the net position
information gain is large, the reduction of the PEB is also
large. It has been observed by OEB simulations (not shown),
that the relationships governing orientation information gain
and the reduction of the OEB are similar to those related with
the net position information gain and the reduction of the PEB,
respectively. Thus, for the sake of brevity, no results regarding
the orientation are presented.

C. Example 2

We assume that the transmitter and the receiver are equipped
with NTX = NTX = 25 antennas, and the plane is illuminated
with NB = 50 beams. We consider three different cases which
are depicted in Fig. 4:

1) a single LOS path
2) three NLOS paths with reflectors distributed uniformly

around the mobile terminal (reflectors are located at
s1 = [1, 8]T, s2 = [4, 3]T, and s3 = [8, 4]T)

3) three NLOS paths with reflectors that are densely-
spaced in the AOD-domain (reflectors are located at
s1 = [3, 1]T, s2 = [4, 1]T, and s3 = [6, 3]T)

Case 2) emulates an initial access scenario, where the entire
plane is illuminated and reflectors may be located far apart
from each other, while case 3) takes into consideration that
reflectors tend to appear densely-spaced in the AOD-domain.
The underlying assumption behind case 3) is that during data
transmission only a few narrow beams are used and reflectors
which are not in the vicinity of the main lobe of these beams
will not be illuminated.

In Fig. 4, the direction of information (eigenvector) is
indicated by normalized colored arrows, while the net posi-
tion information gain (eigenvalue) is presented in text boxes
attached to the arrows. The corresponding PEB is provided at
the top of the respective sub-figure. The following conclusions
can be drawn for the respective scenarios:

1) We can deduce from Fig. 4 (left) that unambiguous
single-anchor position and orientation estimation is pos-
sible. We obtain PEB1 = 0.016.

2) From Fig. 4 (middle), we can infer that every NLOS path
originating from a reflectors has a different direction of
information, leading to a full rank EFIM as discussed
in Corollary 1.1. Compared to case 1) (LOS), the PEB
is approximately 3 times higher (PEB2 = 0.044 ≈ 3 ·
PEB1). This result suggest that even in the absence of
the LOS path, the position estimation accuracy will only
be slightly impaired (compared to the LOS case) if the
reflectors are geometrically well distributed.

3) Fig. 4 (right) depicts case 3), where the reflectors are
densely-spaced in the AOD-domain. We can infer that
if the reflectors are densely-spaced in the AOD-domain,
the direction of information will also be correlated. In
that case, the eigenvectors of the rank-one EFIMs in (41)
are fairly similar, as can be seen in Fig. 4 (right). In
that case, unambiguous positioning is still possible but
the PEB is significantly higher, i.e. PEB3 = 0.222 �
PEB2.

VI. CONCLUSION

We analyzed the role of NLOS components in 5G mmWave
MIMO systems in terms of their position and orientation
estimation capabilities. For our analysis, we employed the
concept of Fisher information in order to show that NLOS
components provide significant Fisher information if and
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T
(0)
P =

 1
c cos(θTX,0) − 1

‖p−q‖ sin(θTX,0) − 1
‖p−q‖ sin(θTX,0)

1
c sin(θTX,0) 1

‖p−q‖ cos(θTX,0) 1
‖p−q‖ cos(θTX,0)

0 0 −1

 (45)

T
(k)
P =

 1
c cos(π − θRX,k) 0 − 1

‖p−sk‖ sin(π − θRX,k)

− 1
c sin(π − θRX,k) 0 1

‖p−sk‖ cos(π − θRX,k)

0 0 −1

 (46)

Tsk =

[
1
c [cos(θTX,k) + cos(θRX,k)] − 1

‖q−sk‖ sin(θTX,k) − 1
‖p−sk‖ sin(π − θRX,k)

1
c [sin(θTX,k) + sin(θRX,k)] 1

‖q−sk‖ cos(θTX,k) − 1
‖p−sk‖ cos(πθRX,k)

]
(47)

only if angle-of-arrival, angle-of-departure, and time-of-arrival
of the corresponding path can be estimated accurately. We
showed analytically that each NLOS component contributes
one dimensional Fisher information regarding the position and
orientation. Hence NLOS components can be harnessed to
increase position and orientation accuracy. We showed that
even in the absence of the LOS component, unambiguous
position and orientation estimation is feasible if at least three
NLOS paths contribute to the received signal. We showed in
our analysis that the amount of gained information strongly de-
pends on the relative position of the mobile terminal, the base
station, and the points of incidence, as well as the illumination
of the point of incidence by base station. We pointed out that,
for a given received SNR, narrow beams increase the position
and orientation information gain of NLOS components when
compared to wider beams.

APPENDIX A
ENTRIES OF THE TRANSFORMATION MATRIX

The entries of the block-matrices in T are given by (45)-
(47) [19] at the top of this page.

APPENDIX B
EIGENVALUES AND EIGENVECTORS OF THE LOS

INFORMATION GAIN MATRICES

Since the matrices in (30) are rank one, the eigenvalues are
given by the traces of the respective matrices [44]. Hence (31)
follow.

Having obtained the eigenvalues of the matrices Ã
(G)
R ,Ã(G)

D ,
and Ã

(G)
A , it is straightforward to see that the vectors v

(G)
R,0,

v
(G)
D,0, and v

(G)
A,0 in (32) are in the null space of (λ

(G)
R I−Ã

(G)
R ),

(λ
(G)
D I− Ã

(G)
D ), and (λ

(G)
A I− Ã

(G)
A ), respectively, i.e.(

λ
(G)
R I− Ã

(G)
R

)
v

(G)
R,0 = 0, (48a)(

λ
(G)
D I− Ã

(G)
D

)
v

(G)
D,0 = 0, (48b)(

λ
(G)
A I− Ã

(G)
A

)
v

(G)
A,0 = 0. (48c)

APPENDIX C
DECOMPOSITION OF THE NLOS INFORMATION LOSS

In the following, we will derive the decomposition of the
terms B̃(G), B̃(L), and B̃(N) = B̃(G) − B̃(L).

A. NLOS Information Gain

The NLOS information gain is given by

B̃(G) , BJη̄NLOS
BT

=
[
T

(1)
P ,T

(2)
P , ...,T

(K−1)
P

]
× Jη̄NLOS

[
T

(1)
P ,T

(2)
P , ...,T

(K−1)
P

]T
.

(49)

We find

B̃(G) =

K−1∑
k=1

T
(k)
P Jη̄k

(
T

(k)
P

)T

=

K−1∑
k=1

1

σ2
τk
c2

Υ0,0(θRX,k, 0, 0)

+
1

σ2
θRX,k

‖p− sk‖2
Υ1,1(θRX,k, π/2, ‖p− sk‖).

(50)

B. NLOS Information Loss

It is easy to verify that DJη̄NLOS
DT is block diagonal since

D and Jη̄NLOS
are block diagonal, i.e.

DJη̄NLOS
DT=

Ts1Jη̄1
TT

s1 . . . 0
...

. . .
...

0 . . .TsK−1
Jη̄K−1

TT
sK−1

 . (51)

For the compactness of notation, we use the following short-
hand T̃sksk , TskJη̄kT

T
sk

The inverse of a block diagonal
matrix is determined by inverting the blocks on the diagonal.
The kth block is given by

T̃sksk ,

[
ak bk
bk dk

]
, (52)

where

ak ,
(cos(θTX,k) + cos(θRX,k))2

σ2
τk
c2

+
sin2(θTX,k)

σ2
θTX,k

‖q− sk‖2
+

sin2(θRX,k)

σ2
θRX,k

‖p− sk‖2

bk ,
(cos(θTX,k) + cos(θRX,k))(sin(θTX,k) + sin(θRX,k))

σ2
τk
c2

− sin(θTX,k) cos(θTX,k)

σ2
θTX,k

‖q− sk‖2
− sin(θRX,k) cos(θRX,k)

σ2
θRX,k

‖p− sk‖2
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w
(L)
R,k ,

1

akdk − b2k

(
1 + cos(∆θk)

σ2
τk
c2

)2
(

1

σ2
θRX,k

‖p− sk‖2
+

1

σ2
θTX,k

‖q− sk‖2

)
(53a)

w
(L)
A,k ,

(
(1 + cos(∆θk))

2

σ2
τk
c2σ4

θRX,k
‖p− sk‖4

+
sin2(∆θk)

σ2
θTX,k

‖q− sk‖2 σ4
θRX,k

‖p− sk‖4

)
1

akdk − b2k
(53b)

γsk ,
(1 + cos(∆θk)) sin(∆θk)

σ2
θTX,k

‖q− sk‖2 σ2
θRX,k

‖p− sk‖2 σ2
τk
c2

1

akdk − b2k
(53c)

B
(L)
k ,

 −2 sin(θRX,k) cos(θRX,k) cos2(θRX,k)− sin2(θRX,k) cos(θRX,k) ‖p− sk‖
cos2(θRX,k)− sin2(θRX,k) 2 sin(θRX,k) cos(θRX,k) sin(θRX,k) ‖p− sk‖

cos(θRX,k) ‖p− sk‖ sin(θRX,k) ‖p− sk‖ 0

 (54)

dk ,
(sin(θTX,k) + sin(θRX,k))2

σ2
τk
c2

+
cos2(θTX,k)

σ2
θTX,k

‖q− sk‖2
+

cos2(θRX,k)

σ2
θRX,k

‖p− sk‖2
.

Thus, the inverse of the kth block is given by

T̃−1
sksk

=
1∣∣∣T̃sksk

∣∣∣
[
dk −bk
−bk ak

]
, (55)

where
∣∣∣T̃sksk

∣∣∣ = akdk − b2k.
The left term BJη̄NLOS

DT and the right term DJη̄NLOS
BT

in (29) can be evaluated by straightforward matrix-matrix
multiplications. Observe that the left term can be obtained
by taking the transpose of the right term. Due to the block
diagonal structure of D, we find

DJη̄NLOS
BT =


Ts1Jη̄1

(
T

(1)
P

)T

...

TsK−1
Jη̄K−1

(
T

(K−1)
P

)T

 . (56)

We introduce a similar shorthand as above, where T̃skP ,

TskJη̄k

(
T

(k)
P

)T

. Considering (55) and (56), we deduce

B̃(L) =

K−1∑
k=1

T̃T
skP

T̃−1
sksk

T̃skP. (57)

The weights used in (36) are defined in (53) at the top of
this page. In addition, we define the matrix in (54) at the top
of this page. Using straightforward algebra and matrix-matrix
multiplications, (36) is readily obtained.

C. Net NLOS Gain

We collect all information associated with the kth NLOS
component in the matrix Ψsk , i.e.

Ψsk , εskΥ0,0(θTX,0, 0, 0)

+ βskΥ1,1(θRX,k, π/2, ‖p− q‖) + γskB
(L)
k

, [ψsk,1
,ψsk,2

,ψsk,3
].

(58)

We will now show that Ψsk has only one non-zero eigenvalue
by showing that Ψsk is rank one, i.e. Ψsk has only one linearly
independent column. By inspection of the columns of Ψsk , it
is straightforward to show that

aψsk,1
−bψsk,2

=

cos(θRX,k) ‖p−sk‖ (εskβsk−γ2
sk

)
sin(θRX,k) ‖p−sk‖ (εskβsk−γ2

sk
)

0

 (59)

where a , [Ψsk ]2,3 = (βsk cos(θRX,k) ‖p− sk‖ +
γsk sin(θRX,k) ‖p− sk‖) and b , [Ψsk ]1,3 =
(−βsk sin(θRX,k) ‖p− sk‖ + γsk cos(θRX,k) ‖p− sk‖).
Using simple algebra it can be seen that

(εskβsk − γ2
sk

) = 0. (60)

Hence ψsk,1
and ψsk,2

are linearly dependent. All other
combinations of the columns of Ψsk can be shown to linearly
dependent in the same fashion. Hence Ψsk is rank one and
has one non-zero eigenvalue. The only non-zero eigenvalue is
given by the trace of Ψsk [44]

λsk = εsk + βsk (1 + ‖p− sk‖) . (61)

Note that the terms εsk and βsk in (61) are functions of θRX,k,
θTX,k, ‖q− sk‖, ‖sk − p‖, σRX,k, σTX,k, and στk , i.e. the
eigenvalue in (61) is a function of the geometry of the scenario
and the qualities of the observations (AOA, AOD, and TOA).
This results is presented in a more obvious format in (37).

Using the results for εsk , and βsk , as well as straightforward
algebraic manipulations, the main result of this paper in (37)
is readily obtained. That being said, it can be seen that

vsk =

−
εsk
γsk

cos(θRX,k)− sin(θRX,k)

− εsk
γsk

sin(θRX,k) + cos(θRX,k)

‖p− sk‖

 . (62)

is in the null space of (εsk + βsk (1 + ‖p− sk‖)) I−Ψsk , i.e.

((εsk + βsk (1 + ‖p− sk‖)) I−Ψsk) vsk = 0. (63)

Hence vsk is the eigenvector corresponding to the eigenvalue
in (61).
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