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Risk Mapping of Groundwater-Drawdown-Induced Land
Subsidence in Heterogeneous Soils on Large Areas

Jonas Sundell ,1,2,∗ Ezra Haaf,2,3 Tommy Norberg,4 Claes Alén,1 Mats Karlsson,1

and Lars Rosén1

Groundwater leakage into subsurface constructions can cause reduction of pore pressure
and subsidence in clay deposits, even at large distances from the location of the construc-
tion. The potential cost of damage is substantial, particularly in urban areas. The large-scale
process also implies heterogeneous soil conditions that cannot be described in complete de-
tail, which causes a need for estimating uncertainty of subsidence with probabilistic meth-
ods. In this study, the risk for subsidence is estimated by coupling two probabilistic models,
a geostatistics-based soil stratification model with a subsidence model. Statistical analyses
of stratification and soil properties are inputs into the models. The results include spatially
explicit probabilistic estimates of subsidence magnitude and sensitivities of included model
parameters. From these, areas with significant risk for subsidence are distinguished from low-
risk areas. The efficiency and usefulness of this modeling approach as a tool for commu-
nication to stakeholders, decision support for prioritization of risk-reducing measures, and
identification of the need for further investigations and monitoring are demonstrated with a
case study of a planned tunnel in Stockholm.

KEY WORDS: Groundwater-drawdown-induced subsidence; probabilistic subsidence model; risk-
based decisions; risk communication; sensitivity analysis

1. INTRODUCTION

Groundwater-drawdown-induced subsidence
due to leakage of groundwater into subsurface const-
ructions or overextraction of groundwater is a severe
problem in many regions around the world, includ-
ing Shanghai,(1) Mexico City,(2) Bangkok,(3) Las
Vegas,(4) and the Scandinavian cities such as Stock-
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holm, Gothenburg, and Oslo.(5,6) In areas with
compressible soil deposits, a groundwater drawdown
will induce consolidation settlements that potentially
damage buildings and other constructions. Since a
groundwater drawdown often implies a large area
of influence, see, e.g., Burbey(4) and Huang et al.,(7)

the potential damage cost in an urban areas is
substantial.(8)

The cause–effect chain of groundwater-
drawdown-induced subsidence (Fig. 1) is initiated
with groundwater extraction due to pumping or leak-
age of groundwater into a subsurface construction in
bedrock (Fig. 1a) or soil (Fig. 2b). It continues with
the reduction of groundwater,(2) pore pressure reduc-
tion in compressible deposits,(3) and subsidence.(4)

The sensitivity of the constructions founded on
the compressible deposits determines the extent of
the subsidence damages.(5) Finally, the economic
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Fig. 1. The chain for groundwater-drawdown-induced subsidence damages and its included processes. The pink area illustrates bedrock;
green: coarse-grained material; yellow: soft clay; and gray: coarse-grained filling material. The hatched line at (a) illustrates a fracture zone
in the bedrock, modified from Sundell.(10)

Fig. 2. Simulation sequence for soil stratification and total vertical stress.

consequences depend on the cost(6) associated with
the damage.

The suggested method in this study is lim-
ited to the third (pore pressure) and the fourth
(subsidence) part of the chain. For a risk as-
sessment of the whole cause–effect chain, the
method needs to be combined with estimations of
groundwater-drawdown magnitudes, sensitivity of
constructions founded on the compressible deposits,

and costs associated with the potential subsidence
damages.(9,10)

The large spatial scale of the problem domain
implies heterogeneous soil conditions formed by ge-
ological processes and anthropogenic activities such
as construction, excavation, filling of material, and
groundwater drawdowns. Therefore, the subsurface
cannot be described in detail without extensive and
costly site investigation programs. Commonly, only
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limited information is available, necessitating charac-
terization of uncertainties in the heterogeneous con-
ditions. In urban settings, large numbers of borehole
logs describing soil stratigraphy from previous con-
struction projects are commonly available.(11–13) On
the other hand, records of analyzed soil samples are
less frequent. For a case study in Stockholm (see
Section 3), 20,000 borehole logs of soil stratification
stand against 79 piston samples in clay with evaluated
material properties.

Depending on the heterogeneity of the soil,
available information, and sampling density, ap-
propriate methods should be used for uncertainty
estimation. In cases with sufficient spatial density of
the samples, the geostatistical interpolation method
kriging(14) is a useful tool for the estimation of
spatial uncertainty. Kriging is based on a variogram
that describes the relationship between the mean
variance between paired data values separated by a
lag distance, see, e.g., Marache et al.(12) According
to a literature review by Li et al.,(15) the distance for
which geotechnical properties of clay are correlated
typically fall within the ranges of 10–90 m (horizon-
tally) and 0.1–8.0 m (vertically). An analysis of clay
samples from a site in Sweden found horizontal cor-
relation ranges of up to about 30 m.(16) Beyond the
correlation range, the best estimate of a particular
property corresponds to the mean of the probabil-
ity density function (PDF) for all samples of that
property.

Several probabilistic methods exist for predic-
tion of land subsidence. Griffiths and Fenton(17)

demonstrate a method based on random field es-
timation of permeability properties applied in a
finite-element model. However, this method does
not take variability in soil stratification into account
and is not applied on a large scale. Ryu et al.(18) use
indicator kriging for the simulation of random fields
for both soil stratification and compression parame-
ters and calculate subsidence with a one-dimensional
(1D) model. Although this method is applied on
a large scale, it does not account for dependencies
between the parameters and trends along depth
for compression parameters. Marache et al.(19) use
a finite-element model and kriging for uncertainty
estimation of soil stratification and compression
parameters. Even though this publication presents
a model for soil stratification on a city scale, soil
properties and subsidence are only modeled on a
local scale (0.4 km²).

The large scale of the problem, the heterogene-
ity of the soil, and the typically dense data sets for

soil stratigraphy contrasted by sparse data for soil
properties call for a novel probabilistic modeling
approach that is capable of combining these different
sources of information. The aim of this study is to
present a spatial probabilistic method for simulation
of groundwater-drawdown-induced subsidence on a
macroscale (1–100 km²) with a simple 1D compres-
sion model. The simulation is based on a statistical
analysis of soil stratification and compression pa-
rameters. Uncertainty and heterogeneity in soil
stratification is quantified with kriging, whereas un-
certainties in compression parameters are based on
a statistical analysis that takes into account vertical
trends and dependencies between the compression
parameters. When these two methods are combined
in a subsidence simulation, the result gives a dense
spatial resolution of land subsidence risks over large
areas. Applied on a case study for a planned tunnel
in Stockholm, Sweden, the result of the simulation
is mapped as risk areas. Together with other infor-
mation, such as estimation of extent and magnitude
of groundwater drawdown and sensitivity of risk
objects, the risk areas provide decision support when
planning for further investigations, safety measures,
and monitoring.

Pumping or leakage ratio can vary between con-
struction and operation phase, which also affects the
reduction of pore pressure over time. A delimitation
of this study is that we do not consider the evolu-
tion of settlements over time but only the somewhat
conservative scenario of final settlements. Therefore,
the suggested method should be used for studying
situations with permanent or long-term drainage of
groundwater.

The structure of the article is as follows: Section
2 presents methodology and assumptions for simula-
tion of soil stratification, reduction of pore pressure,
and subsidence. Section 3 introduces the Stockholm
case study with results for simulation and sensitiv-
ity analysis. Finally, conclusions are presented in
Section 4.

2. METHOD

This section describes the suggested method and
assumptions for probabilistic subsidence modeling
on large areas, which includes a probabilistic soil
stratification model, assumptions of pore pressure
and its decrease with depth due to groundwater
drawdown, the 1D nonlinear compression model,
data processing, and statistical analysis of compres-
sion parameters as well as simulation of subsidence.
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2.1. Soil Stratification Model and Vertical Stress

A geological model provides information on
continuity of stratigraphy between boreholes and
helps to understand spatial variation. The simulation
of soil stratification follows the procedure presented
in Sundell et al.(20) but a short summary applied on
simulation of vertical stress follows here. For the
case study, the soil stratification is conceptualized
into three continuous layers: filling material, clay,
and coarse-grained glacial material (glacial till
and/or glaciofluvial deposits) on top of the bedrock;
see (Fig. 2(A)). Since not all boreholes contain all
necessary information to build a soil stratification
model, the method is based on a stepwise procedure
to consider all data and dependencies between
layers. The following information is included in
the boreholes (Fig. 2(B)): bedrock levels, lowest
level without reaching bedrock, and interpreted soil
layers. Mapped bedrock outcrops are also included
in the simulations.

In a first step, a variogram is modeled from bore-
holes with bedrock levels (Fig. 2(C)). From kriging
of boreholes with bedrock levels, grids with average
levels and standard deviations are used for simula-
tion (min- and max-levels in Fig. 2(D)). Since con-
tinuous variables with infinite support are assumed
in kriging, the min and max levels correspond to a
low and a high quantile such as the 5th and 95th per-
centile. Similarly, bedrock levels and the lowest level
from boreholes where bedrock is not detected are
simulated (min- and max-levels in Fig. 2(E)). From
Figs. 2(D) and (E), the same quantile from each sim-
ulation is compared and the lowest level is selected as
the resulting simulated bedrock level (Fig. 2(F)). Due
to this process, boreholes without detected bedrock
but with a deep lowest level, close to the bedrock,
are considered in the model, whereas boreholes with-
out bedrock but with a high lowest level close to the
ground surface are left out of the model.

From boreholes with information on soil stratifi-
cation, the parameter zpb is defined as the proportion
of clay, calculated and transformed to a normal
distribution from the probability integral of the
standardized normal distribution N(0,1). This step
is necessary to make the simulation of clay indepen-
dent from the previous bedrock simulation. From
these transformed values, a variogram is modeled
(Fig. 2(G)). As for the bedrock levels, the kriging
gives expected values and standard deviations, which
are used for simulation of proportion of clay thick-
ness out of total soil thickness (min and max values
shown in Fig. 2(H)). When the bedrock is simulated

(Fig. 2(F)), the resulting soil thickness is multiplied
with the simulated proportion of clay thickness (Fig.
2(H)), which gives the clay thickness (min and max
values in Fig. 2(I)).

To simulate the vertical location of the clay
layer in the soil profile, the proportion of coarse-
grained material out of the total soil thickness sub-
tracted with the clay thickness is calculated and trans-
formed to normality with the previous mentioned
method (introduces parameter zpc). The clay thick-
ness has to be subtracted for an independent simu-
lation of coarse-grained material. From these trans-
formed values, a variogram is modeled (Fig. 2(J)),
and the proportions are simulated (Fig. 2(K)). Based
on the result of the total soil thickness (from simula-
tion of bedrock) and clay thickness, the thickness of
the coarse-grained material is simulated (Fig. 2(L)).

The result of Figs. 2(F), (I), and (L) gives a sim-
ulation of the soil profile. Fig. 2(N) gives an example
of one simulation sequence and Fig. 2(M) presents
max and min values of clay thickness from composed
simulation results. In each simulation of soil stratifi-
cation, the total vertical stress (σ ) is calculated from
the unit weight of the materials (Fig. 2(O)). Since
data sets with borehole logs are often located closely,
soil stratigraphy and vertical stress can often be simu-
lated with a relatively high spatial resolution. For the
case study in Section 3, a horizontal grid with 10 ×
10 m resolution, resulting in a total of 130,000 vertical
vectors at all grid points, is chosen for interpolations
and simulations. This 10-m resolution is sufficiently
detailed to both cover individual risk objects and
to describe the heterogeneity of the soil conditions.
The vertical resolution of each vector is chosen to be
0.1 m.

2.2. Pore Pressure and Effective Stress

Pore pressure conditions in a soil profile de-
pend on the hydraulic conductivity of the materials,
drainage length, and water balance between infiltra-
tion and drainage in the different layers. Although
reduction of pore pressure due to groundwater draw-
down is a transient process, this study is limited to
study the steady-state conditions at the end of the
process. If detailed measurements of pore pressure
(u) are not present, estimations are made by assum-
ing a linear dependency between the open and the
confined layers, see, e.g., Persson(8) and Zeitoun and
Wakshal.(21) Since a clay layer has a very low hy-
draulic conductivity, hydrostatic conditions between
the open and the confined aquifer (Fig. 3) cannot
be assumed. In the case study, pressure heads in the
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Fig. 3. One simulation sequence of pore pressure (B), effective vertical stress (C), new pressure head due to groundwater drawdown in
confined aquifer (D), and new effective stress (E).

confined aquifer are obtained from an interpolation
of average levels from 300 groundwater observation
wells. Since observations of heads in the open aquifer
are few, groundwater levels in this layer are assumed
to correspond to the top of the clay layer.(22,23) As-
suming higher groundwater heads (closer to ground
surface) in the open aquifer would result in greater
pore pressure (u) and lower effective vertical stress
(σ ′

0). Such assumptions thus result in a higher over-
consolidation ratio (OCR) and a greater preconsoli-
dation margin (σ ′

v-σ ′
0), which means that the critical

plastic phase in stage 2 (see Section 2.3) is less likely
to occur. Therefore, the given assumption is conser-
vative since it results in greater subsidence magni-
tudes than the assumption of a higher groundwater
head in the open layer. Based on these conditions,
the pore pressure varies according to a straight line
between the pressure at the bottom and the top of
the clay layer (Fig. 3(B)).

The deformation of a saturated granular medium
containing water within its voids is governed by the
effective stress (σ ′

0). Here, the effective stress (σ ’0),
i.e., the intergranular load distribution, is the total
stress (σ ) minus the pore pressure (u) (Fig. 3(C)).
When a groundwater drawdown occurs in the
confined aquifer, the pore pressure is reduced
(Fig. 3(D)), which also results in a new effective (ver-
tical) stress (Fig. 3(E)). In the case study, pore pres-
sure reductions and changes in effective stress cor-
responding to 0.5, 1, and 2 m of groundwater draw-
down in the confined aquifer are calculated at each
grid point. As with σ , u and σ ′

0 are simulated at each
of the vertical grid points and at every 0.1-m interval.

2.3. Compression Parameters and
Subsidence Model

Consolidation settlement in soft soils occurs as
a result of change in effective stress. To calculate
subsidence, we use a simple, but in Sweden well-

established, 1D elasto-plastic model by Larsson and
Sällfors.(24) The model is based on parameters eval-
uated from constant rate of strain (CRS) oedome-
ter tested clay samples. This model is in accordance
with the well-recognized concept of stress–strain be-
havior of clays under 1D straining by Bjerrum,(25)

the guidelines for evaluation of parameters from
oedometer compressibility in Eurocode 7,(26–28) and
common practice in geotechnical engineering; see,
e.g., Fang.(29) In addition, the CRS method is sim-
ilar to the international ASTM standard for One-
Dimensional Consolidation Properties of Saturated
Cohesive Soils Using Controlled Strain Loading.(30)

As mentioned in Pu and Fox,(31) the CRS test has
several advantages compared to the standard in-
cremental loading oedometer test, including gen-
eration of a continuous stress–strain curve and a
shorter test period. Disadvantages of the CRS test
include inability to evaluate creep (secondary or de-
layed consolidation)(24) and possible dependence be-
tween the measured response and the applied strain
rate.(31)

Similar to Janbu’s tangent modulus approach,(32)

soil compressibility is evaluated from a diagram
where vertical strain (ε) is plotted versus effective
vertical stress (σ ′); see Fig. 4. As with the more rec-
ognized compression index method, see e.g., Fang
(29), different parameters are estimated for the nor-
mal and the overconsolidated part of the curve.
Comparisons and transformations between the dif-
ferent methods can be found in Refs. 33–35. There
are more advanced models that both consider creep
and anisotropy of the clay properties, see, e.g., Siva-
sithamparam et al.(36) and Olsson,(37) but the chosen
model is detailed enough to capture the dominant
modes of response in the system.

The subsidence calculation method is based on
the evaluation of compression parameters from pis-
ton samples of clay evaluated at a CRS of 0.7% per
hour. Three stiffness regimes with different modulus
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Fig. 4. Example of results from a CRS test and evaluated parame-
ters σ ′

c, σ ′
L, ML, M0, and M′ from a clay sample together with the

three stiffness regimes.

of compressibility (M) as function of σ ′ are evaluated
(Fig. 4):

(1) The initial stage in the consolidation process
is considered linear elastic. As discussed in,
e.g., Fang(29) and Olsson,(35) the methods for

estimating the modulus M0 in this stage give
results with significant uncertainties. For the
case study in this article, the modulus M0

is evaluated with the empirical relationship
based on undrained shear strength from fall
cone tests, τ fu, M0 � 250*τ fu as suggested by
Larsson et al.(38) and Moritz.(39)

(2) When a material yields, it goes from elastic
to elasto-plastic conditions. If only 1D con-
ditions are considered, the transition phase
from elastic to yielding is often simplified to
a yield point, corresponding to the preconsol-
idation stress (σ ′

c). In Sweden, the industry
standard for estimating the preconsolidation
stress follows a graphical method introduced
by Sällfors;(40) see hatched lines in Fig. 4.
When elasto-plastic conditions are reached af-
ter the yield point, the strain increases and
plastic hardening occurs, increasing the pre-
consolidation stress. At σ ′

c, the modulus is as-
sumed to drop constantly to the second con-
stant modulus, ML. Since the stiffness after
preconsolidation is significantly smaller, i.e.,
leading to larger subsidence magnitudes, ac-
curate estimation of preconsolidation stress is
critical.

(3) At higher stresses, the assumption of a con-
stant modulus ends and a third phase occurs
(stress > σ ′

L in Fig. 4) with a constantly in-
creasing modulus. At this part of the curve, the
modulus number M′ is evaluated as �M/σ ′.(24)

Fig. 4 presents how the compression parameters
σ ′

c, σ ′
L, ML, M0, and M′ correspond to the evalu-

ated curve for a sample at a certain depth below sur-
face. To calculate subsidence, compression parame-
ters are needed for the whole soil profile. If several
samples are taken at the same location but on dif-
ferent depths, the parameter result should be inter-
polated or divided into representative segments. De-
pending on the effective stress and its change (�u =
�σ in this case) along a soil profile, the three phases
are related to corresponding equations for the calcu-
lation of subsidence (Equations (1)–(3) in Table I).
Equation (4) integrates the result from the different
segments.

2.4. Data Processing and Statistical Analysis
of Parameters

Before defining PDFs for Monte Carlo (MC)
simulation of subsidence, spatial variations and
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Table I. Equations (1)–(4) for Calculation of Final Subsidence According to Larsson and Sällfors(24)

Case Equations

Equation (1) σ ′
o + �σ < σ ′

c δ (z) = �σ
M0

Equation (2) σ ′
c < σ ′

o + �σ < σ ′
L δ (z) =

(
σ ′

c−σ
′
0

M0
+ σ

′
0+�σ−σ

′
c

ML

)

Equation (3) σ ′
o + �σ > σ ′

L δ (z) =
(

σ
′
c−σ

′
0

M0
+ σ

′
L−σ

′
c

ML
+ 1

M′ ln
(

1 + (σ
′
0 + �σ − σ

′
L) M′

ML

))

Equation (4) – s = ∫zmax
0 δ(z)dz

Note: Equation (4) integrates the total subsidence for each segment.

dependencies between the parameters need to be
addressed.

2.4.1. Dependencies Between Parameters

Before PDFs for simulations can be constructed,
it has to be confirmed that the variables are indepen-
dent. First, the dependency between the previously
calculated current effective stress, σ ′

0 (see Section
2.2) and preconsolidation stress, σ ′

c (Figs. 5(A) and
(B)) is investigated. The relationship between these
parameters defines the OCR (σ ′

c/σ ′
0) (Fig. 5(C)). σ ′

0

cannot be higher than σ ′
c since σ ′

c represents the
maximum value of an historical effective stress un-
less the soil is in the process of consolidating from
a previous applied load. This condition results in
a dependency between σ ′

0 and σ ′
c with the condi-

tion OCR > 1. With this condition, all OCR values
<1 have to be carefully evaluated. Reasons to reject
these values for further analysis include disturbances
during sampling, lab evaluation, overestimated pore
pressure (u), and/or underestimated total stress (σ ).
Rejected outliers are marked with two red boxes in
Fig. 5(C); see Section 3.3 for details.

After identified outliers have been eliminated,
the data are ln-transformed to normality (Fig. 5(D)).
Before this step, the OCR values are subtracted by
1 in order to condition the subsequent simulation to
OCR > 1. The logarithm of the values is taken to
assure homoscedastic errors (equal variance at each
vertical interval, exemplified on depth 4 and 8 m
along the regression line in Fig. 5(D)). Possible ver-
tical trends are investigated with linear regression
(Fig. 5(D)) resulting in residuals (Fig. 5(E)) repre-
sented by a normal distribution (Fig. 5(F)); see, e.g.,
Tang(41) and Lacasse and Nadim(42) for similar trans-
formations of OCR.

Other dependencies exist as a consequence of
the stress–strain relationship (Fig. 4). To preserve
these dependencies, two criteria are introduced:

σ ′
L > σ ′

c and M0 > ML. Analogous to σ ′
c and

OCR, inconsistencies in subsequent simulations are
avoided by scaling with the ratios σ ′

L,/σ ′
c and

M0/ML. As with OCR, σ ′
L,/σ ′

c is first subtracted with
1 to condition σ ′

L > σ ′
c in subsequent simulations.

As a final step, the parameter ratios are transformed
and possible vertical trends are investigated (analo-
gous with the example for OCR in Fig. 5).

In addition, dependencies between σ ′
L and ML

are investigated with the same procedure since these
parameters are related in the stress–strain curve.

The necessary steps for a successful data anal-
ysis and distribution fitting are summarized in
Figs. 6(A)–(C). In Fig. 6(A), dependencies are inves-
tigated, such that if a parameter is dependent of an-
other, the parameter ratio is used. In Fig. 6(B), the
data are transformed to normality. If the data from a
previous step already can be described with a normal
distribution, transformation is unnecessary. Finally,
in Fig. 6(C), vertical trends are investigated with lin-
ear regression. When R2 is close to zero, absence of
a vertical trend can be assumed. However, if trend
partly describes parameter uncertainties (low R2), ig-
noring the trend will result in an overestimation of
the spread in the sample, hence an overestimation
of uncertainties in subsequent simulations. For these
cases, the residuals between the regression line and
the data are used in subsequent steps. As a final stage,
the data are tested for normality with residual and
normal-score plots together with the Kolmogorov–
Smirnov test; which measures the supremum of the
pointwise distances between data and fitted distribu-
tion; see, e.g., Johnson et al.(43)

2.4.2. Spatial Variations

Spatial correlation in the horizontal plane is
investigated with two methods: variogram analy-
sis (as with the boreholes for soil stratification in
Section 2.1) and analysis of variance (ANOVA).
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Fig. 5. Process of transforming data to control de-
pendencies between parameters. The illustration
is exemplified with the dependency between σ ′

0
and σ ′

c.

Before these methods can be used, two requirements
need to be fulfilled: (1) the data are normally dis-
tributed with equal variances and (2) there is no
vertical trend in the data. If the data do not meet
these conditions, the transformations in Section 2.4.1
(Figs. 6(A)–(C)) are applied.

If the variograms can reveal a significant spatial
trend (Fig. 6(D)), kriging is used to simulate a field of
average values and standard deviations. Unlike bore-
holes describing soil stratification, soil samples are
often spatially scarce, which means that the correla-
tion range in the variogram is likely to be shorter than
the distance between the samples; If this is the case,

differences between groups of samples can be inves-
tigated with ANOVA; see, e.g., Marx and Larsen.(44)

In the case study, two different group divisions are
evaluated based on the following assumptions: (1)
clay from the same valley represents the same sedi-
mentological unit and has similar properties, and (2)
the load history is different between clay sampled in
a heavily constructed area compared to a greenfield
site (degree of urbanization, DU). The division be-
tween the two groups is presented in the Appendix.
The null hypotheses (equal means among groups) are
rejected at the significance level of 0.05. If the null hy-
pothesis can be rejected, the Bonferroni method(45)
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Fig. 6. Scheme for data processing and analysis before probability
density functions (PDFs) are generated.

is used as a post hoc test to compare differences be-
tween means. If the result of the post hoc test re-
veals significant differences between groups (at the
5% level), these groups are used to define PDFs in
the subsequent step (Fig. 6(E)). If the null hypothesis
cannot be rejected, differences between the groups
cannot be distinguished and all samples are assumed
to belong to the same population.

2.4.3. PDFs

Depending on the results in previous steps, two
different methods are used to generate PDFs. The
first method is applied on both cases for the final step
in Fig. 6. With this method, PDFs are constructed
with the t-distribution from the sample mean, stan-
dard deviation, and degrees of freedom; see, e.g.,
Marx and Larsen.(44) If the number of data points
is large, the normal distribution can be used instead.
Fig. 5(F) illustrates how the residuals of ln(OCR −
1) follow a normal distribution.

If the variogram analysis reveals significant spa-
tial variations, kriging is used to model a grid with
average values and standard deviations at every in-
terpolation point as with the soil stratification model
in Section 2.1.

2.5. Simulation of Subsidence

Based on the previous described simulation of
soil stratification, effective stress, and the PDFs of
the parameters, subsidence is simulated with a MC
model. The simulation sequence is illustrated in
Fig. 7. The spatial resolution of the simulation is 10
× 10 m, consistent with the soil stratification model.
Although different variants of data processing and
generation of PDFs are possible for each parameter,
as suggested in Section 2.4.3, each step is represented
by the applied model in the Stockholm case study;
see Section 3.3.

At each grid point, the simulation is initiated
with a bedrock level (Fig. 7(B)) and soil stratification
(Fig. 7(C)) according to the procedure presented in
Section 2.1. At each 0.1-m depth increment, σ ′

0

(before groundwater drawdown) is calculated (Fig.
7(D)) according to the description in Section 2.2.

In the next step (Fig. 7(E)), σ ′
c is calculated by

multiplying OCR with the previous simulated σ ′
0.

OCR is calculated by first simulating a value from a
PDF describing residuals of ln(OCR − 1). From the
difference between the average regression line and
the simulated residual, values for ln(OCR − 1) are
calculated at each vertical interval. These values are
transformed to values of OCR through the natural
exponential function and by adding 1. The shaded
area in the regression graph in Fig. 7(E) illustrates
the 90% confidence limits for observations of OCR.
The red hatched line illustrates a simulation of OCR
based on the exemplified iteration from the PDF for
the residual of ln(OCR − 1).

From σ ′
c and a PDF for ln(σ ′

L/σ ′
c − 1) values for

σ ′
L are simulated (Fig. 7(F)). Similarly as with OCR,

ML is calculated from iterations from a PDF describ-
ing the residuals of ln(ML/σ ′

L), a regression line for
ln(ML/σ ′

L), and the previously simulated σ ′
L (Fig.

7(G)). Subsequently, M0 is calculated in the same
manner but based on the simulated value of ML, a
simulated residual for ln(M0/ML), and its regression
line (Fig. 7(H)). The only parameter that is indepen-
dent of other parameters and depth is M′, which is
simulated from a normal distribution (Fig. 7(I)).

From the previous calculation of change in effec-
tive stress (Figs. 3(E) and 7(J)), the updated effec-
tive stress σ ′

0 due to groundwater drawdown is com-
pared with σ ′

c and σ ′
L and the adequate Equation

(1)–(3) in Table I is selected. From the selected equa-
tion and the simulated parameters, subsidence is cal-
culated for each iteration. In the example in Fig. 7(J),
Equation (1) is used for the top part where σ ′

0 + �σ
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Fig. 7. Simulation sequence for compression parameters and subsidence.

< σ ′
c, meanwhile Equation (2) is used for the bottom

of the soil profile where σ ′
c < σ ′

0 + �σ < σ ′
L. Sub-

sidence is calculated at each 0.1-m interval and total
subsidence approximated at each grid point with the
trapezoidal rule (Equation (4)).

The whole simulation sequence is repeated with
1,000 iterations at each grid point (Fig. 7(K)). From
these iterations, a resulting distribution of subsi-
dence magnitudes is obtained (Fig. 7(L)). By com-
bining the result distributions of all grid points, the
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Fig. 8. Scatter plots of σ ′
c, σ ′

L, ML, M0, and M′ from the 79 samples.

subsidence risk is mapped spatially; see Sections 3.4
and 3.5.

3. STOCKHOLM CASE STUDY

This section presents the case study with data,
statistical analysis of the data, simulation results, sen-
sitivity analysis, and risk mapping.

3.1. Study Area

The method is applied to a case, the City Link
tunnel in Stockholm, which is a planned utility tunnel
in bedrock for power lines. The study area in Stock-
holm (59°19′N 18°4′E) is located on the East Coast of
Sweden and covers approximately 15 km² (Fig. 11).
The geology in the area consists of several valleys in
pre-Cambrian crystalline bedrock, partly filled with
glaciofluvial sediments such as sand, gravel, and clay.
Since the tunnel will be constructed in crystalline
bedrock, significant subsidence due to tunnel defor-
mation can be dismissed. The soil stratification is sim-
plified to three distinct layers: (1) postglacial sand,
filling material, or organic deposits; (2) glacial and
postglacial clay; and (3) coarse-grained glacial mate-
rial (glaciofluvial sand, glacial till) above the bedrock
surface. The study area is delimited by a conserva-
tive estimate of maximum extent for groundwater
drawdown in the confined aquifer due to leakage of
groundwater into the planned tunnel.

3.2. Sampling Strategy

To find a representation of the geotechnical
properties of the clay, three criteria were set defining

the spatial target areas for sampling: (1) within clay-
covered valleys where thick layers of clay could be
expected; (2) within a predicted influence area for
groundwater drawdown; and (3) where constructions
sensitive for subsidence damages are located within
(1) and (2). A total of 79 piston samples from 38 loca-
tions were taken during year 2013–2014; see location
of samples in Fig. 11 and result of parameter estima-
tion in the Appendix. The sampling procedure fol-
lowed Swedish standard practice.(46) Other field tests
such as cone penetration tests, static sounding, and
soil/rock drilling were executed in conjunction with
the piston samples.

In addition, about 20,000 boreholes containing
information on soil stratification exist from previous
construction projects. Out of these, 14,300 are se-
lected for modeling and the rest used as a validation
data set; see Sundell et al.(20) From the modeling data
set, 6,500 boreholes contain information on bedrock
levels, 7,800 do not reach the bedrock, and 4,000 con-
tain information on soil stratification.

3.3. Data Processing and Statistical Analysis
of Samples

The compression parameters from the 79 sam-
ples in the case study are plotted against depth in
Fig. 8. As seen from the figure, all samples except
for M′ reveal a small trend with higher values along
depth.

According to the procedure in Section 2.4.1, de-
pendencies are accounted for through OCR − 1,
σ ′

L/σ ′
c − 1, and M0/ML. Out of the 79 samples,

72 contains all information needed to calculate σ ′
0

and OCR. Eleven samples are rejected due to an
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Table II. Regression Coefficients and Coefficients of Determination (R²) for the Transformed Parameters

Parameter - y ln(OCR − 1) ln(σ ′
L/σ ′

c − 1) M′ ln(ML/σ ′
L) ln(M0/ML)

Coefficient of determination - R2 0.22 0.01 0.01 0.10 0.13
Intercept - b 0.27 −0.48 0.61 1.67 2.05
Slope - a −0.25 −0.02 – 0.06 −0.10

OCR < 1. These rejected values are likely due to dis-
turbances during sampling, lab evaluation, an overes-
timated pore pressure (u), and/or an underestimated
total stress (σ ). Outliers for two samples with an
OCR > 3 are also rejected; see Fig. 5. These values
are likely a result of an underestimated groundwa-
ter level at the location for these samples in point
13C323; see the Appendix. Although the rejections
indicate low sampling quality, these uncertainties
cannot be reduced without additional investigations
with higher-precision methods. In addition to the
above-mentioned dependencies, ln(σ ′

L) and ln(ML)
reveal a moderately strong linear dependency (R2 =
0.63). To take account of this dependency, the ra-
tio ML/σ ′

L, is introduced. No dependency between
other parameters and M′ was found. M′ is therefore
kept in its original form.

In the next step, OCR − 1, σ ′
L/σ ′

c − 1, M0/ML,
and ML/σ ′

L are transformed to normality with the
natural logarithm. Possible vertical trends are inves-
tigated with linear regression, y = ax + b, where y is
the parameter value (plotted on the horizontal axis
in Fig. 9), a is the slope, x is the independent vari-
able (depth below ground surface), and b is the in-
tercept in Table II. Three parameters, ln(OCR − 1),
ln(ML/σ ′

L), and ln(M0/ML), reveals a trend that can-
not be neglected (R² > 0.1) since it partly describes
parameter uncertainties. Two parameters, ln(σ ′

L/σ ′
c

− 1) and M′ show no significant trend, which means
that the regression result is ignored in the next step.
The regression lines for ln(OCR − 1), ln(ML/σ ′

L),
and ln(M0/ML) are presented in Fig. 9.

The transformed parameters (residuals of
ln(OCR − 1), residuals of ln(ML/σ ′

L), residuals
of ln(M0/ML), ln(σ ′

L/σ ′
c − 1), and M′) are tested

for normality with residual and normal-score plots
together with the Kolmogorov–Smirnov test; see,
e.g., Johnson et al.(43) For the Kolmogorov–Smirnov
test, all parameters have an observed significance
level greater than 0.05, thus indicating normality.
The residual and normal-score plots result in ho-
mogeneous scatters and no significant deviations
from the ideal line, which indicates a successful
transformation to normality.

Table III. Mean and Standard Deviations of Parameters Forming
Normally Distributed PDFs for MC Simulation

Parameter Mean SD

Residual ln(OCR − 1) 0 1.00
ln(σ ′

L/σ ′
c − 1) −0.61 0.41

Residual ln(ML/σ ′
L) 0 0.37

DU1 Residual ln(M0/ML) −0.17 0.49
DU2 Residual ln(M0/ML) 0 0.47
DU3 Residual ln(M0/ML) 0.11 0.51
M′ 14.93 2.60

In the tests for spatial variability according to
Section 2.4.2, the variogram analysis reveals no spa-
tial correlation. This is likely due to the large distance
(>100 m for most cases) between the samples; see
variograms in the Appendix. In the ANOVA test,
the null hypothesis cannot be rejected for residuals of
ln(OCR − 1), residuals of ln(ML/σ ′

L), ln(σ ′
L/σ ′

c −
1), and M′ in either of the two group divisions (see
the Appendix). As no spatial correlations are de-
tected for these parameters, all samples are con-
sidered to belong to the same population. Conse-
quently, the complete data set is used to form PDFs
for subsidence predictions at all locations. Since the
sample size is large, means and standard deviations
according to Table III describe normally distributed
PDFs. Based on the standard deviations, the 90% in-
tervals for future observations are illustrated by the
shaded areas in Fig. 9.

For the residuals of ln(M0/ML), the null hypoth-
esis is rejected for both group divisions. The post
hoc Bonferroni test results in a significant difference
only between DU subgroups 1 and 3 and no signifi-
cant difference between any subgroups in the other
group division of samples close to each other. As a
result of this difference, the residuals of ln(M0/ML)
are grouped accordingly: DU1 includes samples from
groups 1 and 2, DU2 includes 1, 2, and 3, and DU3
groups 2 and 3. With this group division, normally
distributed PDFs with mean values and standard
deviations according to Table III are created. The
average deviation from the regression line and the
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Fig. 9. Transformed compression parameters along depth with regression line (thick) and 90% confidence interval for future observations
(shaded). Since no significant correlation was detected for ln(σ ′

L/σ ′
c − 1), the regression line is substituted with a line representing the

mean value. The outlier value of ln(OCR − 1) = −6 is due to an observation of OCR close to 1.

90% interval for future observations are illustrated
by the top most numbers (1–3) of the regression graph
for ln(M0/ML) in Fig. 9. Since DU2 includes all sam-
ples, there is no deviation between this group and the
original regression line. Although a significance dif-
ference exists between the three subgroups, this dif-
ference is not very large, as seen in Fig. 9. Since the
PDFs for the three subgroups are significantly over-
lapping, the practical difference in simulation be-
tween the different DU groups and the significance
of a possible type I error is therefore of minor im-
portance. Nevertheless, the three different group di-
visions for the residuals of ln(M0/ML) are used in the
subsequent simulation stage. Similarly for the cases
where the null hypothesis cannot be rejected in the
case of a type II error, a division between groups
would result in significantly overlapping PDFs, caus-
ing only minor difference in the calculated subsi-
dence magnitudes. A complete evaluation of com-
pression parameters with ANOVA is presented in
Ramm and Collinder.(47)

For calculation of vertical stress together with
the simulation of soil profile, the density of clay and
the coarse-grained material are evaluated from sam-
ples. The results are represented by PDFs N (19; 0.9)
and N (17.5; 0.9) kN/m³, respectively.

3.4. Simulation of Subsidence

Based on the PDFs of the parameters described
in Table III and the simulation scheme in Section
2.5, subsidence is simulated for each of the ground-
water drawdown magnitudes of 0.5 m, 1 m, and 2 m
in the confined aquifer. The spatial deviation of the
DU areas for simulation of respective residual for
ln(M0/ML) are presented on a map in the Appendix.
The whole simulation process takes approximately
50 hours on a current-generation PC workstation.

From the result distributions, mean values, 95th
percentiles, and standard deviations are presented
in Fig. 10. To simplify presentation, only a detail
of the total study area is shown. As seen from the
figure, there is a significant difference between the
calculated mean value and the 95th percentile for
each of the drawdown scenarios. There is also a note-
worthy difference between the different drawdown
magnitudes.

3.5. Risk Map

From the obtained calculation results, a risk map
is produced, distinguishing areas with significant risk
from low risk areas for subsidence; see Fig. 11. A risk
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Fig. 10. Mean value, 95th percentile, and standard deviation of the subsidence simulations for the three levels of groundwater drawdown
(0.5, 1, 2 m). The figure covers an outcrop of the total area shown in Fig. 11. The tick marks on the x- and y-axis are on 100 m distance. The
numbered line shows the location for the cross-section in Fig. 13.

area is created for each of the three uniform ground-
water drawdown scenarios: 0.5 m, 1 m, and 2 m. To
exemplify how a risk area can be defined, calculation
points where the 95th percentile of the simulations
has a land subsidence exceeding 2 cm are selected.
Two-centimeter subsidence has been set as a lower
limit for when slight damages can occur in other stud-
ies; see, e.g., Son and Cording.(48) Of course, the
probability that the subsidence levels will exceed the
95th percentile value at all locations is much lower.
When interpreting the different risk areas, it is im-
portant to remember that the subsidence magnitude
can vary at different locations within the same area.

To improve usefulness of the risk map, the three
uniform scenarios need to be combined with esti-
mations of expected groundwater drawdown at var-
ious locations. These estimations are, however, be-
yond the scope of this article. For the case study, the
study area is limited to the maximum expected influ-
ence area of groundwater drawdown in the confined
aquifer as a result of leakage into the tunnel.

Although the criteria that define the extent of the
risk area are reasonable, other percentiles and sub-
sidence limits are possible. When a tolerability cri-
teria is defined in a risk assessment for groundwa-
ter drawdown in subsidence-sensitive areas, it should
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Fig. 11. Risk map for subsidence for 0.5 m, 1 m, and 2 m of groundwater drawdown in the confined aquifer. The highlighted area shows the
limits for Fig. 10.

reflect the acceptance levels of affected stakeholders
and norms and regulations in the society.(9) Based on
the tolerability criteria, safety measures can be sug-
gested by means of value of information analysis; see,
e.g., Zetterlund et al.(49) For the planned City Link
tunnel, the risk maps have been used for communica-
tion to stakeholders and authorities in the process for

application for permit to drain groundwater in accor-
dance to Swedish legislation.

3.6. Sensitivity Analysis

For sensitivity analysis, the Spearman’s rank cor-
relation coefficient ρ between each parameter and
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Fig. 12. Spearman’s rank correlation coefficients for the parameters at different grid points. Each tick mark on the y- and x-axis represents
100 m distance. The numbered line shows the location for the cross-section in Fig. 13.

the simulated subsidence magnitude is calculated;
see, e.g., Bedford and Cooke.(50) More specifically, in
a first step the arithmetic mean of the parameter val-
ues with depth is calculated. This is repeated at each
grid point, yielding a distribution of average values
for each realization of the simulation. Finally, the re-
lationship ρ between this distribution and the distri-
bution of subsidence magnitudes is estimated. These
steps are carried out for each parameter of interest.
A value of ρ close to 1 indicates a strong positive de-
pendence, while a value of ρ close to −1 indicates a
strong inverse dependence.

A part of the result of the sensitivity analysis for
the 2 m groundwater drawdown simulation is pre-
sented in Fig. 12. The results for 0.5 m and 1 m are

not included, but show very similar patterns. In addi-
tion to the parameters for the subsidence model, two
parameters from the soil stratification model are in-
cluded, zpb and zpc. These parameters determine the
proportion of clay and coarse-grained material, re-
spectively.

As described previously, all parameters except
for M′ are dependent on σ ′

0. In addition, σ ′
0 is de-

pendent on zpb and zpc since these parameters de-
termine the clay thickness and its position in the soil
profile. This explains the topographic pattern of the
sensitivity maps. The map for M′ has a zero value
across the entire area since the case where Equation
(3) takes effect never arises in the example at hand.
Moreover, all maps fade to zero correlation at the



Risk Mapping of Groundwater-Drawdown-Induced Land Subsidence 121

Fig. 13. Soil profile with average results
of bedrock, soil, and groundwater level in
confined aquifer (top). Average and 95th
percentile (P95) for simulated subsidence
(middle). Spearman’s rank correlation for
parameters (below). The location of the
cross-section is indicated in Fig. 11.

edges where the clay layer is nonexistent or always
above the groundwater level in the confined aquifer.
The only parameter persistently positively correlated
with land subsidence is the clay proportion, zpb. Sim-
ilarly, the bedrock level is always negatively corre-
lated since a deep level results in a thick clay layer.
This is consistent with the assumption that thicker
clay layers result in larger subsidence.

The result of the rank correlation is explained
further from Fig. 13. As seen from the figure,
σ ′

0, σ ′
c, σ ′

L, ML, and M0 are generally negatively

correlated at large subsidence. Large subsidence oc-
curs when the clay layer is relatively thick and in
its entirety below the groundwater’s piezometric sur-
face. For this situation, the case for Equation (2)
takes effect: large subsidence occurs with lower mod-
ulus, which is the reason for negative correlation for
ML and M0. Since ML and M0 are positively corre-
lated to the other parameters, σ ′

0, σ ′
c, and σ ′

L also
yield negative correlation. An inverse trend with a
slightly positive correlation is observed for zpc. When
the clay layer is moved vertically up to the level of the
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piezometric surface due to a high zpc, the vertical ef-
fective stress is reduced. This also results in smaller
modulus.

A gradual shift from this situation takes place
when the clay layer goes from below to above
the piezometric groundwater level in the confined
aquifer (Fig. 13). An inverse situation, with positive
correlations for σ ′

0, σ ′
c, σ ′

L, ML, and M0 and a neg-
ative correlation for zpc, is observed for smaller sub-
sidence magnitudes. This occurs with thin clay lay-
ers that are close to the surface and where the clay
layer is often above the groundwater level. With a
clay layer above the groundwater table, no subsi-
dence can occur. Since high values for zpc cause the
clay layer to be situated at a higher level, thus above
the groundwater surface, this parameter is negatively
correlated. The positive correlation for the other pa-
rameters is also explained by the same phenomenon.
Since this situation is heavily dependent on a clay
layer below the groundwater table, σ ′

0 also increases
when the clay layer has a deeper location. Since σ ′

c,
σ ′

L, ML, and M0 are dependent on this parameter,
they also show a positive correlation. For this situa-
tion, the case according to Equation (1) often takes
effect. Although Equation (1) results in larger subsi-
dence with lower M0, a clay layer below the ground-
water surface dominates the situation, which results
in larger land subsidence.

3.7. Accuracy of Results

The simulation of soil stratification shows good
correspondence with a reference data set (30% of all
samples were selected and not used for modeling);
see Sundell et al.(20) for details. The subsidence simu-
lations, however, cannot be fully validated since they
correspond to a future, undesired, scenario. For de-
cision making based on this result, it is important to
evaluate if the process representation is sufficiently
detailed and accurate to be useful for predicting the
governing response in the system.(51) The novelty
in this work is the combination of a probabilistic
soil stratification model with a statistical analysis of
compression parameters to calculate subsidence with
a simple, but nonlinear, method that compares well
with individual deterministic predictions performed
from single borehole data. Since the soil stratification
model is validated and a standardized method for
subsidence calculations is used, the forecasted risk
areas are expected to be reasonable and useful for
the purpose of risk assessment of permanent ground-
water drawdowns on a macro scale (1–100 km²).

Although model uncertainties are ignored, such
as the assumptions for the pore pressure profile and
the use of a simplified numerical model that does
not account for creep, our model is able to sepa-
rate areas with significant risk from low-risk areas
for subsidence. To verify the model on a detailed
scale, more advanced models based on the result
of individual sampling locations are recommended.
We argue that our model combined with such ad-
ditional refinements gives enough detail to provide
relevant decision support on the scale considered
here.

Commonly, the constructor of a subsurface
project covers the costs for safety measures and not
the stakeholders, which suffer from the consequences
by subsidence damages (owners of constructions).
Due to conflict of interests, it is important to be
transparent about assumptions made and the chosen
threshold levels for defining risk areas.(52) Since this
method is relatively straightforward in comparison to
more advanced numerical models for subsidence, this
communication is possible if stakeholders hold ba-
sic expertise in geotechnical engineering and statis-
tics in order to understand the fundamentals of the
suggested modeling process.

4. CONCLUSIONS

This article presents a novel method for combin-
ing a probabilistic soil stratification model with sta-
tistical analysis of compression parameters for sim-
ulation of subsidence on a large area with a sim-
ple nonlinear 1D compression model. The result of
this simulation is used for creating risk maps where
areas with significant risk for subsidence are distin-
guished from low-risk areas. The suggested method
is useful in cases where the following criteria are ful-
filled: when soils demonstrate significant heterogene-
ity in properties, when data on soil stratification are
abundant, when data on soil properties are sparse,
when dependencies between soil properties need to
be taken into account, when trends along depth for
soil properties exist, when the compressible layer is
normally or slightly overconsolidated, and when soil
layers can be assumed to be continuous.

The mapped risk areas and the result of the sensi-
tivity analysis can be used, together with information
on sensitive constructions, for supporting decision
making regarding prioritization of further investi-
gations, risk-reducing measures, and monitoring. In
the case for the planned City Link tunnel in Stock-
holm, the maps have been successfully used for risk
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communication in legal court in the application for
permit to modify groundwater conditions.

For a better understanding of the cause–effect
chain from drawdown to subsidence, future research
on connecting subsidence models with groundwater
models and economic valuation of consequences is
recommended. With an improved understanding, the
risk for making erroneous decisions on risk-reducing
measures, surveillance, and further investigations can
be reduced. Recommended future research includes
an improved subsidence model that accounts for time
dependencies; to extend the soil stratification and
subsidence model with a 3D groundwater model; and
to improve the decision making by means of eco-
nomic valuation of consequences. Although these
improvements are suggested, the presented model
has in the case study been demonstrated to be a
useful decision-support tool when assessing the risk
for groundwater-drawdown-induced subsidence on a
large scale.
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Riera J, Alcaraz, M. The use of GIS-based 3D geological tools
to improve hydrogeological models of sedimentary media in
an urban environment. Environmental Earth Sciences, 2013;
68(8):2145–2162.

14. Matheron G. Principles of geostatistics. Economic Geology,
1963; 58(8):1246–1266.

15. Li D-Q, Jiang S-H, Cao Z-J, Zhou W, Zhou C-B, Zhang L-M.
A multiple response-surface method for slope reliability anal-
ysis considering spatial variability of soil properties. Engineer-
ing Geology, 2015; 187(0):60–72.

16. Müller R, Larsson S, Spross J. Extended multivariate ap-
proach for uncertainty reduction in the assessment of
undrained shear strength in clays. Canadian Geotechnical
Journal, 2013; 51(3):231–245.

17. Griffiths DV, Fenton GA. The random finite element method
(RFEM) in steady seepage analysis. Pp. 225–241 in Griffiths
DV, Fenton GA (eds). Probabilistic Methods in Geotechnical
Engineering. Vienna: Springer Vienna, 2007.

18. Ryu D, Kim D, Lee W, Kim H. Quantification of spatial un-
certainty in secondary compression of reclaimed land using a
simulated geologic profile. Engineering Geology, 2013; 155(0):
1–9.

19. Marache A, Dubost J, Breysse D, Denis A, Dominique S. Un-
derstanding subsurface geological and geotechnical complex-
ity at various scales in urban soils using a 3D model. Georisk:
Assessment and Management of Risk for Engineered Systems
and Geohazards, 2009; 3(4):192–205.

20. Sundell J, Rosén L, Norberg T, Haaf E. A probabilistic ap-
proach to soil layer and bedrock-level modelling for risk as-
sessment of groundwater drawdown induced land subsidence.
Engineering Geology, 2016; 203:126–139.

21. Zeitoun DG, Wakshal E. Fundamentals of the Consolidation
Theory for Soils. Pp. 75–117 in Land Subsidence Analysis in
Urban Areas: The Bangkok Metropolitan Area Case Study.
Dordrecht: Springer Netherlands, 2013.

22. Berntson JA. Portrycksvariationer i leror i Göteborgsregionen
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