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ABSTRACT 

Modelling and simulations for mineral processing plants have been successful in replicating 

and predicting predefined scenarios of an operating plant. However, there is a need to explore and 

increase the potential of such simulations to make them attractive for users. One of the tools to increase 

the attractiveness of the simulations is through applying optimization schemes. Optimization schemes, 

applied on mineral processing simulations, can identify non-intuitive solutions for a given problem. The 

problem definition itself is subjective in nature and is dependent on the purpose of the operating plant. 

The scope of this paper is to demonstrate two optimization schemes: Multi-Objective 

Optimization (MOO) using a Genetic Algorithm (GA) and Multi-Disciplinary Optimization (MDO) 

using an Individual Discipline Feasible (IDF) approach. A two stage coarse comminution plant is used 

as a case plant to demonstrate the applicability of the two optimization schemes. The two schemes are 

compared based on the problem formulations, types of result and computation time. Results show that 

the two optimization schemes are suitable in generating solutions to a defined problem and both schemes 

can be used together to produce complementary results. 
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INTRODUCTION 

The comminution process for a mineral processing plant consists of multiple crushing and 

classification stages and aims to produce fine material to liberate ore from the minerals. The modelling 

and simulation of such processes are well established using static process models (King, 2001; Napier-

Munn et al., 1996). A recent development in the dynamic modelling for such processes has shown further 

increase in fidelity compared to the static process models (Asbjörnsson, 2015). The developed 

simulations can be utilized to design, operate and control mineral processing plants based on the 

requirements of users (Bhadani et al., 2017). Typically, the requirements in the operation of the 

comminution process are conflicting in nature, as for instance, reduction of power draw by process units, 

maximization of production of fine materials, and increasing utilization of the process units. These 

conflicting requirements leads to a Multi-Objective Optimization (MOO) problem to operate a mineral 



  

 
 

 

processing plant. The MOO problems are normally referred to as non-linear problems and its 

fundamental understanding with respect to process behaviour is difficult to achieve. 

Numerous studies have shown applications of Multi-Objective Optimization schemes in 

mineral processing simulations using Genetic Algorithms (GA) to solve optimization problems (Huband 

et al., 2006; Svedensten and Evertsson, 2005). However, a MOO problem can be solved by applying 

other mathematical schemes, such as Multi-Disciplinary Optimization (MDO) architecture. The 

exploration of the mathematical schemes have not been carried out to the full extent for mineral 

processing simulations. The mathematical and algorithmic development in the field of MOO holds 

potential to be applied in cross-disciplinary problems such as in mineral processing. The division of 

cross-disciplinary problems in mineral processing is subjective in nature and the problems depend on 

the part of the process which is being captured in the simulation.  

The scope of this paper is to demonstrate and compare two optimization schemes: Multi-

Objective Optimization (MOO) using a Genetic Algorithm (GA) and Multi-Disciplinary Optimization 

(MDO) using a distributed Individual Discipline Feasible (IDF) approach. The two optimization schemes 

are applied to an analytical model for a two stage coarse comminution process. The optimization is based 

on a trade-off between production of fine material versus power draw of the crushers. The two 

optimization schemes are compared based on problem formulation, result types and computation time. 

The paper first demonstrates a theoretical plant consisting of the two stage coarse comminution process 

and its modelling approach. The two optimization schemes applied to this plant are described followed 

by the section of results and discussion where the comparison of the two schemes is made. 

 

MODELING OF A TWO STAGE COARSE COMMINUTION PLANT 

A two stage coarse comminution plant design was chosen to demonstrate a conflicting trade-

off existing in mineral processing plants and the plant layout is shown in Figure 1. The plant is intended 

to generate fine materials below 20 mm. The material from the primary crushing source (0-250 mm) is 

first fed into the first one-deck screen (S1) where two streams of material are generated.  The first stream 

of finer material (PF1) is transferred into a bin and the oversize material stream (20-250 mm) is fed to 

the first crusher (C1). The product of C1 is fed into a two-deck screen which generates three material 

streams. The oversized material (60+ mm) is recirculated back to the bin, the material size (20-60 mm) 

is fed to the second crusher (C2) and the fine material stream (PF2) is put into the bin. The product from 

C2 is screened in a one-deck screen (S3) and generates two material streams. The oversize stream (20+ 

mm) is recirculated back to C2 and the fine stream (PF3) is collected in the bin. To restrict the design 

space for the above plant, the process is varied by changing two variables (CSS1 and CSS2) which are 

the Closed-Side Settings for the two crushers C1 and C2 respectively. The power draw of the two 

crushers (PC1 and PC2) are measured. There are two main conflictive objective functions for the plant: 

maximization of the production of the fine materials and minimization of the power draw in the crushers. 



  

 
 

 

 

Figure 1. Layout of two stage coarse comminution plant. 

The modelling of the plant is carried out in a MATLAB/Simulink environment based on the 

approach described by Asbjörnsson (Asbjörnsson, 2015). The process is considered as a continuous 

process and each unit model includes derivatives for mass m and properties γ of the material with respect 

to time t (Eq. 1 and 2). The crusher model is a Whiten crusher model (Eq. 3) (Whiten, 1972) while the 

screen model is represented with a Reid-Plitt efficiency curve (Eq. 4) (Reid, 1971). The material flow 

between the crushers and the bins are regulated using a PI controller. 
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The power draw (W) in the crushers are calculated using the Bond equation (Eq. 5) (Bond, 

1952), where P80 and F80 are 80% sizes in μm of the product, and feed respectively, Wi is Work Index in 

kWh/t. 
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The first crusher (C1) is configured as a medium coarse chamber for CS-type Sandvik crushers, 

while the second crusher (C2) is configured as a medium fine chamber for CH-type Sandvik crushers. In 

order to understand the problem setup, the plant was simulated with respect to individual design 

variables. Figure 2 a shows changes in the production of different sizes of material by changing CSS1 of 

the crusher (C1). It can be noted that with increasing CSS1, the production of fine material decreases in 
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stage 1 of the plant while the production of coarse material (20-60 mm) and the recirculating load (60+ 

mm) increases. On similar grounds, Figure 2 b shows the behaviour of the second crusher (C2) with 

respect to CSS2 and there is a decrease in production of fine material in stage 2 of the plant. For the same 

change in parameters, the power draw in C1 gradually decreases with an increase in CSS1 as shown in 

Figure 2 c. It is also interesting to see that the power draw in the crusher (C2) gradually increases as the 

feed to C2 is increased. Similarly, there is a decrease in power draw for the crusher (C2) as shown in 

Figure 2 d. It is observable that the power draw in C1 is relatively higher than the power draw in C2, 

which is dependent on capacity and size of the crushers and also on the work load distribution between 

the two crushers.  

   
 (a) For CSS2 = 20 mm    (b) For CSS1 = 35 mm 

   
 (c) For CSS2 = 20 mm      (d) For CSS1 = 35 mm 

Figure 2. Effect in the production of material and the power draw by the crushers on changing closed-

side settings of the crushers in the two stage coarse comminution plant. 

 

OPTIMIZATION SCHEMES 

A solution to the MOO problem can be achieved through multiple optimization schemes, 

depending on the problem formulation (Papalambros and Wilde, 2017). The optimization problem 

formulation is subjective in nature and it depends on the choice of users and the relevance to reality. As 



  

 
 

 

already stated, the optimization problem formulation is based on two main objective functions: 

maximization of production of the fine material and minimization of the power draw by the crushers. 

This section describes the two optimization schemes applied to the considered case plant. 

 

MOO using GA 

Genetic Algorithm is a heuristic based algorithm and is developed from inspiration of natural 

evolution processes. The GA is normally applied to the objective functions that are non-linear and 

stochastic in behaviour (Kramer, 2017). In this case, the two-stage comminution process can be 

considered as a complex problem with non-linear behaviour. The MOO problem formulation is shown 

in Figure 3. The two stage comminution process is considered as a black-box model. The system 

optimizer parses the design variables (x) to the process simulation. The simulation returns the output 

variable (y) to the system optimizer and this process is repeated until the convergence criteria is achieved. 

The MOO problem is used to produce a Pareto-front using GA to illustrate the trade-off between the two 

objectives. The choice of the objective functions and problem formulations are critical in generating the 

relevant results using this approach. The choice of the solution is dependent on the user and the relevance 

to practical applications.   

 

Figure 3. The MOO problem formulation for the two-stage comminution process for GA. 

The optimization problem formulation for the GA is shown below. 
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Weight factors wj and vj are added to the objective functions to include the significance of the work load 

distribution between the two stages of the comminution plant.  

System Optimizer

Stage 1

( 1, 2)x CSS CSS

Stage 2

( 2, 3, 1, 2)y PF PF PC PC



  

 
 

 

The general algorithm used for solving the MOO problem using a GA is shown below (Kalyanmoy, 

2001; Kramer, 2017).  

Algorithm: 

Input- Design variable x 

Output- Pareto front for multiple-objective functions (f1*, f2*) and optimized variable set (x*) 

0: Initiate population 

Repeat 

  Repeat 

0.1: Crossover 

0.2: Mutation 

0.3: Fitness computation   

Until → Population complete 

1: Selection of parental population  

Until → Termination condition 

 

MDO using a distributed IDF 

The MDO architecture is a representation of the arrangement of various sub-disciplines 

involved in an engineering system and it has been used to achieve global optimization for complex 

engineering problems (Martins and Lambe, 2013). A distributed IDF approach within the MDO allows 

division of the system into two or more levels of optimization problem. The two stage comminution 

process in this case can be considered as an engineering system optimization problem. To illustrate the 

application of the distributed IDF approach, the system is divided into a two level design optimization 

problem: the system optimization problem and the individual sub-process optimization problem. The 

system design optimization problem aims to minimize the power draw from the crushers while the 

individual sub-process optimization problem aims to maximize the fines generated in each sub-process.  

Figure 4 shows the application of the distributed IDF approach to the two stage coarse-

comminution plant. In each main iteration, the system optimizer is subjected to minimize the power draw 

of the two crushers by using two sets of variables. The two sets of variables are the design variables (x1) 

consisting of the two closed-side settings as well as duplicate copies of the same design variable (x2). In 

each sub-process optimization, the sub-optimizer aims to maximize the production of fine material and 

uses local design variables and a duplicate copy of other sub-process design variables to produce local 

optima points. These local optima points are then used for calculation of the objective function in the 

main iteration. The individual sub-process optimizations can be solved in parallel. The system optimizer 

maintains the consistency between the design variables and the duplicate copy of the design variables 

by an addition of consistency constraints in the problem definition. The solution is iterated until the 

system optimizer has converged. This approach considers that the optimization problem can be 

decoupled into multiple optimization problems and the application of a gradient-based algorithm can 

solve such problem formulation. In this case, the gradient based algorithm, sequential quadratic 

programming, was used to solve the optimization problem. 



  

 
 

 

 

Figure 4. The MDO problem formulation for two-stage comminution process using IDF formulation 

The bi-level optimization problem formulation for the IDF approach is shown below: 
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The general algorithm for solving the problem is shown below (Bhadani et al., 2018; Martins and Lambe, 

2013).  

Algorithm: 

Input-  Design variable x 

Output- Optimized variable x*, objective function f* 

0: Initiate system optimizer iteration 

Repeat 

1: Compute sub-process objective and constraints 

For each sub-process i, do 

1.0 Initiate sub-process optimization 

Repeat 

1.1 Evaluate sub-process i   

1.2 Compute sub-process i objective and constraints 

1.3 Compute new design point for sub-process (i+1) 

Until 1.3 → Optimization i has converged 

End for 

2. Compute new system design points 

Until 2 → System optimization has converged 
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RESULTS AND DISCUSSION 

The two optimization schemes produced relevant results for the operation in the mineral 

processing simulations. Figure 5 a shows the Pareto front between the two objectives defined in the 

MOO problem. The corresponding solution points for the design variables are shown in Figure 5 b. It 

can be noted that the MOO method using GA generates a wide range of solutions. The user can select 

the most competitive solution depending on the judgement in relation to the reality. In this case, the 

solutions obtained at the boundary values of the design variable (e.g., CSS1 = 20, 55) are not suitable 

solutions. This can be interpreted from practical aspects such as that the capacity of the crusher will 

decrease if operated at the lower bound, and the crusher will produce higher recirculating material if 

operated at the upper bound (see Figure 2 a).  

It can be observed from Figure 5 c, d compared to Figure 5 a, b that the weight of PC1 in 

function f1 is changed from a value of 3 to 5 (increasing the importance of the power draw in Stage 1 

compared to Stage 2), a different set of solutions is obtained. This particular feature of weighing the 

objectives helps in exploring the problem design region. The choice of the weight is dependent on the 

process and the importance of the particular function with respect to other competing functions.  

 
   (a)           (b) 

 
   (c)           (d) 

Figure 5. Pareto-fronts and solution points of the MOO problems using GA. 



  

 
 

 

Figure 6 represents the convergence curve and solution points for the MDO problem using the distributed 

IDF approach. The design variables and the duplicate copies of the design variables converged to a single 

solution point.  The solution obtained with the IDF approach are CSS1 = 44.38 mm and CSS2 = 10 mm 

which is comparable to the range of solutions obtained using the GA (CSS1 = 40 to 50 mm and CSS2 = 

10 to 15 mm, see Figure 5 b). A brief remark between the two optimization schemes are presented in 

Table 1. 

 
(a)           (b) 

Figure 6. Convergence curve and solution points of the MDO problem using the distributed IDF 

formulation. 

Table 1 – Comparison between the two optimization schemes 

 MOO using GA MDO using distributed IDF 

Problem 

Formulation 

Weighted sum approach to formulate 

comprehensive optimization objectives. 

Can be decoupled into two or more 

levels of optimization problems. 

Result Types Pareto-front highlighting the spectrum of 

solutions. Choice is based on reasoning 

of the solution space. 

Balanced solution between system 

optimization and sub-process 

optimization. 

Computation 

Time 

High. Dependent on algorithm settings 

such as population size and generation. 

Low. Dependent on the initial start point 

of the algorithm. 

 

CONCLUSIONS 

The two optimization schemes: Multi-Objective Optimization (MOO) using the Genetic 

Algorithm (GA) and Multi-Disciplinary Optimization (MDO) using the Individual Discipline Feasible 

(IDF) approach are demonstrated using a two stage coarse comminution plant. Both the schemes are 

suitable in producing reasonable and comparable results, and can be used together to complement the 

results. The MOO scheme using GA is suitable for exploring the solution space while the MDO scheme 

using IDF approach is suitable for identifying the balancing point of the system. The two schemes differs 

in terms of problem formulation since the results obtained using GA are sensitive to the weights added 



  

 
 

 

in the MOO problem formulation. The behaviour of the two optimization schemes needs to be studied 

with an increased number of design variables to be able to further compare the computational 

performance. Further development in the optimization objective functions are needed to explore the 

capabilities of the mineral processing simulations.  
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