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A B S T R A C T

Purpose: The aim of this prospective, video-electroencephalography (video-EEG) controlled study was to eval-
uate the performance of an accelerometry-based wearable system to detect tonic-clonic seizures (TCSs) and to
investigate the accuracy of different seizure detection algorithms using separate training and test data sets.
Methods: Seventy-five epilepsy surgery candidates undergoing video-EEGmonitoring were included. The patients wore
one three-axis accelerometer on each wrist during video-EEG. The accelerometer data was band-pass filtered and
reduced using a movement threshold and mapped to a time-frequency feature space representation. Algorithms based
on standard binary classifiers combined with a TCS specific event detection layer were developed and trained using the
training set. Their performance was evaluated in terms of sensitivity and false positive (FP) rate using the test set.
Results: Thirty-seven available TCSs in 11 patients were recorded and the data was divided into disjoint training
(27 TCSs, three patients) and test (10 TCSs, eight patients) data sets. The classification algorithms evaluated
were K-nearest-neighbors (KNN), random forest (RF) and a linear kernel support vector machine (SVM). For the
TCSs detection performance of the three algorithms in the test set, the highest sensitivity was obtained for KNN
(100% sensitivity, 0.05 FP/h) and the lowest FP rate was obtained for RF (90% sensitivity, 0.01 FP/h).
Conclusions: The low FP rate enhances the clinical utility of the detection system for long-term reliable seizure
monitoring. It also allows a possible implementation of an automated TCS detection in free-living environment,
which could contribute to ascertain seizure frequency and thereby better seizure management.

1. Introduction

Generalized tonic-clonic, as well as focal to bilateral tonic-clonic
seizures (TCSs) may lead to traumatic injuries and represent a major
risk factor for sudden unexpected death in epilepsy (SUDEP), which, in
turn, accounts for 10–50% of all deaths in the epilepsy population
[1,2]. High frequency of TCSs is also associated with significant psy-
chosocial disability and quality of life impairment [3,4].

Video-electroencephalography (video-EEG) is the gold standard pro-
cedure for the investigation of paroxysmal disorders, but its availability is
limited. In day-to-day practice, clinicians base their decisions mainly on

patient history and witness accounts. The reliability of such information is,
however, hampered by its retrospective nature and the difficulty to re-
cognize all seizures, especially those with impaired awareness and noc-
turnal seizures (including TCSs) [5]. Seizure detection and accurate
measurement of seizure frequency, in outpatient settings, would improve
the management of epilepsy and thereby increase patient safety.

Recent advances in accelerometry technology have allowed the de-
velopment of ambulatory monitoring systems able to detect changes in
movement frequency and amplitude associated with motor seizures, and
to differentiate these patterns from daily voluntary movements.
Accelerometry-based sensors are usually small, portable and easy to use.
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With an attractive integrated design, they may fulfil the need of patients
with epilepsy to have a better outpatient disease management, while
avoiding social stigmatization [6]. Several commercially available de-
vices with proprietary algorithms have been proposed to be effective for
TCSs detection, including a wrist watch with built-in accelerometers [7],
accelerometry sensors combined with audio recordings [8], or other
modalities, such as electrodermal activity [9,10] and heart rate [11].

The sensitivity of TCS detection systems based on accelerometry, pos-
sibly combined with additional modalities, is promising. However, false
positive rates are an issue and vary depending on the different devices and
algorithms used for seizure detection [12,13]. The majority of available
seizure detection devices have been developed using training and test data
sets from the same patients in the algorithm development phase, which is
referred to as inclusion bias [14]. The presence of this bias limits the validity
of the proposed algorithm performance due to potential overfitting. Over-
fitting refers to the model obtaining very good performance in the training
set using cross validation for parameter tuning but failing to generalize to a
data set containing previously unseen data. Moreover, the evaluation of
commercial proprietary algorithm performance is also challenging due to
restrictions for health professionals to access raw data. The amount of input
from clinicians and clinical data in the algorithm development process
varies between these detection devices. In order to obtain a good clinical
standard and to match the needs of clinical practice, separate training and
test data sets from different patients for the algorithm development and
assessment of the performance of seizure-detection algorithms are desirable.

The wearITmed project is a non-commercial platform for colla-
boration between technical experts, medical professionals, researchers
and patients aiming to develop an integrated wearable system – a multi-
sensor integrated garment – that would be usable in multiple clinical
situations, including detection and differentiation of various seizure
types, and would allow continuous improvement and adaptation to
needs and preferences of patients as well as clinicians [6].

The objective of this video-EEG controlled prospective study was to
evaluate the performance of different detection algorithms applicable in
the wearITmed prototype accelerometry-based system for TCS detection.

2. Methods

2.1. Participants

This prospective study was conducted with epilepsy surgery candi-
dates>18 years who underwent scalp or invasive video-EEG recording at
the Sahlgrenska University Hospital in Gothenburg, Sweden. Clinical vari-
ables were obtained from medical records, seizure-related variables were
based on analysis of video-EEG recording, and imaging variables were based
on analysis of available magnetic resonance imaging (MRI). The study was
conducted in accordance with the Declaration of Helsinki and the study
protocol was approved by The Regional ethical review board in Gothenburg,
Sweden. Written informed consent was obtained from all participants.

2.2. Study design

During video-EEG monitoring, the patients wore one accelerometry
sensor on each wrist. Two types of inertial sensors were used during
different phases of data collection (initial phase: in-house developed
sensor, RISE Acreo, Sweden; later phase: Shimmer3, Shimmer Research,
Ireland). An example of Shimmer3 wrist-worn sensors is shown in Fig. 1.
Both sensors measure the acceleration vector components along three
orthogonal axes. The measurement range was set to ± 3 g (Acreo) or
± 8 g (Shimmer3) with a sampling rate of 50 Hz (Acreo) or 102.4 Hz
(Shimmer3). The movement data was prospectively continuously col-
lected and stored on a laptop (Acreo) or an SD Memory card (Shimmer3)
for later read-out and off-line analysis. At the start of each session,
measurements were manually synchronized with the reference time in
the video-EEG system by technical experts or by health care professionals
who had received special instruction in handling the sensors.

Timing, duration and clinical type of TCSs (focal vs. generalized vs.
unknown onset) recorded during video-EEG monitoring were reviewed
and annotated by an experienced epileptologist (DK). The onset and
duration of the motor symptoms corresponding to each TCS were es-
timated from the accelerometer data based on the annotations, with
additional consultation and review of the video-EEG recordings in every
case where any uncertainties regarding seizure semiology, onset or
duration were identified. The seizure onset was manually labelled on
the accelerometer data and the epileptologist was blinded to the sensor
data during video-EEG inspection and seizure labelling.

The accelerometer measurements from patients with recorded TCSs were
divided into two disjoint sets; one training set and one test set. For each
measurement in the training set a continuous 24 h period containing all TCSs
was selected in order to reduce the data set imbalance and improve model
training. This procedure mitigated the tendency of the training process to
completely ignore the rare class (seizure) in favor of the dominant one (non-
seizure), which results from the penalty of associating every time instance
with the dominant class becoming negligible as the imbalance grows suffi-
ciently large. The test set data contained the full measurements except for
periods of missing data that were manually identified and removed.

The training set was used for model development and for training the
final models, while the test set was reserved exclusively for algorithm
evaluation. Inclusion bias was removed from the evaluation results by
ensuring that the data recorded for each individual was assigned in its
entirety to either the training set or the test set. Only once the method
development was completed, including the tuning of all parameters in
the algorithms, were the algorithms obtained evaluated on the training
set data. The rationale for this practice was to remove the tendency to
overestimate the ability to generalize to previously unseen individuals
resulting from tuning parameters to optimize performance in the test set.

2.3. Signal processing and feature extraction

Signal processing and algorithm development and evaluation were
conducted using MATLAB 2016b (MathWorks, USA). The accelerometry

Fig. 1. An example of Shimmer3 wrist-worn sensors.
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data was pre-processed using a band-pass filter (with passband
0.25–13Hz), and a 0.1gmovement threshold was applied to remove non-
motor epochs. Missing sensor recordings resulting in unphysical inter-
polated data were automatically identified and removed.

Following pre-processing, a number of features, both in the time
domain and the frequency domain, were extracted from the acceleration
signal using an overlapping sliding window, whose length varied be-
tween 1 s and 10 s depending on the feature. The purpose of extracting
features was to condense the raw data into quantities that are sensitive to
TCSs and the windowing served to include information at different time
scales in the feature set in order to distinguish characteristic seizure

patterns. Previous studies [9,15] have identified several features for
seizure detection which were used in this study for algorithm evaluation
together with new added features (e.g. signal magnitude area and en-
tropy). Feature values were computed with a 1 s resolution and compiled
into a vector representation, and the true class for the corresponding time
points (with seizure and non-seizure instances marked as 1 and 0 re-
spectively) was extracted from the seizure records.

The entire signal processing and feature calculation step was de-
signed to accommodate varying sampling frequencies, so that the fea-
ture sets computed for the two sensor types (Acreo and Shimmer3)
could be treated identically in the subsequent analysis.

Fig. 2. (A) Schematic illustration of the seizure detection algorithm. The three different algorithms evaluated differ in the feature set derived from accelerometer data, the binary
classifier used, and the parameters of the decision layer. (B) Illustration of the operation of the decision layer for a time sequence containing a seizure, recorded for patient ID 7 in
the training set, during model development. The true class (solid blue) and the output from the binary classifier (dashed black) are shown together with the intermediate decision
layer median filter output (black asterisk), the frequency peak features for the two sensors (yellow and violet point-dotted) used in the veto and the final decision layer output
detection (dashed red). The median filter serves to smooth the binary classifier output and suppress intermittent misclassifications to reduce the false positive rate. The
subsequent threshold and veto requires simultaneously a sufficient number of consecutive time instances classified as seizure and a sufficiently high frequency peak in both
sensors in order to generate a detection event (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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2.4. Algorithm design and evaluation

The seizure detection algorithm design was based on a binary
classifier taking the feature vector as input and predicting the class of
each 1 s interval as seizure (1) or non-seizure (0). Since the task at hand
was detection of seizure events, rather than correctly classifying each
time instance, the output from the binary classifier was processed using
a decision layer, combining a modified median filter with a subsequent
threshold for consecutive seizure classifications. In addition, a veto
could optionally be applied based on a feature specific thresholding. If
all conditions were fulfilled, the decision layer generated a detection
event and resumed analysis after a 120 s delay to avoid generating
multiple detections for a single seizure. The algorithm and the appli-
cation of the decision layer are schematically illustrated in Fig. 2.

During the model development phase [16], the training set data was
used to evaluate several different binary classifiers, optimize the feature

set for each classifier and tune the parameters of both the classification
algorithms and the decision layer used for event detection using cross-
validation. The training set performance of the algorithms in patient-
specific (training and testing on the same individual) and patient-gen-
eral (training and testing on different individuals) settings was eval-
uated together with their robustness against false positives during
normal activities characterized by high frequency and/or large ampli-
tude movements, which could be mistaken for seizure activity (playing
badminton, tooth brushing and dishwashing).

The models and decision layer parameters yielding the best perfor-
mance in the model development [16] were selected for further opti-
mization and the final algorithms trained using the full training set. Only
after the selected algorithms were finalized were they evaluated on the
test set data in order to obtain an unbiased estimate of their performance.

A detection was considered to be a true positive (TP) if the time
window contributing to the detection, the length of which was given by
the sum of the median filter length and the seizure detection threshold,
contained at least one time instance labelled as a seizure. Otherwise the
detection was considered to be a false positive (FP). Seizures which
generated no detection events were considered to be false negatives
(FN). In order to obtain a conservative estimate of the performance the
following procedure was applied in case a detection with no contribu-
tion from a time instance labelled as seizure occurred within 120 s
before an actual seizure; a FP was considered to be detected and the
algorithm was reset at the start of the seizure. Only if the algorithm
then also generated a detection which received contribution from a
time instance labelled as seizure was a TP also recorded.

3. Results

Seventy-five patients (median age 35 years, range 18–77 years, 63%
female) were enrolled in the study. The demographic and clinical
characteristics of all patients are presented in Table 1 and individual
characteristics and demographic data in Supplementary Table 1. Sixty-
one of them had a history of TCSs. During the sensor monitoring, a total
of approximately 8933 h accelerometer data was recorded. The mean
recording time was 121 h per patient (median 104, range 4–264 h).
Thirty-seven TCSs in 11 patients were recorded by the accelerometry
sensors. All seizures in the study are symmetric in the sense that they
involve clear convulsive manifestations in both arms.

Sensor recordings containing TCSs were divided into a training set,
consisting of 96 h of data and containing 27 TCSs in three patients, and
a test set consisting of 570 h of data and containing 10 TCSs in eight
patients. The clinical characteristics and seizure occurrence for the
patients in both sets are presented in Table 2.

3.1. Missing data and non-adherence to wrist-worn sensors

Of 64 TCSs in 19 patients detected by video-EEG, 12 TCSs occurred
when patients had no sensors on, 10 TCSs in three patients occurred after
sensors were removed due to discomfort and five TCSs were unrecorded
by sensors due to technical errors. A total of 1952 h missing data (22%)
was noted in 29 patients with an average of 65 h (range 10–144) per
patient. Missing data attributable to technical errors was 71%, and un-
known reasons (e.g. sensors were not started correctly) were attributable
to 29% of the missing data. The percentage of individual missing data and
non-adherence for sensor recording are presented in Supplementary Fig. 1.

3.2. Algorithm development

During the model development stage [16] the decision layer para-
meters were tuned and the detection performance was found to im-
prove with the application of a veto threshold for the frequency peak
feature, which contains information regarding the frequency range
containing the maximum energy. The three binary classifiers per-
forming best, both in terms of sensitivity and false positive rate, during

Table 1
The demographics and clinical characteristics of all participants in this
study.

Participants
n= 75

Agea, years 35 (18–77)
Female (n[%]) 47 (63)
Epilepsy duration, years 17 (2–70)
Number of AEDs 2 (0–4)
AED ≥3 (n[%]) 26 (35)
History of TCSs 61 (81)
Types of seizures (n[%])b

Focal onset 59 (79)
Generalized onset 4 (5)
Unknown onset 12 (16)
SOZc location (if focal)
Temporal 32 (43)
Frontal 11 (15)
Occipital 3 (4)
Parietal 3 (4)
TPO 4 (5)
Unknown 6 (8)
SOZc side (if focal)
Left 25 (33)
Right 25 (33)
Bilateral 9 (12)
Type of video-EEG (n[%])d

Scalp 67 (89)
Invasive 10 (13)
Video-EEG duration, days 7 (2–16)
History of nocturnal seizures (n[%]) 59 (79)
History of febrile seizures (n[%]) 11(15)
History of status epilepticus (n[%]) 15 (20)
History of aura (n[%])e 58 (77)
Somatosensory 17 (23)
Epigastric 23 (31)
Cephalic 18 (24)
Othersf 15 (20)
Oroalimentary automatisms (n[%]) 38 (51)
Gestural automatisms (n[%]) 37 (49)
MR lesion (n[%]) 20 (27)

Data are presented as median (range) unless otherwise specified.
TCSs, tonic-clonic seizures; video-EEG, video-electroencephalography; AED,
antiepileptic drug; SOZ, seizure-onset zone; TPO, temporo-parieto-occipital
junction; MR, magnetic resonance.
a Age in years at the time of video-EEG monitoring.
b Classification according to the new classification of seizures by the

International League Against Epilepsy 2017. [27].
c Seizure-onset zone based on the whole electroclinical syndrome.
d Two patients were conducted vide-EEG monitoring in separate dis-

tances.
e Classification according to semiological seizure classification. [28].
f Others: visual aura (n= 8), auditory aura (n= 3), olfactory aura

(n= 4), gustatory aura (n= 2). One patient had history of both visual and
gustatory auras. One patient had history of both visual and auditory auras.
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the model development stage were K-Nearest Neighbors (KNN) with 5
neighbors, Support Vector Machine (SVM) with linear kernel and
Random Forest (RF) with 30 trees. The feature sets used for each
classifier were also optimized, and the optimal sets were in all cases
found to contain features related to the acceleration magnitude and
standard deviation as well as the signal entropy and the energy content
in various frequency bands. In addition, the frequency peak feature
described above was used in one optimal set.

Based on the development results [16], the classification algorithms
based on the KNN, SVM and RF methods were selected for further de-
velopment. The decision layer parameters and the veto threshold level
were further optimized individually for each of the three selected classi-
fication algorithms using the training set data, and three final detection

algorithms were trained using the complete training set. The training
performance, obtained by evaluating the models obtained on the training
set itself, was perfect (100% sensitivity and 0 FPs) for all three algorithms.

3.3. Detection algorithm evaluation

The performance of the three algorithms in the test set is shown in
Fig. 3 and Supplementary Table 2. When evaluated on the test set, the
KNN detection algorithm correctly detected all 10 TCSs with 26 FPs
generated for the 570 h of data (100% sensitivity, 0.05 FP/h, 1.2 FP/
24 h). The SVM algorithm detected 9 out of 10 TCSs with 11 FPs (90%
sensitivity, 0.02 FP/h, 0.48 FP/24 h), while the lowest false positive
rate was obtained for the RF algorithm which also detected 9 out of 10
TCSs and only generated 6 FPs (90% sensitivity, 0.01 FP/h, 0.24 FP/
24 h). Examples of TP and FP detection events generated by the de-
tection algorithms are shown in Fig. 4.

4. Discussion

To our knowledge, this study is the first to systematically evaluate
the performance of different classification algorithms for TCS detection
while using separate data sets to avoid inclusion bias. All three algo-
rithms evaluated had a high sensitivity to detect TCSs (SVM and RF
sensitivity 90%, KNN 100% sensitivity). The lowest false positive rate
was obtained for the RF algorithm (0.01 FP/h, 0.24 FP/24 h) and
achieved solely by using the accelerometry-based system. Notably, the
patients had no movement restrictions during video-EEG recording.

There are three sensor-based devices reporting comparable sensi-
tivity (above 90%) for TCSs detection. The reported detection sensi-
tivity for a commercially available wrist-worn device (SmartWatch,
Smart Monitor, USA) ranges from 31% to 92% [8,17,18] and one of the
studies reported 204 false events in 40 patients with eight TCSs [17].
Another accelerometry-based single wrist-worn sensor device (Epi-Care
Free, Danish Care, Denmark) detected 9 out 22 TCSs (sensitivity 41%,
FP 0.15/24 h) in one study [19], and in another study identified 35 out
of 39 TCSs in 20 patients (sensitivity 90%, FP 0.2/24 h) [7]. However,
in that study patients were instructed to refrain from performing certain

Table 2
Clinical characteristics of patients with tonic-clonic seizures (TCSs) detected by both accelerometry sensors and video-EEG monitoring.

ID Agea

/Gender
Age at
onset

Number of
AEDs

TC seizure
onsetb

SOZc location (if
focal)

SOZc side (if
focal)

Number of TCSs
detected with
video-EEG

Available Number of TCSs for
development/ evaluationd

Number of TCSs
detected with
sensorse

Training set
7f 25/M 13 2 Focal TPO Left 12 11g 11

12 12 12
48h 29/F 1 2 Focal Temporal Left 2 2 2
55 41/M 23 4 Focal Parietal Right 2 2 2
Test set
19 27/F 13 2 Focal Temporal Right 1 1 1
35 46/M 15 3 Focal Temporal Left 2 2 2
47 34/M 6.5 3 Focal Unknown

(Temporal?)
Unknown
(Right?)

4 1 1

59 40/F 35 3 Generalized NA NA 3 1 1
66 36/M 14 3 Focal Temporal Unknown 2 2 2
68 26/M 21 2 Focal Temporal Left 3 1 1
74 25/F 10 3 Focal Temporal Left 1 1 1
93 25/F 7 2 Generalized NA NA 1 1 1

M, male; F, female; AEDs, antiepileptic drugs; TCSs, tonic-clonic seizures; SOZ, seizure-onset zone; video-EEG, video-electroencephalography; TPO, temporo-parieto-
occipital junction; NA, not applicable.
a Age in years at the time of video-EEG monitoring.
b Classification according to the new classification of seizures by the International League Against Epilepsy 2017. [27].
c Seizure-onset zone based on the whole electroclinical syndrome.
d Five unrecorded TCSs occurred when sensors were not worn (ID 47 and ID 68). Two TCSs were unavailable due to technical errors (ID 59).
e At least one of the algorithms in development or evaluation detected TCSs.
f Video-EEG monitoring was conducted twice at separate instances.
g One atypical tonic-clonic seizure was excluded from the training set.
h The patient wore the sensors on the upper arms.

Fig. 3. Performance of the three classification algorithms in tonic-clonic seizure
detection in each individual of the test set. (A) Number of tonic-clonic seizures
detected by the three classification algorithms. (B) The average false positive
rate per hour in each of the three classification algorithms. KNN, K-Nearest
Neighbors; SVM, Support Vector Machine; RF, Random Forest; video-EEG,
video-electroencephalography.
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repetitive daily movements that could be misclassified as seizures (such
as brushing teeth with the hand that had a sensor attached) [7]. A
multimodal system (Empatica Embrace, USA) based on both accel-
erometry and electrodermal activity detected 15 out 16 TCSs in seven
patients in one study and 52 out of 55 TCSs in 22 patients in another
study (sensitivity around 95%, false alarms 0.2/24 h) [9,10]. However,
inclusion bias was, to some extent, found to be present in those studies
[14]. Consequently, in comparison with other studies, our results
achieved comparable sensitivity and FP rate using only one modality,
without inclusion bias and without any movement restrictions in the
algorithm development and evaluation.

A variation in the number of FPs was noted between individuals in
relation to heterogeneous motor phenomena of TCSs in this study, similar
to other seizure detection devices [20–22]. Two individuals (ID 59 and 93)
with generalized onset TCSs generated a higher false positive rate in the
KNN algorithm than in the other two algorithms, and generally high false
positive rates when compared to patients with focal onset TCSs. On visual
inspection of the accelerometer data, patient (ID 59) showed a long period
with high frequency movements to which 30–50% of the FPs in each of the
three algorithms was attributed (Fig. 3). In another patient (ID 74), a focal
bilateral clonic seizure with preserved awareness caused a movement
pattern which was difficult to distinguish from TCSs, and generated a FP in
all the three algorithms. Individualization of the algorithms for included
individuals before application of the seizure detection system could po-
tentially further decrease the false positive rates and consequently improve
the clinical relevance of the results.

False alarms are a potential barrier for the use of wearable sensors in
seizure detection [5]. A majority of patients would nonetheless accept
false alarms as long as they are fewer in number than the correct pre-
dictions [23]. Twenty-five percent false positive alarms (i.e. 1 FP for every
3 TP) has been reported as acceptable from most patients and caregivers
[24]. Since the expected rate is dependent on seizure frequency in a given
individual, it cannot be directly translated into a FP/h rate of the detection
algorithm. This 25% acceptable rate can however, given the performance
of the algorithm, be used to identify the subgroup of patients with suffi-
cient seizure frequency to find the detection device acceptable.

Different strategies have been suggested to decrease FPs, such as the
use of multimodal systems and patient-specific algorithms [9,25].
Multimodal systems are promising, but give rise to other concerns, such
as higher demand on data handling and processing and increased power
consumption. A trade-off may be needed between minimizing the FP
rate while still maintaining the technical feasibility to enable the use of
wearable sensors in long-term seizure monitoring outside the hospital
environment.

A discrepancy between the numbers of TCSs recorded by video-EEG and
by the accelerometry sensors was noted. Unrecorded seizures by the ac-
celerometry sensors were mainly attributable to missing data and non-ad-
herence to sensors. A relatively high percentage of missing data (22%) was
noted in the study, which is in accordance with other studies using wearable
sensors [13]. Technical issues with the sensors included battery failure,
memory card or data storage problems, and failed synchronization between
sensors. The advantage of access to raw sensor data in the in-house devel-
oped system allows an investigation of reasons causing missed seizures in
the algorithms. Even though the overall adherence rate in this study was
high (96%), three out of 75 patients reported discomfort caused by the
sensors and removed them after approximately two to three days of mon-
itoring, resulting in 10 unrecorded TCSs. This emphasizes the importance of
a comfortable, patient-centered design for wearable seizure detection de-
vices, which may increase the motivation for wearing them [6,26].

The study population was heterogeneous regarding the type of TCSs, as
well as lateralization and localization of seizure onset in focal-onset TCSs.
There were no TCSs recorded by the sensors that were not registered by
video-EEG, which underlines the role of video-EEG as gold standard for
studies evaluating sensor performance. Bilateral sensors were used instead
of a single wrist sensor. This may allow for a comparison between upper
limb movements at the onset and offset of TCSs with regard to the side of
movement, movement frequency and amplitude. This information may
also be helpful while classifying the type of TCS, as well as give hints about
the lateralization of the seizure onset and can be useful for generating TCS
evolution patterns once data from a larger group is collected. The use of
bilateral sensors can also be useful for improving TCSs detection perfor-
mances in cases such as when one arm is constrained (e.g. the rhythmic
arm movement is constrained by nurses or other people or availability of
limited space during the seizures) or when the motor manifestation is
unclear as to which wrist is predominant.

The strengths of the present study are that separate training and test
data sets were used for algorithm development and evaluation, that the
evaluated algorithms can detect TCSs during video-EEG monitoring
with high sensitivity and a low FP rate, relative to comparable studies
using only one sensor modality, and this was obtained without im-
posing any movement restrictions. In fact, the FP rate was also com-
parable to that obtained in state-of-the art multimodal systems [10,11].
The ability to obtain such a low FP rate using only one modality, im-
plies that power consumption can be reduced compared to multimodal
system, which in turn increases the expected battery life time and
therefore the clinical utility of the proposed accelerometry-based
system in long-term use for TCS detection. The weaknesses of the study
include that the number of TCSs, the number of individuals with

Fig. 4. Examples of detection events in the test set generated by the RF algorithm; top and bottom graphs show acceleration magnitude (black) and renormalized true
classification (solid grey) as functions of time for the two sensors. (A) Example of a TP event for patient ID 74 with estimated start of seizure indicated by the dashed
line. (B) Example of a FP event in patient ID 59 indicated by the dashed line.
RF, Random Forest; TP, true positive; FP, false positive.
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recorded TCSs, and the total number of hours of recorded data in the
test set were all relatively low. The stability of the performance under
generalization to larger populations was therefore difficult to assess.

The next stage in the development of an integrated multimodal
sensors garment will hopefully further increase the precision in detecting
TCSs, as well as allow detection of other types of seizures, while still
remaining easy to use for the patients. In conjunction with this work, the
issue of computational expense for the candidate methods (KNN, SVM
and RF) in a future real-time application will also be investigated. A close
collaboration between technical experts, health professionals and pa-
tients is essential to develop an appealing, comfortable, adaptable, reli-
able and technically feasible wearable seizure detection device.

5. Conclusions

The low false positive rate achieved in the present study, with a single
modality used, no inclusion bias and no restrictions on movements
during the sensor monitoring, provides a possible implementation for a
long-term reliable seizure monitoring in free-living environment to en-
able better seizure management. The collaborative in-house development
of such systems allows for an improved design of detection algorithms
that, in turn, affects the overall performance of the device.
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