CHAL

UNIVERSITY OF TECHNOLOGY

A Pore Scale Model for Osmotic Flow: Homogenization and Lattice
Boltzmann Simulations

Downloaded from: https://research.chalmers.se, 2025-08-04 01:14 UTC

Citation for the original published paper (version of record):

Gebick, T., Heintz, A. (2019). A Pore Scale Model for Osmotic Flow: Homogenization and Lattice
Boltzmann Simulations. Transport in Porous Media, 126(1): 161-176.
http://dx.doi.org/10.1007/s11242-017-0975-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)




Transp Porous Med (2019) 126:161-176 @ CrossMark
https://doi.org/10.1007/s11242-017-0975-0

A Pore Scale Model for Osmotic Flow: Homogenization
and Lattice Boltzmann Simulations

Tobias Gebiick!:2@® - Alexei Heintz!2

Received: 30 June 2017 / Accepted: 15 November 2017 / Published online: 28 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract Osmosis is the phenomenon of spontaneous passage of solvents through a mem-
brane that is permeable to the solvent but is completely or partially impermeable to solute
particles. On a macroscopic scale, it is well understood how a difference in concentration of
solute across a membrane gives rise to an osmotic pressure that may induce a flow through the
membrane. On the pore scale inside the membrane, however, the ongoing processes are less
well understood. In this paper, a model is presented for how osmotic effects on the pore scale
are induced by forces acting on the solute from the membrane material. Furthermore, homog-
enization results rigorously derived elsewhere by one of the authors (Heintz and Piatnitski
in Netw Heterog Media 11(3):585-610, 2016) are presented, and an implementation of the
homogenized model using the lattice Boltzmann method is described. The homogenization
results provide a means to compute macroscopic parameters determining the osmotic flow
through a porous material, in particular the so called reflection coefficient. The numerical
results show excellent agreement with theoretical results for straight cylindrical channels and
also illustrate the applicability of the method to periodic porous media.
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1 Introduction

The purpose of the present paper is to present in an accessible manner a model describing
osmosis at various length scales for porous media that are partially permeable to solute
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particles, as well as to investigate numerically using the lattice Boltzmann approach the
applicability of this model. The model describes the effect of forces acting between the
material of a porous medium and electrically neutral solute particles on the transport of the
solvent and the solute.

Osmosis is the phenomenon of spontaneous passage of water or other solvents through
a membrane that is permeable to the solvent but is impermeable to solute particles. If such
a semipermeable membrane separates pure solvent from a solution, the pure solvent will
move through the membrane, making the solution at the opposite side of the membrane more
dilute. The osmotic pressure across the membrane can be measured by measuring the external
counter-pressure that needs to be applied to stop the flow of solvent.

The phenomenon of osmosis was first observed by the French experimental physicist Jean-
Antoine Nollet in 1748 for membranes in nature, but was studied in detail by the German
plant physiologist Wilhelm Pfeffer only in 1877. The term osmose or osmosis was introduced
by the British chemist Thomas Graham in 1854.

In 1886, the Dutch chemist van’t Hoff showed that for dilute solutions, the osmotic pressure
depends on concentration and temperature in a similar way as the pressure of an ideal gas.
The classical formula by van’t Hoff for the osmotic pressure acting on the solvent at the edge
of a membrane which is impermeable to solute particles is (van’t Hoff 1887)

IT = ckgT, D

where c is the number density of solute particles, T is temperature, and kp is the Boltzmann
constant. Van’t Hoff’s work, including in particular this formula, was rewarded with the first
Nobel Prize in Chemistry in 1901.

Porous membranes are often not completely impermeable to solute particles, but depend-
ing on the size of pores, only partially obstruct the passage of particles. The effect of osmotic
pressure is in this case not concentrated only at the outer surfaces of the membrane, but
is distributed within its volume. Therefore, several phenomena combine to determine the
transport of solute and solvent through the membrane in this case. The question about the
nature of osmosis in such intermediate regimes is interesting for many applications in biology
(Kedem and Katchalsky 1962; Elmoazzen et al. 2009) and in such modern technologies as
desalination (Cath et al. 2006; Zhao et al. 2012) and sustainable power generation (Logan
and Elimelech 2012).

The methods and principles of nonequilibrium thermodynamics have been used to extend
the formula (1) to the case when a porous membrane is partially permeable to neutral solute
particles, most notably resulting in the Kedem—Katchalsky formulae

Ju=LyAp — L,pAIl

Jp =—LppAp+ LpAIl 2)
that connect the fluxes J,, and Jp of solvent and solute particles, respectively, through the slab
of a porous material with the value of the drop Ap in hydrodynamic pressure in the solvent
and the jump in osmotic pressure AT, as defined by (1) (Kedem and Katchalsky 1958,

1962). The phenomenological coefficients L, L, p, Lpp, and L p are called coefficients of
filtration, osmotic transport, ultrafiltration, and diffusion, respectively. The ratio

o=Lyp/L, 3)

of the osmotic transport coefficient to the filtration coefficient is called the reflection coef-
ficient of the membrane and shows the relation between the influences of hydrodynamic
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and osmotic pressure on the macroscopic transport of solvent. For a perfect semipermeable
membrane, which is completely impermeable to the solute, we have o = 1.

The description of osmotic effects distributed in the membrane in the present paper is based
on first principles and follows the paper (Heintz and Piatnitski 2016) by one of the authors.
The description starts from the microscopic pore level by applying the system of the Stokes
equations that describe the slow flow of viscous fluid solvent, coupled with the Nernst—
Planck equation (Probstein 2003; Hunter 2004), which describes the advection—diffusion
and the drift of solute particles by potential forces with the potential V distributed along the
surface of the porous material. The equations, which together with appropriate boundary and
initial conditions describe the fluid velocity u# and pressure p, and the solute number density
c under the influence of the potential, are

ou —nAu+Vp+cvv =0 (4a)
o;c +div (cu — DVc + ucvVvy) =0 (4b)

together with the incompressibility condition div # = 0. Here, 7 is the fluid viscosity, D is the
diffusion constant, and p the mobility of solvent molecules. Note in particular the force term
—cVYV in the Stokes equation, which arises from the friction between the solute particles
and the fluid.

At the macroscopic level, a homogenized system of partial differential equations for
limits of the pressure and velocity of the solvent and for the concentration of solute was
derived rigorously by Heintz and Piatnitski (2016) using the two-scale limit approach (Allaire
1992), in the case when the porous solid microstructure is periodic with period ¢ < 1. The
homogenization procedure is convenient to carry out for the concentration scaled by the
Maxwellian distribution associated with the potential forces between the porous media and
the solute particles. An effective Darcy’s type system of equations for the flow under osmotic
pressure distributed within the porous medium and the formula (18) for the distribution of
osmotic pressure inside the porous media in the limit of small ¢ gives a quantitative answer
about the nature of the osmotic transport of neutral solutes at the microscopic level. The
coefficients in the derived homogenized equations relate the values of the phenomenological
coefficients in (2) with particular properties of the flow at the pore level.

Microscopic models of this type for flows with distributed osmotic pressure were consid-
ered in the one-dimensional case for flows in long channels by Anderson and Malone (1974)
and Anderson et al. (1982) and were developed also by Wyman and Kostin (1973), Guell
(1991), and Guell and Brenner (1996). They were applied to simple geometries by Zhang
et al. (2006), Jensen et al. (2009), and Yant et al. (1986). However, studies of microscopic
models for osmotic pressure in general porous geometries with electrically neutral solute
particles have to the best of our knowledge not been previously performed.

Related mathematical and numerical problems for the Nernst—Planck—Poisson and the
Nernst—Planck—Poisson—Stokes systems for nonstationary electrokinetic models were con-
sidered by Looker and Carnie (2006), Schmuck (2009), Schmuck (2011), and Allaire et al.
(2010).

In this paper, the pore scale mathematical model and the homogenization results obtained
by Heintz and Piatnitski (2016) for electrically neutral solute particles are described. In
particular, a procedure to compute the reflection coefficient o for a periodic porous material
by solving cell problems in a periodic unit cell is presented. Furthermore, the implementation
of the model using the lattice Boltzmann method is described, and some computational results
validating the method by comparing to the results of Anderson and Malone (1974) are shown,
together with an application to a more general periodic porous medium.
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164 T. Gebick, A. Heintz

Fig. 1 The geometrical setup,
showing the domain £2 with the
different parts of its boundary,
and the periodic unit cell Y

2 Mathematical Model

We consider the stationary transport of an electrically neutral solute through a domain £2
filled by a three-dimensional porous structure. In the general case, the domain £2 is a channel
surrounded by solid lateral walls I and by flat inflow and outflow boundaries S; and $; in
two planes orthogonal to one of the coordinate axes. A simpler geometry for £2 interesting for
applications is a slab with inflow and outflow boundaries S| and S, and without any lateral
boundary. The geometry is shown in Fig. 1.

Throughout this paper, we suppose that the boundary of the porous structure is a periodic
surface. The unit periodic cell is denoted by Y. Without loss of generality, we suppose that
Y = [0, 1]V. We denote by Y5 an empty part of ¥ not filled by the solid material and assume
that its periodic extension is connected. In what follows, we refer to Y as the fluid part of
the porous medium. Y5 = Y\YF denotes the solid part of the structure in Y. We also let
Y# = &Y denote periodicity cell scaled by the small parameter ¢.

We also let £2, denote the fluid part of the domain §2 containing the porous structure,

ng.(zm< U s(YF+i)>,
ezt

and its boundary is denoted by 9$2.. I'; denotes the solid part of the boundary of the fluid
domain, 052, including the boundary of the porous structure as well as the solid boundary
I of 2. The inflow and outflow parts of 32, are denoted by S and S5.

The solute number density c satisfies the Nernst—Planck type advection—diffusion Eq. (4b),
see also (Probstein 2003), with drift defined in terms of the potential V, acting close to the
solid boundaries of the porous structure. We here consider the stationary case, i.e., with
dc/dt = 0. Let V be a periodic potential on the unit cell Y. We define the scaled potential
by Ve(x) =V (f) We also apply zero normal flux boundary conditions for ¢ on the solid
boundary I'; and fixed values for ¢ on the inflow and outflow boundaries S7 and S5, defined
as §; = 85;N 82, i=1,2.

The fluid velocity u and pressure p of the solvent are described by the stationary Stokes
equations with the osmotic force —cV V; arising from the friction between the solute particles
and the fluid. The velocity u satisfies nonslip boundary conditions on the solid boundary 1%,
and we impose boundary conditions for the pressure p on the inflow and outflow boundaries
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S7 and S5 as constant values P and P>, and for the tangential component of velocity as
u; =0.

The complete boundary value problem for the system of these coupled stationary equations
is thus

nAu—Vp—cVVy =0, x e 2; (5a)
diviu) =0, x € £2;; (5b)

u=0, xelg (5¢)

p=Pi, u=0 xeS,i=12 (5d)

for the Stokes equations and

1
Ac—i—ﬁdiv(cVVg): —div (cu), x € §2; (6a)
D D
Vet+ X evvy - 2 -0, xel (6b)
¢+ 5 @VVe) = peu)-n =0, xel
c=0, xeSf, ¢c=0Ppx), xeSs;, (6¢)

for the Nernst—Planck type equation with diffusive flux —DV¢, advection velocity u, and
drift term flux ucVVe. Here, 6, > 0 is a constant, and the function B, (x) is defined as

Bo(x) = exp (— 5 Ve (6d)

Typical potentials V. (x) in our problems are nonnegative and bounded inside £2, and
are increasing, possibly toward infinity, when approaching the solid part I'; of the boundary
of £2.. At the points on Iy where the potential V. (x) tends to infinity, the flux boundary
conditions are not imposed.

According to the Einstein—Smoluchowski relation (Einstein 1905; von Smoluchowski
1906) , we have

D
Dot @)
n
where T is absolute temperature and kp is the Boltzmann constant, and thus van’t Hoff’s
formula (1) for osmotic pressure can in our notation be rewritten as

D
IT=c—. ®)
I
By using the formula:
BV (cB7Y) = Ve + %cvvg )

with B, ' = 1/8,, and introducing the scaled concentration 8 = By I the advection diffusion
equation with potential drift force can be reformulated as

1
div |:ﬂ850u — ﬂgVG] =0. (10)
This form has advantages both for numerical implementation and for theoretical analysis. In
particular, it is convenient to study the convergence of 6 rather than the number density c.

In order to clarify the effects of osmosis in the Stokes equation, we observe that

D . D
—cVV, = —;ﬂsv(cﬂe )+ ;Vc (11)
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and rewrite Eq. (52) as
D D
nAu —Vp+ —Ve——B,V0 =0, x € £2 (12)
u w

where the expression D¢ = VIT for the osmotic pressure (8) appears explicitly. The last
term is proportional to the diffusive flux in (10).

Only the difference 8P = P, — P, between pressure values at the inflow and outflow
boundaries S; and S> has physical meaning and is controlled.

3 Homogenized Model

In this section, the results by Heintz and Piatnitski (2016) about the homogenized macroscopic
limit problem are repeated for completeness. They were derived rigorously by Heintz and
Piatnitski (2016) by passing to the two-scale homogenized limit (Allaire 1992; Nguetseng
1989) in the weak integral form of the microscopic system of Egs. (5)—(6). In practical terms,
it means that when the period ¢ tends to zero, the functions 0, u, p describing the complete
picture of the transport tend to functions of two variables x and y = % of which the first
describes smooth dependence on the macroscopic scale and the second describes periodic
oscillations at the microscopic scale.

We use in this applied paper the term convergence not specifying its rigorous meaning
that might differ in particular cases and refer to the paper (Heintz and Piatnitski 2016) for
mathematically strict formulations and proofs of these results. Considering these limits, we
extend the unknowns 6, u, p keeping the same notations, into the solid part of the porous
media: Velocity and scaled concentration are extended by zero, and pressure by its average
value over the fluid part of the periodicity cell.

We consider here the case of small Péclet numbers on the microscale, more precisely
Pe — 0 when & — 0, where Pe = uL /D for a characteristic length L, where L € on the
microscale. In this case, the equation for the limit & of the scaled concentration 6 = ¢, Lis
decoupled from the limit equation for the flow. Still, 6 plays a role in the Stokes part of the
system, and its limit @ enters a homogenized Darcy’s type equation for the flow.

In the case when the Péclet number is large, which is not considered here, the limit
macroscopic equations become nonlinear and nonlocal and rigorous limit results are more
complicated than here. The study of this case is ongoing.

For the case of small Péclet numbers, the main result for the scaled concentration 6 is as
follows (see Heintz and Piatnitski 2016 for proof and more details).

Theorem 1 The extension of the scaled concentration 0 satisfying the system (5)—(6) con-
verges when the scale ¢ of pores tends to zero, to the solution ©(x) of the macroscopic
boundary value problem:

div (AefVO) =0 (13)

with boundary conditions for © (x) the same as in the original problem:

Ols, =0. Ol =6
AtV O - nlpy, = 0. (14)

The positive definite matrix Act is defined by the relation

Actf :/y (I + [V B(y) (y)dy, (15)
F

@ Springer



A Pore Scale Model for Osmotic Flow. . . 167

where x (y) is a vector of periodic solutions to the Nernst—Planck type equation on the unit
representative cell Y :

div(B(y) (Vx(»)+1)) =0

a
po (x) = —n(y), yed¥s. (16)
Yn
For the fluid velocity u and pressure p, the following convergence result holds (again, see
Heintz and Piatnitski 2016 for proof).

Lemma 1 There are functions ug(x, y) and po(x, y), with x in §2 and periodic with respect
to y in the unit cell Y, such that ne>u and p converge in the two-scale sense to these
functions.

Cu— o (x.)
ne ‘u — ug(x, —
£

p—po(x.2). a7)

where the argument y is substituted by (%) .

The limit po(x, 3) of the pressure has a specific analytic structure including a term
describing the osmotic pressure distributed within the porous medium and periodic at the
microscopic pore scale:

po(x.2) = Pe - g@(xw () (18)

The limit ug (x, f) has the following factorized structure:

3

(5 =T () () + 2w () (2 o). a0

where functions w;(y) and W;(y) are periodic solutions to boundary value problems (22),
(23) for the Stokes equations on the unit periodicity cell Y that are specified below.

We note that a formula similar to (18) was derived by Anderson and Malone (1974) in the
one-dimensional case for an infinitely long cylindric channel.

In the following theorem, a Darcy’s type law with distributed osmotic forces is formulated
for two-scale limits of the unknown variables.

As was proved by Heintz and Piatnitski (2016), one can in our situation (with small
Pe) separate the macrosopic x-variable from the microscopic y-variable in the two-scale
homogenized system (see Heintz and Piatnitski (2016)) for the two-scale limits u(x, y) and
po(x, y) and reduce it to a microscopic periodic cell problem with respect to the y-variable on
the periodic cell Y and to a homogenized macroscopic problem with respect to the x-variable
only in the domain 2.

Theorem 2 The extension (u., p.) of the velocity and pressure satisfying the system (5)—(6)
converges to the unique solution (u, p) of the homogenized problem

U(x) = —BPVP+BH§V(~) in 2
divU =0in $2

U-n=0onIy;

P=7P;onS;, P —P,=3P

(20)
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168 T. Gebick, A. Heintz

where U (x) = pr uo(x, y)dy, the values P1 and P, are uniquely defined by the normal-

ization [, o Pdx = 0 and the pressure drop 8P. Bp and By are constant symmetric matrices
with entries defined by

&az/w@@
Y

Brei = | Wiy, @1
where for 1 < i < N, w;(y) and W;(y) are unique periodic solutions to the cell Stokes
problems

Vgi — Aw; = ¢;, div(w;) =0inYp

w; =0inYyg (22)

and

VOi— AW =[I =VxWM1B(ei, div(W;) =0inYFp
W; =0inYs, (23)

respectively, where e; is the unit vector along the i-th coordinate axis.

Here, we now combine the above results, and the closed macroscopic system of equations
for P(x) and ® (x) becomes

div (AefVO) =0 (24a)
D
div (BpVP) — div <Bn—V6)) =0 (24b)
"
with boundary conditions
Ols, =0, Ols, =02 (25a)
AeftVO -n|p, = 0. (25b)
P = ?i on Si . ﬁ] —ﬁz = (S? (25C)
D
(BPVP — BH—V@) -n=0onTly; / Pdx =0, (25d)
I 2

where the values P; and P, are uniquely defined by the normalization f o Pdx =0 and the
pressure drop 8 P. The average velocity U (x) is expressed explicitly in terms of P and @
as in (20), the coefficient matrix Acfr is computed from Egs. (15)—(16), and Bp and By are
computed from Egs. (21)—(23).

‘We note that the limit macroscopic system (24) consists of a decoupled effective diffusion
equation and a Darcy type equation with an additional flux term By %V@ (x) representing
the effect of the distributed osmotic pressure.

The problem (5)—(6) describes the transport of solvent and solute particles inside the porous
structure with boundary conditions for the scaled concentration on the inflow and outflow
parts of the boundary, representing concentration under the influence of the potential forces
from the material inside the structure. It implies that the relation % measures the effect of
diffusive transport under potential forces acting against the bulk osmotic pressure drop. The
following approximate expression for the reflection coefficient for a periodic porous medium
follows from this observation:

[Brli

 [Bpliy

o=1 (26)
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A more precise expression for the reflection coefficient, including spatially varying coeffi-
cients Bp and By for heterogeneous porous media, should also take into account boundary
layers around the interface between the free solute and the porous medium and needs addi-
tional mathematical analysis that is a subject of ongoing research.

4 Numerical Simulations
4.1 Lattice Boltzmann Method

The lattice Boltzmann method (Guo and Shu 2013) was used to solve both the full model
(5)—(6) and the cell problems (22)—(23) and (16) in the homogenized model. All simulations
were performed in three space dimensions.

The lattice Boltzmann equation for the distribution function f is

fitk At 1+ A — fitx,) = [A(f(x.0) = [P, 1)), i=0.....q. @D

where ¢ is the number of discrete velocities in the model, ¢; are the discrete velocity vectors, A
is a collision operator, and f©9 is the equilibrium distribution. To solve the Stokes equations,
the standard Navier—Stokes equilibrium

fi(eq)(p’u) = w;p <1—|—CS 2C,’ ~M+F(Ci ’u)z_ 2|”|2) (28)
Cs Cs

was used (although at the low velocities used, the nonlinear terms had negligible effect),
together with the D3Q19 velocity model with ¢ = 19, ¢ = 1/3 and the discrete velocities

0,0,0), i=0
¢ =1(£1,0,0),0,£1,0),(0,0,£1), i=1,...,6 (29)
(£1,£1,0),(£1,0,£1),0,£1,x£1), i=7,...,18

The equilibrium weight w; are given by

1/3 i=0
w;=11/18 i=1,...,6 (30)
1/36 i=7,...,18

The macroscopic fluid density and velocity are given by moments of the distribution function

fas

g—1
px, )= fite,0),  ulx,0)=

i=0

q—1
R > cifitx, 0. 31)
’ i=0

The forcing terms were implemented using the scheme developed by Guo et al (Guo et al.
2002). Note that in (5a), the force termis F = —c¢VV = kgTOV § and can thus be described
in terms of B instead of V.

The two-relaxation-time collision operator (Ginzburg et al. 2008) was used, with the
parameter A = 3/16, which eliminates the viscosity dependence of the computed perme-
ability. The relaxation parameter A, was given different values but in most cases set to —0.5.

In order to solve the advection—diffusion Eq. (6), the equilibrium is instead

{J’f(e‘I)(e,U):w,-e(Hcszci~U>, i=1...4q

e 32
FE906,U) =c— (1 —wp) = (B — 1 — wp)6, 32
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170 T. Gebick, A. Heintz

where 8 = ¢/p and U = Bu is the given advection velocity. This choice of equilibrium
distribution ensures that the conserved zeroth moment

q—1
D fie,n=c (33)
i=0

while the flux computed from the first moment of f is related to V6, see also (Ginzburg
2005). The time-dependent equation solved using the lattice Boltzmann method is therefore

% — div (B0u — BDVO) =0, (34)

which is the correct time-dependent version of (10). Note that when only the steady state
solution is sought, another option would be to use the standard equilibrium féeq) (0) = web,
which instead results in the time derivative % in (34). This does not affect the steady state,
although it may have effect on the convergence.

When solving the cell problem (16), an external flux B(x)e; in the i:th direction was added
by setting U = Be; in (32).

The Neumann boundary conditions were implemented using the ghost cell approach
described in Gebick and Heintz (2014), with 8(x) extended continuously to the outside
of the domain.

The two-relaxation-time collision operator was used also for the advection—diffusion equa-
tion, but here the parameter value A = 1/4 was used, corresponding to the “optimal diffusion”
setting in Ginzburg (2005). A space-dependent diffusion constant B(x)D was obtained by
assigning different values of the parameter A, locally, with S(x)D = —csz(l /ho +1/2).

In all the simulations, a potential of the form

Vix) = g <1 — tanh (@%)) , (35)

was used, where d(x) is the distance function, describing for each pore location the nearest
distance to the solid surface. The shape of the potential for varying § is shown in Fig. 2. This
form of the potential was chosen since it is fast decaying (if § is small), while remaining
finite. V (x) obtains values between 0 and A. The function 8(x) = exp(—V (x)) was then
computed (where kT is included in the constant A) and used in the simulations. For the pore
scale equations, V8 was computed using central finite differences and used in the force term.

Fig. 2 The potential V (x) in i
(35) used in the simulations, here 1 === — _g - ?-001
with A = 1, a = 3 and different L ~ | L 5 - 3
values for § 08 k- ‘\.\\ \\
. \
. \
\'\.\ \
L v\
0.6 AN
N
> o
L N,
0.4 N
S
\ N
0.2t \ e
\ "~
N~ =l
SNo 0 Tm——n |
O L =~ = -
0 2 4 6 8
distance

@ Springer



A Pore Scale Model for Osmotic Flow. . . 171

Fig. 3 The reflection coefficient 1 T T T =
o plotted as a function of the 09| Anderson & Malone A |
exclusion distance a relative to : x LBM, hard potential A
. . —_ LBM, soft potential
the cylinder radius R. The results < 08¢t A :
of solving the homogenized © 07 A
equations in a straight cylinder ’
using the lattice Boltzman € o6t o <
. [

method with a hard © A
size-exclusion potential (x) are 5 05 ¢ |
compared to the theoretical 8 o4l A i
results for a long straight cylinder S A
from Anderson and Malone g 034 ]
(1974) (solid line). For % 02t 1
comparison, results computed =
with a soft potential (6 = 3) are 0.1t 4
also shown (V) 0 . . . .

0 0.2 0.4 0.6 0.8 1

a/R

4.2 Results

Reflection coefficients for a straight cylinder In order to validate our model and the simula-
tions, reflection coefficients were computed according to (26) for a straight circular cylinder
for comparison with the theoretical results by Anderson and Malone (1974). To achieve a
hard size-exclusion potential, a value of § = 0.001 was used in (35), and the shift @ was
varied. The strength A was set to 4, a rather low value chosen since numerical instabilities
may occur when f is too close to zero. For comparison, results with a soft, slowly decaying
potential with § = 3 are also shown. The flow and diffusion were computed in the x-direction
in a domain of 100 x 50 x 50 voxels containing a cylinder of radius R = 22.

The results are shown in Fig. 3 and show a very good agreement for the hard potential with
the results from Anderson and Malone (1974). Some small differences can be seen for large
a, when the cylinder is almost impermeable to the solute. This is due to the finite potential
used, with A = 4, which results in a nonzero permeation even when the potential extends
over the entire cylinder.

For the soft potential, o does not approach zero for small a since the potential then has a tail

that extends into the domain over a distance of approximately § and causes some hindrance
to the flow.
Full osmotic problem through a cylinder In order to investigate the possibility to solve the
full osmotic problem (5)—(6), and to investigate the resulting velocity profiles, a simulation
was set up as shown in Fig. 4a. A straight cylinder connects two domains, where constant
solute number densities were set as boundary values on the left and right boundaries, with a
higher value on the left. For the Stokes equations, outflow boundary conditions were set on
the right boundary, i.e., uy = u; = 0 and du,/0x = 0, while a fixed pressure p = 0 and
zero tangential velocity uy = u; = 0 were set on the left boundary. On the other boundaries
of the simulation box, periodic boundary conditions were used. In Fig. 4b, the function 8(x)
is shown.

The resulting velocity in the x-direction is shown in Fig. 4c, d. The difference in osmotic
pressure has created a flow of solvent against the concentration gradient, as expected. A
radial velocity component is present within the channel because of the osmotic effects, and
the velocity profile in Fig. 4d shows a plug-flow profile instead of a parabolic profile, as
predicted by Anderson and Malone (1974).
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Fig. 4 Results for the full osmotic problem (5)—(6). The geometry a is shown together with the values of
B(x) (b) and streamlines for the steady state velocity field u (c¢). In d, the velocity profile across the channel
is shown, showing a plug-flow profile

Reflection coefficients for a periodic porous medium To show the potential of the present
homogenized model and the lattice Boltzmann implementation, simulations were also per-
formed solving the cell problems for a more general porous medium. A geometry was created
using diffusion-limited cluster aggregation (DLCA) of spherical particles (Lach-hab et al.
1996), which were allowed to aggregate and form a solid structure. This may, for example,
model a material made of aggregated silica particles, with pores on the nanometer scale and
up. The particular geometry used here was on a lattice of 2003 voxels and had a porosity of
70% and an average pore diameter of 7.2 voxels.

The reflection coefficient for this material was computed using potentials of the form (35),
with varying a, and with § = 1 and 3, and A = 2 and 3. The results are shown in Fig. 5,
together with a streamline plot showing the velocity field for the solution of the cell problem
(23). Just as for the cylinder, the values for o do not quite reach 1, since the potential is finite
with rather low values. Also, o does not become 0 when a = 0 because of the tail of the
potential. Although the general shape of the curve is similar to the case of the cylinder, the
details are quite different, reflecting the more complex structure. It is interesting to see that
although the largest pores in the geometry have a radius close to 10, the maximum value of
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Fig. 5 Results for the reflection coefficient in a porous medium with varying parameters for the potential
V (x) (top). In the bottom image, streamlines for the velocity field from the solution to the cell problem (23)
are shown, together with the values of the forcing term on the right-hand side in green

o is reached at much smaller values for a, since the potential blocks most paths through the
structure even at smaller a. The sharper potential with § = 1 yields a much sharper rise in 0.

A study was also performed to investigate how the values of o varied with the grid size.
To this end, the entire geometry was scaled between 1 and 1.5 times, together with the values
for a and § for the potential. The tests were performed with A = 3 and § = 3 (at grid size
200). The results are shown in Fig. 6 for various values of @ and show a convergence for o
as the resolution increases. However, as there is a significant change in o with increasing
resolution for low values of a, the results indicate that for improved accuracy, it is important
to resolve the boundary layer where the potential is large.
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5 Conclusions

We have presented the results of homogenization in a porous medium for a model describing
the effects of osmotic pressure differences on the pore scale. The homogenized equations may
be used to compute macroscopic solvent velocities induced by difference in concentration
of solutes, but in particular also to compute the reflection coefficient o for a periodic porous
material.

The models have been implemented using the lattice Boltzmann method, and the sim-
ulation results show good agreement with theoretical results available for straight circular
cylinders. The method is also flexible enough to be applicable to general porous materials, as
has been illustrated for a particular porous geometry here. The method could also be applied
to 3D structures of real porous materials when available, as has, for example, been done for
pure diffusion in our previous work (Gebick et al. 2015). An interesting future study would
be to perform such simulations, and to validate with measurement data for various materials.
Further work is also needed to derive correct expressions for the reflection coefficient for
heterogeneous materials, including effects of boundary layers.

Future work also includes deriving homogenized equations for the case of large Péclet
numbers, when there will be no decoupling of the equations for flow and advection—diffusion.
This introduces nonlinearities and makes both the homogenization and the solving of both
the cell problems and the macroscopic problem more challenging.

Acknowledgements The financial support from Vinnova through the VINN Excellence Center SuMo Bioma-
terials is gratefully acknowledged. The authors are also grateful to Andrey Piatnitski for fruitful discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482-1518 (1992).
https://doi.org/10.1137/0523084

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/0523084

A Pore Scale Model for Osmotic Flow. . . 175

Allaire, G., Mikeli¢, A., Piatnitski, A.: Homogenization of the linearized ionic transport equations in rigid
periodic porous media. J. Math. Phys. 51(12), 123,103, 18 (2010). https://doi.org/10.1063/1.3521555

Anderson, J.L., Lowell, M.E., Prieve, D.C.: Motion of a particle generated by chemical gradients Part 1.
Non-electrolytes. J. Fluid Mech. (1982). https://doi.org/10.1017/S0022112082001542

Anderson, J.L., Malone, D.M.: Mechanism of osmotic flow in porous membranes. Biophys. J. 14(12), 957-982
(1974). https://doi.org/10.1016/S0006-3495(74)85962-X

Cath, T.Y., Childress, A.E., Elimelech, M.: Forward osmosis: principles, applications, and recent developments.
J. Membr. Sci. 281, 70-87 (2006)

Einstein, A.: Uber die von der molekularkinetischen Theorie der Wirme geforderte Bewegung von in ruhenden
Fliissigkeiten suspendierten Teilchen. Annalen der Physik 322, 549-560 (1905). https://doi.org/10.1002/
andp.19053220806

Elmoazzen, H.Y., Elliott, J.A., McGann, L.E.: Osmotic transport across cell membranes in nondilute solutions:
a new nondilute solute transport equation. Biophys. J. 96(7), 2559-2571 (2009)

Gebick, T., Heintz, A.: A lattice Boltzmann method for the advection—diffusion equation with Neumann
boundary conditions. Commun. Comput. Phys. 15(2), 487-505 (2014). https://doi.org/10.4208/cicp.
161112.230713a

Gebick, T., Marucci, M., Boissier, C., Arnehed, J., Heintz, A.: Investigation of the effect of the tortuous pore
structure on water diffusion through a polymer film using lattice Boltzmann simulations. J. Phys. Chem.
B 119(16), 5220-5227 (2015). https://doi.org/10.1021/acs.jpcb.5b01953

Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-
dispersion equation. Adv. Water Resour. 28(11), 1171-1195 (2005). https://doi.org/10.1016/j.advwatres.
2005.03.004

Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: about
parametrization, velocity, pressure and mixed boundary conditions. Commun. Comp. Phys. 3(2), 427—
478 (2008)

Guell, D.: The Physical Mechanism of Osmosis and Osmotic Pressure-a Hydrodynamic Theory for Calculating
the Osmotic Reflection Coefficient. Massachusetts Institute of Technology, Department of Chemical
Engineering (1991)

Guell, D., Brenner, H.: Physical mechanism of membrane osmotic phenomena. Ind. Eng. Chem. Res. 35(9),
3004-3014 (1996)

Guo, Z., Shu, C.: Lattice Boltzmann Method and its Applications in Engineering, Advances in Computational
Fluid Dynamics, vol. 3. World Scientific Publishing Co. Pte. Ltd., Hackensack (2013). https://doi.org/
10.1142/8806

Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys.
Rev. E 65(4, Part 2B), 046308 (2002). https://doi.org/10.1103/PhysRevE.65.046308

Heintz, A., Piatnitski, A.: Osmosis for non-electrolyte solvents in permeable periodic porous media. Netw.
Heterog. Media 11(3), 585-610 (2016)

Hunter, R.J.: Foundations of Colloid Science. Oxford University Press, Oxford (2004)

Jensen, K.H., Rio, E., Rasmus Hansen, C.C., Bohr, T.: Osmotically driven pipe flows and their relation to
sugar transport in plants. J. Fluid Mech. 636, 371-396 (2009)

Kedem, O., Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-
electrolytes. Biochim. Biophys. Acta 27, 229-246 (1958)

Kedem, O., Katchalsky, A.: Thermodynamics of flow processes in biological systems. Biophys. J. 2(2), 53-78
(1962)

Lach-hab, M., Gonzalez, A., Blaisten-Barojas, E.: Concentration dependence of structural and dynamical
quantities in colloidal aggregation: computer simulations. Phys. Rev. E 54(5), 5456-5462 (1996)
Logan, B.E., Elimelech, M.: Membrane-based processes for sustainable power generation using water. Nature

488(7411), 313-319 (2012)

Looker, J.R., Carnie, S.L.: Homogenization of the ionic transport equations in periodic porous media. Transp.
Porous Media 65(1), 107-131 (2006). https://doi.org/10.1007/s11242-005-6080-9

Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM
J. Math. Anal. 20(3), 608-623 (1989). https://doi.org/10.1137/0520043

Probstein, R.F.: Physicochemical Hydrodynamics: An Introduction. Wiley, London (2003)

Schmuck, M.: Analysis of the Navier—Stokes—Nernst—Planck—Poisson system. Math. Models Methods Appl.
Sci. 19(6), 993-1015 (2009). https://doi.org/10.1142/S0218202509003693

Schmuck, M.: Modeling and deriving porous media Stokes—Poisson—Nernst—Planck equations by a multi-scale
approach. Commun. Math. Sci. 9(3), 685-710 (2011). https://doi.org/10.4310/CMS.2011.v9.n3.a3

van’t Hoff, J.: The role of osmotic pressure in the analogy between solutions and gases. Zeitschrift fur
physikalische Chemie 1, 481-508 (1887)

@ Springer


https://doi.org/10.1063/1.3521555
https://doi.org/10.1017/S0022112082001542
https://doi.org/10.1016/S0006-3495(74)85962-X
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.4208/cicp.161112.230713a
https://doi.org/10.4208/cicp.161112.230713a
https://doi.org/10.1021/acs.jpcb.5b01953
https://doi.org/10.1016/j.advwatres.2005.03.004
https://doi.org/10.1016/j.advwatres.2005.03.004
https://doi.org/10.1142/8806
https://doi.org/10.1142/8806
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1007/s11242-005-6080-9
https://doi.org/10.1137/0520043
https://doi.org/10.1142/S0218202509003693
https://doi.org/10.4310/CMS.2011.v9.n3.a3

176 T. Gebick, A. Heintz

von Smoluchowski, M.: Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen.
Annalen der Physik 326, 756—780 (1906). https://doi.org/10.1002/andp.19063261405

Wyman, C.E., Kostin, M.D.: Anomalous osmosis: solutions to the Nernst—Planck and Navier—Stokes equations.
J. Chem. Phys. 59(6), 3411-3413 (1973). https://doi.org/10.1063/1.1680484

Yant, Z.Y., Weinbaum, S., Pfeffer, R.: On the fine structure of osmosis including threedimensional pore entrance
and exit behaviour. J. Fluid Mech. 162, 415-438 (1986)

Zhang, X., Curry, FR., Weinbaum, S.: Mechanism of osmotic flow in a periodic fiber array. Am. J. Physiol.
Heart Circ. Physiol. 290(2), H844-52 (2006)

Zhao, S., Zou, L., Tang, C.Y., Mulcahy, D.: Recent developments in forward osmosis: opportunities and
challenges. J. Membr. Sci. 396, 1-21 (2012)

@ Springer


https://doi.org/10.1002/andp.19063261405
https://doi.org/10.1063/1.1680484

	A Pore Scale Model for Osmotic Flow: Homogenization and Lattice Boltzmann Simulations
	Abstract
	1 Introduction
	2 Mathematical Model
	3 Homogenized Model
	4 Numerical Simulations
	4.1 Lattice Boltzmann Method
	4.2 Results

	5 Conclusions
	Acknowledgements
	References




