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We describe the Shilov boundary ideal for a q-analog of the 
algebra of holomorphic functions on the unit ball in the space 
of n ×n matrices and show that its C∗-envelope is isomorphic 
to the C∗-algebra of continuous functions on the quantum 
unitary group Uq(n).
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1. Introduction

In 80s S.L. Woronowicz introduced the notion of a compact quantum group within 
the framework of C∗-algebras. It was clear from the beginning that one can consider the 
appearing theory as a counterpart to the theory of compact groups and their represen-
tations. For instance, the key Peter–Weyl theorem was proved for the case of compact 
quantum groups.
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The concept of a non-compact quantum group was much less clear, the corresponding 
theory was in need of the key statements (for instance, it was not clear whether there 
exists a Haar measure on a noncompact quantum group). At that point L. Vaksman and 
his collaborators suggested another approach to representation theory of noncompact 
quantum groups. The idea was to construct quantum analogs for homogeneous spaces 
X of noncompact Lie groups G0 and then develop representation theory in connection 
with these quantum spaces.

The object they started with were Hermitian symmetric spaces of non-compact type. 
Let us briefly recall some facts about them and representation theory in connection. 
Under the Harish-Chandra embedding, an irreducible Hermitian symmetric space X
of non-compact type allows a realization as a unit ball D in a certain normed vector 
space. The group of biholomorphic automorphisms G0 = Aut(D) is a non-compact real 
Lie group, and X is a homogeneous space of G0. One of the classical approaches to 
Harish-Chandra modules for non-compact real groups is to derive them from a G0-orbits 
in certain flag variety Xc (see, e.g. [27]). The flag variety Xc is namely the dual of X
(in the sense of symmetric space), which is a Hermitian symmetric space of compact 
type. An important fact is that there is a unique closed G0-orbit in Xc. This orbit 
namely corresponds to the Shilov boundary S(D) of the bounded symmetric domain D. 
In particular, if we consider the unit matrix ball X = Dn = {Z ∈ Matn|I − ZZ∗ > 0}, 
its group of symmetries G0 is the group of pseudounitary matrices SU(n, n), the dual 
Hermitian symmetric space Xc is the Grassmannian Grn(C2n) and the Shilov boundary 
is the group of unitary n ×n-matrices S(Dn) = Un. The series of Harish-Chandra modules 
related to the Shilov boundary are called the principal degenerate series.

Quantum bounded symmetric domains were introduced in [20] and studied in the 
series of papers (see [25] and references therein). The authors associated to a bounded 
symmetric domain D in a complex vector space V non-commutative algebras C[V ]q and 
Pol(V )q which they treated as the algebras of holomorphic resp. arbitrary polynomials on 
the quantum vector space V ; the algebra of continuous functions on the quantum domain 
D are derived then from Pol(V )q via some completion procedure. The main obstacle for 
developing representation theory for quantum G0 in this setting was that there were 
no quantum analogs for G0-orbits on flag varieties. The Shilov boundary was a happy 
exception because it itself is a compact symmetric space. Although the construction 
of quantum Shilov boundary for an arbitrary quantum bounded symmetric domain is 
rather nontrivial, in some simpler cases the object was already known. In particular, 
for the quantum analog of the unit matrix ball Dn, the corresponding quantum Un, 
more precisely a q-analog C[Un]q of the algebra of functions on Un, was well studied. 
In [23], using a purely algebraic approach, Vaksman defined a q-analog of polynomials 
Pol(S(Dn))q on the Shilov boundary Un = S(Dn) as a ∗-algebra isomorphic to C[Un]q
and produced a ∗-homomorphism

jq : Pol(Matn)q → Pol(S(Dn))q;
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the latter can be understood as a q-analog of the operator that restricts the polynomials 
on Dn to its Shilov boundary; we refer to the kernel Jn := ker jq as algebraic Shilov 
boundary ideal. The principal degenerate series of the quantum SU(n, n) related to the 
Shilov boundary were studied in [4]. In the following we want to clarify the connection 
of the constructed quantum Shilov boundary with its topological (non-commutative) 
counterpart.

Recall that the classical topological notion of Shilov boundary is used in the study of 
uniform algebras A, that is, closed subalgebras of C(X) of all continuous functions on a 
compact X that separate points and contain constants; this is the smallest subset S ⊂ X

where the functions in A attain their maximum; the latter means that the restriction of 
the operator j : C(X) → C(S), f �→ f |S , to the subalgebra A is an isometry. In complex 
analysis the uniform algebras are typically the algebra A(X0) of functions holomorphic 
in the interior X0 of a compact domain X in a complex vector space; for instance 
A(Dn) ⊂ C(Dn) for the unit matrix ball Dn.

In the late 1960s W. Arveson initiated in his influential paper [1] the study of non-
commutative uniform algebras as (non-selfadjoint) subalgebras A of C∗-algebras B and 
introduced a non-commutative analog of the Shilov boundary; the latter is the largest 
ideal J ⊂ B such that the quotient map j : B → B/J is a complete isometry when re-
stricted to A. A question, which was raised by Vaksman, is whether the “algebraically” 
constructed Shilov boundary for quantum unit matrix ball coincides with the Arveson 
one. We give an affirmative answer to this question for general value of n. The cases 
n = 1 and n = 2 were treated in [24] and [18], respectively. More precisely, consider-
ing a completion CF (Dn)q of Pol(Matn)q, a q-analog of continuous functions in Dn, we 
prove that the closure of the algebraic Shilov boundary ideal Jn is the Shilov bound-
ary ideal in the sense of Arveson for the subalgebra A(Dn)q which is the closure of the 
holomorphic polynomials C[Matn]q in the quantum space of n × n matrices. The pair 
(A(Dn)q, CF (Dn)q) is a q-analog of the pair (A(Dn), C(Dn)). Note that the quotient 
CF (Dn)q/J̄n provides a realization of the C∗-envelope of A(Dn)q. We refer the reader 
to [2,7,15] for the background and recent development concerning Shilov boundary and 
C∗-envelope.

The paper is organized as follows. After finishing this section by introducing some 
general notational conventions, in section 2.1–2.3 we introduce and collect some proper-
ties of the main objects of our study, the algebras C[Matn]q, Pol(Matn)q and C[SUn]q. 
The ∗-algebra Pol(Matn)q possesses a C[SUn × SUn]q-comodule structure; it plays a 
crucial role in our consideration and is presented in Lemma 3. In section 2.4 we discuss 
∗-representations of Pol(Matn)q. In particular, we propose a new construction of the 
Fock ∗-representation πF,n of the ∗-algebra; the representation is known to be the only 
faithful irreducible ∗-representation by bounded operators (see [19]). The construction 
allows to derive a number of consequences about other ∗-representations of Pol(Matn)q
which are discussed in sections 2 and 3. The C∗-algebra CF (Dn)q is defined to be the 
completion of Pol(Matn)q with respect to the norm ‖f‖ = ‖πF,n(f)‖, f ∈ Pol(Matn)q, 
and shown to be a C∗-subalgebra of the (spatial) tensor product C∗(S)⊗n2 of n2 copies 
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of the C∗-algebra generated by the unilateral shift S on �2(Z+). In section 3 we prove 
the main results of the paper: Theorems 3 and 4; they state that J̄n is the Shilov bound-
ary ideal of CF (Dn)q relative the subalgebra A(Dn)q. As a corollary we obtain that the 
C∗-envelope of A(Dn)q is isomorphic to the C∗-algebra of continuous functions on the 
quantum unitary group Uq(n), i.e. the C∗-enveloping algebra of C[Un]q. Our approach 
is based on dilation-theoretic arguments. Namely, we construct a ∗-representation of 
Pol(Matn)q which annihilates the ideal Jn and compresses to the Fock representation 
when both are restricted to the holomorphic part C[Matn]q. We refer the reader to [7]
and [2] for the dilation ideas to the Shilov boundary ideal and C∗-envelopes.

We finish this section by recalling standard notation and notions that are used in 
the paper. For a Hilbert space H we let B(H) denote the space of all bounded linear 
operators on H. We shall write H ⊗K for the Hilbertian tensor product of two Hilbert 
spaces H and K and H⊗n for the tensor product of n-copies of H. For an index set I, 
{ei : i ∈ I} will always stand for the standard orthonormal basis in the Hilbert space 
�2(I). If A ∈ B(H), B ∈ B(K), then A ⊗B stands for the operator in B(H ⊗K) given 
by A ⊗B(ξ⊗η) = Aξ⊗Bη, ξ ∈ H, η ∈ K. If W ⊂ H is a closed subspace and A ∈ B(H)
leaves W invariant then we write A|W for the restriction of A to W . If A, B are ∗-algebras 
we write, as usual, A ⊗ B for the algebraic tensor product of the algebras; if A and B
are C∗-algebras by A ⊗min B we denote their minimal C∗-tensor product. Even though 
we shall always have one of the C∗-algebras A and B nuclear and hence all C∗-norms 
on A ⊗ B will be the same, we shall keep the notation A ⊗min B in order to distinguish 
the latter from the algebraic tensor product of A and B. We write A⊗n for the minimal 
tensor product of n copies of A.

For a set V , we denote, as usual, by Mn(V ) the set of all n × n matrices with entries 
in V . It is clearly a vector space if V is such. For a map φ : V → W between vector 
spaces V and W we let φ(n)((ai,j)i,j) = (φ(ai,j))i,j for each (ai,j)i,j ∈ Mn(V ).

If A is a ∗-algebra, any ∗-homomorphism π : A → B(H) is called a bounded 
∗-representation. As in this paper we mostly deal with bounded ∗-representation we 
shall often omit the word bounded and write simply a ∗-representation. The set of all 
bounded ∗-representations of A will be denoted by Rep(A).

Let πi : Ai → B(Hi) be a ∗-representation of Ai, i = 1, 2. We write π1⊗π2 : A1⊗A2 →
B(H1⊗H2) for the ∗-representation given by π1⊗π2(a1⊗a2) = π1(a1) ⊗π2(a2), a1 ∈ A1, 
a2 ∈ A2. It should not be confused with the tensor product π1 ⊗ π2 of ∗-representations 
of a Hopf ∗-algebra A (used in section 2.3), which is actually the ∗-homomorphism 
(π1 ⊗ π2) ◦ Δ : A → B(H1 ⊗H1), where Δ : A → A ⊗A is the co-product on A.

2. The ∗-algebras Pol(Matn)q and CCC[SUn]q and their representations

2.1. The ∗-algebra Pol(Matn)q

In what follows C is a ground field and q ∈ (0, 1). We assume that all the algebras 
under consideration are unital. Consider the well known algebra C[Matn]q defined by its 
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generators zαa , α, a = 1, . . . , n, and the commutation relations

zαa z
β
b − qzβb z

α
a = 0, a = b & α < β, or a < b & α = β, (1)

zαa z
β
b − zβb z

α
a = 0, α < β & a > b, (2)

zαa z
β
b − zβb z

α
a − (q − q−1)zβa zαb = 0, α < β & a < b. (3)

This algebra is a quantum analogue of the polynomial algebra C[Matn] on the space of 
n ×n matrices. It follows from the Bergman diamond lemma (see [3]) that the lexicograph-
ically ordered monomials (znn)γn

n (zn−1
n−1)γ

n−1
n−1 . . . (zn1 )γn

1 . . . (z1
1)γ1

1 , γα
a ∈ Z+, α, a = 1, . . . , n, 

form a basis of the vector space C[Matn]q. Hence C[Matn]q admits a natural grading given 
by degzαa = 1.

In a similar way, introduce the algebra C[Matn]q, defined by its generators (zαa )∗, 
α, a = 1, . . . , n, and the relations

(zβb )∗(zαa )∗ − q(zαa )∗(zβb )∗ = 0, a = b & α < β, or a < b & α = β, (4)

(zβb )∗(zαa )∗ − (zαa )∗(zβb )∗ = 0, α < β & a > b, (5)

(zβb )∗(zαa )∗ − (zαa )∗(zβb )∗ − (q − q−1)(zαb )∗(zβa )∗ = 0, α < β & a < b. (6)

A grading in C[Matn]q is given by deg(zαa )∗ = −1.
Finally, consider the algebra Pol(Matn)q whose generators are zαa , (zαa )∗, α, a =

1, . . . , n, and the list of relations is formed by (1)–(6) and

(zβb )∗zαa = q2 ·
n∑

a′,b′=1

n∑
α′,β′=1

Rb′a′

ba Rβ′α′

βα · zα′

a′ (zβ
′

b′ )∗ + (1 − q2)δabδαβ , (7)

with δab, δαβ being the Kronecker symbols, and

Rkl
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q−1, i 
= j & i = k & j = l

1, i = j = k = l

−(q−2 − 1), i = j & k = l & l > j

0, otherwise.

The involution in Pol(Matn)q is introduced in the obvious way: ∗ : zαa �→ (zαa )∗.
Recall a standard notation for the q-determinant of the matrix z = (zαa )nα,a=1:

detq z =
∑
s∈Sn

(−q)l(s)zs(1)1 z
s(2)
2 . . . zs(n)

n ,

with l(s) = card{(i, j)| i < j & s(i) > s(j)}. It is well-known that detq z is in the 
center of C[Matn]q.
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In order to introduce the Shilov boundary for the quantum matrix ball we will need 
the algebra of regular functions on the quantum GLn, denoted by C[GLn]q (see [12]). It 
is the localization of C[Matn]q with respect to the multiplicative system (detq z)N. The 
algebra C[GLn]q possesses a unique involution ∗ given by

(zαa )∗ = (−q)a+α−2n(detq z)−1 detq zαa (8)

with zαa being the matrix derived from z by deleting the α-th row and a-th column. 
Furthermore,

detq z(detq z)∗ = (detq z)∗ detq z = q−n(n−1) (9)

(see [23, Lemma 2.1]).

Theorem 1 ([23]). There exists a unique ∗-homomorphism

ψ : Pol(Matn)q → (C[GLn]q, ∗)

such that ψ : zαa �→ zαa , α, a = 1, . . . , n.

Note that the ∗-algebra (C[GLn]q, ∗) is isomorphic to the ∗-algebra C[Un]q =
(C[GLn]q, �) of regular functions on the quantum Un (see [13]) with the isomorphism 
ι : (C[GLn]q, ∗) → (C[GLn]q, �) given by ι : zαa → qα−nzαa , a, α = 1, . . . , n; the involution 
� in C[Un]q satisfies (zαa )� = (−q)a−α(detq z)−1 detq zαa , a, α = 1, . . . , n.

We finish the section by a lemma that makes a connection between Pol(Matn)q for 
different values of n. For ϕ ∈ [0, 2π) let

Πϕ(zij) =

⎧⎪⎪⎨
⎪⎪⎩
q−1zij , i, j < n,

eiϕ, i = j = n,

0, otherwise.
(10)

Lemma 1.

1. The map Πϕ extends uniquely to a ∗-homomorphism from Pol(Matn)q to
Pol(Matn−1)q.

2. The map zij �→ zi+n
j+n, i, j = 1, . . . , n defines an embedding of Pol(Matn)q into 

Pol(Mat2n)q.

Proof. 1. It is enough to check that all relations (1)–(7) turn to correct identities under 
Πϕ. Relations (1)–(3) are checked easily. Indeed, if such a relation does not involve 
elements of the last row or column of (zij)ni,j=1, then it remains the same. If a relation 
contains znn , then either it is a relation of type (1) and under Πϕ it transforms to 0 = 0, 
or it is a relation of type (3) and under Πϕ it transforms to q−1eiϕzij = q−1eiϕzij . If, 
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finally, a relation involves some element from the last column or row but not znn, then it 
transforms to 0 = 0.

Now let us check the relations between holomorphic and antiholomorphic generators, 
namely, relations of type (7). Let us consider several cases. The first case is a 
= b and 
α 
= β. Then the explicitly written commutation relation has the form (zβb )∗zαa = zαa (zβb )∗, 
and this relation either survives under Πϕ or turns to the identity 0 = 0.

The second case is when one of the pairs of indices (a, b) and (α, β) coincides and the 
other does not. These cases are completely similar, so we will elaborate here only one. Let 
us suppose that a = b. Then the commutation relation can be rewritten in a more explicit 
way as follows: (zβa )∗zαa = q

∑n
a′=1 R

a′a′
aa zαa′(zβa′)∗. If a = n, then Πϕ maps this relation to 

the identity 0 = 0, since α 
= β. Let us now assume that a < n. If either α or β equals n, 
then also Πϕ maps this relation to the identity 0 = 0. Finally, if all indices are less than n, 
then Πϕ maps this relation to the relation q−2(zβa )∗zαa = q

∑n−1
a′=1 R

a′a′
aa zαa′q−2(zβa′)∗ which 

holds in Pol(Matn−1)q.
Now let us consider the last case where a = b and α = β. Then the relation can be 

written more explicitly as

(zαa )∗zαa = q2
n∑

a′=1

n∑
α′=1

Ra′a′

aa Rα′α′

αα zα
′

a′ (zα
′

a′ )∗ + 1 − q2.

If a = α = n, then we have the standard relation (znn)∗znn = q2znn(znn)∗ + 1 − q2 which 
is mapped by Πϕ to the identity 1 = q2 + 1 − q2.

If a = n and α < n (the other case is analogous), we have the relation

(zαn )∗zαn = q2
n∑

α′=1
Rα′α′

αα zα
′

n (zα
′

n )∗ + 1 − q2.

Πϕ maps this relation to the identity 0 = −q2(q−2 − 1) + 1 − q2.
Finally, if a < n and α < n, then we can rewrite the relation in the most explicit way 

as follows:

(zαa )∗zαa = q2zαa (zαa )∗ − q2
n∑

a′=a+1
(q−2 − 1)zαa′(zαa′)∗ − q2

n∑
α′=α+1

(q−2 − 1)zα
′

a (zα
′

a )∗+

q2
n∑

a′=a+1

n∑
α′=α+1

(q−2 − 1)2zα
′

a′ (zα
′

a′ )∗ + 1 − q2.

Applying Πϕ, we get the relation

q−2(zαa )∗zαa = zαa (zαa )∗ −
n−1∑

a′=a+1
(q−2 − 1)zαa′(zαa′)∗ −

n−1∑
α′=α+1

(q−2 − 1)zα
′

a (zα
′

a )∗+

n−1∑
′

n−1∑
′

(q−2 − 1)2zα
′

a′ (zα
′

a′ )∗ + q2(q−2 − 1)2 + 1 − q2.

a =a+1 α =α+1
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Obviously, q2(q−2 − 1)2 + 1 − q2 = q−2(1 − q2), so after multiplying the relation by the 
common factor q2 we get the corresponding relation in Pol(Matn−1)q. So, we also checked 
all the relations between holomorphic and antiholomorphic generators of Pol(Matn)q and 
the map Πϕ admits an extension to an algebra morphism. Its uniqueness is obvious.

2. It is a consequence of a similar easy inspection of the commutation relations; we 
leave the details to the reader. �
2.2. The quantum universal enveloping algebra UqslN and its action on Pol(Matn)q

The Drinfeld–Jimbo quantum universal enveloping algebra is among the basic notions 
of the quantum group theory. Recall the definition of the Hopf algebra UqslN [10]. Let 
(ai,j)N−1

i,j=1 be the Cartan matrix of slN :

ai,j =

⎧⎪⎪⎨
⎪⎪⎩

2, i− j = 0,
−1, |i− j| = 1,
0, otherwise.

The algebra UqslN is determined by the generators Ei, Fi, Ki, K−1
i , i = 1, . . . , N − 1, 

and the relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1, KiEj = qaijEjKi, KiFj = q−aijFjKi,

EiFj − FjEi = δij (Ki −K−1
i )/(q − q−1),

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0, |i− j| = 1,

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0, |i− j| = 1,

EiEj − EjEi = FiFj − FjFi = 0, |i− j| 
= 1.

The comultiplication Δ, the antipode S, and the counit ε are determined by

Δ(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, Δ(Fi) = Fi ⊗K−1
i + 1 ⊗ Fi, Δ(Ki) = Ki ⊗Ki,

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Ki) = K−1

i ,

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

Let Uqsun,N−n denote the ∗-Hopf algebra (UqslN , ∗) given by

(K±1
j )∗ = K±1

j , E∗
j =

{
KjFj , j 
= n,

−KjFj , j = n,
F ∗
j =

{
EjK

−1
j , j 
= n,

−EjK
−1
j , j = n,

with j = 1, . . . , N − 1.
An important fact from the theory of quantum bounded symmetric domains is that the 

∗-algebra Pol(Matn)q possesses a quantum symmetry with respect to Uqsun,n. Recall a 
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general notion of a module algebra. Namely, let A be a Hopf algebra, B an A-module and 
an algebra. Then B is called an A-module algebra if the multiplication and embedding 
of the unit are morphisms of A-modules. If both A and B possess involutions, then they 
should satisfy the compatibility condition (ab)∗ = (S(a))∗b∗ for each a ∈ A, b ∈ B.

Proposition 1 ([20]). The ∗-algebra Pol(Matn)q possesses a Uqsun,n-module algebra 
structure.

From here on we will focus on the ∗-subalgebra of Uqsun,n generated by all K±1
j , Ej , Fj

for j 
= n. This subalgebra will be denoted as Uqsun ⊗ Uqsun. The formulas below 
completely determine the Uqsun ⊗ Uqsun-action on Pol(Matn)q.

For a, α = 1, . . . , n and k < n we have

K±1
k zαa =

⎧⎪⎪⎨
⎪⎪⎩
q±1zαa , a = k,

q∓1zαa , a = k + 1,
zαa , otherwise,

(11)

Fkz
α
a = q1/2 ·

{
zαa+1, a = k,

0, otherwise,
(12)

Ekz
α
a = q−1/2 ·

{
zαa−1, a = k + 1,
0, otherwise,

(13)

while for k > n we have

K±1
k zαa =

⎧⎪⎪⎨
⎪⎪⎩
q±1zαa , α = 2n− k,

q∓1zαa , α = 2n− k + 1,
zαa , otherwise,

(14)

Fkz
α
a = q1/2 ·

{
zα+1
a , α = 2n− k,

0, otherwise,
(15)

Ekz
α
a = q−1/2 ·

{
zα−1
a , α = 2n− k + 1,

0, otherwise.
(16)

Recall that the action on other elements of Pol(Matn)q can be obtained from the property 
that ξ(fg) =

∑
i ξ

(1)
i (f)ξ(2)

i (g) and S(ξ)∗(f∗) = (ξ(f))∗ for ξ ∈ Uqsun ⊗ Uqsun, f , 
g ∈ Pol(Matn)q and Δ(ξ) =

∑
i ξ

(1)
i ⊗ ξ

(2)
i (in the Sweedler notation).

The above formulas show that the action of Uqsun ⊗ Uqsun preserves the degree of 
each element f ∈ Pol(Matn)q. As a simple corollary, we have

Lemma 2. The Uqsun ⊗ Uqsun-action in Pol(Matn)q is locally finite.
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2.3. The ∗-algebra C[SUn]q and its coaction

Recall the definition of the Hopf algebra C[SLn]q. It is defined by the generators 
{ti,j : i, j = 1, . . . , n} and the relations

tα,atβ,b − qtβ,btα,a = 0, a = b & α < β, or a < b & α = β,

tα,atβ,b − tβ,btα,a = 0, α < β & a > b,

tα,atβ,b − tβ,btα,a − (q − q−1)tβ,atα,b = 0, α < β & a < b,

detq t = 1.

Here detq t is the q-determinant of the matrix t = (tα,a)nα,a=1.
It is well known (see [12] or other standard book on quantum groups) that C[SUn]q

def=
(C[SLn]q, �) is a Hopf ∗-algebra; the comultiplication Δ, the counit ε, the antipode S
and the involution � are defined as follows

Δ(ti,j) =
∑
k

ti,k ⊗ tk,j , ε(ti,j) = δij , S(ti,j) = (−q)i−j detq tji,

and

t�i,j = (−q)j−i detq tij ,

where tij is the matrix derived from t by discarding its i-th row and j-th column. We 
have, in particular,

S(ti,j) = t�j,i and S2(ti,j) = q2(i−j)ti,j , i, j = 1, . . . , n (17)

([12, Proposition 9.10]). From the relations it easily follows that the mapping ti,j �→
qi−jti,j extends to an automorphism α of C[SUn]q such that α(t�i,j) = qj−it�i,j . Combin-
ing, for example, this result with (17), one can see that

θ : ti,j �→ qj−itj,i (18)

gives a ∗-automorphism of C[SUn]q: we have θ(ti,j) = α(S(ti,j)�).
There is a canonical isomorphism C[SUn]q � C[Un]q/〈detq z − 1〉, given by ti,j �→

zij + 〈detq z −1〉, i, j = 1, . . . , n; here 〈detq z −1〉 denotes the two-sided ∗-ideal generated 
by detq z − 1 (see [12]).

Theorem 1 and the remark after it give a ∗-homomorphism φ : Pol(Matn)q → C[SUn]q
such that

φ(zij) = qi−nti,j , i, j = 1, . . . n. (19)
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Let us recall here the standard construction of ∗-representations of C[SUn]q. Consider 
the Hilbert space l2(Z+) with the standard basis {en : n ∈ Z+}. The formulas

Π(t1,1)en = (1 − q2n)1/2en−1, Π(t1,2)en = qn+1en,

Π(t2,1)en = −qnen, Π(t2,2)en = (1 − q2n+2)1/2en+1, n ∈ Z+

define an irreducible ∗-representation of C[SU2]q, (see e.g. [12] or [14]).
For j ∈ {1, . . . , n − 1} let ψj : C[SUn]q → C[SU2]q denote the morphism of ∗-Hopf 

algebras defined on the generators as follows:

ψj(ta,b) =
{
ta−j+1,b−j+1, j ≤ a, b ≤ j + 1,
δab, otherwise.

Recall that the symmetric group Sn is the Weyl group of sln, and denote by s1, . . . , sn−1

the transpositions (1, 2), . . . , (n − 1, n), respectively. For each sj one can associate an 
irreducible ∗-representation of C[SUn]q via πsj = Π ◦ ψj .

Let s be an arbitrary element of the Weyl group, and s = sj1 . . . sjk its reduced 
decomposition. Then one associates to it the ∗-representation of the Hopf ∗-algebra 
C[SUn]q by the rule:

πs = πsj1
⊗ . . .⊗ πsjk

.

A remarkable result of Soibelman [21,22] and Soibelman and Vaksman [26] (see also 
[14, chapter 3.6] for a general result) says that πs is irreducible and does not depend on 
the reduced decomposition, i.e. two representations obtained through this construction 
are unitarily equivalent if and only if they correspond to the same element of the Weyl 
group; moreover, any irreducible representation of C[SUn]q differs from some πs by tensor 
multiplication by a one-dimensional representation.

Recall a general fact on the connection between modules and comodules of algebras 
and their Hopf duals. In the following proposition A◦ denotes the Hopf dual (or the finite 
dual) of an algebra A (the definition can be found in [5] [p. 82]).

Proposition 2 ([5] [pp. 86–87]).

• Let A be an algebra and V be a left A-module. Then V can be made into a right 
A◦-comodule whose associated left A-module is V if and only if V is a locally finite 
A-module.

• V possesses a left A-module locally finite algebra structure if and only if there exists 
a right A◦-comodule algebra structure on it.
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Lemma 3. The map

Dn : zij �→
n∑

a,b=1

zab ⊗ tb,j ⊗ ta,i, i, j = 1, . . . , n

extends uniquely to a ∗-homomorphism

Dn : Pol(Matn)q → Pol(Matn)q ⊗ C[SUn]q ⊗ C[SUn]q.

Proof. Let us focus on the first part Uqsln ⊂ Uqsln ⊗ Uqsln, arguments for the second 
one are the same. Recall that C[SLn]q is the (finite) dual for the quantum universal 
enveloping algebra Uqsln. As the Uqsln-action on Pol(Matn)q defined by (11)–(13) is 
locally finite, we can apply the previous proposition to obtain a right C[SLn]q-comodule 
algebra structure on Pol(Matn)q. We claim that this coaction is given by

zij �→
n∑

b=1

zib ⊗ tb,j , 1 ≤ i, j ≤ n. (20)

To see this it is enough to verify that

ξ · zij =
n∑

b=1

zibtb,j(ξ) for any ξ ∈ Uqsln, 1 ≤ i, j ≤ n. (21)

For the generators ξ ∈ Uqsln this can be easily recovered from the explicit formulas for 
the linear functionals tb,j ∈ C[SLn]q ⊂ (Uqsln)∗. One has

ti,i+1(Ei) = q−1/2, ti+1,i(Fi) = q1/2, ti,i(Ki) = q, ti,i(Ki−1) = q−1, i = 1, . . . , n,

and all other evaluations of tb,j on the generators of Uqsln are zero (see e.g. [12]).
To see that (21) holds for any ξ ∈ Uqsln it is enough to observe that whenever ∑n
b=1 z

i
btb,j(ξm) = ξm · zij , m = 1, 2, then

n∑
b=1

zibtb,j(ξ1ξ2) =
n∑

b=1

zibΔ(tb,j)(ξ1 ⊗ ξ2) =
n∑

b=1

zib

n∑
k=1

tb,k(ξ1)tk,j(ξ2)

=
n∑

k=1

(
n∑

b=1

zibtb,k(ξ1))tk,j(ξ2) =
n∑

k=1

(ξ1 · zik)tk,j(ξ2) = ξ1 · (
n∑

k=1

ziktk,j(ξ2))

= ξ1 · (ξ2 · zij) = (ξ1ξ2) · zij .

Since the algebra Pol(Matn)q is a Uqsun-module algebra, and the involutions in 
Uqsun and C[SUn]q are compatible, one deduces that the map (20) extends to a 
∗-homomorphism. �
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2.4. On ∗-representation of Pol(Matn)q

In this section we shall discuss ∗-representations of the ∗-algebra Pol(Matn)q. One of 
the most important ∗-representations of Pol(Matn)q is the so-called Fock representation 
which we now define.

Let HF,n be a Pol(Matn)q-module with one generator v0 and the defining relations

πF,n(zij)∗v0 = 0, i, j = 1, . . . , n.

It was proved in [19, Corollary 2.3, Proposition 2.4, Proposition 2.5] that there exists 
a unique sesquilinear form (·, ·) on HF,n such that (v0, v0) = 1 and (πF,n(f)u, v) =
(u, πF,n(f∗)v) for any f ∈ Pol(Matn)q, u, v ∈ HF,n. Moreover, the sesquilinear form 
is positive definite and the linear mappings πF,n(f) define a bounded ∗-representation, 
called the Fock representation, of Pol(Matn)q; it acts on the Hilbert space HF,n which 
is the completion of HF,n with respect to (·, ·).

We say that a ∗-representation π : Pol(Matn)q → B(H) has a vacuum vector if there 
exists a unit vector v in H such that π(zij)∗v = 0 for any i, j = 1, . . . , n; any such vector 
v is called a vacuum vector for π. The Fock representation is the only (up to unitary 
equivalence) irreducible ∗-representation of Pol(Matn)q that possesses a vacuum vector 
(see [19]).

Let CF (Dn)q be the C∗-subalgebra of B(HF,n) generated by the operators πF,n(zij), 
i, j = 1, . . . , n.

By [19], πF,n is a faithful irreducible representation of the ∗-algebra Pol(Matn)q. 
When n = 1 and n = 2 it was proved in [16,24] and [17] that ‖π(a)‖ ≤ ‖πF,n(a)‖ for 
any bounded ∗-representation of Pol(Matn)q and a ∈ Pol(Matn)q, giving that CF (Dn)q
is isomorphic to the universal enveloping C∗-algebra of Pol(Matn)q. Recently, using, 
in particular, results from the present work, the second author proved in [8] that the 
statement holds for all values of n.

In order to prove the faithfulness of the Fock representation of the ∗-algebra 
Pol(Matn)q the authors of [19] gave an explicit construction of the Fock representation: 
for this they embed first Pol(Matn)q in a localization of C[SL2n]q with an involution and 
then use a concrete well understood ∗-representation of the latter ∗-algebra. The embed-
ding is highly non-trivial that makes the construction very difficult to work with. In this 
section we propose a new simpler construction of the Fock representation of Pol(Matn)q
built out of a representation of C[SU2n]q. Using this construction we shall derive a num-
ber of consequences concerning the C∗-algebra CF (Dn)q and its ∗-representations.

Recall the ∗-representation Π of C[SU2]q from the previous section and let Cq, S, d(q) :
�2(Z+) → �2(Z+) be the operators defined as follows:

Sen = en+1, Cqen =
√

1 − q2nen, d(q)en = qnen. (22)
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We have

Π(t1,1) = S∗Cq, Π(t1,2) = qd(q), Π(t2,1) = −d(q), Π(t2,2) = CqS.

As in [19] consider the element

u =
(

1 2 . . . n n + 1 n + 2 . . . 2n
n + 1 n + 2 . . . 2n 1 2 . . . n

)
(23)

of the symmetric group S2n. This element is the product of n cycles: u = c1 · c2 . . . · cn, 
where ck = sk+n−1sk+n−2 . . . sk and sk is the transposition (k, k+1). The concatenation 
of the expressions for the cycles ck gives a reduced decomposition of u = σ1σ2 . . . σn2 , 
σi ∈ {s1, . . . , s2n−1}. Let

πu = πσ1 ⊗ πσ2 ⊗ . . . πσn2

be the corresponding representation of C[SU2n]q (see section 2.3).
Consider the map

ι : zij �→ qi−ntn+i,n+j ∈ C[SU2n]q, 1 ≤ i, j ≤ n,

defined on the generators {zij : 1 ≤ i, j ≤ n} of Pol(Matn)q. It admits a unique extension 
to a ∗-homomorphism ι : Pol(Matn)q → C[SU2n]q as the composition of the embedding 
of Pol(Matn)q into Pol(Mat2n)q that sends zij to zi+n

j+n, 1 ≤ i, j ≤ n (see Lemma 1), and 
the ∗-homomorphism φ : Pol(Mat2n)q → C[SU2n]q, zij �→ qi−2nti,j (see (19)).

Theorem 2. Let T := πu ◦ ι : Pol(Matn)q → B(�2(Z+)⊗n2). Then T is unitary equivalent 
to the Fock representation πF,n.

In order to understand the action of T we shall associate to it a collection of square 
box diagrams with directed routes in the following way.

For 1 ≤ j, k ≤ n we have

T (zjk) = qj−n
2n∑

k1,...,kn2−1=1

πσ1(tn+j,k1) ⊗ · · · ⊗ πσn2 (tkn2−1,n+k). (24)

Recall from section 2.3 that the only non-zero factors in (24) are

πsi(ti,i+1) = qd(q), πsi(ti+1,i) = −d(q), πsi(ti,i) = S∗Cq,

πsi(ti+1,i+1) = CqS, πsi(tk,k) = I, k 
= i, i + 1,

where d(q), Cq, S : �2(Z+) → �2(Z+) are given by (22) and I stands for the identity 
operator on �2(Z+).
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To each non-zero term πσ1(tn+j,k1) ⊗ · · · ⊗ πσn2 (tkn2−1,n+k) in (24) we associate a 
square tableau consisting of n2 equal boxes. Each box will represent a factor in the term. 
The non-zero factors πsi(ti,i+1), πsi(ti+1,i), πsi(ti,i), πsi(ti+1,i+1), πsi(tk,k), k 
= i, i + 1, 
will be represented by the following boxes with arrows:

πsi(ti,i+1) � (25)
πsi(ti+1,i) � (26)

πsi(ti,i) � (27)
πsi(ti+1,i+1) � (28)

πsi(tk,k) � (29)

the i-th column of the tableau will correspond to the part related to the cycle ci =
si+n−1si+n−2 . . . si in the decomposition u = c1 · c2 · . . . · cn, i.e.

πσn(i−1)+1(tkn(i−1),kn(i−1)+1) ⊗ . . .⊗ πσni
(tkn(i−1),kn(i−1)+1)

= πsi+n−1(tkn(i−1),kn(i−1)+1) ⊗ . . .⊗ πsi(tkn(i−1),kn(i−1)+1)

where the reading from the left to the right in the tensor product will correspond to the 
moving up along the column. For instance, if the part of a non-zero term corresponding 
to the first cycle is given by

πsn(tn+1,n)⊗πsn−1(tn,n−1)⊗ . . .⊗πsk(tk+1,k)⊗πsk−1(tk,k)⊗πsk−2(tk,k)⊗ . . .⊗πs1(tk,k)

we obtain the column:

...
πsk−1(tk,k)

...
πs1(tk,k)

πsn−1(tn,n−1)
πsn(tn+1,n)

It is not difficult to see that following the above algorithm applied to a non-zero term 
of (24) we obtain in the corresponding n by n box tableau a path, called admissible
and built out of arrow boxes (25)–(29) with the start and end positions (n, j) and (k, n), 
respectively. In fact, as πsl(tm,p) = δm,pI for n ≥ m > l+1, we obtain that the elementary 
tensor

πσ1(tn+j,k1) ⊗ · · · ⊗ πσn(j−1)+1(tkn(j−1),kn(j−1)+1) =
πsn(tn+j,k1) ⊗ . . .⊗ πs1(tkn−1,kn

) ⊗ πsn+1(tkn+1,kn+2) ⊗ . . .⊗ πsn+j−1(tkn(j−1),kn(j−1)+1)

is non-zero if and only if n +j = k1 = k2 = . . . = kn(j−1) and kn(j−1)+1 is either n +j−1
or n +j so that the last factor is either πsn+j−1(tn+j,n+j−1) or πsn+j−1(tn+j,n+j) while the 
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others are the identity operators. Hence the first arrow in the diagrams corresponding to 
a summand in T (zjk) occurs at the position (n, j) and it is either or , respectively. 
Similarly, we observe that

πσn2−k+1
(tkn2−k,kn2−k+1

) ⊗ · · · ⊗ πσn2 (tkn2−1,n+k)

= πsn+k−1(tkn2−k,kn2−k+1
) ⊗ . . .⊗ πsn(tkn2−1,n+k)

is non-zero if and only if n + k = kn2−1 = . . . = kn2−k+1 and kn2−k is either n + k or 
n + k− 1 so that the first factor is either πsn+k−1(tn+k,n+k) or πsn+k−1(tn+k−1,n+k) and 
the others are the identity operators. Hence the last arrow in the diagrams corresponding 
to a summand in T (zjk) occurs at the position (k, n) and it is either or , respectively. 
With a similar analysis it is not difficult to convince oneself that one gets a connected 
path from (n, j) to (k, n); the details are left to the reader.

We have, in particular, that for n = 3 and j = k = 1 the diagrams representing the 
non-zero terms in T (z1

1) are given by

The term corresponding, for example, to the first diagram can be easily recovered as 
d(q) ⊗ d(q) ⊗ CqS ⊗ I ⊗ I ⊗ d(q) ⊗ I ⊗ I ⊗ d(q).

With the diagram approach the following result becomes evident.

Lemma 4. The vector v0 = e0 ⊗ . . . ⊗ e0 ∈ �2(Z+)⊗n2 is a vacuum vector for the 
∗-representation T .

Proof. The statement follows from the simple observation that any route corresponding 
to a non-zero term in (24) must contain the right hook arrow box (28) that represents 
the factor CqS in the term. Recalling that (CqS)∗e0 = 0, we get the claim. �

To proceed to the next claim, that can also be easily derived from the associated 
square box diagrams, we enumerate the boxes in n by n tableaux by numbers from 1 to 
n2 counting the boxes in each column from the bottom up and moving gradually from 
the first column to the last one, i.e. we have the following ordering for the box positions 
in the tableaux:

(n, 1) < (n− 1, 1) < . . . < (1, 1) < (n, 2) < (n− 1, 2) . . . < (1, 2) < . . .

< (n, n) < (n− 1, n) < . . . < (1, n)

Let h(k, l) be the number in {1, . . . , n2} corresponding to the box in the position (k, l). 
We have h(k, l) = n(l − 1) + n − k + 1 although we will not use this expression.
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Lemma 5. The subspace {T (a)v0 : a ∈ Pol(Matn)q} is dense in �2(Z+)⊗n2 .

Proof. Consider all admissible routes from (n, j) to (k, n) in our set of tableaux. We 
observe that the only route which does not contain the upper hook arrow box (27), 
corresponding to the factor S∗Cq, is of the form

j

k

The route represents an operator of the form Rj
k ⊗ CqS

↑
h(k,j)

⊗ F j
k , where Rj

k, F
j
k are tensor 

products of the factors d(q) and I. Furthermore, S∗Cq can occur as a factor in a non-zero 
term for T (zjk) at the position with index which is strictly larger than h(k, j). Recalling 
now that S∗Cq annihilates e0 we obtain that for v = em1 ⊗ . . .⊗ emh(k,j) ⊗ e0 ⊗ . . .⊗ e0

T (zjk)v = qj−n(Rj
k ⊗ CqS

↑
h(k,j)

⊗ F j
k )v,

i.e. the only summand in T (zjk) that corresponds to the above route survives after ap-
plying T (zjk) to the vector v. Similarly, for m ≥ 1,

T (zjk)
mv = q(j−n)m((Rj

k)
m ⊗ (CqS)m

↑
h(k,j)

⊗ (F j
k )m)v

= βj
k(m)em1 ⊗ . . .⊗ emh(k,j)−1 ⊗ emh(k,j)+m

↑
h(k,j)

⊗ e0 ⊗ . . .⊗ e0

for some non-zero constant βj
k(m) (depending on m1, . . . , mh(k,j)).

By letting Xh(k,j) = T (zjk) we can now easily obtain that

X
mn2
n2 . . . Xm2

2 Xm1
1 v0 = β1(m1)X

mn2
n2 . . . Xm2

2 (em1 ⊗ e0 ⊗ e0 ⊗ . . .⊗ e0)

= β1(m1)β2(m1,m2)X
mn2
n2 . . . Xm3

3 (em1 ⊗ em2 ⊗ e0 ⊗ . . .⊗ e0) = . . .

=
n2∏
i=1

βi(m1, . . . ,mi)em1 ⊗ em2 ⊗ em3 ⊗ . . .⊗ emn2

for non-zero βi(m1, . . . , mi), i = 1, . . . , n2. The proof is done. �
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The proof above gives more, namely if Xi, i = 1, . . . , n2, are as in the proof then we 
obtain

Corollary 1. {Xmn2
n2 . . . Xm2

2 Xm1
1 v0, mi ∈ Z+} is an orthogonal basis of �2(Z+)n2 .

We can now complete the proof of the theorem.

Proof of Theorem 2. As the Fock representation is the only ∗-representation (up to uni-
tary equivalence) that has a cyclic vacuum vector (see [19]), the statement follows from 
Lemma 4 and Lemma 5. �

We proceed with deriving a number of useful corollaries from our construction of the 
Fock representation.

Let C∗(S) be the C∗-algebra generated by the isometry S. It is easy to see that the 
operators Cq, S, d(q) ∈ B(�2(Z+)) satisfy the following relations

Cq = (1 − q2)1/2(
∞∑

n=0
q2nSn+1(S∗)n+1)1/2, (30)

d(q) =
∞∑

n=0
qn(Sn(S∗)n − Sn+1(S∗)n+1), S0 := 1, (31)

where the series converge in the operator norm topology. Consequently, Cq, d(q) ∈ C∗(S).
Identifying πF,n with the representation T of Theorem 2, we have

Corollary 2. CF (Dn)q ⊂ C∗(S)⊗n2 .

Proof. Each T (zjk) is a linear combination of elementary tensors in B(�2(Z+))⊗n2 each 
factor of which is either d(q), CqS, S∗Cq or I, the latter are elements of C∗(S). �

Let K be the space of compact operators on �2(Z+) and C(T) be the C∗-algebra of 
continuous functions on the torus T = {z ∈ C : |z| = 1}. It is known that

φ : C∗(S) → C(T), S �→ z, (32)

is a surjective ∗-homomorphism with kernel kerφ = K (see e.g. [6]). In particular, by 
(30)–(31)

φ(d(q)) = 0 and φ(Cq) = 1. (33)

This is essential for the proof of the following lemma.

Lemma 6. Let ϕ = (ϕ1, . . . , ϕn) ∈ [0, 2π)n and χϕ : zlk → eiϕkql−nδkl, k, l = 1 . . . , n. 
Then χϕ extends uniquely to a ∗-representation of Pol(Matn)q. Moreover, |χϕ(a)| ≤
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‖πF,n(a)‖ for any a ∈ Pol(Matn)q, i.e. the map πF,n(a) �→ χϕ(a), a ∈ Pol(Matn)q, 
extends to a ∗-representation of CF (Dn)q.

Proof. If we compose the ∗-homomorphism φ given by (32) with the evaluation map at 
eiα, α ∈ [0, 2π), we get a ∗-homomorphism C∗(S) → C determined by S �→ eiα. For 
τ = (τ1, . . . , τn2) let Δτ : C∗(S)⊗n2 → C be a ∗-homomorphism defined by

I ⊗ ...⊗ I ⊗ S
↑
k

⊗ I ⊗ ...⊗ I �→ eiτk ,

k ∈ {1, 2, . . . , n2}. As φ(d(q)) = 0 we obtain that Δτ annihilates any elementary tensor 
containing d(q) as a factor. Next we observe that the only admissible paths from (n, l) to 
(k, n) that do not contain the arrow boxes and are the paths from (n, k) to (k, n)
consisting of and following one after another; for example if n = 3, k = 1 we have

and if n = 3, k = 2 we have

Therefore, Δτ ◦ T (zlk) = eickql−nδkl for some constants ck ∈ [0, 2π). Moreover, it is easy 
to see that we can choose the set {τ1, . . . , τn2} such that ck = ϕk and hence Δτ ◦T (zlk) =
χϕ(zlk). As Δτ is a ∗-homomorphism and hence contractive, we obtain that χϕ extends 
to a ∗-representation of Pol(Matn)q and

|χϕ(a)| = ‖Δτ ◦ T (a)‖ ≤ ‖T (a)‖

for any a ∈ Pol(Matn)q. �
In what follows we shall also need the so-called coherent representations which are 

defined in a way similar to the Fock representation: consider a Pol(Matn)q-module HΩ
determined by a cyclic vector Ω such that

(zij)∗Ω = 0, if (i, j) 
= (1, 1) and (z1
1)∗Ω = e−iϕΩ,

for ϕ ∈ [0, 2π). Next we shall prove that the module action gives rise to a bounded 
∗-representation of Pol(Matn)q on a Hilbert space HΩ which is a completion of HΩ with 
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respect to some inner product. For ψ ∈ [0, 2π) let ωψ : C(T) → C be the evaluation map 
f �→ f(eiψ).

Proposition 3. Let T be the Fock representation given in Theorem 2. Then

Tψ := (id ⊗ . . .⊗ (ωψ ◦ φ)
↑
n

⊗ id ⊗ . . .⊗ id) ◦ T : Pol(Matn)q → C∗(S)⊗(n2−1)

is unitary equivalent to a coherent representation of Pol(Matn)q.

Proof. Any admissible route from the position (n, 1) to (1, n) is either

1

1

or contains both the right hook and the upper hook arrow boxes in positions different 
from (1, 1). Hence the corresponding summand in the expression for T (z1

1) is either

(−1)n−1d(q) ⊗ . . .⊗ d(q) ⊗ CqS
↑
n

⊗ I ⊗ . . .⊗ I ⊗ d(q)
↑
2n

. . .⊗ I ⊗ . . .⊗ I ⊗ d(q)
↑
n2

or an elementary tensor that contains both the factors CqS and S∗Cq in positions dif-
ferent from n = h(1, 1) and has the identity operator as the n-th factor. Hence applying 
(id ⊗ . . .⊗ (ωψ ◦ φ)

↑
n

⊗ id ⊗ . . .⊗ id) we obtain

Tψ(z1
1)Ω = (−1)n−1eiψΩ

for Ω := e0⊗ . . .⊗e0 ∈ �2(Z+)⊗(n2−1). That Tψ(zjk)∗Ω = 0 for (j, k) 
= (1, 1) follows from 
the fact that any admissible path from (n, j) to (k, n) contains the right hook arrow box 
in a position different from (1, 1). That Ω is a cyclic vector can be seen using arguments 
similar to one in Lemma 5. �

It follows from [11, Proposition 1.3.3] that a coherent representation corresponding to 
ϕ ∈ [0, 2π) is unique, up to unitary equivalence. We shall denote it by ρnϕ.

The following technical result will be needed in the next section and can be easily 
derived from our box diagrams.



O. Bershtein et al. / Journal of Functional Analysis 276 (2019) 1479–1509 1499
Lemma 7. Let ϕ ∈ [0, 2π). There exist operators Ajk, B ∈ B(�2(Z(n2−1)
+ )) such that πF,n

and ρnϕ are unitary equivalent to the following representations on �2(Z(n2−1)
+ ) ⊗ �2(Z+)

and �2(Z(n2−1)
+ ), respectively:

π̃F,n : z1
1 �→ B ⊗ CqS + A11 ⊗ I, zjk �→ Ajk ⊗ I, (j, k) 
= (1, 1)

ρ̃nϕ : z1
1 �→ eiϕB + A11, zjk �→ Ajk, (j, k) 
= (1, 1)

Proof. Let ψ ∈ [0, 2π), (−1)n−1eiψ = eiϕ and let T and Tψ be the Fock and the coherent 
representations from Theorem 2 and Proposition 3, respectively. It follows from the proof 
of the previous proposition that

T (z1
1) = R1

1 ⊗ CqS
↑
n

⊗ F 1
1 +

∑
i

A1
1(i) ⊗ I

↑
n

⊗B1
1(i) (34)

and

T (zjk) =
∑
i

Aj
k(i) ⊗ I

↑
n

⊗Bj
k(i), (k, j) 
= (1, 1), (35)

for some elementary tensors R1
1, F 1

1 , Aj
k(i), B

j
k(i).

Applying (id ⊗ . . .⊗ (ωψ ◦ φ)
↑
n

⊗ id ⊗ . . .⊗ id) to (34)–(35) gives

Tψ(z1
1) = eiψR1

1 ⊗ F 1
1 +

∑
i

A1
1(i) ⊗B1

1(i)

and

Tψ(zjk) =
∑
i

Aj
k(i) ⊗Bj

k(i), (k, j) 
= (1, 1).

Set Ajk =
∑

i A
j
k(i) ⊗ Bj

k(i) and B = R1
1 ⊗ F 1

1 and consider the unitary operator 
U : �2(Z+)⊗n2 → �2(Z+)⊗n2 given by

U : f1 ⊗ . . .⊗ fn−1 ⊗ fn ⊗ fn+1 ⊗ . . .⊗ fn2 �→ f1 ⊗ . . .⊗ fn−1 ⊗ fn+1 ⊗ . . .⊗ fn2 ⊗ fn.

Clearly, T is unitary equivalent via the operator U to π̃F,n giving the statement. �
We conclude this section with a couple of lemmas on ∗-representations of Pol(Matn)q

induced from the coaction map, defined in the previous section.
Recall the coaction Dn : Pol(Matn)q → Pol(Matn)q ⊗ C[SUn]q ⊗ C[SUn]q defined in 

Lemma 3 and the ∗-homomorphism Πϕ : Pol(Matn)q → Pol(Matn−1)q, ϕ ∈ [0, 2π), given 
by (10). Clearly, if ρ is a ∗-representation of Pol(Matn−1)q, τ is a ∗-representation of 
Pol(Matn)q, and π1, π2 are ∗-representations of C[SUn]q then ρ ◦Πϕ and (τ⊗π1⊗π2) ◦Dn

are ∗-representations of Pol(Matn)q.
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Lemma 8. Given ∗-representations π1, π2 of C[SUn]q, the ∗-representation (πF,n ⊗ π1 ⊗
π2) ◦ Dn of Pol(Matn)q is a direct sum ⊕iπF,n of copies of the Fock representation. In 
particular, ‖(πF,n ⊗ π1 ⊗ π2) ◦ Dn(a)‖ ≤ ‖πF,n(a)‖ for any a ∈ Pol(Matn)q.

Proof. Let {fi}i∈I , {gj}j∈J be orthonormal bases for the representation spaces Hπ1

and Hπ2 respectively and let v0 denote a vacuum vector for πF,n. Recall that C[Matn]q
stands for the subalgebra of Pol(Matn)q generated by the holomorphic generators zkl , 
k, l = 1, . . . , n. We have that each v0 ⊗ fi ⊗ gj , i ∈ I, j ∈ J , is a vacuum vector for 
τ := (πF,n ⊗ π1 ⊗ π2) ◦ Dn. Moreover, as πF,n(a)v0 ⊥ v0 for any a ∈ C[Matn]q with 
deg a > 0, one can easily see that v0 ⊗ fk ⊗ gl is orthogonal to span{τ(a)(v0 ⊗ fi ⊗ gj) :
a ∈ C[Matn]q} whenever (i, j) 
= (k, l). As the latter subspace is invariant with respect 
to τ(a), a ∈ Pol(Matn)q, we have

span{τ(a)(v0 ⊗ fi ⊗ gj) : a ∈ C[Matn]q} = span{τ(a)(v0 ⊗ fi ⊗ gj) : a ∈ Pol(Matn)q}

and the subspaces

span{τ(a)(v0⊗fi⊗gj) : a ∈ Pol(Matn)q} and span{τ(a)(v0⊗fk⊗gl) : a ∈ Pol(Matn)q}

are orthogonal whenever (i, j) 
= (k, l). This implies the statement. �
Let w = sn−1 . . . s1 ∈ Sn and let πw denote the irreducible representation of C[SUn]q

corresponding to w.

Lemma 9. The coherent ∗-representation ρnϕ is unitary equivalent to a sub-representation 
of τϕ,w,w := ((πF,n−1 ◦ Πϕ) ⊗ πw ⊗ πw) ◦ Dn.

Proof. It is enough to prove that τϕ,w,w possesses a vector Ω such that τϕ,w,w(zij)∗Ω = 0
if (i, j) 
= (1, 1) and τϕ,w,w(z1

1)∗Ω = e−iϕΩ.
The representation τϕ,w,w acts on HF,n−1⊗�2(Z+)⊗(n−1)⊗�2(Z+)⊗(n−1). Let e(n−1)

0 =
e0 ⊗ . . .⊗ e0︸ ︷︷ ︸

n−1

and Ω = v0⊗e
(n−1)
0 ⊗e

(n−1)
0 , where v0 is a vacuum vector for πF,n−1. Then

τϕ,ω,ω(z1
1)∗Ω =

n∑
a,b=1

πF,n−1(Πϕ(zab ))∗v0 ⊗ πw(t∗b,1)e
(n−1)
0 ⊗ πw(t∗a,1)e

(n−1)
0 .

It follows from the definition of the Fock representation and the ∗-homomorphism Πϕ

that πF,n−1(Πϕ(zba))∗v0 = 0 whenever (a, b) 
= (n, n) and πF,n−1(Πϕ(znn))∗v0 = e−iϕv0. 
As

πw(t∗n,i)e
(n−1)
0 =

n∑
πsn−1(t∗n,k1

)e0 ⊗ πsn−2(t∗k1,k2
)e0 ⊗ . . .⊗ πs1(t∗kn−2,i)e0,
k1,...,kn−2=1



O. Bershtein et al. / Journal of Functional Analysis 276 (2019) 1479–1509 1501
πsk−1(t∗k,l)e0 
= 0 if and only if l = k − 1 and πsk−1(t∗k,k−1)e0 = −e0, we obtain

πw(t∗n,1)e
(n−1)
0 = πsn−1(t∗n,n−1)e0⊗πsn−2(t∗n−1,n−2)e0⊗ . . .⊗πs1(t∗2,1)e0 = (−1)n−1e

(n−1)
0

and πw(t∗n,i)e
(n−1)
0 = 0 if i > 1.

Hence

τϕ,ω,ω(z1
1)∗Ω = e−iϕv0 ⊗ πw(t∗n,1)e

(n−1)
0 ⊗ πw(t∗n,1)e

(n−1)
0 = e−iϕΩ.

Similarly

τϕ,ω,ω(zji )
∗Ω = e−iϕv0 ⊗ πw(t∗n,i)e

(n−1)
0 ⊗ πw(t∗n,j)e

(n−1)
0 = 0 if (i, j) 
= (1, 1). �

3. Shilov boundary

The Shilov boundary ideal is a non-commutative analog of the Shilov boundary of a 
compact Hausdorff space X relative to a uniform subalgebra A of C(X), which is, by 
definition, the smallest closed subset K of X such that every function in A attains its 
maximum modulus on K. The notion goes back to the fundamental work by W. Arveson, 
[1], which gave birth to several directions in mathematics.

A typical “commutative” example that we should keep in mind is the algebra A of 
holomorphic functions on the open unit ball Dn = {z ∈ Mn(C) : zz∗ < 1} which are 
continuous on its closure. The Shilov boundary of Dn relative to A is known to be the 
space of unitary n by n matrices.

To introduce the non-commutative version of the Shilov boundary recall that if V is 
a subspace of a C∗-algebra B, Mn(V ) is the space of n by n matrices in V with norm 
induced by the C∗-norm on Mn(B), then any linear map φ from V to another C∗-algebra 
C induces a linear map φ(n) : Mn(V ) → Mn(C) by letting

φ(n)((ai,j)i,j) = (φ(ai,j))i,j , (ai,j)i,j ∈ Mn(V ).

The linear map is called a complete isometry if φ(n) is an isometry for any n.
Assume V contains the identity of B and generates B as a C∗-algebra. The following 

definition was given by Arveson [1].

Definition 1. A closed two-sided ideal J in B is called a boundary ideal for V if the 
canonical quotient map q : B → B/J is a complete isometry when restricted to V . 
A boundary ideal is called a Shilov boundary or a Shilov boundary ideal for V if it 
contains every other boundary ideal.

Arveson demonstrated the existence of the Shilov boundary in several situations of 
particular interests. In [9] Hamana proved that the boundary always exists for any such 
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subspace V . Another proof using dilation arguments was given by Dritschel and McCul-
lough in [7] (see also [2]). As the operator space structure on commutative C∗-algebras 
is minimal one has that a closed subset K of a compact Hausdorff space X is the 
Shilov boundary relative to a uniform subalgebra of C(X) if and only if the ideal 
J = {f ∈ C(X) : f |K = 0} is the Shilov boundary ideal. This shows that the above 
definition indeed generalizes the commutative notion.

If J is the Shilov ideal for a unital subalgebra V of C∗(V ), then C∗(V )/J provides 
a realization of the C∗-envelope C∗

e (V ) of V , a C∗-algebra which is determined by the 
property: there exists a completely isometric representation γ : V → C∗

e (V ) such that 
C∗

e (V ) = C∗(γ(V )) and if ρ is any other completely isometric representation, then there 
exists an onto representation π : C∗(ρ(V )) → C∗(γ(V )) such that π(ρ(a)) = γ(a) for all 
a ∈ V .

In this section we shall describe the Shilov boundary ideal for the closed subalgebra 
of CF (Dn)q generated by the “holomorphic” generators πF,n(zij), i, j = 1, . . . , n.

In Pol(Matn)q consider the two-sided ideal Jn generated by

n∑
j=1

q2n−α−βzαj (zβj )∗ − δαβ , α, β = 1, . . . , n,

where δαβ is the Kronecker symbol. The ideal Jn is a ∗-ideal, i.e. Jn = J∗
n. The quo-

tient algebra Pol(S(Dn))q := Pol(Matn)q/Jn is a Uqsun,n-module ∗-algebra called the 
polynomial algebra on the Shilov boundary of a quantum matrix ball. The canonical 
homomorphism

jq : Pol(Matn)q → Pol(S(Dn))q

is a q-analog of the restriction operator which maps a polynomial on the ball Dn = {z ∈
Matn : zz∗ < 1} to its restriction to the Shilov boundary S(Dn) = {z ∈ Matn : zz∗ = 1}.

The ∗-algebra Pol(S(Dn))q was introduced by L. Vaksman in [23] and shown to be 
isomorphic to the ∗-algebra (C[GLn]q, ∗) � C[Un]q introduced in section 2.1; the iso-
morphism Ψ : Pol(S(Dn))q → (C[GLn]q, ∗) is given by zij + Jn → zij , i, j = 1, . . . , n (see 
[23, Theorem 2.2, Proposition 6.1]). The author of [23] used an algebraic approach to 
introduce the q-analog of the Shilov boundary and posed a question whether this notion 
would coincide with the “analytic” Shilov boundary of Arveson. In this section we shall 
give an affirmative answer to that question for general value of n.

Let A(Dn)q be the closed (non-involutive) subalgebra of CF (Dn)q generated by 
πF,n(zij), i, j = 1, . . . , n. Let J̄n be the closure of Jn in CF (Dn)q and write jq also 
for the canonical quotient map CF (Dn)q → CF (Dn)q/J̄n.

We are now ready to state the main theorems of the paper.

Theorem 3. The ideal J̄n is a boundary ideal for A(Dn)q.

Theorem 4. The ideal J̄n is the Shilov boundary ideal for A(Dn)q.
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We begin by proving several auxiliary lemmas.

Lemma 10. Let τ be a ∗-representation of Pol(Matn−1)q that annihilates the ideal Jn−1
of Pol(Matn−1)q. Then ((τ ◦ Πϕ) ⊗ π1 ⊗ π2) ◦ Dn is a ∗-representation of Pol(Matn)q
that annihilates the ideal Jn of Pol(Matn)q for any ∗-representations π1, π2 of C[SUn]q.

Proof. Write Φn : Pol(Matn)q → C[Un]q for the ∗-homomorphism given by

Φn : zij �→ qi−nzij , i, j = 1, . . . , n,

(see Theorem 1 and the remark after it). It is straightforward to check that

Φn−1 ◦ Πϕ = Ψϕ ◦ Φn, ϕ ∈ [0, 2π],

where Ψϕ : C[Un]q → C[Un−1]q is the ∗-homomorphism such that

Ψϕ(zij) =

⎧⎪⎨
⎪⎩

zij , i, j < n,

eiϕ, i = j = n,

0, otherwise.

Therefore, as kerΦn = Jn, we have Πϕ(Jn) ⊂ Jn−1, giving that τ ◦ Πϕ annihilates the 
ideal Jn whenever τ is a ∗-representation of Pol(Matn−1)q such that τ(Jn−1) = 0.

Next we observe that if Υ : C[Un]q → C[SUn]q is the canonical ∗-homomorphism 
given by Υ : zij �→ ti,j , then, for any a ∈ Pol(Matn)q,

(Υ⊗ id⊗Υ)◦(Δ⊗ id)◦Δ◦Φn(a) = (σ⊗ id)◦(id⊗σ)◦(id⊗ id⊗θ)◦(Φn⊗ id⊗ id)◦Dn(a),

where σ is the flip map that sends a ⊗ b to b ⊗ a, Δ is the comultiplication on C[Un]q
and θ : C[SUn]q → C[SUn]q is the ∗-automorphism defined by (18). Hence, (Φn ⊗ id ⊗
id) ◦ Dn(Jn) = 0. It is now immediate that if ρ is a ∗-representation of Pol(Matn)q that 
annihilates Jn, then (ρ ⊗ π1 ⊗ π2) ◦ Dn(Jn) = 0 and, by the first part of the proof, 
((τ ◦ Πϕ) ⊗ π1 ⊗ π2) ◦ Dn(Jn) = 0, for any τ , π1, π2 satisfying the assumptions of the 
lemma. �

The dilation technique will play a crucial role in the rest of the paper. Recall that if 
V is a vector space and φi : V → B(Hi), i = 1, 2, are linear maps then φ2 is said to be a 
dilation of φ1 on V and write φ1 ≺ φ2 if H1 ⊂ H2 and φ1(a) = PH1φ2(a)|H1 for a ∈ V . 
Clearly, the relation ≺ on V is transitive.

The next statement shows that the Fock representation is a dilation of a “sum” of 
coherent representations when considered as maps on C[Matn]q.

Lemma 11. There is a ∗-representation Ψ of Pol(Matn)q such that Ψ is a direct integral 
of coherent representations ρnϕ and πF,n ≺ Ψ on C[Matn]q.
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Proof. Let S and Cq be the shift and the diagonal operators on �2(Z+) given by (22). 
By Lemma 7,

πF,n(z1
1) = B ⊗ CqS + A11 ⊗ 1, πF,n(zij) = Aij ⊗ 1, (i, j) 
= (1, 1),

for some Aij , B ∈ B(�2(Z+)⊗(n2−1)), while the images under the coherent representations 
are:

ρnϕ(z1
1) = (−1)n−1eiϕB + A11, ρnϕ(zij) = Aij (i, j) 
= (1, 1).

As CqS is a contraction, by Sz.-Nagy’s theorem (see e.g. [15]), there exists a unitary 
operator U on a larger space containing �2(Z+) such that (CqS)k = P�2(Z+)U

k|�2(Z+) for 
all k ∈ N. Let

Ψ(z1
1) = B ⊗ U + A11 ⊗ 1, Ψ(zij) = Aij ⊗ 1 if (i, j) 
= (1, 1).

Clearly, πF,n ≺ Ψ on C[Matn]q and Ψ is a ∗-representation of Pol(Matn)q which is a 
direct integral of those ρnϕ such that (−1)n−1eiϕ is in the spectrum of U . �
Lemma 12.

1. Any ∗-representation of Pol(Matn)q that annihilates the ideal Jn is a direct integral 
of ∗-representations given by zkl �→ eiϕkqk−nρ(tk,l), k, l = 1, . . . , n, where ρ is a 
∗-representation of C[SUn]q and ϕk ∈ [0, 2π).

2. If π is a ∗-representation of Pol(Matn)q such that π(Jn) = 0 then ‖π(a)‖ ≤
‖πF,n(a)‖, a ∈ Pol(Matn)q, and

‖j(k)
q ((πF,n(ai,j))i,j)‖ = sup{‖(π(ai,j))i,j‖ : π ∈ Rep(Pol(Matn)q), π(Jn) = 0} (36)

for any k ∈ N and (ai,j)i,j ∈ Mk(Pol(Matn)q).

Proof. 1. Let π be a ∗-representation of Pol(Matn)q that annihilates Jn. By [23, Proposi-
tion 6.1, Theorem 2.2], the family {π(zij) : i, j = 1, . . . , n} determines a ∗-representation 
of (C[GLn]q, ∗). Since detq z is central in (C[GLn]q, ∗) and satisfies detq z(detq z)∗ =
q−n(n−1) (see (9)), by the spectral theorem

π(detq z) =
⊕∫

[0,2π]

eiϕq−n(n−1)/2Iϕdμ(ϕ)

and

π =
⊕∫

πϕdμ(ϕ),

[0,2π]
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where {πϕ : ϕ ∈ [0, 2π)} is a field of ∗-representations of Pol(Matn)q such that 
πϕ(detq z) = eiϕq−n(n−1)/2Iϕ with Iϕ being the identity operator on the representa-
tion space of πϕ.

Fix now ϕ ∈ [0, 2π) and let ι : (C[GLn]q, ∗) → C[Un]q be the ∗-isomorphism given 
by ι(zkl ) = eiϕkqk−nzkl , k, l = 1, . . . , n, where ϕ1 + . . . + ϕn = ϕ. Then πϕ ◦ ι−1 is a 
∗-representation of C[Un]q such that πϕ◦ι−1(detq z) = I and hence ρϕ := πϕ◦ι−1◦j−1 is 
a ∗-representation of C[SUn]q �j

C[Un]q/〈detq z − 1〉, where j(zkl ) = tk,l, k, l = 1, . . . , n. 
We obtain

πϕ(zkl ) = ρϕ ◦ j ◦ ι(zkl ) = eiϕkqk−nρϕ(tk,l), k, l = 1, . . . , n.

2. Let χϕ, ϕ = (ϕ1, . . . , ϕn), be the one dimensional representation of Pol(Matn)q
defined in Lemma 6. By the lemma the mapping ψ : πF,n(a) �→ χϕ(a), a ∈ Pol(Matn)q
extends to a ∗-homomorphism from CF (Dn)q to C. Given representations π1, π2 of 
C[SUn]q and a ∈ Pol(Matn)q, by Lemma 8, we obtain

‖(χϕ ⊗ π1 ⊗ π2) ◦ Dn(a)‖ = ‖(ψ ⊗ id ⊗ id)((πF,n ⊗ π1 ⊗ π2) ◦ Dn(a))‖ (37)

≤ ‖(πF,n ⊗ π1 ⊗ π2) ◦ Dn(a)‖ ≤ ‖πF,n(a)‖.

If π2 is the one-dimensional representation given by π2(tk,l) = δkl, k, l = 1, . . . , n, 
then

(χϕ ⊗ π1 ⊗ π2) ◦ Dn(zkl ) =
n∑

a,b=1

χϕ(zab ) ⊗ π1(tb,l) ⊗ π2(ta,k) = eiϕkqk−nπ1(tk,l).

Hence, applying the first statement of the lemma and (37) we get

‖π(a)‖ ≤ ‖πF,n(a)‖, a ∈ Pol(Matn)q

for any ∗-representation π of Pol(Matn)q such that π(Jn) = 0.
The equality (36) holds by the fact that ‖j(k)

q ((πF,n(ai,j))i,j)‖ is the supremum over 
‖(π(ai,j)i,j‖, where π runs over all ∗-representations of Pol(Matn)q that annihilate the 
ideal Jn and such that ‖π(x)‖ ≤ ‖πF,n(x)‖, x ∈ Pol(Matn)q. �

We are now in a position to prove the main theorems.

Proof of Theorem 3. Since jq is a ∗-homomorphism between C∗-algebras, it is a complete 
contraction. To see that jq is a complete isometry when restricted to A(Dn)q it is enough 
to prove that

||(πF,n(ai,j))i,j || ≤ ||j(k)
q ((πF,n(ai,j))i,j)||

for any (ai,j)i,j ∈ Mk(A(Dn)q).
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The strategy is to find a ∗-representation Π : Pol(Matn)q → B(K), K ⊃ HF,n such 
that Π(Jn) = 0 and

πF,n(a) = PHF,n
Π(a)|HF,n

, a ∈ C[Matn]q, (38)

i.e. πF,n ≺ Π when considered as maps on C[Matn]q. As in this case

‖(πF,n(ai,j))i,j‖ ≤ ‖(Π(ai,j))i,j‖, (ai,j)i,j ∈ Mk(C[Matn]q), k ∈ N,

Lemma 12 would give immediately the statement.
We proceed by induction. If n = 1 this was proved in [24]. For the reader’s convenience 

we reproduce the arguments. We have that Pol(C)q is generated by a single element 
z subject to the relation z∗z = q2zz∗ + (1 − q2) and πF,1(z) = CqS, a contraction 
(see e.g. the proof of Lemma 6). By Sz.-Nagy’s theorem there exist a Hilbert space 
K ⊃ HF,1 and a unitary operator U ∈ B(K) such that πF,1(p(z)) = PHF,1p(U)|HF,1

for all holomorphic polynomials p. As the map z �→ U extends to a ∗-representation of 
Pol(C)q that annihilates the ideal J1 = 〈zz∗ − 1〉, we obtain a necessary dilation.

Assume (38) holds for some n ≥ 1. By Lemma 11 there exists a ∗-representation Ψ of 
Pol(Matn+1)q, which is a direct integral of coherent representations ρn+1

ϕ and such that 
πF,n+1 ≺ Ψ on C[Matn+1]q.

By the remark after Lemma 9, ρn+1
ϕ is a ∗-subrepresentation of τϕ,w,w and hence 

ρn+1
ϕ (a) = PLτϕ,w,w(a)|L, a ∈ Pol(Matn+1)q, for a subspace L.

As τϕ,w,w = ((πF,n ◦ Πϕ) ⊗ πw ⊗ πw) ◦ Dn+1 and by induction πF,n ≺ Π on C[Matn]q
with Π(Jn) = 0 we obtain

τϕ,w,w ≺ ((Π ◦ Πϕ) ⊗ πw ⊗ πw) ◦ Dn+1 on C[Matn+1]q.

Finally, by Lemma 10 ((Π ◦ Πϕ) ⊗ πw ⊗ πw) ◦ Dn+1 annihilates the ideal Jn+1 of 
Pol(Matn+1)q.

Combining all these steps and using transitivity of the relation ≺ we obtain the desired 
statement. �
Proof of Theorem 4. Assume that I is a boundary ideal for A(Dn)q with I ⊃ J̄n and 
identify Pol(Matn)q with its image under the Fock representation. Let a ∈ C[Matn]q ⊂
Pol(Matn)q be a polynomial in “holomorphic” generators zij , 1 ≤ i, j ≤ n.

By assumption,

‖a + I‖ = ‖a‖ = ‖a + J̄n‖. (39)

Let x ∈ Pol(Matn)q. As, by (8) and (9),

(zij)∗ + Jn = (−q)i+j−2n(detq z)−1 detq zij + Jn,
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detq z + Jn is a central element in Pol(Matn)q/Jn and

(detq z)∗ detq z + Jn = q−n(n−1) + Jn,

there exist k ∈ Z+ and a ∈ C[Matn]q such that x + J̄n = (detq z)−ka + J̄n. Hence, by 
(39) and the fact that I ⊃ J̄n, we obtain

‖x + J̄n‖2 = ‖(x∗ + J̄n)(x + J̄n)‖
= ‖a∗((detq z)−k)∗(detq z)−ka + J̄n‖
= ‖a∗qkn(n−1)a + J̄n‖ = ‖qkn(n−1)/2a + J̄n‖2

= ‖qkn(n−1)/2a + I‖2 = ‖a∗qkn(n−1)a + I‖
= ‖a∗((detq z)−k)∗(detq z)−ka + I‖
= ‖x + I‖2.

This implies that CF (Dn)q/J̄n = CF (Dn)q/I and hence J̄n = I. �
Let C(Un)q be the C∗-enveloping algebra of C[Un]q. As the matrix (zij)i,j formed by 

the generators of C[Un]q is unitary one has that the norm of each generator is not larger 
than 1 in each ∗-representation by bounded operators on a Hilbert space and hence the 
C∗-enveloping algebra is well-defined.

Corollary 3. The C∗-envelope C∗
e (A(Dn)q) is isomorphic to C(Un)q.

Proof. Let ψ : Pol(Matn)q → (C[GLn]q, ∗) be the surjective ∗-homomorphism from 
Theorem 1 and ι : (C[GLn]q, ∗) → C[Un]q the ∗-isomorphism given by ι(zkl ) = qk−nzkl , 
k, l = 1, . . . , n. As kerψ = Jn, any ∗-representation of Pol(Matn)q such that π(Jn) = 0
is given by π(a) = ρ(ι ◦ ψ(a)), a ∈ Pol(Matn)q, for some ∗-representation ρ of C[Un]q. 
Moreover, the correspondence π ↔ ρ is one-to-one. Consider a ∗-representation ρ of 
C[Un]q such that ρ(C[Un]q) � C(Un)q. In what follows we identify the latter two algebras. 
Let Ψ : πF,n(Pol(Matn)q) → C(Un)q, πF,n(a) �→ ρ(ι ◦ ψ(a)). By Lemma 12,

‖ρ(ι ◦ ψ(a))‖ ≤ ‖πF,n(a)‖, a ∈ Pol(Matn)q

and hence Ψ extends to a surjective ∗-homomorphism (denoted by the same letter) from 
CF (Dn)q to C(Un)q. As any representation of C(Un)q gives rise to a representation of 
CF (Dn)q that annihilates the ideal Jn, we have kerΨ = J̄n and hence

CF (Dn)q/J̄n � C(Un)q.

As J̄n is the Shilov boundary ideal of A(Dn)q, CF (Dn)q/J̄n � C∗
e (A(Dn)q) giving the 

statement. �
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