

# VARIABILITY IN LIME-MUD FEED RATE INDUCED IN THE LIME-MUD FILTER: CONSEQUENCES AND ACTIONS

Downloaded from: https://research.chalmers.se, 2025-05-17 09:33 UTC

Citation for the original published paper (version of record):

Dernegård, H., Brelid, H., Theliander, H. et al (2017). VARIABILITY IN LIME-MUD FEED RATE INDUCED IN THE LIME-MUD FILTER: CONSEQUENCES AND ACTIONS. Journal of Science and Technology for Forest Products and Processes, 6(3): 19-27

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library



# VARIABILITY IN LIME-MUD FEED RATE **INDUCED IN THE LIME-MUD FILTER:** CONSEQUENCES AND ACTIONS

HENRIC DERNEGÅRD\*, HARALD BRELID, HANS THELIANDER, ERIK BERG

This study shows that despite keeping both lime-mud slurry flow and density constant, lime-mud moisture content and feed rate from the filter to the lime kiln can vary significantly. These variations, which were previously not detected in the mill, were revealed after installation of a band scale and a moisture detector. It was found that cleaning the doctor blade caused a periodic disturbance in the lime-mud feed rate to the kiln. The variations in moisture content, however, were too minor to disrupt the stability of a kiln equipped with a flash dryer. This work resulted in a new and better way of continuously estimating available CaO and reburned lime production rate.

### INTRODUCTION

ABSTRA

The present investigation was carried out at Södra Cell Mönsterås, Sweden. The mill produces 750,000 ADt of fully bleached Kraft pulp per year. The mill produces softwood and hardwood pulp in campaigns that are around 25 and 10 days long, yielding 550,000 ADt softwood pulp and 200,000 ADt hardwood pulp.

The mill has two lime kilns equipped with lime-mud flash dryers. Both kilns are fired with approximately 70% pulverized bark and 30% tall-oil pitch. On rare occasions, the kilns are fired with 100% fuel oil. Kiln No. 1 is 113 metres long, has an inner diameter of 3.3 metres, and produces 450 tons/day of reburned lime. Kiln No. 2 is 73.5 metres long, has an inner diameter of 2.8 metres, and produces 250 tons/day. Kiln 1 is equipped with a labyrinth cooler, and kiln 2 has satellite coolers. The calculated adiabatic flame temperature is about 1800°C for dry bark fuel, and the flue-gas temperature is about 700°C at the limemud feed end.

Table 1 gives a mill balance for chemical recovery. The amount of lime needed for the desired alkali production is around 0.28 ton of reburned lime per ADt. However, the reburned lime production figure from the mill data system is 0.32 ton of

reburned lime per ADt. A dump test (all reburned lime was taken out and weighed during 30 minutes) was performed to validate the signal from the mill data system. The result was that the mill data system showed an overestimation of around 4.3% (0.306 ton/ADt instead of 0.32). Accordingly, there seems to have been an error in how the reburned lime production was calculated.

The production rate of available CaO is important for the performance of the white liquor preparation plant. An overcharge of available CaO to the slaker results in overliming, which is known to impair lime-mud filterability and cause severe white liquor production disturbances



HENRIC DERNEGÅRD Södra Cell Mönsterås, Box 501, 38325 Mönsterås, Sweden \*Contact: henric.dernegard@sodra.com



Södra Innovation, SE-43286 Väröbacka, Sweden





Chalmers University of Technology, SE-412 96 Gothenburg, Sweden



Optimation AB, Box 27 941 21 Piteå. Sweden

| TABLE 1 Mill balance giving an estimate of effective alkali and CaO demand calculated from pulp production. |        |                   |                             |  |
|-------------------------------------------------------------------------------------------------------------|--------|-------------------|-----------------------------|--|
| Object                                                                                                      | Number | Units             | Calculation                 |  |
| Pulp production                                                                                             | 2,150  | ADt/day           | Indata, weighed             |  |
| Effective alkali to digester (as NaOH)                                                                      | 20     | % on dry wood     | Indata, flow meter          |  |
| Effective alkali to white liquor oxidation                                                                  | 40     | kg/ADt            | Indata, flow meter          |  |
| Sulphidity (on active alkali)                                                                               | 38     | %                 | Indata, titration           |  |
| Available CaO                                                                                               | 87     | %                 | Indata, laboratory analysis |  |
| CaO in lime mud                                                                                             | 1.5    | %                 | Indata, laboratory analysis |  |
| Pulp yield, fully bleached                                                                                  | 45     | %                 | Indata, calculation         |  |
| Pulp production                                                                                             | 1,935  | BDt/day           | 2150 × 0.9                  |  |
| Wood demand                                                                                                 | 4,300  | tons dry wood/day | 1935/0.45                   |  |
| Effective alkali to digester (as NaOH)                                                                      | 860    | tons/day          | 4300 × 0.2                  |  |
| Total EA demand                                                                                             | 946    | tons/day          | 860 + 40 × 2150/1000        |  |
| NaOH demand                                                                                                 | 724    | tons/day          | 2 × (1-0.38) × 946/(2-0.38) |  |
| NaOH demand                                                                                                 | 18.1   | Mmol/day          | 724 / 40                    |  |
| Ca(OH), demand                                                                                              | 9.1    | Mmol/day          | 18.1 / 2                    |  |
| CaO demand                                                                                                  | 9.1    | Mmol/day          | 18.1 / 2                    |  |
| CaO production                                                                                              | 507    | tons CaO/day      | 9.1 × 56                    |  |
| Reburned lime production                                                                                    | 585    | tons lime/day     | 507/0.87                    |  |
| Reburned lime for overliming                                                                                | 15     | tons lime/day     | 585/0.57* × 0.015           |  |
| Spec. CaO demand                                                                                            | 0.24   | tons lime/ADt     | 507/2150                    |  |
| Spec. reburned lime demand                                                                                  | 0.27   | tons lime/ADt     | 585/2150                    |  |
| Spec. reburned lime demand                                                                                  | 0.28   | tons lime/ADt     | 0.27 + 15/2150              |  |
| (with 1.5% CaO in mud)                                                                                      |        |                   |                             |  |

\*0.57 is a factor for converting lime mud to reburned lime, assuming that 50% of the dead load in the lime mud remains in the reburned lime. See Table 2 for more details on this calculation.

around 1.4 MJ/kg of reburned lime product (total 7 MJ/kg reburned lime). It is of the utmost importance to keep the lime-kiln temperature profile stable over time because temperature fluctuations are known to cause recarbonation of the rings in the lime kiln [3]. Furthermore, performance variations in the lime-mud filter are known to influence reburned lime quality [4,5].

This paper proposes a new procedure for calculating reburned lime production. This calculation requires measurements of mass flow, moisture content, and carbon content of the lime mud and the reburned lime. Södra Cell in Mönsterås invested in a band scale, an NIR detector, and a carbon content analyzer to set up this new calculation procedure and to achieve better control of some of the process parameters affecting reburned lime production. After the band scale and the NIR moisture detector were installed, fluctuations in lime-mud production and moisture content were noted, and a more detailed

20

study of the reasons for and consequences of these fluctuations was performed.

## CALCULATION OF REBURNED LIME PRODUCTION

#### **Old Procedure**

The conventional way to calculate lime production uses the volumetric flow rate q and the density of the lime-mud slurry that is pumped to the lime-mud filter. The volumetric ratio, y, is calculated using the linear equation, y = kx + m, where the slope coefficient, k, is inside brackets in Eq. (1). The density of the solid material in the lime mud is denoted as  $\rho_{mud}$ , and the filtrate density is denoted as  $\rho_{filtrate}$ . The constant m is obtained by setting the slurry density  $\rho_{slurry}$  equal to  $\rho_{mud}$  with y equal to 100%:

$$\mathbf{y} = \left(\frac{1}{\rho_{mud} - \rho_{filtrate}}\right) * \rho_{slurry} + \boldsymbol{m}. \quad (1)$$

Equation (2) shows a common calculation of lime production. The ex-

pression inside brackets gives the volume fraction of lime mud in the slurry. The factors 24 and 3.6 are used to convert kg/s to tons/day:

# Reburned lime production = $q * \left(\frac{\rho_{slurry} - \rho_{filtrate}}{\rho_{mud} - \rho_{filtrate}}\right) * \rho_{mud} * Conversion$

The lime mud-to-reburned lime conversion factor is calculated by adding the parts of the reburned lime together as in Eq. (3):

## Conversion factor = Dead load prod. + CaO prod. +Residual CaCO<sub>3</sub> prod. (3)

If the conversion factor is set to 0.6 (corresponding to around 93% CaCO<sub>3</sub> in lime mud and 3% residual CaCO<sub>3</sub> in reburned lime),  $\rho_{mud}$  is set to 2 717 kg/m<sup>3</sup>, and  $\rho_{filtrate}$  is set to 1000 kg/m<sup>3</sup>, Eq. (2) can be simplified to Eq (4), which is



the calculation used in the mill data system at Södra Cell Mönsterås:

#### Simplified reburned lime production =

$$q * \left(\frac{\rho_{slurry} - 1}{0.632}\right) * 0.6 * 24 * 3.6.$$
(4)

#### New procedure

Analyses show that the conversion factor (g reburned lime/g lime mud) in Eq. (3) can vary between 0.55 and 0.59, with an average of 0.57 during normal conditions (a simple improvement would be to substitute 0.6 for 0.57). Analyses of 11 different samples of lime mud after the filter gave an average solid material density of 2600 kg/m<sup>3</sup> with a standard deviation of 18 kg/m<sup>3</sup>. This is taken into account when calculating the reburned lime production (tons/day) in Eq. (5) as the sum of the calculated CaO, the remaining dead load, and the residual CaCO<sub>3</sub> in the reburned lime:

# Reburned lime prod. = CaO prod. +Dead load prod. +Residual CaCO<sub>3</sub> prod. (5)

CaO production in Eq. (6) is calculated from the dry lime-mud feed rate, m (tons/hour), multiplied by a factor including calcination degree, *cd* (explained in Eq. (7)), and the CaCO<sub>3</sub> in the mud plus the CaO already present (from overliming) in the mud. The factor 24/1000 is used to convert kg/hour to tons/day. The CaCO<sub>3</sub> in the mud is calculated from the carbon content in the mud under the assumption that all carbon is present as calcium carbonate. The factor 56/100 is the molar weight of CaO divided by that of CaCO<sub>3</sub>. The dry lime-mud feed rate is calculated using the moist lime-mud feed rate and the moisture content:

$$CaO \ production = \dot{m} \times \left( CaCO_{3_{mud}} \\ * \ \frac{cd}{100} * \ \frac{56}{100} + CaO_{mud} \right) \frac{24}{1000} .$$
(6)

Two equations are required to derive the calcination degree. First, it is assumed that dry lime mud consists of CaCO<sub>3</sub>, CaO, and dead load (the balance). The second equation results from assuming that the residual CaCO<sub>3</sub> in the reburned lime can be calculated by subtracting the equivalent  $CaCO_3$  that was converted using the calcination degree from the original  $CaCO_3$  in the lime mud. This gives an expression for residual  $CaCO_3$  in reburned lime as a function of calcination degree,  $CaCO_3$  in lime mud (actual carbon in lime mud), and CaO in lime mud. Table 2 presents the concept of the derivation.

After some rearrangements, an expression is obtained for the calcination degree as a function of residual  $CaCO_3$  in reburned lime,  $CaCO_3$  in lime mud, and CaO in lime mud, as shown in Eq. (7). DL represents the assumed dead load in the lime mud that remains in the reburned lime.

An analysis of the relative influence of the different components presented in Fig. 1 shows that the CaO in mud has practically no influence and can be neglected. Equation (7) can then be simplified to Eq. (8).

The dead load production (tons/day) used in Eq. (5) is calculated in Eq. (9) using the dead load in the lime mud and the

| $cd = \frac{CaCO_{3_{mud}}*100*100+RCaCO_{3_{lime}}*CaCO_{3_{mud}}*DL+RCaCO_{3_{lime}}*CaO_{mud}*10*DL-RCaCO_{3_{lime}}*1000*DL-RCaCO_{3_{lime}}*CaO_{mud}*10*100-RCaCO_{3_{lime}}*CaCO_{3_{mud}}*100}{(7)}$        |             |      |                                              |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|----------------------------------------------|--|--|
| $(CaCO_{3_{mud}}*100+CaCO_{3_{mud}}*56*RCaCO_{3_{lime}}/100-CaCO_{3_{mud}}*RCaCO_{3_{lime}})$                                                                                                                       |             |      |                                              |  |  |
| Derivation of an expression for residual CaCO <sub>3</sub> depending on calcination degree. This expression <b>TABLE 2</b> can then be rearranged and used to compute the calcination degree. as shown in Eq. $(7)$ |             |      |                                              |  |  |
| can then be reall                                                                                                                                                                                                   | anged and t |      |                                              |  |  |
| Assumptions                                                                                                                                                                                                         | 00.4        | 0/   |                                              |  |  |
| Calcination degree                                                                                                                                                                                                  | 98.1        | %    | Initially assumed                            |  |  |
| NPE remaining in lime                                                                                                                                                                                               | 50          | %    | Empirically determined, explained further on |  |  |
| Residual CaCO <sub>3</sub> in lime                                                                                                                                                                                  | 3.0         | %    | Not used in starting balance                 |  |  |
| CaO in lime mud                                                                                                                                                                                                     | 1.5         | %    | Laboratory analysis                          |  |  |
| C in lime mud                                                                                                                                                                                                       | 10.8        | %    | Laboratory analysis                          |  |  |
| Lime mud balance                                                                                                                                                                                                    |             |      |                                              |  |  |
| CaCO                                                                                                                                                                                                                | 900         | g/kg | 10.8×10/12×100                               |  |  |
| CaO in lime mud                                                                                                                                                                                                     | 15          | g/kg | 1.5×10                                       |  |  |
| Dead load (balance)                                                                                                                                                                                                 | 85          | g/kg | 1000-900-15                                  |  |  |
| Total                                                                                                                                                                                                               | 1000        | g/kg |                                              |  |  |
| Reburned lime balance                                                                                                                                                                                               |             |      |                                              |  |  |
| CaO from calcination                                                                                                                                                                                                | 494.4       | g/kg | 900×56/100×98.1/100                          |  |  |
| R-CaCO <sub>3</sub>                                                                                                                                                                                                 | 17.1        | g/kg | 900-900×98.1/100                             |  |  |
| CaO from CaO in lime mud                                                                                                                                                                                            | 15.0        | g/kg | 1.5×10                                       |  |  |
| Dead load                                                                                                                                                                                                           | 42.5        | g/kg | 85×50/100                                    |  |  |
| Total                                                                                                                                                                                                               | 569.0       | g/kg | 494.4+17.1+15.0+42.5                         |  |  |
| Calculation result                                                                                                                                                                                                  |             | 0.0  |                                              |  |  |
| Calc. R-CaCO $_{3}$ in lime                                                                                                                                                                                         | 3.0         | %    | 17.1/569.0×100                               |  |  |





$$cd' = \frac{CaCO_{3_{mud}}*100*100+RC_{lime}*CaCO_{3_{mud}}*DL-RC_{lime}*1000*DL-RC_{lime}*CaCO_{3_{mud}}*100}{(CaCO_{3_{mud}}*100+CaCO_{3_{mud}}*56*RC_{lime}/100-CaCO_{3_{mud}}*RC_{lime})}.$$

fraction of this dead load remaining in the reburned lime:

$$\begin{array}{l} \textit{Dead load prod.} = \frac{\left(1000 - \textit{CaCO}_{3_{\textit{mud}}} - \textit{CaO}_{\textit{mud}}\right) \times \textit{DL}}{1000} \\ \times \textit{m} \times \frac{24}{100} \,. \end{array} \tag{9}$$

The dead load in the lime mud is calculated by subtracting the CaO and CaCO<sub>3</sub> in lime mud from the total weight of dry lime mud. The residual CaCO<sub>3</sub> in reburned lime is calculated in Eq. (10) using the calcination degree:

#### Residual CaCO<sub>3</sub> in reburned lime =

 $\frac{\operatorname{CaCO}_{\mathbf{3}_{mud}}}{\mathbf{1000}} * \left(\mathbf{1} - \frac{\operatorname{cd}}{\mathbf{100}}\right) \times \dot{\mathbf{m}} \times \mathbf{24}.$ (10)

Table 3 shows an example of the results obtained by these calculations.

# VALIDATION OF EXPERIMENTAL SET-UP AND CALCULATION

The band scale was a Kn4-200 instrument from SEG, Sweden, which was installed on the lime-mud conveyor belt after the filter. The band scale was calibrated with known weights on a moving belt with a deviation of 0.13%. An NIR detector from NDC Technologies, USA, was installed above

22

| TABLE 3           | New calculation of reburned lime production and available CaO. All carbon in lime mud is assumed to be present as CaCO <sub>3</sub> . |       |                    |                                    |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|------------------------------------|--|--|
| Notation          | Category                                                                                                                              | Value | Units              | Calculation                        |  |  |
|                   | Indata                                                                                                                                |       |                    |                                    |  |  |
| DL                | Dead load in mud remaining in lime                                                                                                    | 50*   | %                  | Assumed                            |  |  |
| q                 | Lime mud feed rate to filter                                                                                                          | 11.1  | litres/s           | Flow meter                         |  |  |
| $ ho_{_{slurry}}$ | Slurry density to filter                                                                                                              | 1.24  | kg/litre           | Density meter                      |  |  |
|                   | Moisture content                                                                                                                      | 24.0  | %                  | NIR or laboratory                  |  |  |
|                   | Wet mud feed rate to lime kiln                                                                                                        | 21.4  | tons/hour          | Band scale                         |  |  |
|                   | Carbon content in dry lime mud                                                                                                        | 10.8  | %                  | Laboratory analysis                |  |  |
|                   | Residual CaCO <sub>3</sub> in reburned lime                                                                                           | 3.0   | %                  | Laboratory analysis                |  |  |
|                   | CaO in lime mud                                                                                                                       | 1.5   | %                  | Laboratory analysis                |  |  |
|                   | Initial calculations                                                                                                                  |       |                    |                                    |  |  |
|                   | Carbonate content                                                                                                                     | 9.0   | mol/kg dry mud     | 10.8×10/12                         |  |  |
| 'n                | Lime-mud feed rate                                                                                                                    | 16.3  | t/h (dry weight)   | 21.4× (100-24.0)/100               |  |  |
|                   | Lime-mud mass balance                                                                                                                 |       |                    |                                    |  |  |
|                   | CaO in lime mud                                                                                                                       | 15    | g/kg dry mud       | 1.5/100×1000                       |  |  |
|                   | CaCO, in lime mud                                                                                                                     | 900   | g/kg dry mud       | 9.0×100 (from molar conc. of C)    |  |  |
|                   | Dead load in lime mud                                                                                                                 | 85    | g/kg dry mud       | 1000-900-15                        |  |  |
|                   | Sum                                                                                                                                   | 1000  | g/kg dry mud       |                                    |  |  |
|                   | Reburned lime calculation                                                                                                             |       |                    |                                    |  |  |
| cd                | Calcination degree                                                                                                                    | 98.1  | %                  | See Eq. (7)                        |  |  |
|                   | Reburned lime mass balance                                                                                                            |       |                    |                                    |  |  |
|                   | Dead load in reburned lime                                                                                                            | 42 5  | a/ka dry mud       | 85×50*/100                         |  |  |
|                   | CaO in reburned lime                                                                                                                  | 509.4 | a/ka dry mud       | 900×98.1/100/100×56+15             |  |  |
|                   | CaCO <sub>3</sub> in reburned lime                                                                                                    | 17.1  | g/kg dry mud       | (1-98.1/100)×900                   |  |  |
|                   | Mud-lime conversion factor                                                                                                            | 560.0 | a lime/ka dry mud  | 43+500+17                          |  |  |
|                   | Wad-lime conversion factor                                                                                                            | 505.0 | g inne/kg dry nidd | 431303117                          |  |  |
|                   | Results                                                                                                                               |       |                    |                                    |  |  |
|                   | CaO production                                                                                                                        | 198.9 | tons/d             | 16.3×509.4/1000×24**               |  |  |
|                   | Dead load prod. in reburned lime                                                                                                      | 16.6  | tons/d             | 85/1000×16.3×50*/100×24**          |  |  |
|                   | R-CaCO <sub>3</sub> prod. in reburned lime                                                                                            | 6.7   | tons/d             | 900× (1-98.1/100) ×16.3/1000 ×24** |  |  |
|                   | Reburned lime prod. (new calc.)                                                                                                       | 222.2 | tons/d             | 198.9+16.6+6.717.1/569.0x100       |  |  |
|                   | Reburned lime prod. (old calc.)                                                                                                       | 218   | tons/d             | See Eq. (4)                        |  |  |
|                   | Calc. R-CaCO <sub>3</sub> in reburned lime                                                                                            | 3.0   | %                  | 17.1/569.0x100                     |  |  |
|                   | Available CaO in reburned lime                                                                                                        | 90    | %                  | 509/569x100                        |  |  |

(8)

\*Fraction of dead load entering in the lime mud (50%) that remains in the reburned lime. See the section below for further details.

\*\*The factor of 24 converts tons/hour to tons/day.





Fig. 2 - Comparison of elemental carbon analysis and calcimeter results: (A) results from the two methods are compared in the laboratory; (B) results from the mill data system (after 2015-12-12, the carbon analyzer was used).

the lime-mud conveyor belt after the filter. The NIR measurement was validated by capturing the mud by skimming the top few centimetres of mud traversing the conveyor belt using a 2-litre wide-mouth bottle. The collected sample was assumed to have the same mud particle distribution as that detected with the NIR measurement. The results obtained showed good agreement with observations and were in accordance with previous findings from another installation [6]. An ELTRA CS-800 analyzer was used to analyze the carbon content. In this analyzer, the carbon content is determined by combustion of the solid material in an induction furnace under a pure oxygen atmosphere, oxidizing carbon to CO2, which is detected with infrared cells. Initial concerns were that the carbon analysis would measure carbon that was not present as CaCO<sub>2</sub> and therefore would give a residual carbonate content that was too high. The traditional method for determining CaCO, in reburned lime at the mill includes acidification of a sample of reburned lime and measurement of the volume of released CO<sub>2</sub> (cf. ISO 10693:2014). This is referred to as the calcimeter method. As seen in Fig. 2, the elemental analysis in fact gave a lower CaCO<sub>3</sub> content than the calcimeter, implying a low risk of measurement artefacts. This is a positive discovery because the reliability of carbon detection is excellent and the test can be done with 0.5% accuracy for carbon content.

To validate the new calculations, industrial green and white liquor samples were analyzed by ABC titration according to SCAN-N 30:85. The samples were collected and analyzed using a robot, and sampling was done approximately every 20 minutes.  $Na_2SO_4$  and  $Na_2S_2O_3$  were analyzed by an external laboratory. The liquor composition was used to calculate the ionic strength and the equilibrium constant of the causticizing reaction [7]. The equilibrium constant was used to calculate the theoretical charge of reburned lime required to reach the measured effective alkali concentration in the white liquor. The theoretical charge was compared with the results of the new production calculation in Eq. (5) and the old calculation in Eq. (4).

| C<br>tt<br><b>TABLE 4</b> m<br>w<br>v<br>p | Comparison of old and new procedures for calculating reburned lime production with a theoretical calculation of the reburned lime charge required to reach the measured effective alkali concentration in the white liquor. $Na_2CO_3$ was multiplied by 1.325 and $Na_2S$ was multiplied by 0.975 to obtain the amount as a substance. The green liquor density was measured as 1.15 kg/l at 90°C and 1.2 at 20°C. The green liquor composition was analyzed with ABC titration, and samples were collected approximately every 20 minutes. The specific periods were chosen to be stable and representative, with no purchased lime added. |          |             |             |                                              |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------------|----------------------------------------------|--|
| Start                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 2016-12-25  | 2017-01-15  |                                              |  |
| Finish<br>Crean liquer                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 2017-01-01  | 2017-01-22  | Comments                                     |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 80(62)      | 75(50)      |                                              |  |
| Na CO                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a NaOH/I | 108 (84 0)  | 105 (81 3)  | ABC titration as NaOH (Na $\Omega$ )         |  |
| Na <sub>2</sub> OO <sub>3</sub>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g NaOH/I | 36 6 (28 4) | 44 2 (34 3) | ABC titration as NaOH (Na $_2$ O)            |  |
| Na <sub>2</sub> O                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a/ka     | 8.9         | 8.9         | Only one sample                              |  |
| NaSO                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g/kg     | 5.9         | 5.9         | Only one sample                              |  |
| GL feed                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l/s      | 101         | 98          | Flow meter                                   |  |
| Ionic strength                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mol/kg   | 4.63        | 4.68        | $0.5 \times \sum m \times z^2$ of all ions   |  |
| Equilibrium con                            | stant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 29.95       | 29.43       | See [7]                                      |  |
| White liquor                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |             |             |                                              |  |
| Effective alkali                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g/l      | 116 (88)    | 116 (89.9)  | ABC titration as NaOH (Na <sub>2</sub> O)    |  |
| There of NaOH                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g/l      | 98 (76)     | 94 (72.8)   | ABC titration as NaOH (Na <sub>2</sub> O)    |  |
| Reburned lime<br>and lime mud              | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |             |                                              |  |
| CaO in lime mu                             | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %        | 0.75        | 1           | Laboratory analysis                          |  |
| Available CaO<br>Production                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %        | 87          | 87          | Laboratory analysis                          |  |
| Old calculation                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t /d     | 757         | 677         | From mill data system                        |  |
| New calculation                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t /d     | 654         | 573         | Assuming 50% of dead load remaining          |  |
| Theoretical char                           | rge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t /d     | 602         | 589         | Assuming overliming to reach CaO in lime mud |  |



Fig. 3 - Comparison between laboratory analyses and predicted available CaO concentrations calculated with different lime-mud dead load fractions remaining in reburned lime.

The results in Table 4 show that for both time periods, the old calculation procedure overestimated lime production and that the new calculation procedure gave results closer to the theoretical charge.

In the calculations in Table 3, the fraction of dead load remaining, DL, in Eqs. (7) and (9) was set to 50%. To justify the choice of 50%, calculated values of available CaO at different fractions of remaining dead load were compared with results from laboratory

analyses. Figure 3 shows that if this fraction is set to 100%, then the available CaO is underestimated, whereas a satisfactory fit is found when the fraction is set to 50%. A tentative explanation for dead load not being conserved in calcination could be that some metal hydroxides dissociate into metal oxides and water.

# INDUSTRIAL OBSERVATIONS

## Oscillations in Lime-Mud Moisture Content

When using the NIR signal to monitor the moisture content of lime mud after the lime-mud filter, variations in moisture content with a periodicity of one hour and an amplitude of 0.5-1 percentage points were found, as shown in Fig. 4. The fluctuations coincided with the movement of the water jet for precoat removal, which traversed from the right-hand side of the drum towards the left-hand side at a speed of 82 mm/min while removing old precoat with a water pressure of 6 MPa. The length of the filter was 9000 mm, and two water jets traversed on the same rack, meaning that one jet started at 0 mm and the second started at 4500 mm. When the whole length of the drum had been covered, the water jet traversed back to the right-hand side of the drum at a speed of 500 mm/min with a spraying pressure of only 0.6 MPa. The initial suspicion was that the variations were due to measurement artefacts in which the limemud surface was perhaps moister than the bulk flow. To investigate whether these observed variations were real, mud samples were taken every 10 minutes for two hours. The samples were taken by holding a 2-litre wide-mouth bottle and catching the mud that fell at various points on the drum. Care was taken to ensure that the



Fig. 4 - Validation of moisture content fluctuations. Samples were taken on 2016-03-03 (4a) from 09:40 to 11:30 and on 2016-05-03 (4b) from 11:40 to 13:30 from across the entire filter.







full length of the drum was sampled during the same length of time while filling the bottle to the same degree every time to capture a representative sample. Figure 4 shows the results, which indicate that the fluctuations in moisture content are indeed real and follow the movement of the water jet.

### Effects of small variations in moisture content

Figure 5 shows a time period during which lime production was stable and the fuel supply consisted of only fuel oil and

remained constant. Data from this period show that the feed-end temperature dropped around 5°C as lime-mud moisture content increased from around 25% to around 28% (1.7°C per percentage point).

# Larger variations in dry solids feed rate

After the band scale had been installed, it was noted that periods around four minutes long of increased lime-mud feed rate occurred every eight hours. An investigation of the control system showed that the only control function with an eighthour periodicity was a water valve that opened to wash the doctor blade (Fig. 6a). When the valve opened, the lime mud was washed away from the blade and ended up together with the wash water in the tray, thus increasing the level in the tray and the lime-mud uptake of the filter. These short periods of increased lime-mud feed were not captured using the old calculation for reburned lime production (Eq. (4)) because it used the density and volumetric flow of the slurry before the filter.

During the increase in lime-mud feed rate that started at 02:40 (Fig. 6b), an additional 118 kg of dry lime mud was introduced into the lime kiln. The consequence of this increased lime feed was a sudden temperature drop from around 700°C to 670°C in the feed end of the kiln, as shown in Fig. 6b. The reason for the temperature drop was most likely an increase in the amount of water in the lime mud. The negative spike in feed-end temperature could potentially cause problems with recarbonation due to a change in the temperature profile in the lime kiln.

# Comparison with dynamic simulations

Mill data were compared with findings from dynamic simulations (Language: Modelica, simulation tool: Dymola from Dassault systems) performed by Optimation AB, Sweden. The simulations confirmed a fluctuation in feed-end temperature



Fig. 6 - Effect of a sudden production increase on 2016-11-19 under stable production conditions and fuel supply (100% heating oil). The new calculation refers to the production rate as described in Eq. (5). FET denotes the feed-end temperature of the lime kiln. 6b is a magnification of 6a.

of around 3°C-5°C corresponding to fluctuations in moisture content, as shown in Fig. 5. Furthermore, the simulation also showed that even though the moisture content did indeed induce fluctuations in feed-end temperature, these fluctuations did not propagate and did not pose any problem for recarbonation in the lime kiln. The simulation of the sudden production increase shown in Fig. 6 indicates a decrease in feed-end temperature of around 5°C, which is a considerably lower decrease than was seen in the mill data, where the temperature dropped from 700°C to 670°C. However, the simulation assumed that all lime mud was carried with the hot flue gas to the flash dryer, but in reality part of the moist lime mud falls directly into the kiln feed end. This is in fact an interesting simulation application that could be used to estimate the amount of mud that falls through into the kiln feed. However, such an experiment is beyond the scope of this study and was not investigated further.

# RESULTS AND DISCUSSION OF MILL TRIALS

26

To investigate the actions and consequences associated with the observed fluctuations in lime-mud feed rate and moisture content induced in a lime-mud filter, two mill trials were conducted using NIR measurements and a band scale.

### Trial 1

During the first trial, the water flow to the tray, which was used to maintain a steady level, was shut off (Fig. 7). The purpose of the trial was to investigate how the water affected the lime-mud moisture content and feed rate after the filter. The level control was believed to cause a variation in slurry dilution and an uneven distribution of both lime-mud dry solids content and density in the tray.

However, the results show that the standard deviation in moisture content actually increased from 0.5 (average of 26.3) to 0.9 (average 26.2) percentage points when the level in the filter was not controlled. An interesting observation is that the moisture content was not significantly affected even though the vacuum went from -60 kPa to -54 kPa. This apparently contradictory result can be explained by the fact that two mechanisms that influence moisture content were affected at the same time. First, the drop in vacuum decreased the driving force for dewatering. Second, the residence time on the filter





cloth increased as the level in the tray decreased, which enhanced dewatering. The reason for the weaker vacuum was probably that a larger surface of the drum was exposed to air as the liquid level became lower. The greater access to air increased pressure equalization in the drum. Nevertheless, not diluting the lime-mud slurry before its uptake on the filter appears to have had a positive effect on the dry lime-mud feed rate to the kiln. This had a positive effect on feed-end temperature stability because the influx of lime mud varied less. The water flow for level control was measured as between 12.5 and 14.5 litres/s. The conclusion of the trial was that the level control does not appear to be necessary and could be shut off to stabilize the dry-mud feed rate and also make it easier to maintain high green liquor strength while also saving water.

### Trial 2

As shown in Fig. 6, the washing of the doctor blade induces instability in the dry lime-mud feed rate. Therefore, in the second trial, the washing sequence was shut off. This was achieved by covering the back side (as well as the top side) in a non-stick material. When the washing was shut off, the induced spikes disappeared.

# CONCLUSIONS

A new procedure for calculating the production of available CaO was developed. This calculation requires the mass flow, moisture content, and carbon content of the lime mud after the lime-mud filter together with the carbon content of the reburned lime. During implementation of this new calculation method, previously unnoticed process variabilities were discovered. Unexpected fluctuations in lime-mud feed rate and moisture content were observed. These fluctuations were revealed as minor feed-end temperature variations in the lime kiln. The temperature variations induced were generally too small to pose any major problems for maintaining satisfactory stability in a kiln equipped with a flash dryer. Furthermore, when using the new procedure for



calculating reburned lime production, short periods with a large production increase were noticed when the doctor blade was washed, which led to lime mud falling directly into the kiln instead of being carried to the flash dryer. This introduction of moist mud into the kiln caused a distinct pulsation in feed-end temperature. Doctor-blade washing was then shut down to promote kiln stability. This was achieved by dressing the doctor blade in a non-stick coating. The lime-mud filter level control could also be shut off. These measures were beneficial for saving water and promoting stability in green liquor TTA and dry lime-mud feed rate and subsequently in lime-kiln feed-end temperature.

The proposed calculation procedure also proved to be a practical tool for predicting available CaO, which is helpful to avoid overliming.

# ACKNOWLEDGEMENTS

Financial support received from Södra Skogsägarnas Stiftelse för Forskning, Utveckling, och Utbildning is gratefully acknowledged. Special thanks are given for the valuable work, patience, and understanding of the staff at Södra Cell Mönsterås Mill.

#### REFERENCES

- Rydin, S., Haglund, P., and Mattson, E., "Causticizing of Technical Green Liquors with Various Lime Qualities," Svensk Papperstidning, 80(2): 54-58 (1977).
- Hanson, C. and Theliander, H., "Properties and Quality of Lime, Part 1. The Influence of Conditions during Reburning", Nordic Pulp and Paper Research Journal, 9(3):161-166 (1994).
- Tran, H., Mao, X., and Barham, D., "Mechanisms of Ring Formation in Lime Kilns", Journal of Pulp and Paper Science, 19(4): [167-]174 (1993).
- Eriksson, G. and Theliander, H., "Displacement Washing of Lime Mud", Nordic Pulp and Paper Research Journal,

9(1): 60-66 (1994).

- Lindblom, J., Wildt, J., and Theliander, H., "Sintering of Calcined Lime Mud: The Influence of Sodium and Sulphate Content in the Lime", Nordic Pulp and Paper Research Journal, 19(11): 23-30 (1998).
- Wallbäcks, L., Theliander, H., Johanzon, O., Pettersson, T., and Welin, A., "Stable Lime Kiln Feed through On-Line Measurements and Feed Control", Proceedings, International Chemical Recovery Conference, Session 2B, 170-186 (2014).
- Theliander, H., "On the Equilibrium of the Causticizing Reaction", Nordic Pulp and Paper Research Journal, 7(2): 81-87 (1992).