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Abstract 

Thermal insulation of the combustion chamber in an engine has great potential to 

reduce fuel consumption and CO2 emissions. Research on thermal barrier coatings 

(TBC) has been performed since the early eighties to address this potential. However, 

reported results for engine efficiency improvements show a large spread and there is 

no consensus on the actual benefits of the application of TBCs. Recent work indicates 

that a high surface roughness, typical for many TBCs, increases fuel consumption. 

The purpose of the work described in this thesis was to make an accurate assessment 

of the indicated efficiency and to quantify the effect of surface roughness for two 

representative thermal barrier coatings applied on the piston crown in a single 

cylinder light duty diesel engine. Cylinder pressure data and measured heat losses to 

the piston cooling oil formed the basis for the evaluation. 

A robust and automated measurement method was developed and combined with 

statistical modeling of the data. This approach increased the precision of the results 

and made it possible to separate the effect of different factors like surface roughness, 

compression ratio and coating application.  

The compression ratio is an important variable in the analysis of the cylinder pressure 

data. However, it was not possible to measure the volume of the coated pistons 

accurately due to the porosity of the coatings. A method to determine the compression 

ratio from motored pressure traces was found in literature and further developed. This 

unique method does not require an estimation of the heat losses and is therefore 

especially suited for pistons with thermal insulation. 

The indicated efficiency was measured with a 95% confidence interval of ±0.1 

percentage point. Analysis of the results showed that the typically high surface 

roughness of plasma sprayed zirconia and anodized alumina increases fuel 

consumption by up to 1%. The high surface roughness enhanced heat losses and 

delayed combustion. The coatings themselves reduced heat losses to the combustion 

chamber walls and increased exhaust enthalpy, but they did not improve indicated 

efficiency. 
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1 Introduction 

1.1 Motivation 

Volvo Car Corporation has been producing its own diesel engines since 2000, starting 

with the 5-cylinder ‘new engine diesel’ (NED5). At that time, with a common rail fuel 

injection system capable of delivering 1600 bar injection pressure and a specific 

performance of 50 kW/L, it was a very modern and powerful engine. Since then, the 

performance of the company’s engines has steadily increased, and with downsizing to 

reduce fuel consumption, the specific power has increased even faster. The specific 

performance of the current 4-cylinder VED4 is 86 kW/L, an increase of over 70% in 

15 years. The power density has reached a point where the heat load from the 

combustion on the cylinder head and piston is becoming critical. It is difficult to 

increase cooling performance further, and advanced (expensive) materials are 

required. 

As awareness of global warming problems has increased, increasingly strict 

legislation has been introduced regarding both use of renewable fuels and CO2 

emission limits. The fleet average limits for CO2 emissions from passenger cars 

(produced by each manufacturer supplying the EU market) in the NEDC (New 

European Driving Cycle) are 130 g/km by the end of 2015, 95 g/km by 2021, and an 

expected target for 2025 is 75 g/km. Similar legislation has been passed in Japan, 

China, the USA, Canada, India, Mexico, Brazil and South Korea, with more countries 

to follow. 

One way to reduce (local) CO2 emissions and meet the legislation requirements is to 

introduce electrification of the powertrain, but this is still very costly. Hence, there 

will be a limited range of affordable hybrid and fully electrical vehicles in the near 

future and combustion engines will be needed for at least a few more decades. Thus, 

the car industry is still making intense efforts to reduce the fuel consumption of both 

gasoline and diesel engines in order to meet the future CO2 emission reduction targets 

at affordable costs. 

One of the energy conversion losses in the internal combustion engine is heat transfer 

from the hot cylinder charge and exhaust gas to the surrounding walls. Figure 1. 

shows the typical heat flow distribution in a combustion engine. If this heat loss to the 

coolant can be reduced, more heat can be converted to work and the heat load on the 

exposed engine components would be reduced. Both fuel economy and engine 

durability would improve and it would be possible to increase specific power. 

Moreover, the increased temperature of the exhaust gases can give more energy to the 

exhaust turbine and enable faster catalyst light of for improved emission conversion. 

Additionally, when less heat is transferred to the coolant, the cooling system 

dimensions and weight can be reduced. 
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Figure 1. Engine energy flow distribution; typical coolant losses are between 

 20 to 35% of the total fuel energy. 

 

 

1.2 Objectives 

The main objectives at the start of this PhD project were two-fold: 

1. Reduction of fuel consumption and CO2 emissions with 2% by increasing the 

indicated efficiency. 

2. Improved engine durability at high power output, with respect to components 

with high thermal loading. This might be achieved with very local measures in 

the combustion chamber. 

The means to be researched and developed were thermal barrier coatings and surface 

structures that reduce the heat flow from hot gas to the walls. 
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2 Background 

2.1 Principles of heat transfer 

There are three ways to transfer heat - thermal energy - between different objects: 

conduction, convection and radiation. Figure 2 illustrates this with an example for a 

solid wall between two fluids where the temperature in the fluid on the left is higher 

than the temperature in the fluid on the right. The incident radiation can come from 

the fluid, but more often it will come from a radiant source at high temperature, not 

shown in this picture. Each mode of heat transfer is explained in more detail in the 

following subsections. 

 

Figure 2. An example of heat transfer between two fluids separated by a solid wall 

showing A: convection, B: conduction and C: radiation. 

 

2.1.1 Conduction 

Heat conduction takes place where the transport of thermal energy is done by direct 

exchange of kinetic energy between molecules. Although this type of heat transfer 

also takes place in fluids it is most commonly used to describe heat transfer in solids, 

where it is the only way to transport heat, apart from radiation in transparent solids. In 

one-dimensional form, for a distance 𝐿23, a thermal conductivity 𝑘 and a surface area 

𝐴, the equation for the rate of heat transfer (steady state) from location 2 to 3 is: 

�̇�𝑐𝑜𝑛𝑑 =
𝑘

𝐿23
𝐴(𝑇2 − 𝑇3) (1) 

For the transient heat transfer in solids, two more properties are of significance: 

thermal diffusivity 𝑎 and thermal effusivity 𝑒. Thermal diffusivity is a measure for the 

time it takes for heat to travel through a material, or the time it takes to reach thermal 

T1

T2

T3

Incident radiation

Reflected radiation

Thermal boundary layers

Absorbed radiation

T4

A

B

C

A

L23

Transmitted radiation
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equilibrium. The expression below shows that a material with high thermal diffusivity 

has a high ratio between conductivity and volumetric heat capacity. 

𝑎 =
𝑘

𝜌 𝑐𝑝
  (2) 

The thermal effusivity 𝑒 defines the capability of a material surface to exchange heat, 

for example between to solid bodies in contact. When both thermal conductivity and 

volumetric heat capacity are high, heat can be exchanged fast, while the surface 

temperature remains relatively unchanged. A material at room temperature with high 

effusivity feels cold, like for example aluminum, as it removes heat quickly from the 

skin while maintaining a low surface temperature. Low effusivity is important for low 

dynamic heat exchange. An example is the use of wood as material for floors and 

furniture. 

𝑒 = √𝑘 𝜌 𝑐𝑝 (3) 

Table 1 gives the thermal properties related to thermal conduction for some well 

known materials. There is a big variation in conductivity, the differences in 

volumetric heat capacity for the solids are small in comparison. 

From the table it can be seen that aluminum is a very suitable material for cooling 

finns on electronic components, glass is an excellent material for hot drinks and wood 

can be used as a 'warm' material in our house interiors. And still air of course is a 

perfect insulator in for example clothing. 

 

Table 1. Thermal properties for pure aluminum, iron, glass, wood and air 

 at 1 atm. and 25 °C. Source: [1]  

 𝑘 𝜌 × 𝑐𝑝 𝑎 × 105 𝑒 

 [W/m.K] [kJ/m3.K] [m2/s] [W.s0.5/m2.K] 

Al (pure) 237 2440 9.71 24047 

Fe (pure) 80 3518 2.27 16776 

Glass 1.4 1875 0.08 1620 

Wood (average) 0.13 1125 0.01 382 

Air 0.026 1.2 2.14 5.6 
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2.1.2 Convection 

In fluids, heat is transported by conduction, diffusion and advection, grouped together 

under the term convection. Convection transfers heat from one region to another, or to 

a solid surface in Figure 2 shown in the regions labeled A. In the introduction here, 

only forced convection in turbulent flows will be discussed, as this is the case for the 

internal flows in a combustion engine. 

In most flow cases a boundary layer develops between the bulk flow and the wall. The 

fluid velocity at the wall is equal to zero and heat transport perpendicular to the 

surface will be reduced as the fluid moves more and more parallel closer to the 

surface. In case of a turbulent flow, three regions can be defined in the boundary 

layer. The near-wall viscous laminar sublayer, the transitional buffer layer and the 

turbulent layer, with increasingly larger flow structures away from the wall. 

In the boundary layer heat is transferred by advection and conduction. Heat transfer 

by diffusion can mostly be neglected. Equation (4) shows the general relation for the 

convective heat transfer. As for conduction, heat transfer increases linear with surface 

area and temperature difference. 

�̇�𝑐𝑜𝑛𝑣 = ℎ𝑐 𝐴(𝑇1 − 𝑇2) (4) 

The heat transfer coefficient ℎ𝑐 for forced, turbulent convective flow is a function of a 

number of parameters shown in Equation (5), representing bulk flow velocity 𝑈, a 

typical length scale 𝐿, thermal conductivity 𝑘, dynamic viscosity 𝜇, specific heat 

capacity 𝑐𝑝, density 𝜌 and surface roughness 𝜖.  

ℎ𝑐 = 𝑓(𝑈, 𝐿, 𝑘, 𝜇, 𝑐𝑝, 𝜌, 𝜖, … ) (5) 

The rather complex expression for the heat transfer can be simplified by using 

dimensionless numbers, a common approach in the field of fluid dynamics. The 

Nusselt number is defined in Equation (6), and can be expressed in the Reynolds 

number and Prandtl number, Equations (7) to (9). 

𝑁𝑢 =  
total convective heat transfer

conductive heat transfer
=

ℎ𝑐𝐿

𝜇
 (6) 

𝑁𝑢 = 𝑓(𝑅𝑒, 𝑃𝑟, … ) (7) 

𝑅𝑒 =  
inertial forces

viscous forces
=

𝜌 𝑈 𝐿

𝜇
 (8) 

𝑃𝑟 =  
momentum diffusion rate

heat diffusion rate
=

𝑐𝑝 𝜇

𝑘
 (9) 

In combustion engines, the in cylinder charge flow is highly turbulent. Often a 

comparison is made with turbulent pipe flow where correlations have been derived to 

calculate the convective heat transfer coefficient. 

𝑁𝑢 = 0.023 𝑅𝑒0.8𝑃𝑟0.33 (10) 
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The Reynolds number is a measure of turbulence level of the flow and depends on 

bulk flow velocity, a characteristic length and kinematic viscosity 𝜇 𝜌⁄ . The Prandtl 

number is defined by fluid properties only. For most gases, 𝑃𝑟 is fairly constant for a 

large range of pressures and temperatures. Equation (10) is often used as the basis for 

engine heat transfer correlations. 

Surface roughness plays an important role in convective heat transfer. It can increase 

heat transfer significantly by increasing the effective contact surface area between 

fluid and solid and by increasing turbulence in the boundary layer. To have an effect 

on the turbulence, the surface roughness should protrude through the laminar, viscous 

sublayer into the transitional buffer region where the turbulence starts to increase. If 

the aim is to increase heat transfer, the typical surface roughness height should be at 

least 2-3 times the thickness of the laminar sublayer [1]. 

The aim with this research however, is the opposite: the target is to minimize heat 

transfer. For a wall to be considered smooth, the surface roughness profile should be 

contained within the viscous laminar sublayer. The laminar sublayer thickness itself 

depends on flow conditions and fluid properties. The main factor is the turbulence 

level; reduction of the Reynolds number will increase laminar boundary layer 

thickness. As a consequence, low surface roughness is important in flow cases with 

high Reynolds numbers if low heat transfer is desired. 

Often the roughness height is divided by the typical length scale of the flow to get the 

dimensionless roughness parameter: 𝜖 𝐿⁄ . 

 

2.1.3 Radiation 

Heat transfer by radiation does not require direct contact between the objects and 

occurs instantly. Every object with a temperature higher then 0 Kelvin emits radiation, 

the quantity increasing exponentially with temperature. Equation (11) shows the 

Boltzman relation for the net heat transport between two infinite parallel plates with 

temperature 𝑇1 and 𝑇2. The variable 𝜎 is the Boltzman constant. In this simple form 

the plates are assumed to behave as black bodies. The expression shows that radiation 

becomes exponentially more significant at high temperatures. 

�̇�𝑟𝑎𝑑 = 𝜎 𝐴(𝑇1
4 − 𝑇2

4) (11) 

Real objects do not emit as much radiation as a black body and do reflect and transmit 

radiation as well. To account for real world properties there are a number of 

efficiency factors related to radiation namely: emissivity 휀, absorbtivity 𝛼, reflectivity 

𝜌 and transmissivity 𝑡. The effect of finite surfaces exchanging radiation energy is 

described by a form factor 𝜉. 

The calculation of heat transfer by radiation is rather complex and often neglected in 

engine modeling, although it can be of importance for engine operating conditions 

with high load and high soot levels in the cylinder. 
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2.2 Heat transfer in combustion engines 

2.2.1 Heat transfer correlation models 

Based on the correlation for turbulent pipe flow (10), Hohenberg and Woschni among 

others have developed empirical correlations for engine heat transfer. These models 

were tuned with a large range of engines and have proven very useful for engine 

design.  The correlation for the heat transfer coefficient in equation (12) by Woschni 

[2] shows the dependency on the cylinder bore 𝐵, charge pressure 𝑝 and charge 

temperature 𝑇. The variable 𝑤 represents the turbulence level and is a function of 

mean piston speed and accounts for combustion generated turbulence. 

ℎ𝑐 = 3.26  
𝑝0.8  𝑤0.8

𝐵0.2  𝑇0.55 
    (12) 

From the general heat transfer theory and with this validated experimental correlation 

for the heat transfer coefficient, the general measures for heat transfer reduction can 

be listed: 

 reduction of wall surface area 

 decrease of charge temperature 

 increase of wall temperature 

 reduction of charge turbulence 

 low surface roughness 

 high reflectivity of the wall surface 

In relation to insulation with thermal barrier coatings, the wall surface temperature 

will increase with low thermal conductivity and low volumetric heat capacity. 

2.2.2 Impinging jet 

Heat transfer in direct injected diesel engines is highly inhomogeneous. This aspect is 

not captured by the zero-dimensional correlations like the expression from Woschni. 

Heat transfer is particularly high in the region of spray impingement on the 

combustion chamber wall. Spray velocity and temperature are very high and the 

boundary layer at this location is typically very thin. This aspect is important when 

considering where to apply thermal insulation. 

2.2.3 Adiabatic engines 

The pioneering work within the field of combustion chamber insulation was 

performed in the early 80's by Kamo and Bryzik [3–6]. The subject of their work was 

actually not to increase indicated efficiency. Their goal was to create an adiabatic 

engine that would not include a cooling system and that had a turbocompound system 

to make use of the redirected exhaust heat. Insulation was achieved by the use of 

ceramic monoliths or steel with low thermal conductivity like Inconel, in combination 

with air gap insulation.  

There were similar research projects with adiabatic engines at that time having focus 

on increasing indicated efficiency. Both big improvements and deteriorations of 

indicated efficiency were reported. In general there was a large spread in published 

research results [ref]. 
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One of the major issues with this concept was the permanently elevated temperature 

of the combustion chamber walls. This resulted in poor volumetric efficiency, 

deteriorated combustion and increased NOx emissions. Other problems were 

durability of the ceramic engine parts and lubrication of the piston-liner contact [ref]. 

2.2.4 Thermal barrier coatings 

The alternative to the adiabatic engine was to develop relatively thin thermal barrier 

coatings. Morel et al. [7] studied the cyclic wall temperature behavior and formulated 

expressions for the penetration depth of the temperature variations and the so called 

temperature swing of the surface, shown in Equations (13) and (14). A thermal barrier 

coating that is capable of following the charge temperature does not have to be thicker 

than the penetration depth. A TBC thickness higher than the penetration depth would 

only increase the average surface temperature. As a reference: a typical penetration 

depth for aluminum is in the range of 1 mm. 

penetration depth:      𝛿𝑝 ∝ √𝑎 𝑡          𝑜𝑟       𝛿𝑝 ∝ √
𝑘

𝜌 𝑐𝑝
 𝑡 (13) 

temperature swing:    ∆𝑇 ∝
1

√𝜌 𝑐𝑝 𝑘
   (14) 

This temperature concept required materials with low thermal conductivity and low 

heat capacity. Most of the materials were ceramics, metal oxides, applied by plasma 

spraying, thermosetting slurry coatings or hard anodizing of aluminum. Many engine 

experiments have been performed with different types of coatings with varying 

success. 

Thermal insulation of the combustion chamber with TBCs has been investigated by 

many researchers, with experiments as well as thermodynamic process simulations. 

Most of the experiments show an increase in exhaust temperature and a reduction in 

heat losses to the coolant, as expected and predicted by simulations. However, the 

experimental results for the engine efficiency show a large variation and there is no 

general agreement on the benefit of TBCs for indicated efficiency [8–10]. Moreover, 

it seems that, on average, the effect of insulation with TBCs on indicated efficiency is 

limited. 

The variation in the reported benefits from TBCs is partly related to the large range of 

tested engine hardware, the variation in engine operating conditions and the engine 

technology level used in the experiments. Another cause for the varying results from 

experiments is the increased wall temperature that follows with insulation. This 

temperature increase results in a higher charge temperature and lower charge density. 

For compression ignition (CI) engines this can lead to a lower air-fuel ratio and 

differences in ignition delay, fuel-air mixing, emission formation and oxidation. 

Especially combustion phasing and the rate of heat release have a significant effect on 

the indicated efficiency. How these secondary effects change the efficiency is engine 

specific and depending on engine load. Kobori [11] published a detailed overview of 

these secondary effects for an insulated CI engine.  
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A number of theories have been proposed to explain the limited benefits from TBCs 

on indicated efficiency: (i) The increased wall temperature caused by TBCs would 

increase the heat transfer coefficient [8], especially in the presence of near wall 

combustion, so called convection vive [12]. (ii) Most TBCs would absorb more 

radiation than an uncoated metal surface does  [13]. (iii) A TBC could reduce soot 

deposits which are a 'natural' thermal insulator, due to the higher surface temperature  

[14,15]. (iv) A high surface roughness and open porosity, typical for plasma sprayed 

coatings, can increase heat transfer [16] and slow down combustion in CI engines 

[17]. Finally, (v) the thermal conductivity and heat capacity of the investigated 

coatings might not meet the requirements for an effective insulation [18,19]. (vi) A 

higher charge temperature can slow down combustion due the increase in charge 

viscosity. Surface roughness can slow down combustion in a number of ways: 

reduction of large scale charge motion and turbulence from swirl and tumble [17], 

increased friction between spray and wall might slow down the penetration and 

mixing rate.  

Negative effects from high surface roughness have been reported in several 

publications on spark ignition [20,21] as well as compression ignition engines [22,23]. 

To mitigate the negative impact of surface roughness in a CI engine, Kawaguchi et al. 

[19] limited the application of their new TBC to the piston top surface, excluding the 

bowl as shown in Figure 3. However, the reported efficiency improvement of this 

coating was for a low engine load, while the authors used high load conditions to 

prove the negative effect of surface roughness in the bowl. The typical reported 

difference in engine efficiency is about 1-3% between a smooth and rough surface 

finish. However, in some cases no effect was shown, or efficiency deteriorated as 

much as 6%. Also for experiments with surface roughness the results varied, for 

similar reasons as described in the previous paragraph.  

 

 

Figure 3. Piston from Toyota  with a TBC of anodized aluminum [19]. 

 

The published experimental results, particularly for CI engines, do not show a clear 

consensus with respect to the effectiveness of thermal barrier coatings and the 

negative impact of surface roughness on indicated efficiency. 
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2.3 Research questions 

Reduction of heat losses in internal combustion engines, especially diesel engines has 

been subject of investigation for a long time. In the early days, the target was to create 

an adiabatic engine with high efficiency and no need for cooling. Stainless steel and 

air gap insulated pistons and cylinderheads were tested, as well as ceramic thermal 

barrier coatings. The results from these investigations were not as positive as 

expected; the thermal efficiency was even reduced in some cases. Since then 

numerous configurations have been tested and simulated with a large range of varying 

outcome. No means for reduction of heat transfer with insulation has made its way to 

the market today, apart from one engine from Toyota on a limited market. 

Research questions: 

1) Why do today's thermal barrier coatings not improve indicated efficiency? 

(confirm the status of state of the art TBC in engine experiments) 

2) What are the requirements for a thermal barrier coating to increase indicated 

efficiency by 2%? 

3) How can recent developments in plasma sprayed coatings for aerospace be 

used in internal combustion engines? 

 

2.3.1 Combustion chamber deposits 

This section about combustion chamber deposits originates from a separate literature 

study and is not published. However, it is highly relevant in the context of thermal 

insulation because 1) soot deposits effectively insulate the combustion chamber and 

improve indicated efficiency and 2) soot deposit formation depends on the surface 

temperature and interacts  with the presence of thermal barrier coatings and 3) soot 

deposits might show a way forward to create more effective TBCs. 

Combustion chamber deposits (CCD) are a normal occurrence in internal combustion 

engines. These deposits originate from incomplete combustion products like soot and 

hydrocarbons. In compression ignition engines, the main source for deposits is soot 

from fuel burned under local rich conditions. In spark ignition engines, where the fuel 

burns stoichiometric, lubrication oil and fuel wall condensates are the main sources of 

deposits. The importance of deposits for heat transfer is that they can possess a low 

thermal conductivity. Already in early experiments by Hohenberg [24] and Woschni 

[14], measuring and quantifying heat losses from the combustion chamber, the 

insulating properties of soot deposits were recognized. 

Soot deposits might cover surface roughness, or they might follow or even enhance 

the underlying roughness (indication from my own pictures, where the burning jet hits 

the wall). The process that enhances the surface roughness could be similar to the 

process for suspension plasma spraying, building feather like structures, depositing 

particles on the sides of the 'bumps'. 

The smallest elements in soot are spherules with an internal structure of carbon 

platelets, similar to graphite. The typical size of these spherules is 10-50 nm. Soot 

particles consist of agglomerated spherules and have a typical size range of 10-200 

nm. Unburned hydrocarbons condensate on the particulates, resulting in a range of dry 

to sticky/wet soot particles, depending on the amount and kind of hydrocarbons 
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absorbed. The final soot particles themselves have low porosity and the density is 

close to that of graphite. However, when the soot is deposited on the combustion 

chamber surface, the porosity of the deposit can adopt quite high values [25]. 

In Table 2, typical physical properties of soot are listed, as well as the properties of 

carbon, graphite and diamond. The heat capacity is very similar for the different 

forms of carbon, increasing somewhat for the more complex molecules as expected. 

But the conductivity of carbon and soot is much lower then that of graphite and 

diamond, which are actually very good heat conductors. As soot is formed into a 

deposit, the heat conductivity can become even lower, which is related to the level of 

porosity. As a result, the range of thermal conductivity of soot varies from modern 

thermal barrier coatings, around 1.5 W/m.K, down to very low values of 0.07 W/m.K. 

Although soot is a thermal insulator, it absorbs radiation very well. It is not known 

how this affects total heat transfer. The soot layer might get very hot from the 

radiation, but not effectively transmit the heat to the metal surface below due to the 

low thermal conductivity.  

 

Table 2. Physical properties for soot deposits, in comparison with carbon,  

graphite and diamond. Sources: [26–29]. 

 𝑐𝑝 [J kg.K⁄ ] 𝑘 [W m.K⁄ ] Porosity [%] 𝜌 [Jkg 𝑚3⁄ ] 

Soot deposits 840-1260 0.07-1.6 5-95 170-2180 

Carbon 600-1000 1.7 - 1800-2100 

Graphite 708-717 119-168 - 1900-2300 

Diamond 427-516 900-3320 - 3500 

 

The mechanisms for deposition have been studied by a number of researchers in 

experiments and simulations [27,29,30]  The main process for deposition is found to 

be thermophoresis. The relatively large soot particles experience a force from the 

surrounding gas molecules due to the temperature gradient in the near-wall charge. 

The hotter and faster moving gas molecules further away from the wall transfer a 

higher impulse to the particles compared to the colder and slower gas molecules near 

the wall. The net force pushes the soot particles towards the wall surface. The other 

important process involved in deposit formation is oxidation. Combustion chamber 

deposits are oxidized when high temperature and excess oxygen are available. The 

resulting deposit layer growth is thus a balance between the deposition by 

thermophoresis and deposit removal by oxidation. A cold wall will give a thicker 

deposit layer compared to a hot wall: the soot deposition rate from thermophoresis is 

high, the oxidation rate is low. Experimental results with thermal barriers confirm this 

effect: a hot TBC wall showed less soot deposits [14]. The deposit layer thickness is 

also changing with engine operating conditions. For example, high sooting conditions 

will create more deposits, high engine loads and combustion temperature will enhance 

soot oxidation. 

As deposit formation is governed by local near wall conditions, the deposit thickness 

and properties will differ depending on the location in the combustion chamber. 
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Typically, most deposits are formed in the piston top land and on the surfaces that 

come in contact with burning sprays. Outside of these regions, the deposits are 

relatively thin. The typical deposit layer thickness is between 30 and 150 µm 

[28,29,31,32], where a thinner layer in general has higher porosity and the thicker 

layer is more solid. Deposit formation times also greatly vary. It appears that the 

thicker, more solid deposits can take many hours to stabilize, while the thin porous 

soot layers can be stable in a timescale of minutes [24,27,28]. 

Pure soot is likely to give a deposit with a loose, porous structure, while soot with a 

high amount of unburned hydrocarbons is likely to stick together, for example where 

the fuel spray interacts with the piston bowl as shown in Figure 4. Even chemical 

reactions can occur between hydrocarbons and especially oil additives that bind the 

unburned products to a solid layer. The latter is typically seen in the piston top land 

area were lubrication oil is present. 

 

  

Figure 4. Soot deposits in the piston bowl. The left piston has been run at 5 bar IMEP, 

1500 rpm with high EGR, the right piston at 20 bar IMEP, 3000 rpm without EGR. 

 

When doing engine experiments involving heat transfer, the effect of deposits cannot 

be ignored. If possible, the amount of deposits should be controlled when comparing 

different engine hardware. This can be done by setting fixed initial conditions (ex. 

cleaned surfaces) and applying well controlled engine operating conditions with a 

well defined running duration in each operating point. However, different hardware 

might affect the composition and layer thickness of the deposits. Being aware of and 

accounting for deposit effects is a necessary part of the experimental work on heat 

transfer in combustion engines.  
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3 Method 

The purpose of the experimental method was to assess, with high accuracy, the effect 

of thermal barrier coatings on fuel consumption and heat losses. The experiments 

should confirm the effectiveness of state of the art TBCs, applied in a modern light 

duty diesel engine.  

The chosen method was to test the thermal barrier coatings in a single cylinder 

engine. The analysis was mainly based on cylinder pressure measurements. From 

these measurements the indicated work and apparent rate of heat release were 

calculated. With the measurement of the fuel consumption and exhaust emissions an 

energy balance for the high pressure cycle could be made. This energy balance shows 

the indicated efficiency, wall heat losses, exhaust enthalpy losses and emission losses. 

As a complement to the calculated heat losses, the heat losses to the piston cooling oil 

were measured as well.  

The compression ratio is an important parameter for the cylinder pressure analysis. To 

calculate the compression ratio the clearance volume must be known. Normally this 

volume is determined by measurement of the the piston and cylinderhead volumes. In 

case of the coated pistons, this method did not give accurate results due to the porosity 

of the thermal barrier coatings. Therefore an alternative method to determine the 

compression ratio was developed. 

The measured data was modeled using multiple linear regression to increase the 

precision of the indicated efficiency estimation. The model could also be used to 

isolate different factors that influence the efficiency, heat losses and emissions. 

In the method section a short summary is presented for each topic. The two papers 

attached to this thesis contain the details. 

 

3.1 Cylinder pressure analysis 

The basis for calculation of the indicated efficiency, heat losses and exhaust enthalpy 

is the measured cylinder pressure. From the cylinder pressure the apparent rate of heat 

release (aRoHR) or 𝑄𝑛 can be calculated according to equation (15). The derivation of 

this equation can be found in Heywood [25], page 510. The ratio of specific heats 𝜅 is 

a function of gas composition and temperature according to the publiction by 

Hohenberg and Killman [33]. 

𝑑𝑄𝑛

𝑑𝜃
=

𝜅

𝜅 − 1
 𝑝 

𝑑𝑉

𝑑𝜃
 +

1

𝜅 − 1
 𝑉 

𝑑𝑝

𝑑𝜃
 (15) 

The law for the conservation of energy gives equation (16), the energy input from the 

fuel is equal to the the indicated work, the wall heat losses and the exhaust enthalpy. 

𝑄𝑓 = 𝑊𝑖,𝑔 + 𝑄𝑤 + 𝐻𝑒𝑥ℎ (16) 

The energy in the fuel in not completely converted to heat, some energy is lost in 

incompletely burned emissions in the exhaust (Equation (17)). 
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𝑄𝑓 = 𝑚𝑓 𝑄𝐿𝐻𝑉 −  𝑚𝐶𝑂 𝑄𝐿𝐻𝑉𝐶𝑂
− 𝑚𝑇𝐻𝐶  𝑄𝐿𝐻𝑉𝑇𝐻𝐶

 (17) 

The indicated work, wall heat loss and exhaust enthalpy can now be calculated with 

equations (18), (19) and (20). 

𝑊𝑖,𝑔 = ∫ 𝑝

180

−180

𝑑𝑉

𝑑𝜃
𝑑𝜃 (18) 

𝑄𝑤 = 𝑄𝑓 − 𝑄𝑛 (19) 

𝐻𝑒𝑥ℎ = 𝑄𝑛 − 𝑊𝑖,𝑔 (20) 

The cumulative net apparent heat release 𝑄𝑛 is calculated for the part of the cycle 

where the intake and exhaust valves are closed. It is assumed that heat losses before 

intake valve closing and after exhaust valve opening are very small compared to the 

rest of the high pressure cycle. 

𝑄𝑛 = ∫
𝑑𝑄𝑛

𝑑𝜃

145

−145

𝑑𝜃  (21) 

3.2 Single cylinder research engine 

The single cylinder research engine is based on a medium duty base engine from AVL 

and combined with the combustion system of a Volvo light duty diesel engine, with 

specifications according to Table 3. Details of the measurement system are listed in 

Table 4, and a picture of the engine is shown in Figure 5.  

 

Table 3. Single cylinder engine specifications. 

Test engine type AVL 5812 

Displaced volume 492 cc 

Stroke 93.2 mm  

Bore 82.0 mm  

Compression ratio (nominal) 15.5 

Bowl type re-entrant 

Number of Valves 4 

Swirl Number (Honeycomb) 2.0 to 3.2 

Nozzle hole number x diameter 8 x 0.125 mm 

Included spray angle 155 degrees 

Fuel injection system Common Rail, 2500 bar 

Injector actuator type Solenoid 
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Figure 5. Single cylinder diesel research engine at Volvo Cars. 

 

 

 

Table 4. Specification of the measurement system. 

Variable Sensor / instrument 

Cylinder pressure AVL GH14P 

Crank angle position AVL 365C 

Intake temperature Pentronic PT100 

Intake pressure GEMS 4000 0-6 bar abs 

Exhaust pressure 

 

GEMS 4000 0-10 bar abs 

Fuel mass flow AVL 733 fuel balance 

Emissions, EGR Horiba MEXA-7100DEGR 

Intake air flow Aerzen Zf 038.06 
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3.3 Compression ratio determination 

An alternative method to determine the compression ratio was needed because the 

volume of the coated pistons could not be measured correctly with the standard 

measurement using a liquid. This was due to the porosity of the thermal barrier 

coatings which was not or only partly filled by the liquid. The compression ratio 

estimation uses cylinder pressure traces from a motored engine and is based on a 

masters thesis by Krieg [34]. The method was is described in detail in Paper I.  

Figure 6 illustrates the effect of porosity of a thermal barrier coating on the 

compression ratio, provided that the coated piston has the same surface contour as an 

uncoated piston. The volume in the pores adds extra volume to the clearance volume 

which reduces the compression ratio.  

 

 

Figure 6. Compression ratio reduction as a function of TBC thickness and porosity. 

The green triangle indicates typical values for a plasma sprayed zirconia TBC. 

 

 

Calculation of the apparent rate of heat release is sensitive for the value of the 

compression ratio. In Figure 7 the aRoHR is plotted for the reference piston and a 

coated piston. The yellow curve for the coated piston with the measured compression 

ratio shows an unfeasable heat loss before start of combustion. It can also be seen that 

the error in the compression ratio gives similar effects as the thermal barrier coating 

on the apparent rate of heat release. 
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Figure 7. Apparent rate of heat release for the reference piston (Ref) and a piston 

coated with alumina (TBC1), calculated with measured and estimated values for the 

compression ratio. 

 

3.4 Piston oil cooling heat flux measurement 

To complement the calculated heat loss from the thermodynamical assessment, the 

heat flow to the piston cooling oil was calculated from the temperature increase of the 

oil in the cooling gallery and the piston cooling oil flow, according to Equation (22). 

The typical heat flux to the piston cooling oil is 60 to 70% of the total heat flux to the 

piston for a piston with a cooled ring carrier [35]. 

�̇�𝑜𝑖𝑙 = 𝜌𝑜𝑖𝑙  𝑐𝑝,𝑜𝑖𝑙 �̇�𝑜𝑖𝑙𝑗𝑒𝑡 (𝑇𝑜𝑖𝑙𝑒𝑥𝑖𝑡 − 𝑇𝑜𝑖𝑙𝑗𝑒𝑡) (22) 

The amount of heat transferred to the piston cooling oil is a measure of the thermal 

resistance between the piston surface and the cooling oil in the gallery. Adding a TBC 

or modification of the piston surface roughness for example, will change the thermal 

resistance, which can be measured by a change of the heat loss to the piston cooling 

oil. There will be differences in the thermal resistance between uncoated pistons as 

well, due to tolerances in geometry and contact resistance between the stainless steel 

cooling gallery and the aluminum of the piston. However, these differences are 

expected to be small in comparison to the effect of the TBCs. If there is a significant 

influence, this will be seen in the accuracy of the modeled data. 

The oil jet in this setup is likely to be laminar (Re = 2900) with very little dispersion 

within the short distance to the inlet of the cooling gallery. Most of the oil from the 

nozzle is expected to enter the cooling oil gallery. The main influence on the 

capturing efficiency would be increased backflow with higher engine speed [36].  

To improve the accuracy of the exit oil temperature measurement, a short pipe was 

added to the cooling oil gallery exit, directing the oil flow to the temperature sensor, 
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shown in Figure 8. The sensor itself was mounted in a funnel that collected the oil, 

thereby minimizing the cooling effect from the surrounding crankcase gas. The 

principle for the measurement was adopted from Dahlström et al. [37].  

 

 

Figure 8. Bottom view of piston and cylinder with the oil cooling jet pipe 

 on the top right and the temperature sensor mount on the left bottom [37]. 

 

3.5 Engine operating points and test sequence 

Three engine operation points (EOP) were chosen to represent low, medium and high 

load conditions. Table 5 lists the engine speed, fuel mass, fuel pressure and injection 

pressure as well as intake and exhaust pressure. All load points were run with one 

pilot fuel injection of 2 mg. 

 

Table 5. Engine operating points for the experiments. 

Operating 

point 

Speed 

[rpm] 

Fuel 

[mg/str] 

Pintake 

[bar] 

Pexhaust 

[bar] 

Pfuel 

[bar] 

CO2_in 

[%] 

IMEP 

[bar] 

C 3000 2 + 58 2.6 2.8 1500, 

2000 

0 20 

B 1500 2 + 28 1.7 1.9 1000 0, 1.5, 3 10 

A 1500 2 + 13 1.3 1.5 500 0, 1.5, 3, 4 5 

 

In each of the three engine load points a few parameter variations were included. The 

parameters were swirl level, fuel injection pressure and EGR level because these 

parameters have an effect on heat losses. A second purpose of using EGR was to 

create an increasing amount of soot deposits on the combustion chamber walls during 
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a test run. These soot deposits have an insulating effect and this will be compared 

with the insulating effect of the thermal barrier coatings. 

Each hardware setup was measured in 26 consecutive engine operation points. The 

test run started with motoring conditions for EOP A, B and C. Thereafter the high 

load point C was run with a variation of fuel pressure, followed by motoring. The 

medium load point B was run with a variation of EGR and swirl, again followed by 

motoring. Finally the low load point was run, also with a variation of EGR and swirl. 

The test sequence concluded with motoring. The purpose of the motored operating 

points was to calculate the compression ratio and to evaluate the motored heat losses 

with TBCs and different soot deposit levels. The test run was automated with fixed 

times for the stabilizing of boundary conditions and the recording of measurements. A 

detailed description of the complete test run setup can be found in both papers I and 

II. 

 

3.6 Statistical data modeling with MLR 

Multiple linear regression (MLR) is a statistical method that fits a linear equation to a 

result (response) from multiple inputs (factors). The input factors can be continuous 

or categorical with multiple levels. The factors are scaled by their range and centered 

by their median, to be able to compare the relative contribution of each factor. It is 

possible to combine factors to capture interactions, but this was not needed in this 

investigation. 

A number of benefits come from modeling of the measured data: 

 Combining data from multiple measurements in each engine operating point 

makes the estimation of the results more precise. 

 Fitting the a model to the data creates correlation coefficients for the different 

input factors. With these coefficients, the contribution of each input factor can 

be studied separately. 

 With the model it is possible to make predictions and study new combinations 

of the input factors. 

 The model provides 95% confidence intervals for the calculated results and for 

the model coefficients. 

In study described in Paper II, MLR models were created for the measurement results 

from the fired and motored energy balance, the combustion delay and the exhaust 

emissions. The input factors for the models were piston surface coating, surface 

roughness, compression ratio and factors that represent the experimental conditions. 

The software used for the statistical analysis was MODDE 11 from Umetrics. 
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4 Tested thermal barrier coatings 

The choice of the investigated thermal barrier coatings was based on a short literature 

study and an investigation of possible suppliers. The purpose was to find state of the 

art coatings that represent typical thermal barrier coatings for automotive application. 

The selected TBCs were plasma sprayed zirconia, anodized alumina and two types of 

coatings from an aftermarket coating company with the name Swaintech. 

 

4.1 Zirconia and alumina 

Plasma sprayed zirconia is by far the most researched thermal barrier coating. It 

originates from the gas turbine industry and has very good mechanical properties and 

also quite good thermal properties. Anodized aluminum has gained renewed interest 

as a thermal barrier coating due to the work presented by Kawaguchi et al. [19], from 

Toyota.  

Supplier for the zirconia coating was University West in Trollhättan. This University 

has a tight cooperation with the gas turbine industry and is specialized in plasma 

spraying processes. The alumina coating was supplied by Mahle, who was the piston 

supplier for the Volvo diesel engine. These two coatings and their application on the 

pistons are described in detail in Paper II.  

 

 

 

Figure 9. Pistons with Thermal Barrier Coatings. 

Left: hard anodized aluminium oxide. Right: plasma sprayed zirconium oxide. 

 

The structure of the two thermal barrier coatings is very different as can be seen in 

pictures of the cross section made with an electron microscope, in Figure 10 and 

Figure 11.  

  



 

 

22 

 

The plasma sprayed zirconia is applied on a bond coating to ensure adhesion and 

compatibility with respect to thermal expansion. The zirconia is stacked in the form of 

pancakes or 'splats'. Cracks or spaces parallel to the aluminum surface reduce thermal 

conduction, but can also initiate mechanical failure of the coating. The target 

thickness of the zirconia layer was 200 µm. The picture also shows the relatively 

rough surface structure. 

  

 

Figure 10. Electron microscope image of cross section of plasma sprayed zirconia. 

 

The alumina layer in Figure 11 is grown from the aluminum substrate with an 

electrochemical process. The volume of the aluminum oxide is twice that of the 

aluminum after reacting with oxygen. To reach the target thickness of 200 µm, 0.1 

mm of the substrate was consumed. The coating had low mechanical strength, 

especially at the surface. The structure of the layer depends to a high degree on the 

settings and chemicals used in the anodizing process. Surface roughness 

measurements showed a similar (high) surface roughness for both the zirconia and 

alumina coatings. 

 

 

Figure 11. Electron microscope image of a cross section of anodized alumi  

Aluminum 

Bond Coating 

Top Coating 

Aluminum 

Coating 
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4.2 Aftermarket thermal barrier coatings 

Two types of coating were ordered from a company with the name Swaintech based 

in the US. The names of the coatings were 'Gold' and 'TBC', see Figure 12. 

Application of these coatings is by spraying a solution on the substrate which is dried 

and hardened in an oven at moderate temperature. The typical thickness of these 

coatings was 30 to 60 µm. 

On the website of Swaintech improved durability and power is claimed for SI racing 

engines and increased power and fuel economy is promised for truck engines. These 

coatings were also tested in the single cylinder engine. The experimental data did not 

show any significant effect on the engine efficiency, heat losses and emissions. The 

results of this investigation were interesting, but not published. 

 

 

 

Figure 12. Thermal barrier coated cylinderhead, valves and pistons by Swaintech. 

The piston on the left is an original uncoated piston. 
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5 Contributions to the field 

5.1 Paper I 

"A Method to Evaluate the Compression Ratio in IC Engines with Porous Thermal 

Barrier Coatings" 

The compression ratio is an important engine design parameter. It determines to a 

large extend engine properties like the achievable efficiency, the heat losses from the 

combustion chamber and the exhaust losses. The same properties are affected by 

insulation of the combustion chamber. It is therefore especially important to know the 

compression ratio when doing experiments with thermal barrier coatings (TBC). 

Another important reason to know the correct compression ratio is its use in the 

calculation of the apparent rate of heat release. An error in the value for the 

compression ratio results in deviations of the calculated heat release that are similar to 

the effects of TBCs. 

In case of porous TBCs, the standard methods to measure the compression ratio can 

give wrong results. When measuring the compression ratio by volume, using a liquid, 

it is uncertain if the liquid fills the total porous volume of the coating. And for a 

thermodynamic compression ratio estimation, a model for the heat losses is needed, 

which is not available when doing experiments with insulation. 

The subject of this paper is the evaluation and further development of an alternative 

method to assess the compression ratio. This method was described in a thesis work 

by Tomas Krieg in 1990 [34]. It is based on motored cylinder pressure data like other 

thermodynamic methods but does not need a model for the heat losses. 

Two important modifications were made to make the estimation work properly. The 

first one was the addition of elastic engine deformation caused by cylinder pressure 

and inertial forces. The elasticity constant was determined from CAE models and 

measurements in an optical engine.  

The second modification was related to the determination of the crank angle position 

for the maximum of the motored heat losses. This parameter is central in the method. 

The assumption in the original paper that the heat loss maximum always occurs 

between the crank angle position for maximum charge temperature and maximum 

charge pressure does not hold. The reason for this is the decay of the charge 

turbulence which is engine specific and has a big influence on the motored heat 

losses. The turbulence development of the cylinder charge is depending on engine 

design and motoring conditions and cannot be modeled in a simple way. The solution 

was to measure the crank angle position for the maximum heat losses for an uncoated 

reference piston with a known compression ratio and assume that it would be the 

same for the coated pistons. This assumption was verified for differences in surface 

roughness and heat losses. 

The validation and application of the alternative method for compression ratio 

estimation was done with data from experiments involving two types of porous TBCs, 

performed on a light duty single cylinder diesel engine. The results are very 

repeatable and indicate that the proposed method accurately predicts the compression 

ratio for porous thermal barrier coatings. 
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5.2 Paper II 

"Evaluation of thermal barrier coatings and surface roughness in a single cylinder 

light duty diesel engine" 

The effect of two thermal barrier coatings (TBC) and their surface roughness on heat 

transfer, combustion and emissions was investigated in a single cylinder light duty 

diesel engine. The evaluated TBC materials were plasma sprayed yttria stabilized 

zirconia and hard anodized aluminum, which were applied on the piston top surface.  

The background for this investigation was the large spread in reported data for the 

effectiveness of thermal barrier coatings and the need for an accurate assessment. 

The main tool for the investigation was cylinder pressure analysis of the high pressure 

cycle, from which the apparent rate of heat release, indicated efficiency and heat 

losses were derived. For verification of the calculated wall heat transfer, the heat flow 

to the piston cooling oil was measured as well. Exhaust emission measurements were 

also performed. 

Application of TBCs can influence engine operating conditions like charge 

temperature and ignition delay. This is one of the reasons for the large spread in data 

for efficiency improvements from TBCs found in literature. Therefore extra attention 

was paid to choosing stable and repeatable engine operating points and the test run 

was automated to improve repeatability. The experimental data was modeled using 

multiple linear regression (MLR) to further improve the accuracy. Another advantage 

of the modeling was that it was possible to isolate the effects of the coatings, surface 

roughness, compression ratio and soot deposits. 

With this method it was possible to determine the indicated efficiency with a 95% 

confidence interval of ±0.1 percentage point. Efficiency differences as low as 0.2 

percentage point could be distinguished between the different pistons.  

Both tested thermal barrier coatings showed a reduction of cycle averaged wall heat 

losses and an increase in exhaust enthalpy, and a decrease in indicated efficiency. 

Analysis revealed that the high surface roughness of the tested TBCs led to increased 

wall heat losses and a delayed combustion. An increase of surface roughness 𝑅𝑎 from 

0.2 µm to 7.4 µm resulted in a fuel consumption increase of up to 1%.  

The effect of soot deposits on motored heat losses was also derived from the MLR 

model. The thermal insulation of the soot deposits was significantly better than the 

thermal insulation of the tested TBCs. This effect was known in literature, but has not 

been quantified in this way before. 

Finally some results for the emissions: the surface roughness and TBCs had a 

significant impact on the hydrocarbon emissions, especially for low load engine 

operation, while their effect on the other exhaust emissions was relatively small. 
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6 Future work 

From the previous literature study and experiments it became clear that further 

development is needed on thermal barrier coatings to achieve significant benefits in 

engine efficiency. The surface of a TBC should have a low surface roughness and it 

should be sealed to avoid penetration of the hot gas. Thermal conductivity and 

volumetric heat capacity of TBCs should be reduced from typical values of 1.5 

W/m.K and 2.7 MJ/m3.K to values below 1.0 W/m.K  and 1.0 MJ/m3.K respectively. 

Therefore the next steps in the research are to investigate the effect of sealing and 

polishing porous plasma sprayed coatings. This will be combined with new materials 

and new material structures developed for aerospace applications with improved 

properties for thermal insulation. 

Sealing of the surface will be done in three different ways: 1) by application of a 

polysilazane which cures to a ceramic at elevated temperatures, 2) by applying a 

dense ceramic top layer or by 3) applying a dense metal top layer. An advantage of 

the dense metal top layer might be that it could reflect more radiated heat than a 

ceramic top layer. 

Gadolinium is a new material used in TBCs for aerospace applications. It has lower 

thermal conductivity and lower heat capacity compared to zirconia and will be subject 

of investigation for engine application. New structures of the ceramic coatings can be 

made with the suspension plasma spraying process (SPS). This process has been 

developed for increased durability; the resulting material structure it is more 

compliant to thermal expansion of the substrate. A second advantage is the low 

thermal conductivity compared to the current air plasma spraying (APS). 

The work on the coatings will be done in cooperation with University West in 

Trollhättan. Their Production Technology Centre has a long experience of developing 

plasma-sprayed thermal barrier coatings for the Aerospace industry. The new thermal 

barrier coatings will be evaluated with single cylinder engine experiments using the 

method that was developed and used for the previous experimental campaign, 

described in this thesis.  
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Symbols and acronyms 

a diffusivity 

α absorbtivity 

A surface area 

B cylinder bore 

cv volumetric specific heat  

 cp mass specific heat  

 δp penetration depth 

e effucivity 

ε emissivity 

ϵ surface roughness height 

hc heat transfer coefficient 

H enthalpy 

k thermal conductivity 

κ ratio of specific heats 

L characteristic length 

µ dynamic viscosity 

Nu Nusselt number 

p pressure 

Pr Prandtl number 

�̇� heat flux 

 Qn net apparent heat release 

ρ density 

Re Reynolds number 

σ Boltzman constant 

𝜃 crank angle 

T temperature 

 U bulk velocity 

V volume 

W work 
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aRoHR Apparent rate of heat release 

CA Crank angle 

CR Compression ratio 

CO Carbon monoxide 

CO2 Carbon dioxide 

EOP Engine operating point 

IMEP Indicated mean effective pressure 

LHV Lower heating value 

MLR Multiple linear regression 

NOx Nitrogen oxides 

TBC Thermal barrier coating 

THC Total hydrocarbons 
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