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Abstract 

We currently witness an accelerating shift from fossil energy sources to renewables driven by the urgent need to 

reduce carbon emissions. Wind, solar and hydro power is most abundant in places far away from the end user, 

which necessitates the efficient transport of electricity over long distances. Alternative grid designs are needed 

that complement high-voltage alternating current (HVAC) with high-voltage direct current (HVDC) cables. The 

most advanced power cable technology uses crosslinked polyethylene (XLPE) insulation, which is produced by 

peroxide crosslinking of low-density polyethylene (LDPE). However, peroxide crosslinking gives rise to by-

products that compromise the cleanliness of LDPE and raise the electrical conductivity of the insulation material. 

Therefore, a by-product free curing process, which maintains the processing advantages and high electrical 

resistivity of LDPE, would considerably ease cable manufacturing and is therefore in high demand.  

This thesis introduces alternative concepts for the crosslinking of polyethylene that fulfil these 

requirements. In particular, the suitability of click-chemistry epoxy ring opening reactions for curing of an 

ethylene-glycidyl methacrylate copolymer has been explored. Three main concepts for by-product free cable 

insulation have been studied: (i) crosslinking of LDPE copolymers with low molecular-weight multifunctional 

curing agents, (ii) Lewis acid assisted crosslinking of LDPE copolymer formulations, and (iii) reactive blending 

of LDPE copolymers. This thesis summarizes extensive characterization of the curing process and the resulting 

thermo-mechanical properties of the materials, as well as preliminary conductivity studies. It can be anticipated 

that the concepts introduced in this thesis may lead to a by-product free and sustainable alternative to peroxide-

based crosslinking of polyethylenes.  
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CHAPTER 1 
1.1 Historical milestones in the development of High Voltage cable technology 

The early years of the electricity supply industry, dating to the end of the 19th century, were 

characterized by a fierce competition between the proponents of direct current (DC) and alternating 

current (AC) over which type of technology ought to be used for the transportation of electricity. 

The use of DC was promoted by Thomas Edison as a safe means of electricity transport, in open 

competition with the use of AC as advocated by several European companies and by Westinghouse 

Electric, which had acquired many of the patents by Nikola Tesla. This fierce competition 

eventually ended with a victory for AC, mostly thanks to the possibility to easily increase and 

decrease the voltage through the use of transformers. AC has maintained its dominance for almost 

all domestic and industrial supplies of electricity since then, but with the growth of the electricity 

supply system in size the limitations of AC technology have started to emerge. For instance, due 

to AC system related reactive and resistive losses, it is challenging to transfer electricity over very 

long distances. The maximum length of an AC cable is limited by its high capacitance, which 

causes a phase difference θ between voltage V and current I. The useful active power P can be 

expressed as:1, 2  

𝑃 = 𝑉𝐼 ∣ 𝑐𝑜𝑠𝜃 ∣  (1) 

The remaining power is transformed into reactive power Q: 

𝑄 = 𝑉𝐼 ∣ 𝑠𝑖𝑛𝜃 ∣  (2) 

The reactive power increases both with cable length and voltage.1, 3 For example, the maximum 

transmission length for XLPE insulated AC cable systems with a 1000 mm2 Cu conductor, which 

is able to transfer at least 80 % of the current, is ~ 100 km at 110 kV. This length is further reduced 

at higher voltages, reaching only ~ 50 km if the cables are operated at 380 kV.1, 4 For long distance 

transmission high voltage direct current (HVDC) is more efficient as compared to AC systems.3  
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The advantages of HVDC for long distance transmission were known, but its use was held back by 

the lack of a suitable technology that could convert DC to AC and vice versa. The invention of the 

mercury arc rectifier in the late 1920s was a major breakthrough in the field of HVDC systems, but 

this pioneering development did not see commercial use until 1954, when the first HVDC cable 

was installed in Sweden. The system, named Gotland 1 (or Gotland Link), consisted of a 98 km 

long HVDC undersea cable that operated at 80 kV and was able to transfer up to 20 MW,5 

connecting the Swedish mainland from the city of Västervik to Ygne on the island of Gotland. 

Mercury arc valves were used as a static inverter, marking the beginning of the mercury arc era 

during which 11 HVDC cable systems were built all over the world, spanning from New Zealand 

to Japan, North America and Europe.  

Almost concurrently, a new technology that would later replace the mercury arc valves was 

introduced: the silicon semiconductor thyristor. A thyristor is a solid-state semiconductor device 

with four layers of alternating P-type and N-type materials that can convert between DC and AC, 

switching power on the scale of megawatts. Thyristors were first introduced in HVDC applications 

in 1970, and they have since become the heart of HVDC technology, largely eliminating the 

limitations of HVDC.6 More than 100 HVDC cable systems incorporating thyristor valves have 

been commissioned to this day. The introduction of solid-state thyristor valves was an important 

breakthrough in HVDC technology, which paired with the staggering consumption and expected 

future demand for electricity worldwide contributed significantly to the development of HVDC 

technology, with a rapid increase in system voltages and capacities. In particular, countries with 

growing populations and rising major economies like India and China look at HVDC technology 

as a solution to the need for meeting the increasing demand for electricity in urban and 

industrialized areas, often located far from power generating stations. The Xiangjiaba-Shanghai 

HVDC project is an example of how fast demand for electricity is growing in China, and how 
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HVDC technology has proven to be the best answer to these needs. The system operates at ± 800 

kV, with a capacity of 6400 MW and it was built to export hydro power from the Xiangjiaba dam 

in Sichuan province, to the major city of Shanghai, over a distance of ~ 2000 km. To date, it is the 

largest HVDC project undertaken, and it is providing electricity to a heavy industrialized area with 

a population of close to 25 million people. To counter climate change and greenhouse-gas-related 

issues, it is also critical to seamlessly integrate electricity – produced through renewable resources 

like solar, wind and hydroelectric power installations – into the electrical grid. This demand drives 

the research of new concepts for key HVDC components. In recent years the EU has been 

promoting an investment in renewable energies in order to decrease greenhouse gas emissions by 

an estimated 80-95 % by 2050. This means that the EU must produce at least 75 % of the electricity 

it consumes from renewable resources by 2050.7 HVDC systems will play a key role in the 

realization of this goal, with the creation of an extensive transmission network aimed at the 

distribution of green energy across Europe.  

1.2 From gutta-percha to XLPE: evolution of High Voltage cable insulation technology 

The most cost-efficient way to transport electricity is through overhead lines, where the cables are 

suspended from the ground and air acts as the insulation. However, this technology cannot be easily 

implemented when transportation over long stretches of sea or through urban areas is required. In 

all situations where overhead lines cannot be implemented, more complex and costly undersea and 

underground cable systems are used. Unlike overhead lines, undersea and underground cables 

require insulation and protection from the environment in order to avoid power losses to the ground. 

The invention of the insulated conductor can be traced back to 1830 albeit it took almost 50 years 

before the first underground cable for the transmission of direct current was brought into use in 

Berlin, in 1880. At first the material of choice was gutta-percha, a polyterpene (or specifically 
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trans-1,4-polyisoprene), which at the time was deemed to be the most suitable material for 

submarine cable insulation because the cold underwater environment improved its insulating 

properties. However, the material presented serious drawbacks. Gutta-percha had neither a high 

heat resistance nor dielectric strength, and its increase in demand towards the end of 19th century 

led to a collapse of the supply. The invention of a dielectric material capable of withstanding the 

heat of the conductor and the strength of the electric field was achieved in 1880, when Ferranti 

introduced a multi-layer dielectric using lapped paper tapes. In 1913 the invention was further 

improved by introducing the use of metallized paper, in order to limit the electrical field of the core 

(radial field cable). This allowed to increase the ionization threshold voltage and enabled the 

production of cables with a rated voltage of up to 60 kV. To achieve high voltages of 100 kV and 

above it was necessary to avoid the formation of voids in the dielectric, where partial discharge 

could occur at high field strengths, leading to the destruction of the insulation layer. The problem 

of void formation in the dielectric was solved by Luigi Emanueli, chief engineer at Pirelli in Milan, 

who created a thermally stable high voltage cable for a rated voltage above 100 kV in 1924. He 

developed an oil-filled paper-insulated cable, where the layered paper dielectric was impregnated 

with a low-viscosity medium which flowed into the expanding dielectric on heating and was forced 

back into reservoirs on cooling. One downside of paper insulated cables is the tendency of the oil 

to drain or migrate from the uphill part of the cable when laid on steep slopes. This problem was 

overcome with the introduction of mass impregnated non-draining cables (MIND), in which the 

layered paper insulation is impregnated with a non-draining resin containing petroleum jelly or 

waxes. Similar cables based on oil-filled paper insulation and MIND technology are still in use 

today for high and extra high voltage applications.  

Polyethylene (PE) was introduced as a cable insulation material in 1944 in the USA and in 

1966 the first high voltage cable with PE insulation was commissioned at 138 kV.1 Single layer 
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insulation has several advantages over oil-filled paper insulation technology because it enables a 

simple, continuous production process, allows a higher operating temperature and requires less 

maintenance. A major breakthrough in PE insulated cables for high voltage transmission was the 

introduction of crosslinked polyethylene (XLPE), which allowed to overcome the low onset of 

melting and softening of PE, enabling the insulation to withstand elevated operating temperatures 

up to 90 °C. High voltage XLPE cables rated up to 400 kV have been available since 1988. 

Considerable research efforts are dedicated to further improvement of the polymeric insulation, 

given the fact that a better dielectric will ultimately allow the production of cables with higher 

power ratings. Several companies as well as many academic research institutes and universities are 

active in research and development dedicated to insulation materials.8-18 ABB successfully tested 

a 525 kV DC cable system with a power rating range of up to 2.6 GW.19 Prysmian, in Milan, is 

developing a new cable technology for the development of power transmission grids and has 

recently tested a 600 kV cable with a propylene-based thermoplastic elastomer (HPTE) insulation. 

Furthermore, the Danish company NKT has announced the testing of a HVDC cable rated at 640 

kV that is based on XLPE insulation developed in Karlskrona, Sweden, which is currently the 

highest voltage rating for a single extruded HVDC cable.20, 21 The power cables industry ultimately 

aims for ambitious HVDC projects that will operate at 1000 kV.22 
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CHAPTER 2 
2.1 High Voltage cable design 

High voltage cables share common design features regardless of the type of insulation. The 

components that determine the electrical and thermal behavior of the cables are the conductor, the 

insulation layer, the inner and outer field limiting layers and the metallic sheath (Figure 1). In the 

following, the design of extruded HV cables is discussed in more detail. 

 

Figure 1: schematic representation of an undersea HVDC cable. 

 

2.2.1 Conductor 

The purpose of the conductor is to transmit the current with the lowest possible losses. The most 

common materials for HV cable conductors are copper (Cu) and aluminum (Al), with copper being 

more widely used due to its 60 % lower specific resistance and the resulting smaller cross-section 

for a given current carrying capacity. Both materials are technically viable, and selection is usually 

carried out on an economic basis, taking into account the higher tensile strength of copper and the 
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lower density of aluminum. Different conductor designs ranging from single to multi strand, round 

to oval and full to hollow are influenced mainly by the value of the rated current and the dielectric 

of choice. In the case of oil-filled cables, for example, the conductor is hollow in order to allow the 

impregnating medium to expand under the influence of a thermal load. An in-depth discussion of 

the different types of conductor designs is beyond the purpose of this thesis. 

2.2.2 Field limiting layers 

Field limiting or semiconductive layers constitute the interface between conductor and insulation 

and between insulation and metallic sheath (c.f. Figure 1). Their purpose is to ensure an even 

cylindrical field. These semiconductive layers ensure the equalization and reduction of the 

electrical stress in the cable dielectric by preventing local field enhancement through non-

homogenous areas, in particular between the wires constituting the conductor or screen and the 

insulation. In this way, the stress enhancement by small radii single wires is eliminated leading to 

a cylindrical field distribution. Moreover, the presence of field limiting layers prevents the 

formation of voids between conductor, screen and metal sheath and the insulation layer. This is of 

utmost importance when the cable is subjected to mechanical stress such as bending or thermal 

expansion of the components at different temperatures. The presence of semiconductive layers is 

particularly important for polymer-insulated cables, where an impregnation medium is absent. In 

the case of extruded polymeric insulation, the semiconductive layers are mostly made of the same 

material that constitutes the dielectric layer in order to ensure a similar thermal expansion 

coefficient. The necessary conductivity of the semiconductive layer is reached by adding a 

conductive material, i.e. carbon black. To prevent the inclusion of foreign materials, high voltage 

cables are produced by triple extrusion, during which insulation and the two semiconductive layers 

are extruded over the conductor in a single process.  
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2.2.3 Metallic covering 

Metallic coverings concentrically surround the cable core and insulation. Cable screens and 

metallic sheaths fulfill several tasks, including the conduction of the earth fault current in case of 

a cable fault until the system is switched off, the reduction of the influence of the electric field on 

the environment around the cable, the protection against accidental contact, and electrostatic 

screening. Moreover, metallic coverings act as protection from water and moisture. 

2.2.4 Corrosion protection and outer covering 

The most external layer of an HV cable is usually constituted of a sheath of high density 

polyethylene (HDPE) or polyvinyl chloride (PVC), which provides protection while laying the 

cable, as well as against corrosion caused by water. Sometimes, high viscosity bitumen-based 

compounds in conjunction with textile tapes are used as passive corrosion protection between the 

metal sheaths and the external HDPE layer, in order to permanently prevent any possible corrosion 

of the metal covering. 

2.2.5 Insulation 

The insulation layer is a key component of any high voltage cable. The insulation consists of a 

hollow cylinder of a dielectric material, or a combination of insulating materials, whose most 

critical parameters are a low electrical conductivity,11, 23 low dielectric losses,1, 24 high dielectric 

strength and sufficient form stability at operating temperatures.21 The most widely used dielectrics 

are impregnated multi-layer paper and extruded polymer insulation. Today, extruded polymer 

insulation has replaced oil-filled paper insulated systems as the primary solution for HVAC cables 

due to a combination of lower material and processing costs, higher reliability as well as superior 

electrical and mechanical properties. The adoption of extruded polymeric insulation for HVDC 
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cables has been slower due to the low demand for such systems in the past. In recent years, 

however, thanks to improvements in HVDC technology and the need for long distance energy 

transmission, the use of extruded HVDC cables has become more attractive.3, 21, 25 It is paramount 

to use a particularly clean and pure material for the insulation layer to ensure a low electrical 

conductivity, in order to avoid partial discharges during operation.1, 26-28 Extruded insulation 

consists of polyethylene (PE), a versatile material 29with properties that can be varied widely by 

tuning polymerization methods. PE is the polymerization product of ethylene, C2H4, which 

undergoes polymerization upon contact with either a catalyst or a radical initiator. This type of 

polymerization releases no by-products such as water or low-molecular weight hydrocarbons, and 

this constitutes an important prerequisite for the extraordinary good dielectric properties of PE.  

With regards to HVDC, the electrical stress is primarily governed by the electrical 

conductivity of the insulation. Electrical conductivity σ is the ability of a material to conduct an 

electric current and can be broken down into a product of three terms: the carrier charge q, the 

concentration of charges n (number of charges per unit volume) and the charge mobility μ (the 

average velocity of a carrier due to an applied electric field of unit strength). Electrical conductivity 

plays an important role in the build-up of space charges, which can distort and locally enhance the 

electric field, increasing the risk of electrical breakdown.30, 31 The total conductivity is the sum of 

all contributions from different types of carriers: 

𝜎 =  ∑ 𝑛𝜇𝑞 
 

(3) 

Contribution to the total electrical conductivity can come from both electronic and ionic charges. 

Electronic conductivity arises when electrons (or holes) are injected into a material. Alternatively, 

charges can be created through promotion of electrons from the valence band (VB) to the 

conduction band (CB). Polyethylene displays a very low electronic contribution to the electrical 
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conductivity thanks to a very high band gap, which for crystalline PE is as high as 8.8 eV; therefore 

excitation of electrons is very unlikely.32 However, although perfect, defect-free, crystalline 

polyethylene may have a high band gap, various types of imperfections can erode the electronic 

structure. Ionic conductivity describes electrical conduction due to the motion of ionic charges. 

Ionic conductivity is not an intrinsic property of the material but arises due to impurities. There are 

many different ionic charge carriers, but ionic mobility is generally much smaller than the values 

typically found for electrons.  

The electrical properties of a given material depend on the amount of both ionic and 

electronic charge carriers. For polyethylene, the hole mobility along the chain is estimated to be as 

high as 10-5 cm2/Vs,33 which is at par with many early organic semiconductors. Chemical 

imperfections such as polar functional groups, catalyst residues or physical imperfections close to 

interfaces with other materials introduce defects in the electronic structure. Such defects can both 

introduce charge carriers but also act as traps, thus reducing the mobility of charges.34 The presence 

of mobile impurities in the dielectric can increase ionic conduction, which can however be 

minimized by using a highly pure polyethylene grade. 

The industrial process used to synthesize PE has to be taken into account when choosing the 

right material grade for HV insulation. The most common grades of polyethylene produced on an 

industrial scale are low density and high density polyethylene. In case of HDPE the polyethylene 

chain is linear and there are no long chain branches (LCBs). This linear structure gives rise to a 

high degree of crystallinity of up to 80 %, and a density of up to 0.97 g∙cm-3. On the contrary, 

LDPE entails both long (LCBs, 1-2 per 1000 carbons) and short chain branches (SCBs, 10-50 per 

1000 carbons), which hinder crystallization and lead to a material with an overall crystallinity of 

30-55% and a density of ~ 0.92-0.94 g∙cm-3. This difference in polymer constitution leads to a 

significantly different melting behavior.  
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LDPE features a broad melting endotherm with a peak Tm ~ 110 °C, while HDPE presents a 

narrower melting endotherm with a Tm ~ 130 °C. Thanks to its higher melting temperature, HDPE 

insulated cables would be able to sustain higher operating temperatures. However, HDPE is 

synthesized through Ziegler-Natta catalysis:35-37 this polymerization technique necessitates the use 

of metal catalysts and co-catalysts, which are difficult to remove from the polymer, and are thought 

to affect the ionic conductivity of the material. Instead, LDPE can be polymerized at high pressure 

without the need for catalysts, and its purity makes it the material of choice for HV cable insulation. 

During polymerization, the reaction between ethylene monomers is initiated by the presence of a 

small amount of oxygen in high pressure tubular reactors operated at 200 °C and 1500-3000 bar, 

leading to a highly clean and pure material.36 However, the low crystallinity and consequently the 

low onset of softening and melting requires that LDPE is crosslinked in order to ensure dimensional 

stability at the operating temperatures of high voltage cables, ranging from 70 to 90 °C.  

Complete softening above Tm is prevented once polymer chains are connected by crosslinks 

between the main chains, which results in a form stable material.38 Above Tm, crosslinked 

polyethylene (XLPE) assumes a rubber-elastic state, rather than a fluid state. XLPE can be 

thermally stressed to a considerably higher degree compared to LDPE, allowing a continuous cable 

operating temperature of 70 °C. In a high voltage cable short-circuiting through the insulation layer 

may occur, resulting in excessive current flow through the “short”. Short circuits can produce very 

high temperatures, which can lead to the destruction of the dielectric. XLPE cables can be designed 

for a maximum short-circuit temperature of up to 250 °C, substantially higher compared to 150 °C 

in case of LDPE.1 Several agents can be used to crosslink LDPE and its copolymers, and include 

silanes,38-41 azo-compounds and peroxides,39, 40, 42 as well as treatment with e.g. β- or γ-radiation.10, 

43 For the electrical insulation of e.g. medium and high-voltage power cables, crosslinking with 

peroxides (R-O-O-R') is the most common process.  
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Peroxides are widely used because they are stable compounds until heated. Generally, the peroxide 

is first added to the PE compounds, and crosslinking takes place continuously during cable 

production. The peroxide is activated by splitting the O-O bond upon heating to T > 150 °C, thus 

generating R-O∙ radicals. These radicals extract single hydrogen atoms from PE chains, creating 

PE∙ radical chains, which upon recombination form the infusible, crosslinked network of XLPE.  

2.3 XLPE insulated HVDC cables production 

The production of XLPE insulated HV cables can be summarized in four stages: conductor 

manufacturing (wire drawing and laying up), core manufacturing (extrusion and crosslinking), 

degassing (removal of by-products in heat chambers) and sheathing.  

 

 

 

Figure 2: Schematic representation of a triple extrusion system. 
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Core manufacturing is the most important stage of the manufacturing process, since a good 

electrical stability of the extruded insulation requires a permanently strong and homogeneous 

bonding between the dielectric and the semiconductor field limiting layers, as well as maximum 

cleanliness of the material used. This process is made possible by triple extrusion, a technique 

introduced by Siemens in the 1960s. During this stage the dielectric, the inner and the outer 

semiconductor layers are extruded simultaneously onto the conductor (Figure 2). This process is a 

closed system, which ensures that no dust nor other unwanted material can penetrate the interfaces 

between the different layers. 

 

Figure 3: Illustration of the experienced temperature (top) and the rate of crosslinking (bottom) during 

processing (green), crosslinking (red) and operation (blue) of a high-voltage insulation material. Reproduced 

with permission from the Royal Society of Chemistry (RSC). 
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The conductor is usually pre-heated in order to reduce the thermal energy required during 

crosslinking, and to ensure a homogenous curing process also for the inner part of the insulation 

layer, allowing for a shorter crosslinking section and a faster production. Finally, conductor pre-

heating avoids shock cooling of the molten PE upon contact with the conductor surface. Precise 

control of the temperature inside the extruder is critical to avoid pre-vulcanization. The temperature 

should be high enough to completely melt the polymer mass, but must be lower than the 

decomposition temperature of the peroxide used in the formulation in order to avoid pre-

crosslinking. Usually, depending on the peroxide, the extrusion temperature is between 130 and 

135 °C. Curing directly follows the extrusion process, when the polyethylene mass is heated to 

around 200 °C, which triggers peroxide decomposition and initiates the radical crosslinking (Figure 

3).40, 42 An inert gas (e.g. nitrogen, N2) or a heat-resistant liquid (e.g. silicone oil) is used to heat 

the cable. Different continuous vulcanization systems can be used, each one with different 

advantages and disadvantages. To avoid sinking of the conductor causing eccentricity of the core 

(Figure 4b) low melt flow index LDPE is used, which is more viscous in the molten state and hence 

can bear more load.  

 

Figure 4: a) Centered b) Eccentric c) Eccentric and oval XLPE insulated cable core. 
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For HV cables with an insulation layer of more than a few centimeters another challenge arises 

from the possibility that the molten mass of polymer will drop off the freely suspended conductor, 

causing ovality and eccentricity of the core (Figure 4c). The use of silicon oil catenary continuous 

vulcanization (SiCCV) is very effective at alleviating this phenomenon, since silicon oil has a 

density similar to PE and compensates the gravitational effects that cause ovality of the insulation.1 

After crosslinking it is necessary to remove the volatile by-products generated by peroxide 

decomposition from the polymer mass. To facilitate this degassing step, cables are stored in heated 

chambers at 70-80 °C for several weeks (Figure 5).44 

 

 

Figure 5: Schematic representation of a rotating 3-layer turntable in degassing chamber. 
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CHAPTER 3 
3.1 Microstructure of Polyethylene 

The nano- and microstructure of PE determine its physical properties, and can be described using 

parameters such as the crystallinity, lamellar thickness, weight average molecular weight (Mw) 

between entanglements and, in the case of XLPE, the degree of crosslinking and the network 

density. The crystallinity of PE greatly depends on the amount of SCBs and LCBs present along 

its polymer backbone. HDPE is mostly linear, which allows polymer chains to easily close pack 

and crystallize. This behavior leads to a high degree of crystallinity, which for HDPE can reach 80 

%. On the other hand, LDPE is highly branched, and the presence of LCBs hinders crystallization.45 

The lamellar thickness has a strong impact on the electrical properties of polyethylene. 

 

 

 

Figure 6: Principle of crosslinking of polyethylene chains. 
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The temperature and the rate of crystallization strongly affect the lamellar thickness: quench-

cooling PE from the melt will result in thinner lamellae, while annealing at T ~ Tm will maximize 

the lamellar thickness. Moreover, the presence of crosslinks hinders chain folding and 

crystallization, reducing the lamellar thickness and the overall crystallinity of the polymer (Figure 

6). The material that is not incorporated into crystals remains in amorphous regions. Lamellae are 

interconnected via tie chains, which are responsible for the ductility of the semi-crystalline 

polymer. Crystalline domains on the other hand provide the material with rigidity and a high 

softening temperature. 

3.2 Introduction to polyolefin crosslinking 

Crosslinking is a broadly used method for adjusting the properties of polymers, which involves the 

formation of covalent, ionic or physical bonds between polymer chains resulting in the formation 

of a polymer network. The resulting modification of mechanical properties depends strongly both 

on the polymer used and the number of crosslinks, or crosslinking density. According to IUPAC, 

a crosslink is defined as “a small region in a macromolecule from which at least four chains 

emanate”.46 Crosslinks form via reactions or interactions involving sites or groups on existing 

macromolecules. The term curing is used as a synonym for crosslinking of thermosetting resins 

such as unsaturated epoxy or polyester-based resins, while the term vulcanization is commonly 

used for rubbers such as polyisoprene and styrene-butadiene rubber (SBR), which are used for most 

street-vehicle tires.47-49 A further type of thermoset materials are crosslinked polyolefins, in 

particular crosslinked polyethylene.38-40, 50 Polyethylene is the most widely used thermoplastic 

material, and for some applications, such as HV cables, it is mandatory to modify its structure 

trough crosslinking in order to improve certain critical properties, e.g. its form stability and creep 

resistance.38, 50  
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Different procedures can be employed for the crosslinking of polyolefins, involving radical 

crosslinking with peroxides,39, 40, 42, 51 grafting of silane groups, which form crosslinks via 

hydrolysis of silanole moieties,39-41, 52 or high-energy irradiation either with γ-rays or electron 

beams.10 Polyolefin crosslinking may be carried out either in the melt or in the solid state, 

depending on the curing method of choice. While crosslinking in the melt leads to a homogeneous 

distribution of crosslinks in the polymer network, crosslinks generated in the solid state are usually 

confined to the amorphous-crystalline interphase.38, 53 Crosslinking results in distinct changes of 

the nanostructure of polyethylene, i.e. a decrease of the melting and crystallization temperature 

after curing. In the case of high voltage cables with XLPE insulation, the curing process grants the 

dielectric material improved thermal stability (ensuring dimensional stability at high temperatures), 

improved stress cracking, solvent resistance and low temperature embrittlement and weatherability 

(Figure 7).40 

 

 

Figure 7: Improved properties of XLPE compared to thermoplastic polyethylene. 
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3.3 Polyethylene crosslinking with peroxides 

Saturated polyolefins such as polyethylene, polypropylene (PP) and polyvinylchloride can be 

easily cured through radical crosslinking initiated by thermal decomposition of peroxides.39, 40 This 

process involves the abstraction of a hydrogen radical from a polymer chain in order to generate a 

free-radical initiator site on the macromolecule. The recombination of free-radical macromolecules 

(two at a time, i.e. -CH2-∙CH-CH2-), quickly leads to the formation of an infusible network of 

crosslinked polymer.42  

 

Figure 8: Stages in dicumyl peroxide decomposition and radical crosslinking of polyethylene. 



21 
 

The relatively high stability of peroxides at temperatures of typically less than 150 °C is key to 

melt processing without initiation of the curing process. Polyethylene is usually crosslinked with 

dicumyl peroxide (DCP): (1) first the polymer already containing the peroxide is extruded at about 

130-135 °C, (2) shaped and then (3) heated at 200 °C (c.f. Figure 3), which triggers the radical 

decomposition of DCP and initiates PE crosslinking (Figure 8).42 The crosslinking of PE with DCP 

was first accomplished by Gilbert and Precopio at General Electric.54, 55 Dicumyl peroxide 

decomposes into two cumyloxy radicals Ph-C(CH3)2O∙ of equal reactivity. Alkoxy radicals are 

strong hydrogen abstracting agents and they quickly react with the polymer chains, releasing two 

macromolecular free-radical initiators -CH2-∙CH-CH2- (Route A, Figure 8).42 Alternatively, a 

cumyloxy radical can undergo decomposition trough a β-scission reaction, leading to the formation 

of acetophenone and a methyl radical, CH3
∙ (Route B, Figure 8). The methyl radical itself is a strong 

hydrogen abstracting agent, and will react with a polymer chain to produce a free-radical 

macromolecule. Considering the high reactivity of the alkoxy radicals, it is reasonable to foresee 

that two macroradicals will be formed close to each other and upon recombination generate a 

crosslink.39, 40, 42 Apart from crosslinking, the use of dicumyl peroxide (DCP) produces a range of 

unwanted, low molecular weight and volatile by-products such as water, methane, acetophenone, 

cumyl alcohol and α–methyl styrene.42, 44, 56, 57 Methane in particular is a flammable hydrocarbon 

gas, which has to be carefully removed prior to further treatment of the cable. The presence of high 

pressure in the vulcanization tube prevents these volatile by-products from producing bubbles and 

voids in the PE melt, and this pressure is maintained until the insulation layer has solidified. This 

procedure will also ensure that at the end of the vulcanization process the insulation will contain 

an approximatively constant amount of by-products throughout its thickness, reflecting the uniform 

distribution of DCP during extrusion. Over time, this distribution will change as by-products 

diffuse towards the surface.57  
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To ensure that cables are free from volatile by-products, which are known to have a detrimental 

effect on the dielectric properties,9 cable manufacturers ensure that sufficient degassing is 

performed during the production process.9, 44, 56 The thickness of the cable core as well as the 

boiling point of some by-products, in particular α-methyl styrene (Tb ~ 165-169 °C), cumyl alcohol 

(Tb ~ 202 °C) and acetophenone (Tb ~ 202 °C), lead to a costly and time consuming degassing 

process, which is carried out at temperatures between 50 and 80 °C (c.f. Figure 5).44 Moreover, the 

release of e.g. α-methyl styrene represents a health hazard, and its presence requires a suitably 

adapted work environment. These installations consume a large amount of energy and take up 

considerable factory space. During degassing it is important to avoid damage to the core caused by 

the difference in thermal expansion of XLPE and the conductor, which can lead to undue 

deformation of the cable. The peroxide crosslinking efficiency of PE largely depends on the amount 

of terminal vinyl groups present along the polymer chain. The incorporation of comonomers such 

as 1,9-decadiene reduces the amount of DCP that is needed to achieve a sufficient degree of curing 

compared to neat LDPE. As a result, the use of unsaturated polyethylene copolymers allows to 

reduce the amount of volatile by-products and consequently the time of degassing.42 In this case, 

two crosslinking reactions take place simultaneously: the radical polymerization of vinyl groups 

and combination crosslinking. Using a smaller amount of peroxide during the crosslinking process 

leads to a lower concentration of volatile by-products, and consequently reduces the degassing time 

needed to remove unwanted, low molecular weight substances that can interfere with the dielectric 

properties of the insulation. 
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3.4 Polyethylene crosslinking using silane grafting reagents 

Chemical crosslinking of polyolefins can also be achieved by grafting silanes onto the polymer 

chains. The grafted functionalities can then function as curing agents, often in conjunction with 

catalysts.41, 52, 58 The basic process involves as a first step the grafting of alkoxy-silane onto the 

polyethylene chain through radical grafting (Figure 9).40, 41, 59 

 

Figure 9: Radical grafting of alkoxy-silane crosslinkers onto polyethylene using DCP. 

 

The reaction conditions of the radical grafting step are tuned in order to avoid recombination of 

radical macromolecules. Moreover, the molecular structure of silane reactants includes a terminal 



24 
 

vinyl group, which will readily react with the majority of the radicals generated by DCP.40 

Afterwards, the incorporated alkoxy groups -(CH2)2-Si(OR)2OR are hydrolyzed in the presence of 

water and a catalyst to release silanol groups -(CH2)2-Si(OR)2OH and ROH, which in a last step 

react with each other in a condensation reaction leading to the formation of a crosslinked polymer 

network and the release of water molecules as by-products (Figure 10).40, 41, 52  

 

Figure 10: Catalyzed hydrolysis of alkoxy-silane, polyethylene-grafted curing agents and condensation 

reaction leading to PE crosslinking. 

 

The grafting and crosslinking of polyethylene with silanes can be performed in either two separate 

steps or in a one-step process; both approaches rely on reactive extrusion.40 The overall 

performance of silane-crosslinked PE is similar to radical crosslinked PE, but in the case of silane-

crosslinking the final cured material can be tuned by the use of different alkoxy-silanes as crosslink-

bridges. However, the low mobility of water through PE makes the crosslinking of thick insulation 

layers a slow process. Moreover, after crosslinking it is necessary to remove water and ROH 

molecules from the polymer mass through a degassing step. Therefore, the long processing times 

and the release of volatile by-products prevent the use of silane crosslinking for HV cable 

insulation. 
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3.5 Radiation crosslinking of polyethylene 

Crosslinking of polyethylene can also be achieved using high-energy irradiation with X-rays, γ-

rays or an electron beam.10, 60-64 The energy carried by X-rays, γ or β-radiations exceeds the energy 

required to break chemical bonds. The irradiation of polyethylene leads to the formation of 

hydrogen and alkyl free radicals of the structure -CH2-∙CH-CH2- (by breaking a C-H bond along 

the polymer chain). When two such free radicals are formed on adjacent chains, a recombination 

reaction occurs with the formation of a crosslink between the macromolecules. Although the 

chemical bond strength of the C-H bond is greater compared to that of a C-C bond, chain scission 

(i.e. breaking of the C-C bonds along the polyethylene chain)65 is low compared to chain 

recombination,40, 61 which makes polyethylene a good candidate for radiation crosslinking. H2 is 

released as a by-product of radiation crosslinking together with a small amount of low molecular 

weight hydrocarbons such as methane, ethane and propane.40, 61 For electrical cables, these volatile 

by-products must be removed via degassing. In January 1957, Paul Cook founded Raytherm Wire 

and Cable (today known as Raychem) to take advantage of electron beam induced crosslinking of 

PE. Due to the limited penetration depth of electron beams, this technique is not suitable for 

crosslinking of thick insulation layers. However, radiation crosslinking is used for thinner cables, 

e.g. in the automotive industry.  

3.6 A future approach to polyethylene crosslinking for high voltage cables 

As previously discussed, polyolefins can be cured by either radiation, radical or silane crosslinking. 

The characteristics of the thermoset depend on the crosslinking method (Table 1).61 Each method 

has its specific drawbacks when used for high voltage power cable insulation. β-radiation 

crosslinking is limited by the small penetration depth, and therefore is not suitable for curing of 

thick insulation layers.10 Furthermore, low molecular weight by-products such as hydrogen and 
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methane are generated, which must be removed by degassing. Silane crosslinking is limited by the 

low mobility of water through PE, and the release of polar by-products worsen the dielectric 

properties of the material. Both radiation and silane crosslinking take place below the melting 

temperature Tm of polyethylene, and consequently the crosslinks are preferably formed in 

amorphous domains. Instead, peroxide crosslinking is carried out above the Tm of polyethylene, 

thus leading to a more homogeneous network.40 However, as extensively described in section 3.3, 

the formation of volatile by-products requires an energy intensive and time consuming post-curing 

degassing step.  

 

 

Table 1: Comparison of physical properties of HDPE crosslinked by different crosslinking methods.61 

 

Click chemistry type curing of polyethylene resins bearing various functional groups promises to 

be an appealing alternative. Click chemistry was introduced as a term for the first time in 2001 by 

the American chemist K. B. Sharpless to classify organic reactions that (1) release only harmless 

or no by-products at all and (2) have a high yield.66 Several types of reactions that fulfill these 

criteria have been identified, including nucleophilic ring-opening of epoxides and aziridines, non-

aldol type carbonyl reactions, additions to carbon-carbon multiple bonds and cycloaddition 
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reactions.17, 66-69 Thanks to their flexibility in the choice of the nucleophilic agent and the absence 

of volatile by-products, click-chemistry ring-opening reactions are of particular interest for the 

crosslinking of functionalized polyethylene resins.16-18, 70 Epoxy-functionalized polyethylenes have 

received increasing attention lately, but the use of epoxy chemistry for curing has not yet been 

extensively studied. Epoxy ring-opening reactions for the crosslinking of polyethylene copolymer 

resins are the main focus of this thesis as the author believes that this kind of chemistry can 

represent a solution to many of the drawbacks of other polyethylene curing methods (Table 2). 

 

Table 2: Technological comparison of industrial polymer crosslinking methods. (■) In practical use (●) 

Technically viable, but no practical example (x) Hard to apply. 
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CHAPTER 4 
4.1 Epoxy ring-opening reactions 

An epoxide is a three-atom ring forming a cyclic ether. This ring approximates an equilateral 

triangle, which makes the epoxide strained and thus highly reactive. A compound containing the 

epoxide functional group can be called an epoxy, epoxide or oxirane, and they are industrially 

produced on a large scale for many applications. In particular, oxirane compounds are the key 

components of epoxy resins. Crosslinked epoxides exhibit outstanding mechanical properties, high 

adhesion strength, good heat resistance and high electrical resistance, which makes them the 

material of choice for many applications ranging from coatings to adhesives and matrices for fiber-

reinforced composites.71 Low molecular weight molecules or polymers bearing multiple epoxy 

groups can be crosslinked by reaction with curing agents such as amines,17, 72-76 phenols,18, 77, 78 

thiols,67, 79, 80 hydrazides,81, 82 isocyanates or acids.16, 83 The final properties of cured epoxy resins 

are affected by the type of epoxy resin, curing agent and the curing process. All these are high yield 

reactions that involve the opening of the strained epoxy ring without emission of volatile by-

products, and they are consequently classified as click-chemistry type reactions.66 

 

 

 

Figure 11: Epoxy ring opening reactions, SN1 and SN2. 
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Epoxy ring-opening reactions can proceed by either SN2 or SN1 mechanisms, depending on the 

nature of the epoxide and on the reaction conditions. If the epoxide is asymmetric, the structure of 

the product will vary depending on the dominating reaction mechanism (Figure 11).  

When an asymmetric epoxide reacts in basic conditions, ring-opening occurs by an SN2 

mechanism, and the nucleophilic attack takes place at the less substituted carbon atom. Since there 

is no acid available to protonate the oxygen prior to ring opening, the leaving group is an alkoxide 

anion. The alkoxide anion is a poor leaving group, and therefore the epoxy ring is unlikely to open 

without the attack of a strong nucleophile. When a nucleophilic substitution reaction involves a 

poor leaving group and a strong nucleophile, it usually proceeds by an SN2 mechanism (Figure 12).  

 

Figure 12: Mechanism of base catalyzed SN2-type epoxy ring opening reaction in the presence of a strong 

nucleophile. 

 

In case of an acid-catalyzed epoxy ring-opening reaction the first step is the protonation of the 

oxygen atom. This leads to the formation of a hydroxyl functionality, which is a good leaving 

group. Afterwards, the carbon-oxygen bond involving the more substituted carbon begins to break, 

and a positive charge begins to build up on the carbon atom (more substituted carbocations are 

more stable). Similar to an SN2 reaction mechanism, the nucleophilic attack takes place 

preferentially on the less hindered face because the carbon-oxygen bond is still to some degree in 

place, and the steric hindrance from the oxygen blocks attack from its side (Figure 13).84  
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Figure 13: Mechanism of acid catalyzed SN1-type epoxy ring opening reaction in the presence of a weak 

nucleophile. 

 

The regiochemical outcome is however different from the base-catalyzed reaction: in the acid-

catalyzed process, the nucleophile attacks the more substituted carbon because it is this carbon that 

holds a greater degree of positive charge. In contrast, in the base-catalyzed reaction the nucleophilic 

attack takes place on the less hindered carbon atom.  

4.2 Polymerization chemistry of epoxy functional groups 

The high reactivity of the epoxy group is characterized by its affinity towards both nucleophilic 

and electrophilic species. As a result, epoxy rings are receptive to a wide range of crosslinking 

agents. It is the combination of epoxy resin and crosslinking agent that leads to the cured thermoset 

epoxy resin, converting the initially low molecular weight reactants into a thermoset. The curing 

agents used to crosslink epoxides can be classified as either hardeners or catalysts, and reactants 

bearing epoxy rings will undergo different polymerization mechanisms depending on the nature of 

the curing agent of choice. 
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4.2.1 Epoxy step-growth polymerization 

Step-growth polymerization proceeds via a step-by-step succession of individual reactions between 

an epoxy ring and a suitable reactive site such as an amine, phenol, thiol, isocyanate, acid or 

hydrazide.71, 84, 85 Each reaction step creates a new covalent bond between a pair of functional 

groups. The main parameters that control the final polymer structure and properties are the nature 

of the reactants, the molar ratio between reagents and the number of reactive sites per monomer or 

polymer chain. In order to obtain a crosslinked polymer network at least one of the reactants must 

have a functionality of more than two (Figure 14d), since a reactant bearing a single functionality 

would interrupt the polymer growth (Figure 14a). 

 

 

 

Figure 14: Schematic representation of a) a simple reaction between monofunctional molecules, b) a step 

growth copolymerization, c) an homopolymerization d) a step growth copolymerization where at least one 

monomer has more than two functionalities, generating a crosslinked network and e) a step growth 

homopolymerization where the monomer has more than two functionalities, generating a crosslinked 

network. 
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Instead, a reaction between bifunctional reactants would lead to a linear polymer (Figure 14b). 

These reactions can be exploited in order to crosslink macromolecules such as epoxy-

functionalized PE, either by using a bi- or multifunctional low molecular weight curing agent 

(Figure 15a,b) or another suitably functionalized polymer (Figure 15c). Common examples of 

hardeners are aliphatic and aromatic amines, and carboxylic anhydrides. These compounds react 

directly with the epoxy rings, and therefore the epoxy resin to hardener ratio usually ranges from 

3:1 to 10:1, by weight. 

 

Figure 15: Schematic representation of a) a multifunctionalized copolymer reaction with a bifunctional or 

b) multifunctional small molecule; both reactions generate a crosslinked network. c) Reaction between two 

multifunctionalized copolymers, again generating a crosslinked network. 

 

Amines are the most commonly used curing agents for epoxy resins. When the concentration of N-

H groups equals or is higher than the concentration of epoxy rings no side reactions take place. The 

epoxy-amine system is therefore suitable for the synthesis of model networks. In general, amine-
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based curing agents must have more than two N-H groups in a molecule in order to lead to a 

crosslinked polymer network. Amine reactivity increases with its nucleophilic character: aliphatic 

> cycloaliphatic > aromatic. Thanks to this difference in reactivity it is possible to tune the 

processing conditions by selecting different types of hardeners. Aliphatic amines are usually 

chosen for room temperature curing systems,58 while aromatic amines find use in composite 

materials. Both primary and secondary amines react with epoxy rings, with primary amino 

hydrogens being more reactive compared to secondary ones (Figure 16).58, 84, 86 

 

 

Figure 16: Epoxy-amine reactions. 

 

When epoxy functional groups are present in excess compared to amino hydrogens, or in case the 

secondary amino hydrogens present a very low reactivity or steric hindrance, a side reaction 

between the hydroxyl groups generated by previous epoxy ring-openings and oxirane rings can 

become competitive, leading to the formation of an ether (Figure 17). 

 

 

 

Figure 17: Epoxy-hydroxy reaction (etherification). 
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4.2.2 Epoxy chain homopolymerization 

Epoxy rings can react with both nucleophilic and electrophilic species, thus both Lewis acids and 

bases are able to act as catalysts and initiate epoxy homopolymerization with a chain-growth 

mechanism. Depending on the number of functionalities present on the epoxy bearing molecule, 

different networks from linear (Figure 14c) to crosslinked (Figure 14e) can be generated. Typically, 

catalysts are used in low concentrations, i.e. less than 1 % by weight. Bases such as tertiary amines, 

imidazoles and ammonium salts initiate anionic epoxy homopolymerization, a complex reaction 

that is characterized by long induction periods and slow reaction rates, alongside short primary 

chains due to the high rate of chain transfer reactions. The addition of a Lewis acid or base to 

epoxy-amine or epoxy-phenol formulations accelerates the curing, but the chemistry of the process 

becomes more complicated due to the competition between chain-growth and step-growth 

polymerization mechanisms, which occur simultaneously.  

 

Figure 18: Epoxy chain homopolymerization catalyzed by a) strong base and b) strong acid. 

 

Epoxy chain homopolymerization can be classified as a click-chemistry type reaction, considering 

the usually high yields and the absence of by-products. Depending on the catalyst, epoxy 

homopolymerization proceeds through an alkoxide (anionic polymerization, Figure 18a) or an 

ozonium (cationic polymerization, Figure 18b). 
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4.2.3 Epoxy chain copolymerization 

Another possible polymerization mechanism involving epoxy rings is alternating chain 

copolymerization. The networks generated by these reactions differ depending on the number of 

functionalities carried by the components of the resin. Low molecular weight components with 

only two functionalities will lead to a linear polymer (c.f. Figure 14b), while the presence of at 

least one component with a higher number of functionalities will generate a crosslinked polymer 

network (c.f. Figure 14d). While reactions between carboxylic acids and epoxy rings follow a step-

growth polymerization mechanism, Lewis base catalyzed reactions with cyclic anhydrides take 

place through a chainwise copolymerization.  

 

 

Figure 19: Epoxy-anhydride chain copolymerization mechanism. 
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Epoxy rings quickly react with Lewis bases such as tertiary amines, leading to the formation of a 

zwitterion containing an alkoxide anion and a positive charge, whose nature depends on the Lewis 

base used (a quaternary nitrogen in the case of tertiary amines, for example Figure 19a). The 

alkoxide anion reacts immediately with an anhydride group, giving rise to a species containing a 

carboxylate anion as reactive functional group (Figure 19b). A reaction between the carboxylate 

anion and an epoxy ring generates a monoester bond and leads to the regeneration of an alkoxide 

anion (Figure 19c), which, since k2 >> k1, quickly reacts with an anhydride regenerating the 

carboxylate thus propagating the reaction with an alternating chain copolymerization mechanism 

(Figure 19d).87 
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CHAPTER 5 
5.1 Crosslinking with epoxy ring-opening reactions 

The development of a byproduct-free curing process would significantly broaden the scope of 

polyethylene-based insulation materials. Through the incorporation of functional comonomers 

along the polyethylene chain it is possible to take advantage of click-chemistry type of reactions, 

such as epoxy ring-opening, that generate chemical bonds and crosslink the material. The focus of 

this thesis is to explore the viability of click-chemistry type curing of a branched statistical 

ethylene-glycidyl methacrylate copolymer with a comonomer content of 8 wt%, p(E-stat-GMA8), 

a material widely employed as a reactive compatibilizer for polymer blends (Figure 20).73, 88-91  

 

 

 

Figure 20: Poly (Ethylene-stat-Glycidyl Methacrylate) with a GMA content of 8 wt%, p(E-stat-GMA8). 

 

The epoxy groups of the GMA comonomers can react with a variety of bifunctional curing agents 

including aromatic and aliphatic di-amines,17, 92 di-carboxylic acids,93, 94 di-hydrazides81, 95 and 

bisphenols.18, 96 The efficiency of the crosslinking process strongly depends on the chemical nature 

of the curing agent and its stoichiometry with respect to the amount of GMA comonomer, the 

temperature and the curing time.  



40 
 

5.2 p(E-stat-GMA8) crosslinking with low molecular weight multifunctional curing agents 

The resin/curing agent must fulfil several requirements. First, it must be possible to compound and 

shape the resin at typical extrusion temperatures between 120 and 140 °C without occurrence of 

the crosslinking reaction (c.f. Figure 3). Further, the crosslinking reaction must be rapid at more 

elevated temperatures, typically between 160 and 240 °C, in order to generate an infusible network 

within a short period of time. Further, suitable curing agents must be non-toxic, liquid at the 

extrusion and curing temperatures, bear two or more reactive sites and have the ability to react 

quickly with an epoxy ring without releasing any volatile by-product. 

5.2.1 Aromatic amine-based curing agents 

Several aliphatic and aromatic diamines fulfill the above-mentioned requirements. The 

nucleophilicity of the specific amine dictates its reactivity with epoxy rings, where aliphatic amines 

> cycloaliphatic amines > aromatic amines. Accordingly, aliphatic amines react quickly with 

oxirane rings providing curing of epoxy resins even at room temperature, while aromatic amines 

usually require elevated temperatures. This is because the lone pair on the nitrogen atom, which is 

free in an alkyl amine, is present in conjugation with the aromatic core, e.g. a benzene ring in case 

of aniline, and hence lacks the ability to use its electron pair as easily as an alkyl amine. A primary 

amine has two active hydrogens that are each capable of reacting with an epoxy group. Once the 

first reaction occurs, a secondary amine is generated, which will react with another epoxy group. 

The reaction rate of the secondary amine with an epoxy resin is much slower than that of a primary 

amine. A second reaction will generate a tertiary amine, which has no active hydrogens. A tertiary 

amine will not react with epoxy resins but can contribute to the curing by catalyzing epoxy 

homopolymerization. Tertiary amines also accelerate the reaction between primary and secondary 

amines and epoxy resins.  
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I chose to study two non-toxic, low melting point primary aniline type compounds featuring 

different degrees of steric hindrance, namely 4,4′-methylenebis(2,6-diethylaniline) (MDA) and 

4,4′-ethylenedianiline (EDA) (Figure 21). 

 

 

 

Figure 21: The aromatic amine-based crosslinkers object of this study: a) 4,4′-Ethylenedianiline (EDA), b) 

4,4′-Methylenebis(2,6-diethylaniline) (MDA). 

 

In a first set of experiments I evaluated the crosslinking efficiency of p(E-stat-GMA8) with 1 wt% 

curing agent. Initially, I cured p(E-stat-GMA8) formulations at different temperatures for 2 hours, 

and calculated gel content and hot set elongation 𝜀ℎ𝑜𝑡 of the specimens according to the methods 

reported in Papers I-IV. The same approach has been used for the characterization of all other 

formulations that are discussed in this thesis. I concluded that the reactivity of MDA was too low 

to be of interest, since an acceptable gel content and consequently a sufficient network density 

could be achieved only at very high temperatures of at least 260 °C and after two hours of curing 

(Figure 22). 
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Figure 22: Gel content measurements for p(E-stat-GMA8) resin cured with 1 wt% MDA (■) and 1 wt% 

EDA (■) at different temperatures for 2 hours. 

 

This low reactivity can be explained taking into consideration the aromatic nature of MDA and the 

substantial steric hindrance generated by the ethyl groups in ortho-position (Figure 23).  

 

 

 

Figure 23: The steric hindrance of the two MDA ethyl groups in ortho-position complicates the approach 

to the oxirane group, and hence the epoxy ring-opening reaction. 
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Instead, EDA more rapidly leads to a high gel content; for instance, a high gel content of ~ 80 % 

and 90 % was reached already after 20 minutes at 240 °C using 1 or 2 wt% EDA, respectively 

(Figure 24). Industrial standards for electrical insulation demand a hot set elongation of 𝜀ℎ𝑜𝑡  < 75 

% for a stress of σ = 0.2 MPa,97 which was reached only after 40 minutes of curing for 1 wt% EDA. 

Doubling the EDA content greatly increased the crosslinking speed, leading to an 𝜀ℎ𝑜𝑡  < 50 % 

already after 20 minutes.  

 

 

Figure 24: Hot set elongation 𝜀ℎ𝑜𝑡 (■), gel content (■), network points per 1000 carbons (■) and permanent 

elongation (●) of p(E-stat-GMA8) crosslinked with a) 1 wt% EDA and b) 2 wt% EDA at 240°C for various 

times. 

 

I followed the curing process with Fourier transform infrared spectroscopy (FTIR) in order to gain 

additional insight into the rate of epoxy-ring opening. Two characteristic absorptions by the epoxy 

ring can be observed at 3050 and 911 cm-1, attributed to the C-H tension of the methylene bridge 

and to the C-O deformation of the oxirane group, respectively.  
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Since the first band is located close to a more prominent O-H absorption band, I used the C-O 

signal to follow the curing reaction. The carbonyl peak at 1750 cm-1 was used for normalization, 

allowing me to calculate the number of remaining epoxy rings, while the number of unreacted N-

H groups was extrapolated from the stoichiometry of the reaction (Figure 25).  

 

Figure 25: Epoxy (♦) and N-H (■) groups consumption for p(E-stat-GMA8) crosslinked at 240 °C with a) 

1 wt% EDA and b) 2 wt% EDA, calculated from FTIR. 

 

Consumption of epoxy groups is rapid at first, and starts levelling off after 30 minutes. Even after 

two hours of curing many N-H functionalities are still left unreacted, which indicates that part of 

the curing agent has not reacted and may not be part of the crosslinked network. This was confirmed 

through Thermogravimetric Analysis (TGA). A TGA heating profile that mimics the curing 

process was selected (two hours at 180 °C), and the results were then compared with standard DCP 

crosslinking of regular LDPE, using 2 % DCP. p(E-stat-GMA8) samples cured for two hours at 

240 °C with 2 wt% EDA and MDA gave rise to a weight loss of 1 and 1.5 %, respectively, which 

I assign to the release of unreacted curing agent (Figure 26).  
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Because of the presence of unreacted, volatile curing agents and the overall low reactivity I decided 

to rule out aromatic diamines as curing agents. 

 

 

Figure 26: TGA thermograms of neat LDPE, neat p(E-stat-GMA8), DCP cured LDPE and p(E-stat-GMA8) 

crosslinked with aromatic amine-based curing agents (MDA, EDA) at 180 °C for 2 hours. The shaded areas 

highlight the weight loss of volatile by-products that arise from DCP decomposition (grey area) and 

unreacted aromatic amine crosslinkers (blue and red areas). A baseline drift of not more than 0.4 wt% during 

the isotherm at 180 °C was recorded. 
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5.2.2 Aliphatic amine-based curing agents 

I chose to study the following aliphatic di- and tri-amines: 1,8-diaminooctane (DAO), N,N'-

dimethyl-1,8-octanediamine (MDAO) and trimethylolpropane tris [poly(propylene glycol), amine 

terminated] ether (TMPTA) (Figure 27). DAO and MDAO carry two primary and secondary 

amines, respectively, and the melting temperature can be adjusted by changing the length of the 

aliphatic spacer with an octyl segment resulting in a well-adjusted Tm ~ 40 °C and 50 °C, 

respectively. TMPTA carries three primary amines and is a liquid at room temperature.  

 

 

 

Figure 27: The aliphatic amine-based crosslinkers object of this study: a) trimethylolpropane tris 

[poly(propylene glycol), amine terminated] ether (TMPTA), b) 1,8-diaminooctane (DAO), c) N,N'-

dimethyl-1,8-octanediamine (MDAO). 

 

I proceeded with the study of the reaction conditions with regard to curing time (10 to 120 minutes), 

temperature (160 to 200 °C) as well as curing agent concentration (c.f. Paper I, Figure 5). Further, 

I evaluated the crosslinking efficiency by measuring the elongation 𝜀ℎ𝑜𝑡 and gel content of all 

samples. I found that all formulations can give rise to a 𝜀ℎ𝑜𝑡 < 70 % and high gel > 80 % by tuning 

the aforementioned conditions, which demonstrates the flexibility of these systems (for details, 

refer to Paper I). The samples did not show any noticeable yellowing usually associated with amine 

oxidation and retained the typical white color of LDPE.  
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However, compared to neat p(E-stat-GMA8) the cured samples appeared more transparent. The 

formation of a dense crosslinking network leads to a less crystalline material, less light scattering 

and thus increased transparency.  

I used TGA to test for volatile by-products (c.f. Paper I, Figure 4c). For neat LDPE and p(E-

stat-GMA8), as well as p(E-stat-GMA8) that contained aliphatic amine curing agents I observed a 

flat TGA thermogram up to 300 °C. No release of by-products could be detected.  

Although DAO offers twice as many reactive hydrogens than MDAO, their crosslinking 

performance is similar for 1 wt% concentration of curing agent. I propose that upon reaction of a 

primary amine with an oxirane ring, the secondary amine generated from the reaction is more likely 

to react with a close-by epoxy group from the same polymer chain, due to a combination of steric 

hindrance and proximity. Therefore, curing agents that carry primary or secondary amines yield a 

similar number of network points. The lower curing rate of TMPTA formulations can be 

rationalized with the larger size of this crosslinking agent as well as increased steric hindrance of 

the amine group due to the adjacent methyl group at the α position. I therefore concluded that the 

steric hindrance is once again the major contributor.  

More information about the curing rate could be obtained through FTIR analysis (c.f. Paper 

I, Figure 6). Epoxy group consumption is fast at first, followed by a more gradual decrease in 

reactivity. This is in contrast to a linear increase in network density as calculated from hot set 

measurements (c.f. Paper I, Figure 5). I propose that, initially, a significant number of curing agents 

bind with both heads to the same polymer chain, leading to a rapid consumption of epoxides by 

intra-chain coupling (Figure 28a).  
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Figure 28: Schematic representation of a) an intra-chain crosslink, b) an inter-chain crosslink, c) a 

permanent network point that arises due to an entanglement that is trapped by two intra-chain crosslinks, 

and d) an entanglement that is trapped by a combination of intra- and inter-chain crosslinks. Note that this 

schematic only strictly applies for MDAO where each functional group can only react once with an epoxy 

ring. 

 

Considering that the used p(E-stat-GMA8) grade contains approximatively 8 glycidyl methacrylate 

monomers, I note that the number of network points, namely 12 and 10, exceeds the number of 

oxirane rings (c.f. Paper I, Figure 5). That observation implies the presence of entanglements which 

are trapped by a combination of spatially close intra- and inter-chain crosslinks (Figure 28c-d). 
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5.2.2 Hydrazide-based curing agents 

Hydrazides are characterized by a N-N covalent bond with four substituents, of which at least one 

of them is an acyl group. Hydrazides typically present two active hydrogens; thus epoxy resin 

formulations typically contain ¼ di-hydrazide for each epoxy equivalent. Hence, all four of the 

primary hydrogens have the possibility to react, each with one epoxy group (Figure 29).  

 

 

 

Figure 29: a-b) Epoxy-hydrazide reactions and c) epoxy-hydroxy (etherification) side reaction. 

 

Hydrazides tend to have high melting and boiling points, and generally the epoxy-curing 

temperature is related to the melting temperature of the di-hydrazide. Note that the crosslinking of 

epoxy resins with dihydrazides can be accelerated with various free-electron-donating compounds, 

such as ureas, imidazoles and imidazole adducts, as well as inorganic compounds like lead or 

stannous octoate, which is not explored in this thesis.  
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Low molecular weight dihydrazides are often toxic. On the other hand, their non-toxic higher 

molecular-weight counterparts have too high melting points. I therefore selected octanoic 

hydrazide (OAD) and adipic acid di-hydrazide (AAD), which meet close to all requirements, for 

initial screening. However, I was unable to reproducibly crosslink the copolymer at 200 °C, even 

after 2 hours and with a 3 wt% curing agent concentration. I therefore decided to disregard 

hydrazides as curing agents. 

5.2.3 Phenol-based curing agents 

The reaction between a phenolic functional group and an epoxy ring is known to be fast, and occurs 

without the release of any by-product (Figure 30a). Further, the reaction results in the formation of 

a mixture of isomeric products characterized by a hydroxyl group, which is capable of reacting 

with other epoxy rings if the reaction proceeds at high temperature and/or in the presence of a 

catalyst. Epoxy ring-opening by an alcohol also leads to a crosslink and will again generate a 

hydroxyl group (Figure 30b).  

 

 

 

Figure 30: a) Epoxy-phenol reaction and b) epoxy-hydroxy side reaction. 
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I decided to study curing with two different multi-phenols, namely 2,2-bis (4-hydroxy-3-

methylphenyl) propane (BPP), and pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) 

propionate) (PTP) (Figure 31).  

 

 

 

Figure 31: The phenol-based crosslinkers object of this study: a) 2,2-bis (4-hydroxy-3-methylphenyl) 

propane (BPP), b) Pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (PTP). 

 

BPP is a non-toxic, low molecular weight chemical, with a boiling point above the curing 

temperature; it has two phenolic functionalities, making it a multifunctional hardener. PTP is a 

non-toxic, high molecular-weight chemical that finds use as an antioxidant. PTP bears four 

phenolic functionalities, and it is much bulkier and sterically hindered compared to BPP, in 

particular thanks to its tert-butyl groups in ortho-position. At first, I evaluated the crosslinking 

efficiency of BPP by measuring the elongation 𝜀ℎ𝑜𝑡 of p(E-stat-GMA8) samples cured at different 

temperatures (between 160 and 240 °C) and with 3 wt% BPP, which corresponds to a 

stoichiometric ratio of 2.3:1 epoxy:phenol functionalities.  
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The aforementioned formulation was cured at various times, ranging from 5 to 120 minutes (Figure 

32a-b). I concluded that sufficient crosslinking could be achieved by curing the resin for at least 20 

minutes at 240 °C.  

 

 

 

Figure 32: a) Hot set elongation 𝜀ℎ𝑜𝑡 (■), gel content (■), network points per 1000 carbons (■) and 

permanent elongation (●) of p(E-stat-GMA8) crosslinked with BPP 3% at 240°C for various times, b) 

consumption of epoxy (♦) and phenolic (■) groups from FTIR. 

 

The crosslinking efficiency of PTP:p(E-stat-GMA8) with a 4 or 8 wt% curing agent content (which 

corresponds to a stoichiometric ratio of 4:1 and 2:1 epoxy:phenol functionalities, respectively) was 

tested at different temperatures (160 to 280 °C) (Figure 33a-b). 
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Figure 33: Gel content measurements for p(E-stat-GMA8) resin cured with 4 (♦) and 8 wt% (■) PTP at a) 

different temperatures for 2 hours and b) different times at 280 °C. 

 

I concluded that curing with PTP is too slow and requires a relatively high temperature, most likely 

due to its size and steric hindrance. Therefore, I decided to focus on BPP instead. 

5.2.4 Lewis acid assisted crosslinking of p(E-stat-GMA8) formulations 

Despite successful crosslinking at relatively low temperatures with both aliphatic amine and 

phenol-based curing agents, it was evident that the curing reactions were too slow to be of practical 

interest. During cable production the length of the curing oven allows for a crosslinking time of 

typically less than five minutes, after which the insulation layer must be fully cured (c.f. Figure 3). 

Therefore, I concluded that a catalyst is required to speed up the crosslinking process. I tested 

several Lewis acids, and after an initial screening I concluded that titanate-based compounds 

provided the best results. In particular, titanium (IV) 2-ethylhexyloxide (Ti(2-EtHexO)4; c.f. Paper 

II, Figure 1) was selected for more extensive studies. Ti(2-EtHexO)4 is moisture and oxygen 
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resistant, has a high boiling point (~ 250 °C), is liquid at room temperature, non-toxic, relatively 

inexpensive and easy to handle.  

The catalyst was incorporated in different p(E-stat-GMA8) formulations, in combination with the 

already studied aliphatic amines DAO and TMPTA, and the phenol-based curing agent BPP. I 

found that the incorporation of as little as 0.5 wt% of Ti(2-EtHexO)4, which corresponds to merely 

0.04 wt% elemental titanium, greatly reduced the time necessary to achieve a high degree of 

crosslinking. The compounding of the Lewis acid, the crosslinking agent and the copolymer 

through extrusion at 120-140 °C can be carried out without onset of the curing reaction. Then, at 

more elevated temperatures of 180 °C and above, rapid crosslinking occurs at a much faster rate as 

compared to non-catalyzed formulations. 

 

Figure 34: Hot set elongation (red) and gel content (blue) of p(E-stat-GMA8) crosslinked with a) BPP 3 

wt% (hollow squares) and BPP 3 wt% + 0.5% Ti (full squares) at 240 °C for 2.5 to 120 minutes, b) DAO 1 

wt% (hollow squares) and DAO 1 wt% + 0.5% Ti (full squares) at 220 °C for 5 to 120 minutes, and c) 

TMPTA 2 wt% (hollow squares) and TMPTA 2 wt% + 0.5% Ti (full squares) at 220 °C for 5 to 120 minutes. 
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I measured the gel content and elongation at break of three types of formulations: p(E-stat-GMA8) 

cured with (1) 1 wt% DAO, (2) 2 wt% TMPTA, and (3) 3 wt% BPP. In each case I compared 

crosslinking of the neat formulations with the Ti(2-EtHexO)4 catalyzed ones (0.5 % catalyst 

added). Amine-based formulations were cured at 220 °C, while the phenol-based one was cured at 

240 °C due to its slower reaction rate (Figure 34). All formulations can be cured in under five 

minutes. The impact of the catalyst on crosslinking with BPP was particularly dramatic (c.f. Paper 

II), which I attributed to in-situ generation of a new titanium-phenoxide catalyst. I observed a bright 

orange color, which I proposed to originate from a ligand-exchange between alcohol and phenol 

groups on the titanium atom, and hence the formation of a new species bearing phenoxide ligands. 

I found that adding as little as 0.5 wt% of Ti(2-EtHexO)4 to a p(E-stat-GMA8) resin containing 3 

wt% BPP gave rise to a hot set elongation as low as 𝜀ℎ𝑜𝑡 < 50 % for a crosslinking time of only 2 

minutes at 240 °C (cf. Paper II, Figure 3). To gain deeper understanding of the behavior and 

efficiency of the crosslinking reaction, I performed a series of experiments for a fixed time of 5 

minutes and I found that the temperature strongly affects the hot set elongation.  

Phenols easily react with alkoxides releasing alcohols and leading to the formation of the 

corresponding phenoxide. I propose that a ligand-exchange between alcohol and phenol groups on 

titanium occurs leading to the formation of a new species bearing phenoxide ligands (Figure 35a). 

Those result in numerous possible reactive species, all of which can contribute to epoxy ring-

opening reactions and consequently to the curing of p(E-stat-GMA8). In case of the non-catalyzed 

reaction, an epoxy ring-opening reaction would be initiated by the phenol attacking the less 

hindered carbon atom of the oxirane ring, generating an alcohol. The generated alcohol is usually 

not reactive enough to attack another epoxy ring without the presence of a catalyst, and the 

polyaddition cannot proceed further. Therefore, to generate a network point the second phenol 

functionality that the hardener is bearing must react as well, creating a bridge between two different 
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polymer chains. In the case of a titanium phenoxide catalyst generated in-situ, however, the attack 

on an epoxy ring would lead to the formation of a titanium alkoxide group (Figure 35b), which 

subsequently would be reactive enough to interact with the next epoxy ring, propagating an epoxy-

epoxy poly-addition (Figure 35c). Moreover, the generated titanium alkoxide can also undergo a 

ligand exchange with another 2,2-bis(4-hydroxy-3-methylphenyl)propane molecule and regenerate 

the catalytic species (Figure 35d). 

 

 

 

Figure 35: Lewis-acid catalyzed phenol-epoxy ring-opening reactions: a) phenol deprotonation and 

generation of a phenolate, b) epoxy-phenolate reaction and generation of a hydroxylate, c) epoxy-

hydroxylate reaction (epoxy homopolymerization), d) regeneration of phenolate. 
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Solid-state 13C NMR was performed on a cured p(E-stat-GMA8):BPP:Ti specimen after solvent 

extraction, and the result showed a significant intensity reduction for the carbon signals 

corresponding to the three carbons in and near the epoxy ring after curing, as well as a slight 

downfield change in their chemical shift (Figure 36).  

 

 

 

Figure 36: Magnified part of the solid-state 13C CP/MAS NMR spectra of p(E-stat-GMA8) (blue) and p(E-

stat-GMA8) cured with 6% BPP and 0.5% Ti(2-EtHexO)4 (orange). Color-coded circles refer to the carbons 

in the molecular structure of p(E-stat-GMA8); the entire spectrum is shown as an insert to the left. 

Reproduced with permission from the Royal Society of Chemistry (RSC). 
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Moreover, the sharp and well isolated peak at 17.2 ppm, attributed to the two methyl groups that 

sit in ortho-position on the aromatic rings of BPP, reveals the presence of the curing agent. This 

observation is therefore evidence for the participation of phenol-epoxy ring opening reactions in 

the curing of the polyethylene copolymer. I concluded that the exceptional performance of 

formulations containing an amine or phenol curing agent and a Lewis acids catalyst are a viable, 

industrially and economically interesting, by-product free alternative to peroxide-based 

crosslinking of polyethylenes. 
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CHAPTER 6 
6.1 Crosslinking of polyethylene copolymers blends 

Since the use of low molecular weight crosslinking agents can result in a fraction of unreacted 

additive I explored an alternative approach based on blending of two polyethylene-based 

copolymers. The judiciously chosen functionalities will be able to react in a click chemistry fashion 

upon heating. Every reaction between comonomers will generate at least one network point, with 

the possibility of generating more in case of trapped entanglements (c.f. Figure 37).  

 

 

Figure 37: Schematic representation of a) an inter-chain crosslink, b) an entanglement that is trapped by 

several inter-chain crosslinks. 

 

It is essential that such copolymer blends can be extruded between 120 and 140 °C whilst avoiding 

the curing reaction. In a second step, upon raising the temperature to more than 160 °C, rapid curing 

should occur. 
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6.2 Crosslinking of binary p(E-stat-GMA8):p(E-stat-AA7) blends 

I decided to explore a blend that consists of the already introduced statistical ethylene-glycidyl 

methacrylate copolymer, p(E-stat-GMA8), and a statistical ethylene-acrylic acid copolymer with a 

comonomer content of 7 wt%, p(E-stat-AA7) (Figure 38). 

 

 

Figure 38: The branched statistical ethylene-acrylic acid p(E-stat-AA7) and ethylene-glycidyl methacrylate 

copolymer p(E-stat-GMA8) used in this study, with a comonomer content of 7 and 8 wt%, respectively. At 

the bottom, the reaction scheme for p(E-stat-AA7) with p(E-stat-GMA8). Reproduced with permission from 

the Royal Society of Chemistry (RSC). 

 

The uncatalyzed reaction between epoxy and carboxyl groups will yield (1) the ester of the primary 

hydroxyl group, which will covalently link the two polymers, and (2) a hydroxyl group that arises 

due to opening of the epoxy ring (Figure 39a).93, 94  
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Excess of either comonomer may result in a follow-up reaction involving the latter, provided that 

the temperature is sufficiently high. An excess of glycidyl methacrylate may react with the 

hydroxyl group resulting in ether formation but no by-products (Figure 39b). On the other hand, 

excess carboxylic acid may react with the hydroxyl group leading to complete esterification and 

the release of water as a by-product (Figure 39c). The released water can also react with epoxy 

rings, generating a diol (Figure 39d).  

 

 

Figure 39: a) Epoxy-carboxylic acid reaction, b) epoxy-hydroxy reaction, c) esterification reaction, and d) 

epoxy ring-opening reaction in the presence of water. 

 

It would be possible to avoid complete esterification and water release by adding a base as a catalyst 

to the resin, but I did not decide to opt for this solution in order to maintain an additive free 

formulation. Instead, I chose to work with a 1.7:1 p(E-stat-GMA8):p(E-stat-AA7) blend 
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stoichiometry, so that an equal amount of each comonomer is present. FTIR analysis on a series of 

films crosslinked at 200 C for different amounts of time was carried out in order to investigate if 

any side reaction takes place during crosslinking (c.f. Paper III). I could observe that the epoxy and 

carboxylic acid are consumed at the same rate, which suggests that the two groups react with each 

other and that the above-mentioned side reactions are largely absent (c.f. Paper III, Figure S1). 

Further, I ruled out esterification because of the absence of the prominent water absorption band in 

the region between 3500-3700 cm-1, associated with symmetric and asymmetric stretching of O-H 

groups. TGA was also performed in order to strengthen the claim that no by-product is generated 

by the curing reaction.  

The thermoplastic copolymer blend offers a broad processing window up to 140 C, where 

compounding and shaping can be carried out without curing. At more elevated temperature epoxy 

and acrylic acid functionalities rapidly react to form an infusible network. I compounded the two 

copolymers by co-extrusion at 120 °C (see Paper III for details) and obtained a visually 

homogeneous extrudate. It can be anticipated that a certain degree of miscibility is required to 

facilitate proximity of the glycidyl methacrylate and acrylic acid comonomers throughout the 

blend, which is a prerequisite for them to undergo a crosslinking reaction. FTIR spectra of p(E-

stat-AA7) collected while increasing the temperature showed that the acid groups are 

predominantly present in the dimerized state up to at least 90 °C.98 Instead, the relative amount of 

acid dimers strongly decreased upon blending: since acid dimers reside only in the amorphous 

phase,99, 100 this indicates at least partial miscibility of the two copolymers in the amorphous phase 

(Figure 40).  
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Figure 40: a) ATR-FTIR spectrum of p(E-stat-GMA8):p(E-stat-AA7) polymer blend at stochiometric ratios.  

b) C=O stretch region, peak at 1705 cm-1 significantly reduced, c) O-H out of plane bend, peak at 940 cm-1 

significantly reduced. All spectra are normalized and p(E-stat-AA7) and p(E-stat-GMA8) intensities are 

scaled to their respective blend concentration. Blend (solid); p(E-stat-GMA8) (dashed); p(E-stat-AA7) 

(dotted). Reproduced with permission from the Royal Society of Chemistry (RSC). 
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Thermal analysis was used to confirm that the here studied copolymer blend is miscible, using co-

crystallization as an indicator. The presence of a single broad melting endotherm when reheating 

extruded material is evidence for co-crystallization in melt-miscible polyethylene blends. Instead, 

material that was cooled more slowly, i.e. at 10 °C min-1, featured two distinct melting endotherms. 

I went on to study the rate of crosslinking of the 1.7:1 p(E-stat-GMA8):p(E-stat-AA7) blend at 

different temperatures between 160 and 200 °C (for details, see Paper III). Further, I studied 

network formation as a function of time at a fixed temperature of 200 °C (Figure 41a-e). I used two 

techniques to calculate the number of network points, (1) hot set elongation measurements and (2) 

DMA according to the methods reported in Paper III (c.f. equations 2 and 3, respectively). Already 

after a curing time of 2.5 minutes at 200 °C I calculated a network density comparable with the one 

achieved with DCP crosslinking under the same conditions suggesting that the here studied 

copolymer blend rapidly reacts to form an infusible network. In the crosslinked blend two types of 

network points exist in the molten state, (1) covalent crosslinks due to the reaction between the 

glycidyl methacrylate and acrylic acid comonomers, and (2) trapped entanglements (Figure 41e). I 

followed the epoxy ring consumption with FTIR in order to elucidate the extent to which each type 

contributes to the overall number of network points. Each epoxy ring opening reaction gives rise 

to one covalent crosslink. Comparison between the number of covalent crosslinks (from FTIR) and 

the total number of network points (from DMA and hot set elongation) indicates that trapped 

entanglements become more prominent as soon as more than half the epoxy rings are consumed 

(Figure 41c). 
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Figure 41: a) Storage modulus evolution with time at 200 °C in DMA and relative epoxy consumption (□), 

a) Network point formation per 1000 carbons (● calculated from hot set, ○ from DMA) and relative 

molecular weight between crosslinks, Mc (■ calculated from hot set, □ from DMA), c) Network point 

composition (■ chemical, ♦ physical and ● total) for a 1:1 stoichiometric p(E-stat-GMA8):p(E-stat-AA7) 

formulation cross-linked at 200 °C, d) heating of a dogbone of p(E-stat-GMA8):p(E-stat-AA7) crosslinked 

for 5min at 200 °C (false-colored in blue), and e) illustration of a trapped entanglement (blue box) and a 

chemical crosslink (red box). Reproduced with permission from the Royal Society of Chemistry (RSC). 
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To determine the DC electrical conductivity, a series of broadband dielectric spectroscopy (BDS) 

measurements was carried out. The conductivity measured with BDS shows a marked frequency 

dependence, in particular at high frequencies. However, at sufficiently low frequencies the 

conductivity is only determined by the migration of charge carriers and approaches a constant 

value. This plateau was used to estimate 𝜎𝐷𝐶. LDPE yielded a value of 𝜎𝐷𝐶  1.810-16 S cm-1 at 70 

C, which is in good agreement with a previous report, although measured at lower fields.11 At a 

temperature of 70 C the thermoplastic and crosslinked copolymer blend gave 𝜎𝐷𝐶 values of  

1.310-16 S cm-1 and 210-16 S cm-1 respectively. It appears that despite the presence of polar 

comonomers the conductivity of the here studied copolymer blend is not negatively affected. Both, 

the thermoplastic and crosslinked copolymer blend display a very low DC electrical conductivity 

on the order of 10-16 S cm-1, a value which is at par with values measured for both ultra-clean LDPE 

as well as a commercial XLPE grade. A more in depth discussion about conductivity measurements 

can be found in Paper III. I concluded that the here explored by-product free crosslinking concept 

opens up the possibility to replace peroxide crosslinking with click chemistry type reactions.  
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6.3 Crosslinking of ternary p(E-stat-GMA8):p(E-stat-AA7):LDPE blends 

To be a real breakthrough in the field of power cable insulation and in order to be economically 

and technically appealing at an industrial level, pre-crosslinking behavior of p(E-stat-GMA8) 

formulations over an extended period of time must be minimized. Despite being much slower, 

gradual curing of p(E-stat-GMA8) and p(E-stat-AA7) occurs also at extrusion temperatures, around 

120-140 °C (c.f. Paper III). This is not a problem for short dwell times, but it may generate an 

infusible network when the material stagnates in an extruder. I therefore went on to study if pre-

crosslinking can be reduced by altering the amount of available functional groups. I chose two 

approaches: (1) the addition of 50 wt% LDPE to the copolymer blend, thus creating a ternary blend, 

and (2) a blend of two copolymers that contain a lower content of glycidyl methacrylate and acrylic 

acid comonomer of 4.5 wt% and 3 wt%, respectively. Initially, I evaluated the performance of 1.7:1 

p(E-stat-GMA8):p(E-stat-AA7) blends containing different amount of pure LDPE, ranging from 10 

to 50 wt%, thus reducing the overall comonomer content. I compounded the polymers by co-

extrusion at 120 °C and obtained homogeneous extrudates (Figure 42a). These formulations were 

subsequently crosslinked for 10 minutes at 200 °C, and the crosslinking efficiency was evaluated 

by comparing the hot set elongation 𝜀ℎ𝑜𝑡 at 200 °C and a stress of 0.2 MPa. The network density 

was then calculated based on the molecular weight between crosslinks 𝑀𝑐 according to the affine 

network model,101 which is applicable to elastomers. 
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Figure 42: a) Photograph of melt pressed dog bones prior to hot set elongation experiments; b) hot set 

elongation 𝜀ℎ𝑜𝑡 (left) and number of network points per 1000 carbons (right) of binary (♦) and ternary blends 

(● and ●) cured for 5 minutes at 200 C; c) 𝜀ℎ𝑜𝑡 (left) and number of network points per 1000 carbons after 

curing for different times at 200 C (right) of p(E-stat-GMA8):p(E-stat-AA7) (♦), p(E-stat-GMA4.5):p(E-

stat-AA3) (◊), and p(E-stat-GMA8):p(E-stat-AA7):LDPE ternary blends containing 30 wt% LDPE (●), and 

50 wt% LDPE (●); solid lines are a guide to the eye. 
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As expected, adding up to 50 wt% LDPE to a stoichiometric p(E-stat-GMA8):p(E-stat-AA7) blend 

impacts its mechanical properties, increasing 𝜀ℎ𝑜𝑡 from 6 to 62 % and reducing the number of 

network points (Figure 42b). Encouraged by these preliminary data I decided to study the network 

formation as a function of time at a fixed temperature of 200 °C (Figure 42c). I found that 5 minutes 

curing at 200 °C is enough for all formulations to achieve a sufficiently low 𝜀ℎ𝑜𝑡. It is interesting 

to note that the crosslinking behavior of p(E-stat-GMA8):p(E-stat-AA7) with 50% LDPE and p(E-

stat-GMA4.5):p(E-stat-AA3) blends, which contain a comparable overall comonomer content, is 

very similar. 

Differential scanning calorimetry (DSC) heating thermograms of high LDPE content blends 

were recorded to gain additional insight into their phase behavior. For the ternary blends I observed 

two melting peaks in DSC first heating thermograms of as-extruded material (cf. Paper IV). The 

melting peak at 100 C corresponds to co-crystals of the two copolymers (note that the neat 

copolymers melt at 105 C and 98 C), whereas LDPE gives rise to a separate peak at 110 C (note 

that neat LDPE has a 𝑇𝑚  110 C). I therefore concluded that the molten ternary blends are phase-

separated into domains of p(E-stat-GMA8):p(E-stat-AA7) and LDPE, respectively. This conclusion 

is supported by atomic force microscopy (AFM) images of ternary blends (Figure 43). 
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Figure 43: Atomic force microscopy (AFM) images of cryotomed cross sections of ternary blends 

comprising 30 wt% (top) and 50 wt% LDPE (bottom), recorded in topography mode (left) and E-modulus 

mode (right); note that the E-modulus scale was not calibrated and should only be used for relative 

comparison. 

 

To establish the extent to which blending with LDPE allows to increase the extrusion window, I 

compared the number of network points that form after curing for 5 minutes at different 

temperatures ranging from 120 to 210 C (Figure 44). At low temperatures where no appreciable 

crosslinking occurs and the samples remain thermoplastic, which prevents hot set elongation 

measurements, I monitored the increase in storage modulus 𝐺′ with rheometry, and estimated 𝑀𝑐  
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according to the method reported in Paper IV (c.f. equation 2). At higher temperatures, instead, I 

used hot set elongation measurements to calculate 𝑀𝑐   according to the affine network model (c.f. 

Paper IV, equation 1). Note that I did not use the plateau modulus to calculate 𝑀𝑐, which should 

be measured at the frequency where the loss modulus 𝐺′′ or the loss tangent show a minimum, but 

instead I used 𝐺′ measured at a fixed frequency during dynamic curing experiments.102 Hence, the 

values obtained for 𝑀𝑐, and the number of network points, should only be used for a semi-

quantitative comparison (c.f. Paper IV).  

 

 

Figure 44: Number of network points per 1000 carbons for p(E-stat-GMA8):p(E-stat-AA7) binary blends 

(blue) and p(E-stat-GMA8):p(E-stat-AA7):LDPE ternary blends containing 50 wt% LDPE (red), determined 

after 5 minutes of crosslinking with rheometry (open symbols) and hot set elongation measurements (solid 

symbols); solid lines are a guide to the eye. 
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I found that across the full studied temperature range the ternary blends cure considerably more 

slowly. I chose a network density of about 0.3 network points per 1000 carbons as a cut-off, which 

for the p(E-stat-GMA8):p(E-stat-AA7) blend corresponds to a gel content of ~ 5 %. I concluded 

that whereas the binary blend should be extruded below 140 C to avoid premature crosslinking, 

the ternary blend containing 50 wt% LDPE can experience temperatures of up to 170 C without 

losing its thermoplasticity. In order to assess the long-term effect of premature crosslinking on the 

rheological properties of ternary blends, I performed dynamic curing experiments at an angular 

frequency of 𝜔 = 1 Hz. I compared the binary blend of p(E-stat-GMA8):p(E-stat-AA7) with the 

corresponding ternary blend containing 50 wt% LDPE, and monitored 𝐺′ and 𝐺′′ over a period of 

15 to 60 minutes at 130 and 150 C (Figure 45). Moreover, we used 𝐺′ to calculate the number of 

network points. I found that the storage modulus of the binary blend increases rapidly, indicating 

that the curing reaction proceeds, which forced me to terminate the experiments prematurely in 

order to not fully crosslink the material in the rheometer. Instead, the rheological properties of the 

ternary blend only marginally change during the course of 60 minutes, suggesting that curing is 

largely prevented at these temperatures. The number of network points remains low, with only 

around 0.2 network points per 1000 carbons.  

I then turned my attention to the electrical properties of p(E-stat-GMA4.5):p(E-stat-AA3) and 

ternary blends. For reference LDPE, a value of 𝜎𝐷𝐶  210-16 S cm-1 at 70 C is measured, while 

for p(E-stat-GMA8):p(E-stat-AA7):LDPE crosslinked blends (cured at 200 C for 5 minutes) 

containing 20 to 50 wt% LDPE, 𝜎𝐷𝐶 values of not more than 510-16 S cm-1 were measured at a 

temperature of 70 C. I concluded that, despite the presence of polar comonomers, the conductivity 

of the here studied copolymer blends is hardly affected. 
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Figure 45: Storage and loss modulus, 𝐺′ and 𝐺′′, of the binary blend p(E-stat-GMA8):p(E-stat-AA7) (left) 

and the ternary blend p(E-stat-GMA8):p(E-stat-AA7):LDPE containing 50 wt% LDPE (right), measured by 

shear rheometry at 130 C and 150 C and a frequency of 1 Hz. 
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Outlook and conclusions 

It is clear that HV cables will be a critical component of the future power grid that transports green 

energy to our homes, seamlessly integrating renewable sources of energy. The most advanced 

power cable technology uses XLPE insulation, which is produced by peroxide crosslinking of 

LDPE. This process gives rise to hazardous by-products that compromise the cleanliness of LDPE, 

and hence raise the electrical conductivity of the insulation material. Therefore, a byproduct free 

curing process, which maintains the processing advantages and high electrical resistivity of LDPE, 

is in high demand.  

In this thesis, I have discussed different alternative concepts for the crosslinking of LDPE. I 

have established that epoxy click chemistry reactions can be effectively used to crosslink 

polyethylene-based copolymers, meeting industrial requirements for cable production but without 

the release of volatile by-products. The formulations discussed in this thesis offer a broad 

processing window, where compounding and shaping can be carried out without curing. At more 

elevated temperatures the carefully selected functional groups react without byproduct formation 

to form an infusible network. The concepts introduced in this thesis open up a number of questions 

that may serve as motivation for further studies. A more in-depth electrical characterization of the 

blends will help to understand the limits of the proposed alternative crosslinking concepts.  

In order to gain more insight into the electrical properties of these materials, preliminary BDS 

experiments were carried out at low field strengths (~10-100 V mm-1) (Figure 46). p(E-stat-GMA8) 

blends crosslinked with low molecular weight curing agents (c.f. Paper I-II) show a 𝜎𝐷𝐶  10-15 S 

cm-1, compared to a 𝜎𝐷𝐶  10-16 S cm-1 for standard XLPE. The higher conductivity is possibly 

linked to unreacted curing agents, which contribute to the ionic conductivity. 
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Figure 46: DC electrical conductivity measured at 70 °C for p(E-stat-GMA8) cured for 5 minutes at 200 °C 

with different alternative crosslinking concepts, compared to XLPE (●): a) low molecular weight 

crosslinkers: DAO 1 % (◊), TMPTA 2 % (♦) and BPP 3 % (♦); b) Lewis acid catalysis: p(E-stat-GMA8) 

(○), DAO 1 % (◊), TMPTA 2 % (♦) and BPP 3 % (♦) with 0.5 % Ti(2-EtHexO)4; c) Copolymer blends: 

p(E-stat-AA8):p(E-stat-GMA7) with 0 % (◊), 30 % (●) and 50 % (○) neat LDPE, and p(E-stat-AA3):p(E-

stat-GMA4.5). 

 

Instead, crosslinked copolymer blends of two polyethylene copolymers (c.f. Paper III-IV) 

displayed a lower 𝜎𝐷𝐶  of about 10-16 S cm-1 at 70 C, which is at par with values measured for both 

ultra-clean LDPE and commercial XLPE. However, further characterization of the electrical 

properties of these materials is required. For example, it would be very interesting to perform DC 

measurements at high field strengths (e.g. 30 kV mm-1), in order to gain more insight into the 

dielectric properties at high voltages.  
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Another important aspect that will require attention is the long-term stability. I performed 

preliminary aging studies on three selected blends, namely p(E-stat-GMA8) cured with DAO, 

BPP:Ti(2-EtHexO)4 and p(E-stat-AA7). The storage modulus G' of specimens crosslinked for 20 

minutes at 200 °C (stored in air at room temperature) was measured every 90 days, up to 540 days 

(Figure 47).  

 

 

Figure 47: Storage modulus G' for p(E-stat-GMA8) samples cured for 5 minutes at 200 °C with a) DAO b) 

BPP:Ti(2-EtHexO)4 and c) p(E-stat-AA7) and aged in air and room temperature for 1 (●), 90 (●), 180 (◊), 

270 (♦), 360 (●), 450 (○) and 540 (♦) days. 

 

Amine cured p(E-stat-GMA8) shows a clear increase in rubber plateau values over time, which can 

be attributed to the fact that unreacted curing agent can slowly react with GMA functionalities even 

at room temperature, contributing to an increase in network density. BPP:Ti(2-EtHexO)4 and p(E-

stat-GMA8):p(E-stat-AA7) formulations however revealed to be very stable, with little to no change 

in the rubber plateau (Figure 48).  
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Figure 48: Rubber plateau modulus Gp for p(E-stat-GMA8) samples cured for 5 minutes at 200 °C with 

DAO (■) BPP:Ti(2-EtHexO)4 and (●) p(E-stat-AA7) (♦) and aged in air and room temperature for 1, 90, 

180, 270, 360, 450 and 540 days. 

 

Further studies, in particular accelerated aging at high temperature and aging of entire cables 

instead of single specimens (which means the insulation layer is protected from oxygen) will help 

to understand in more detail the stability of the insulation over a long period of time and 

consequently the lifespan of the cables, which ideally should last for decades.103, 104 The copolymer 

blend route seems to be the most feasible process for replacing peroxide crosslinking, considering 

that such a system is additive-free, has similar mechanical and electrical properties as standard 

XLPE, is by-product free, and easy to implement.   
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