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Abstract

In the last decades, a wide range of attractive properties have put metallic nanoparticles
in the spotlight. These properties, often related to optical response and catalytic per-
formance, are to a large extent dependent on structure and chemical ordering, that is,
the distribution of elements in the nanoparticle. To better understand and predict the
behavior of such particles, a thorough understanding of these parameters is essential.
This thesis investigates structure and chemical ordering in metal nanoparticles using
atomistic modeling based on molecular dynamics and Monte Carlo simulations with
embedded atom method potentials. The thesis describes frequently occurring nanopar-
ticle structures and discusses the importance for an atomistic perspective in relation
to the existence of magic and non-magic numbers in particles with different shapes.
Further, alloy thermodynamics and key differences and similarities between macro-
scopic and microscopic systems are reviewed from a statistical mechanics perspective.
The thesis highlights the importance for comprehensive investigations of the size and
composition parameters to obtain a coherent picture. In particular, it is shown how
recognition of polydisperse nanoparticle ensembles is crucial to predict the distribu-
tion of nanoparticle shapes in thermodynamic equilibrium and how the distribution of
elements in an alloy nanoparticle is intimately connected to the underlying structure.

Keywords: nanoparticles, nanoparticle shapes, nanoparticle structures, icosahedron,
Marks decahedron, regular truncated octahedron, chemical ordering, molecular dynam-
ics, Monte Carlo, modeling
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1
Introduction

When Lemuel Gulliver finds himself washed ashore the country of Lilliput in Jonathan
Swift’s famous novel from 1726, he never explicitly reflects on the exceptional surface-
to-volume ratio of its inhabitants. If he had, he would have been a pioneer in recog-
nizing one of the most important reasons for the remarkable properties exhibited by
objects at small scales, most notably nanoparticles. But high surface-to-volume ratio is
just as meager a description of nanoparticles as it is of Lilliputians. Nanoparticles come
in countless structures and shapes, they are made of a wide range of materials, and they
are mono-elemental or mixed, with different compositions and configurations. This
rich diversity coupled with quantum mechanics and, indeed, high surface-to-volume
ratio, gives rise to an extraordinary range of intriguing properties and applications.

One may say that the history of nanoscale inventions began more than a thousand
years ago, although the practitioners, who colorized cups, pots and windows, did not
know the length scale of the materials they used. Prominent contributions were made
by Michael Faraday and others already in the 19th century [1], but the age of nanotech-
nological enlightenment started in the second half of the 20th century. After some
decades of intense research, nanomaterials have now found their way into numerous
applications, ranging from medicine [2] via sunscreen [3] to tennis rackets [4].

For metallic nanoparticles specifically, much of academic and commercial interest
can be attributed to optical properties. The combination of conduction electrons and
a geometry smaller than the wavelength of light gives rise to plasmonic resonance,
which renders the optical response of nanoparticles completely different from the same
materials in bulk. Metallic nanoparticles are also in focus for many applications in
heterogeneous catalysis, where the high surface-to-volume ratio helps boosting the
activity. Optical response and catalytic activity are but two examples of properties
that are dependent on shape and, in the case of alloy nanoparticles (nanoalloys), the
distribution of the elements in the particles, here referred to as chemical ordering. To
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Chapter 1. Introduction

properly predict and explain the behavior of nanoparticles one is thus often forced to
take these aspects into account. The great variety of nanoparticles made of different
materials and in different ways renders this task a complicated puzzle. This thesis aims
to contribute a few more pieces for a more coherent picture to emerge. The focus of the
thesis is structure and chemical ordering in metallic nanoparticles in thermodynamic
equilibrium using atomistic modeling, primarily molecular dynamics (MD) and Monte
Carlo (MC) simulations based on interatomic potentials.

1.1 Structure of the thesis
An introduction to nanoparticle structures and shapes is given in Chapter 2, along with
some considerations on when atomistic models are required. The thermodynamics of
alloys in the bulk and at the nanoscale is introduced in Chapter 3. The limits of thermo-
dynamics at the nanoscale and some key differences between macroscopic and micro-
scopic systems are discussed in Chapter 4 with the aid of statistical mechanics. Chap-
ter 5 describes the computational methods used in the papers. Finally, the two papers
included in the thesis are summarized in Chapter 6 and a brief outlook is provided in
Chapter 7.
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2
Shapes and structures of

nanoparticles

They say no two snowflakes are alike, but the same statement would not be true for
metallic nanoparticles. Being made of materials that are crystalline at room temper-
ature, they tend to form highly regular structures that usually can be categorized as
shapes well-known from fundamental geometry. This chapter explains the emergence
of these particle shapes from a continuum perspective and discusses when the contin-
uum approach needs to be replaced by a model with atomistic resolution.

2.1 A simple model for the energy
The shapes of nanoparticles are governed by the energetics of the materials of which
they are made. The total energy of a nanoparticle may, as a first approximation, be
written as a polynomial in the particle volume 𝑉 ,

𝐸nanoparticle = 𝑎𝑉 + 𝑏𝑉 2/3 + 𝑐𝑉 1/3 + 𝑑. (2.1)

The first term incorporates all contributions that scale with the volume of the particle,
including cohesive energy and strain. The second term, 𝑏𝑉 2/3, includes the energy of
the surface and any other contributions that scale with area. The third term, 𝑐𝑉 1/3,
accounts for linear defects such as edges. The fourth term, 𝑑, is made up of any zero-
dimensional contribution, including corners and point defects. The coefficients are
themselves functions of the shape of the particle. A cube, for example, has edges and
corners whereas a sphere does not, and hence we expect 𝑐 and 𝑑 to be much larger for
the cube than the sphere.
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Chapter 2. Shapes and structures of nanoparticles

Figure 2.1: Wulff construction in two dimensions. The distance from the origin to the
thick black line is proportional to the surface energy for a surface with that crystal
orientation. In this hypothetical example, three inequivalent facets are exposed in the
optimal shape (filled with blue), namely {10}, {11} and {41}.

To find the equilibrium nanoparticle shape we need to find the shape whose coeffi-
cients minimize Eq. (2.1) for a given volume. For water or any other liquid, this problem
is trivial; the lowest energy shape is always a sphere because a sphere has the smallest
possible surface area for a given volume (edges and corners will always add positive
contributions). For crystals, however, the problem is far from trivial, because the sur-
face energy of a crystal is facet dependent, i.e., it depends on the orientation of the
surface. Also, a crystal may be strained and incorporate defects that will contribute to
any of the coefficients 𝑎, 𝑏, 𝑐 or 𝑑 depending on its dimensionality. This gives rise to a
rich variety of particle structures, which are stable at specific sizes in specific materials.
The situation calls for refined models in which the effects of crystallinity are accounted
for.

2.2 The Wulff construction
The Wulff construction [5, 6] solves the problem of finding the optimal particle shape
given a set of surface energies. Wulff constructions are based on polar plots of surface
energy, where the distance from the origin in a certain direction is proportional to the
surface energy of a facet with that orientation. Planes are drawn perpendicular to a
vector from the origin to each point in each direction, and the optimal shape is finally
obtained as the inner envelope of such planes. The procedure is outlined in Fig. 2.1
for a two dimensional case. From this construction, one realizes that the surface of a
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2.3. Nanoparticle shapes

particle will be dominated by low energy facets.
Although the mathematical subtleties led Wulff himself to give an incomplete proof

of the construction, a motivation for its validity can be given in simple terms [7]. Con-
sider a set of surface energies 𝛾𝑖. With distances ℎ𝑖 from the origin to each facet, and
with corresponding facet areas 𝐴𝑖, we can write the total surface energy as

𝐸surface = ∑
𝑖

𝛾𝑖𝐴𝑖 (2.2)

and the volume of the particle as

𝑉 = ∑
𝑖

1
3ℎ𝑖𝐴𝑖. (2.3)

Wewant tominimize the total surface energy for a fixed volume 𝑉0. The latter condition
can be handled with a Lagrange multiplier,

𝛿 [𝐸surface − 𝜆(𝑉 − 𝑉0)] = ∑
𝑖

𝛿 (𝛾𝑖𝐴𝑖 − 𝜆1
3ℎ𝑖𝐴𝑖) = 0 (2.4)

where the variation vanishes for the minimum energy shape. The method of Lagrange
multipliers asserts that the terms vanish independently, so that

ℎ𝑖 ∝ 𝛾𝑖 (2.5)

with the same constant of proportionality for all facets 𝑖. This is the condition required
by the Wulff construction.

2.3 Nanoparticle shapes
The Wulff construction requires facet-dependent surface energies as input. Surface en-
ergies as calculated with the interatomic potentials1 employed in Paper I and II are
visualized in Fig. 2.2. We can rationalize the results by a simple bond-counting model;
facets that minimize the number of broken bonds also have the lowest energies, which
typically means that the close-packed {111} surface is the lowest energy facet in face-
centered cubic (FCC) metals such as Au. Among low-index facets, {100} and {110} usu-
ally follow and all other facets are irrelevant for the Wulff construction in the sense
that they are not exposed in the lowest energy shape2. This section introduces some
shapes that are primarily relevant for materials in which the {111} facet has the lowest
energy.

1These surface energies are generally lower than the experimentally observed values. This disagree-
ment is a consequence of the interatomic potentials being fitted to DFT data obtained using functionals
that often underestimate surface energies [11], most notably PBE [12].

2This is an idealized description. In reality, {100} and {110} facets often reconstruct.

5



Chapter 2. Shapes and structures of nanoparticles
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Figure 2.2: Surface energies for four late transition metals calculated with the EAM
potentials parametrized by Mishin et al. for Cu [8], Williams et al. for Ag [9] and
Marchal et al. for Au and Pd [10].

2.3.1 Truncated octahedra
The Wulff construction resulting from the surface energies for Au from Fig. 2.2 can be
described as a truncated octahedron [Fig. 2.3(a)]. The lowest energy facet, {111}, does
indeed have the largest area, followed by {100} and {110}. Note that a complete (not
truncated) octahedron has only {111} facets, but according to the Wulff construction,
it is still not the lowest energy structure because of its high surface-to-volume ratio.
In this thesis, octahedra that are truncated such that the hexagonal {111} facets are
equilateral (disregarding {110}) will be referred to as regular truncated octahedra (RTOs).
In the Wulff construction they emerge when

𝛾100
𝛾111

= 2
√3

≈ 1.15, (2.6)

i.e., when the surface energy of the {100} facet is approximately 15 % larger than the
surface energy of {111}.

2.3.2 Truncated decahedra
The (original) Wulff construction assumes a single crystalline particle. If this require-
ment is relaxed, it is possible to construct particles with lower surface energy than the
Wulff shape. Stacking five tetrahedra such that they share an edge [Fig. 2.3(b)] produces
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2.3. Nanoparticle shapes

Figure 2.3: Nanoparticle shapes commonly adopted by noble metals: (a) truncated octa-
hedron resulting from a Wulff construction of the surface energies for Ag from Fig. 2.2,
(b) Marks decahedron, and (c) icosahedron. The latter two are always strained, because
if they were not, gaps corresponding to the grey areas (hardly visible in the decahedron)
would be left open.

one such example [13]. This shape, referred to as a decahedron and first observed in ex-
periments on nanoparticles more than 50 years ago [14, 15], exposes nothing but {111}
facets but contains twin boundaries at the interface between each pair of tetrahedra as
well as a line defect where the five tetrahedra meet. In the context of Eq. (2.1), the twin
boundaries and line defect will effectively increase the values of 𝑏 and 𝑐, respectively.
Furthermore, a decahedron is always strained, because five equilateral tetrahedra do
not completely fill space. As shown in Appendix A, if the length of the edges in the
center and the length of the edges connecting apex and equator are the same, the edges
at the equator will be stretched by approximately 1.8%.

It can be shown with a generalized Wulff construction [16] that truncation of the
decahedron yields energies that are lower than the complete decahedron for typical
surface energies. Two truncations are usually observed; truncation of the edges of the
particle, and notches at the edges where two tetrahedra meet. Both are illustrated in
Fig. 2.3(b). The former truncation exposes {100} facets whereas the latter exposes {111}.
Structures with notches are commonly referred to as Marks decahedra [17].

2.3.3 Icosahedra
If twenty tetrahedra are stacked such that they meet in the center, they form an icosa-
hedron [Fig. 2.3(c)], which, just as the decahedron, has more than 50 years of history in
experiment [14, 15]. An icosahedron is quite spherical3 but contains more twin bound-

3A classic football with hexagonal white and pentagonal black patches is in fact a truncated icosa-
hedron (but tends to be pumped even more spherical with air).
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Chapter 2. Shapes and structures of nanoparticles

aries and is even more strained than the decahedron. Just as for a decahedron, twenty
equilateral tetrahedra do not fill space entirely, which causes strain (see Appendix A
for a derivation). Geometry does, however, not require the strain to be uniform. In
this work, icosahedral particles have been observed to be compressed in the center but
essentially free from strain close to the surface. It seems likely that this is simply the
most energetically favorableway to fulfill the geometrical requirements. The tetrahedra
have their tip in the center, and the number of atoms per shell increases in proportion
to the distance from the center. If the height of the tetrahedron, i.e., the distance from
its tip in the center to its face at the surface, is commensurate with the equilibrium
lattice parameter, the lattice needs be stretched about 5.1 % in the direction parallel to
the surface, which would imply an approximately uniform strain in the particle. If, on
the other hand, the length of the face of the tetrahedron is commensurate with the lat-
tice parameter, then the particle must be compressed about 4.9 % in the radial direction.
These 4.9 % may be unevenly distributed, and it should be favorable to compress the lat-
tice primarily close to the center of the particle where the number of atoms per radial
distance is the lowest.

2.3.4 Other shapes
In addition to the above described shapes, there are some structures that appear reg-
ularly. Particularly common among particles with less than a few hundred atoms are
polyicosahedra, which are constructed by stacking smaller regular icosahedra [18, 19].
Another example is the rhombic dodecahedral shape, which emerges from a Wulff
construction with a low {110} surface energy and thus is likely to occur among body-
centered cubic (BCC) metals [6, 20]. Experimentalists also synthesize nanoparticles
with a plethora of shapes and structures that are out of equilibrium, including rods,
cages, stars and cubes [21, 22, 23, 24, 25]. Since this thesis focuses on equilibrium
nanoparticles made of FCC metals with more than a hundred atoms, these shapes will
not be discussed further.

2.4 Comparison of energetics
To compare the above mentioned shapes, we may construct a series of atomistic struc-
tures with increasing number of atoms attaining the target shape, calculate their energy,
and fit Eq. (2.1) to each such series. We may then compare the fits and determine which
shapes are stable in which size region (Fig. 2.4). Metals that adopt the FCC structure in
the bulk generally exhibit the same trend; icosahedra are stable for the smallest sizes,
Marks decahedra in an intermediate size regime, and regular truncated octahedra are
stable for all sizes above a certain threshold. This trend is an immediate consequence
of the scaling of the terms in Eq. (2.1). The first term dominates for large enough sizes,
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2.5. Deficiencies of continuum models
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Figure 2.4: Energy per atom in magic number Cu nanoparticles fitted to a third degree
polynomial in 𝑁−1/3 where 𝑁 is the number of atoms in the particle. The particles
were relaxed in LAMMPS [30] with the EAM potential parametrized by Mishin et al.
[8]. The color bars in the bottom indicate regions of stability, i.e., which shape has the
lowest energy.

which destabilizes shapes that are strained, i.e., decahedra and icosahedra. For smaller
sizes, the surface-to-volume ratio increases, making the second term increasingly im-
portant, favoring particles with a low overall surface energy. Since the icosahedron is
more extreme than the decahedron in this sense, for small enough sizes the icosahe-
dron will always be the most stable in this model. This trend is well-established and
has been demonstrated by similar means in several publications [26, 27, 28, 29].

2.5 Deficiencies of continuum models
Even though polynomial fits and Wulff constructions are powerful for making general
predictions and explain trends, they are fundamentally continuum models and thus
inherently unable to account for the finer details of the atomic scale. These include
finite size effects pertaining to quantum mechanics, such as the distribution of charge
around edges and corners. Volume dependent strain fields caused by surface tension
are also lacking in the continuum models described here.

Another important deficiency is that a certain number of atoms cannot form any
shape. To create a RTO, for example, one needs 38, 201, 586 (etc.) atoms, and an icosa-
hedron requires 55, 147, 309, 568 (etc.) atoms (marked with circles in Fig. 2.4). These
atom counts are referred to as magic numbers. Any number of atoms that does not
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Chapter 2. Shapes and structures of nanoparticles

match a magic number will always result in a shape that is not ideal, which could mean,
for example, a non-equilateral hexagon, an elongated shape, a reconstructed surface or
any other defect. In any case, such a particle cannot be expected to be well described by
a polynomial fit to magic number particles but will most likely have an energy higher
than such a fit. This issue is addressed in Paper I.

To improve the description of the energetics of nanoparticles, one is forced to aban-
don continuum models and calculate energies on the atomic scale. Atomic scale mod-
eling is the subject of Chapter 5.
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3
Thermodynamics of metallic alloys

It is ancient wisdom that an alloy of two metals often has the favorable properties
of both of its components. This is no less true at the nanoscale. The configuration
of chemical species, here referred to as chemical ordering, introduces an additional
knob that may be turned until a desired property is reached. The knob must, however,
obey thermodynamics. This chapter gives an introduction to alloy thermodynamics,
beginning with the bulk and closing with implications at the nanoscale.

3.1 Phase diagrams
Information about equilibrium states under various conditions can be visualized in a
phase diagram. This section focuses on the special case of a binary alloy with equilibria
as a function of composition and temperature. A particular pressure, typically 1 atm, is
implicit but it is in principle possible to extend the diagram with a pressure axis.

As we will see in Chapter 4, the state assumed in equilibrium is the one that mini-
mizes the free energy 𝐹 . To construct a phase diagram, one thus needs to know the
free energy as a function of composition and temperature. The situation becomes in-
teresting once the free energy curve contains a convex region. The system can then
decompose in two phases, the sum of which has a lower free energy than does the
non-decomposed phase.

Consider an alloy with a free energy curve 𝐹 (𝑐) such as the red one in Fig. 3.1(a). At
concentration 𝑐0, the system has a free energy 𝐹 (𝑐0). If the system decomposes in two
phases with concentrations 𝑐1 and 𝑐2 in proportions 𝛼1 and 𝛼2, the new free energy is

𝐹decomposed = 𝛼1𝐹 (𝑐1) + 𝛼2𝐹 (𝑐2) (3.1)

11



Chapter 3. Thermodynamics of metallic alloys

but the mass of either element needs to be conserved, so we require

𝛼1𝑐1 + 𝛼2𝑐2 = 𝑐0 and 𝛼1 + 𝛼2 = 1. (3.2)

Combining the equations we find

𝛼1 = 𝑐2 − 𝑐0
𝑐2 − 𝑐1

and 𝛼2 = 𝑐1 − 𝑐0
𝑐2 − 𝑐1

(3.3)

and the new free energy becomes

𝐹decomposed = 𝑐2 − 𝑐0
𝑐2 − 𝑐1

𝐹 (𝑐1) + 𝑐1 − 𝑐0
𝑐2 − 𝑐1

𝐹 (𝑐2). (3.4)

The question is then whether such a decomposition lowers the free energy (compared
to 𝐹 (𝑐0)) and which values of 𝑐1 and 𝑐2 minimize 𝐹decomposed. It is a simple matter of
differentiation and algebra to show that an extremum is reached for 𝑐1 and 𝑐2 chosen
such that

𝜕𝐹
𝜕𝑐 |𝑐=𝑐1

= 𝜕𝐹
𝜕𝑐 |𝑐=𝑐2

= 𝐹 (𝑐2) − 𝐹 (𝑐1)
𝑐2 − 𝑐1

, (3.5)

which implies that the tangents at 𝐹 (𝑐1) and 𝐹 (𝑐2) coincide (dashed lines in Fig. 3.1(a)).
This extremum is a minimum only if this tangent lies below 𝐹 (𝑐0). The family of such
tangents that lie below 𝐹 (𝑐) is referred to as the convex hull. The system decomposes
in regions where the convex hull deviates from 𝐹 (𝑐). Such regions are referred to as
multi-phase regions and an alloy phase diagram is a map where the boundaries for
these regions are drawn for each temperature [Fig. 3.1(b)].

3.2 Mean field treatment of the Ising model
The previous section discussed the emergence of two-phase regions for a material with
a given free energy 𝐹 (𝑐) but nothing was said about how this function emerges physi-
cally. The free energy (in this case the Helmholtz free energy) is defined as

𝐹 = 𝑈 − 𝑇 𝑆 (3.6)

where 𝑈 is the internal energy, 𝑇 the temperature and 𝑆 the entropy. The internal
energy 𝑈 depends on the binding energies between the atoms in the material. The
entropy 𝑆 , on the other hand, is oblivious to the chemistry of the components; it is
only a function of how the atoms of type 𝐴 and 𝐵 are ordered in the lattice (vibrational
entropy is neglected here).

The arguably simplest model of a binary alloy is the Isingmodel, inwhich the internal
energy is written as a sum of interactions between nearest neighbors. This interaction
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3.2. Mean field treatment of the Ising model
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Figure 3.1: Construction of phase diagrams (b, d) from free energy curves (a, c) for
two different models: the mean-field approximation of the Ising model Eq. (3.9) with
𝜔 = 0.13 eV/atom (a, b) and Ag–Pd modeled with a cluster expansion and Monte Carlo
simulations (c, d) [31]. The inset in (c) is a magnification of the Pd-rich side where a
concave region appears.

may take one of two different values, 𝑢0 if the nearest neighbors are alike or 𝑢A–B if
they are unlike. In an infinite crystal with completely random order (referred to as an
ideal solution), each atom will on average have 𝑛𝑐 neighbors of type A and 𝑛(1 − 𝑐)
neighbors of type B, where 𝑛 is the number of nearest neighbors for each atom and 𝑐
the overall concentration of A atoms. It is a simple algebraic exercise to show that the
internal mixing energy1 for the system can then be written

𝑈mix(𝑐) = 𝑈(𝑐) − 𝑐𝑈(1) − (1 − 𝑐)𝑈(0) = 𝑁𝜔𝑐(1 − 𝑐), (3.7)

where 𝑁 is the total number of atoms and 𝜔 = 𝑛(𝑢A–B − 𝑢0). Furthermore, the config-
1The mixing energy is often more convenient than the total energy for constructing phase diagrams

for the sake of visualization, but the physics is the same.
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Chapter 3. Thermodynamics of metallic alloys

urational entropy in the completely random state is

𝑆(𝑐) = −𝑁𝑘B ∑
𝑖

𝑝𝑖 ln 𝑝𝑖 = −𝑁𝑘B [𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐)] (3.8)

because each site is occupied by an A or B atom with probability 𝑝𝐴 = 𝑐 and 𝑝𝐵 = 1−𝑐,
respectively. Putting it all together, we have a free energy of mixing per atom

𝐹mix(𝑐) = 𝜔𝑐(1 − 𝑐) + 𝑘B𝑇 [𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐)] . (3.9)

If the bond between unlike atoms is stronger than the bond between alike atoms, such
that 𝜔 < 0, then 𝐹mix(𝑐) is negative and convex for all temperatures. If like atoms
bind stronger than unlike, however, then the function will have a concave region at
sufficiently low temperatures. As derived in the previous section, the system will then
decompose – in other words, it has a miscibility gap. This situation is illustrated in
Fig. 3.1(a–b) for two values of 𝑇 along with the resulting phase diagram. The phase
boundary for the miscibility gap (the solvus line) maps the maximum concentration
at which B can dissolve in A or vice versa as a function of temperature. This limit is
referred to as the solubility of either element in the other.

3.3 Order and disorder
In the mean field treatment of the Ising model we assumed random order and arrived
at an expression with only one material-dependent parameter, 𝜔. This is of course an
oversimplification of a real material. In general, minimization of 𝐹 leads to a competi-
tion between 𝑈 and 𝑇 𝑆 . If the interaction between unlike atoms is favorable enough,
the material will be ordered such that the number of such bonds is larger than in the
completely disordered state. An ordered phase has a lower entropy than a random one
and will thus only be stable at low enough temperatures. Furthermore, the character
of this order will depend on the details of the atomic interaction, for which the Ising
model does not in general provide a sufficient description. Usually, however, a gener-
alized Ising model (an alloy cluster expansion [32, 33]) can predict the correct phases,
because they can usually be described with a small supercell of the primitive cell [34].

Ag–Pd is an example of a system where order plays an important role. Some ordered
structures, in particular the L11 structure in which pure Ag and Pd planes are alternat-
ingly stacked in the {111} direction, have a substantially lower internal energy than
randomly ordered structures On the Pd-rich side of the free energy curve, however,
there is a relative lack of such low-energy structures. The consequence is a concave
region [Fig. 3.1(c)], which implies a two-phase region in the phase diagram [Fig. 3.1(d)].
This two-phase region is different from the one in the Ising model in the sense that it
is caused by “too” favorable bonds between unlike atoms at some compositions, rather
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3.4. Chemical order in nanoalloys

than the unfavorable bonds of the Ising model with 𝜔 > 0. This type of behavior is not
unusual in metallic alloys, and ordered phases occurring in a narrow region in a phase
diagram are sometimes referred to as intermetallic compounds.

It is in general difficult to predict the mixing behavior of two elements without so-
phisticated first-principles methods. A number of simple rules according to William
Hume-Rothery [35] do, however, attempt a prediction of whether two elements form
a substitutional solid solution:

• the atomic radii should differ by no more than 15 %,

• the crystal structures of the two elements should be similar,

• the two elements should have the same valency, and

• the two elements should have similar electronegativity (if they differ too much,
an intermetallic compound is likely to form).

The predictive power of these rules is limited if applied blindly, but they identify a
number of parameters that may have influence. It is thus tempting to attribute the
low solubility of Ag in Cu and vice versa to their 19 % difference in size [36], and the
tendency of Au–Cu to form intermetallic compounds to their 34 % difference in elec-
tronegativity [37, 38], and although such explanations of material properties are likely
to be oversimplified and incomplete, they certainly provide a more tangible picture
than a set of full many-body wave functions.

3.4 Chemical order in nanoalloys
The different possible orderings in macroscopic alloys pervade nanoalloys as well; the
mixing behavior in the bulk alloy is usually expected to be similar in the correspond-
ing nanoalloy. The existence of a surface, a finite number of atoms, strain and pos-
sibly polycrystallinity as in a decahedron or icosahedron do, however, allow for new
behavior and modification of the ranges at which particular phases are stable. This
has been demonstrated in computationally assessed phase diagrams for a wide range
of nanoalloys, including Pt–Rh [39], Ag–Au [40], Au–Cu [41], several Ni-based alloys
[42], and an artificial Lennard-Jones alloy [43]. It has also recently become possible
to experimentally image the chemical order of nanoalloys atom by atom using atomic
electron tomography [44]. Where models on the atomic scale would previously be com-
pared indirectly to observations in the laboratory, there is now an exciting avenue to a
level playground between theory and experiment.

A long-standing debate is whether or not miscibility is increased at the nanoscale.
This chapter has ignored that phase separation comes with a cost; the interface be-
tween two phases is associated with a free energy penalty 𝐴𝛾 , where 𝐴 is the area of
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Chapter 3. Thermodynamics of metallic alloys

Figure 3.2: Nanoalloys with idealized chemical orderings: (a) core–shell, (b) off-center
core–shell, (c) sandwich, (d) Janus, (e) random and (d) ordered.

the interface and 𝛾 an interface energy dependent on the phases, the orientation of the
interface etc. In a bulk system, this term can be ignored because one can assume the
interface area to be small compared to the volume of the system. In a nanoalloy, how-
ever, this assumption may break down. An initial analysis of the consequences may be
carried out by adding the 𝐴𝛾-term to Eq. (3.4) [45],

𝐹decomposed = 𝑐0 − 𝑐2
𝑐1 − 𝑐2

𝐹 (𝑐1) + 𝑐1 − 𝑐0
𝑐2 − 𝑐1

𝐹 (𝑐2) + 𝐴𝛾. (3.10)

For a nanoparticle with radius 𝑟, the first two terms scale with 𝑟3 whereas the last
term scales with 𝑟2 and one would thus expect that there is a critical radius below
which phase separation does not occur. Some experimental studies have supported this
supposition [46, 47, 48, 49, 50, 51], in particular for Au–Pt nanoalloys, but conclusions
from some of these studies have been questioned [52] and one should remember that it
is difficult to know whether thermodynamic equilibrium has been reached. There have
been very few signs of increased miscibility in computational studies [53, 43]. In one
of the most recent contributions to the debate [54], the absence of increased miscibility
was explained with the existence of special sites in nanoparticles; unlike a bulk system,
a nanoparticle has many symmetrically distinct sites on which the atoms may order
such that the interface does not increase the total free energy. Paper II essentially
supports this conclusion for the Ag–Cu system. In fact, it was observed that because of
the underlying nanoparticle structure, the interface in equilibrium is much larger than
it needs to be geometrically, but the system is still clearly phase separated.

While the debate on equilibrium chemical ordering continues, experimentalists keep
synthesizing nanoalloys that are not in equilibrium, often with a particular application
in mind. Some nomenclature has emerged to systematize possible structures (Fig. 3.2).
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3.4. Chemical order in nanoalloys

The core–shell structure [Fig. 3.2(a)] is particularly ubiquitous, partly because it is pos-
sible to synthesize for a wide range of alloys, including alloys that would mix in thermo-
dynamic equilibrium. A core–shell structure can for example be of economic interest
for an application where the element at the surface of the particle is important but
expensive and can be filled with a cheaper element in the core. Computational stud-
ies show that the core is often asymmetrically positioned in equilibrium [Fig. 3.2(b)].
The investigation of Ag–Cu in Paper II further indicates that the notion of a core is in
some structures merely a special case for a more complex segregation pattern, which
at some compositions may lead to a ring-like sandwich pattern [Fig. 3.2(c)]. The shape
of the segregate is thus largely dictated by the underlying structure of the particle.
So-called Janus particles, where the elements segregate at either side of the particle
[Fig. 3.2(d)], are attractive for some applications primarily because they are inherently
anisotropic. Randomly mixed nanoalloys [Fig. 3.2(e)] and nanoalloys with long-range
order [Fig. 3.2(e)] are often desirable for applications in catalysis, where there can be a
synergistic effect from the two elements. There are of course many more possibilities
than the highly idealized structures described here, and some of them are illustrated in
Paper II.
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4
Statistical mechanics at the bulk

and nanoscale

Ordinary thermodynamics is strictly valid only in the thermodynamic limit where the
number of particles tend to infinity or is at least on the order of 1023 or so [55]. Take,
for example, the expression for the energy of a nanoparticle introduced in Chapter 2
[Eq. (2.1)]. The internal energy is an extensive property in ordinary thermodynamics
– if we double the number of atoms, the energy doubles as well. This is clearly not the
case in the nanoparticle energy expression. This violation invalidates many of the ex-
pressions that we know from thermodynamics and a more careful treatment is called
for. The generalization to smaller systems is not entirely straight-forward, and even
though frameworks have been laid out [56], several subtle aspects are still subject to
debate [57, 58, 59]. This thesis does not attempt to navigate this minefield but resorts
to statistical mechanics, which is equally valid in small and large systems. Yet, as in
the previous chapter, a thermodynamic terminology is often used but should some-
times be understood in an approximate sense. This chapter uses statistical mechanics
to highlight a few aspects where macroscopic and nanoscale systems differ.

4.1 Statistical mechanics in the thermodynamic
limit

Consider a system in contact with a heat reservoir. All information about the system
is encoded in its partition function,

𝑍 = ∑𝑠
𝑒−𝜖𝑠/𝑘B𝑇 . (4.1)
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Chapter 4. Statistical mechanics at the bulk and nanoscale

Here, the sum is taken over all microstates 𝑠 with corresponding energy 𝜖𝑠. It is com-
mon (but often implicit) practice in statistical mechanics to coarse-grain the system.
We may for example group all microstates that have the same energy 𝐸,

𝑍 = ∑
𝐸

∑
𝑠→𝐸

𝑒−𝜖𝑠/𝑘B𝑇 = ∑
𝐸

Ω(𝐸, 𝑉 , 𝑁)𝑒−𝐸/𝑘B𝑇

= ∑
𝐸

exp [(𝑘B𝑇 ln Ω(𝐸, 𝑉 , 𝑁) − 𝐸) /𝑘B𝑇 ] .
(4.2)

The quantity Ω(𝐸, 𝑉 , 𝑁) counts the multiplicity of each macrostate 𝑁, 𝑉 , 𝐸, i.e., how
manymicrostates that correspond to energy 𝐸 (at this particular volume 𝑉 and number
of particles 𝑁 ). Ludwig Boltzmann used this quantity to define entropy, 𝑆(𝐸, 𝑉 , 𝑁) =
𝑘B ln Ω(𝐸, 𝑉 , 𝑁), so we may write our partition function as

𝑍 = ∑
𝐸

exp [− (𝐸 − 𝑇 𝑆(𝐸, 𝑉 , 𝑁)) /𝑘B𝑇 ] . (4.3)

We know from ordinary thermodynamics of macroscopic systems that 𝑇 𝑆 and 𝐸 are
usually on the order of kilojoules, whereas 𝑘B𝑇 at room temperature is on the order of
tens of millielectronvolts. The exponents are thus on the order of 1023, which makes
the terms of Eq. (4.3) unfathomably large. Any term in which the exponent is just a
tiny fraction larger than the others will completely dominate the sum. It is thus of
great interest to study the quantity in the exponent. We refer to it as free energy, in the
case of the canonical partition function the Helmholtz free energy;

𝐹 = 𝐸 − 𝑇 𝑆(𝐸, 𝑉 , 𝑁). (4.4)

Whichever energy 𝐸 minimizes 𝐹 will completely dominate the partition function, and
will thus be an overwhelmingly more likely macrostate to observe than any other. We
can thus write

𝑍 ≈ 𝑒−𝐹min/𝑘B𝑇 . (4.5)
So while Eq. (4.4) indicates a dependency on energy 𝐸, one would usually write (or
rather mean)

𝐹 (𝑇 , 𝑉 , 𝑁) = 𝐹min = ⟨𝐸⟩ − 𝑇 𝑆(⟨𝐸⟩, 𝑉 , 𝑁), (4.6)
which indicates that theminimization has already been carried out and that Eq. (4.4) has
been evaluated at theminimizing energy, ⟨𝐸⟩. Wemay conclude that probability favors
a particular state with a particular energy 𝐸 andwe refer to this as the equilibrium state.

4.2 Small systems
In the previous section, we assumed a macroscopic system (𝑁 ≈ 1023). For nanoparti-
cles in which the number of atoms is on the order of 10 to 108, some of the conclusions
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are not valid and one has to tread carefully. One important consequence is that fluctua-
tions of macroscopic quantities, which vanish in the thermodynamic limit, can become
appreciable in small systems. Consider, for example, the variance in energy in the
canonical ensemble (using 𝛽 = 1/𝑘B𝑇 ),

Var𝐸 = ⟨𝐸2⟩ − ⟨𝐸⟩2 = 1
𝑍 ∑

𝐸
𝐸2𝑒−𝛽𝐸 −

(
1
𝑍 ∑

𝐸
𝐸𝑒−𝛽𝐸

)

2

(4.7)

= 1
𝑍

𝜕2𝑍
𝜕𝛽2 − 1

𝑍2 (
𝜕𝑍
𝜕𝛽 )

2
= 𝜕

𝜕𝛽 (
1
𝑍

𝜕𝑍
𝜕𝛽 ) = −𝜕 ⟨𝐸⟩

𝜕𝛽 = (4.8)

= 𝑘B𝑇 2 𝜕 ⟨𝐸⟩
𝜕𝑇 = 𝑘B𝑇 2𝐶 (4.9)

where 𝐶 is the heat capacity. Assuming that ⟨𝐸⟩ and 𝐶 scale with the number of par-
ticles (which would be an approximation for a small system), we have that the relative
fluctuations scale as

√Var𝐸
⟨𝐸⟩ = √𝑘B𝑇 2𝐶

⟨𝐸⟩ ∝ 1
√𝑁

. (4.10)

Fluctuations are thus negligible in large systems but can be comparably large in small
systems. As an illustration, we may take a metal nanoparticle with 1000 atoms. The
heat capacity of a metal at sufficiently high temperature is usually approximated well
by 𝐶 ≈ 3𝑁𝑘B so that the (absolute) fluctuations at room temperature (𝑘B𝑇 ≈ 25 meV)
are on the order of √3 × 1000 × (25 meV)2 ≈ 1 eV or 1 meV/atom. Although this
value may appear small, the results of Paper I show that it is of the same magnitude as
the difference between the energies of structural motifs, which indicates that thermal
fluctuations may be sufficient to cause structural transitions in nanoparticles unless
energy barriers are too high.

Another difference between large and small systems is that the ensembles are equiv-
alent in the former but not necessarily in the latter [60]. This means that it does not
matter whether a macroscopic system is isolated or in contact with a heat bath as long
as the average energy of the thermostated system is the same as the one in the isolated
system – any measured quantity will have the same value in the two systems. This
need not be true in a microscopic system.

Furthermore, phase transitions are smoothened below the thermodynamic limit, es-
sentially a consequence of a finite number of terms in the partition function. In addition
to a smooth behavior, it has been observed that the transition temperature and the as-
sociated latent heat tend to be lowered in small systems [60, 61].

Although large and small systems differ in several aspects, it should be stressed that
the fundamental assumptions of statistical mechanics, for example that the probability
of a state in the canonical ensemble is 𝑒−𝛽𝜖/𝑍 , are the same regardless of system size.
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Chapter 4. Statistical mechanics at the bulk and nanoscale

The differences lie merely in the consequences, meaning that some calculations may
become more laborious or that results from the thermodynamic limit have to be taken
as approximations in finite systems. This thesis, in which nanoparticles with more
than a few hundred atoms are the protagonists, has the approximations approach as its
philosophy.

4.3 Ensembles of nanoparticles
Statistical mechanics has as one of its key components ensembles, i.e., large sets of vir-
tual copies of the system in different states. This concept indeed appears somewhat
virtual in the thermodynamic limit where there is usually only one real system. For
nanoparticles, on the other hand, “ensembles” are realized in real systems all the time;
a laboratory making one nanoparticle at a time would hardly make a profitable busi-
ness. A dilute solution of nanoparticles is for example well approximated by a canoni-
cal ensemble for which the solvent is the heat reservoir. Unlike the virtual copies of a
statistical mechanics ensemble, the nanoparticles in such a system do interact by heat
exchange with the solvent, but if the solvent is voluminous enough to have an essen-
tially infinite heat capacity, this interaction is merely indirect. A seemingly trivial but
delightful consequence is that if we calculate, say, that the probability in the canonical
ensemble for a certain nanoparticle to be an icosahedron is 30 %, a solution with 10,000
such particles should have on average 3,000 icosahedra.

In a similar fashion, we can imagine a solution of nanoparticles that may exchange
both energy and atoms with the solvent. Even though atoms would be exchanged
between particles, each particle may be considered an independent system interacting
with a reservoir of heat and single atoms. The corresponding ensemble is referred to
as grand canonical, and the probability for a particular state for a single particle is
calculated as

𝒫 (𝑠) = 𝑒−𝛽(𝜖𝑠−𝜇𝑁)

𝒵 , (4.11)

where 𝜇 is the chemical potential of the atoms that are being supplied from the solution,
𝑁 is the number of atoms in the particle and 𝒵 is the partition function in the grand
canonical ensemble (a sum over all states of terms such as the one in the numerator).

In practice, an equilibrium solution of metallic nanoparticles that exchange atoms
with the solution may be difficult to realize in an experiment, because the atoms are
generally much too strongly bound to be released to the solution. The experimental
problem is rather the opposite, that nanoparticles tend to cluster into bigger entities,
a phenomenon usually prevented by stabilizing organic molecules on the surface of
the particles. The atom count for each particle is to a large extent established during
growth, when the particles assemble atoms from a solution of a metal salt and a re-
ducing agent. This process is predominantly kinetically driven and can usually only

22



4.3. Ensembles of nanoparticles

be understood partially from an equilibrium perspective. The result is always that the
particle ensemble is more or less polydisperse, i.e., the particles have different numbers
of atoms, but the size distribution is, as a manifestation of the central limit theorem,
usually well described by a normal distribution regardless of synthesis route.

If the properties of nanoparticles were smooth functions of atom count, a polydis-
perse ensemble would show similar properties as a monodisperse one. But this may
not always be the case, because as mentioned in Sect. 2.5, nanoparticles tend to ex-
hibit magic numbers for which particles are perfectly symmetric in some structural
motifs. The density of magic numbers is different for different structural motifs, and in
Paper I we demonstrate that there are also “semi-magic” numbers for which the outer-
most atomic shell has covered some facets but not others. This possibility points to the
importance of considering the whole distribution of sizes in a polydisperse ensemble
and not just the average size. In Paper I, we assumed a normal distribution 𝑓(𝑛, 𝑁) of
atom counts 𝑛 with average atom count 𝑁 . For each atom count, we then assumed a
Boltzmann distribution of shapes, such that the probability of a shape 𝑠0 is

𝒫𝑛(𝑠0) =
exp (−𝛽𝜖𝑛,𝑠0)

∑𝑠𝑖
exp (−𝛽𝜖𝑛,𝑠𝑖)

, (4.12)

where 𝜖𝑛,𝑠𝑖 is the lowest energy of any particle with 𝑛 atoms in structural motif 𝑠𝑖.
The probability for a particular shape for an ensemble with average size 𝑁 was then
calculated as

𝒫𝑁 (𝑠0) = 1
𝑀 ∑𝑛

𝑓(𝑛, 𝑁)𝒫𝑛(𝑠0) (4.13)

where 𝑀 ensures that the probabilities sum up to 1. Fed with the results from the
algorithm of Paper I, this model indicates that there is a distribution of structural mo-
tifs in thermodynamic equilibrium. The model assumes that energetics does not affect
the distribution of atom counts; it is not more probable to have a particle with 923
atoms just because it is an icosahedral magic number. This may or may not be a valid
assumption, depending on the growth protocol. It is perhaps more questionable that
only the ground states for three structural motifs were taken into account, and all with
the same multiplicity. Whereas inclusion of more structural motifs with higher energy
could only strengthen the conclusion that there is a distribution of shapes in thermody-
namic equilibrium, it cannot be ruled out that an account for multiplicity could have the
opposite effect. Furthermore, elevated temperatures, which are assumed in the Boltz-
mann factors of Eq. (4.12), may favor some structural motifs over the others, primarily
due to vibrations. This has been demonstrated in the case of Au, for which decahe-
dral particles were seen to be stabilized by temperature relative to the other structural
motifs [28].
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5
Computational methods

The overarching theme of this thesis is the prediction of nanoparticle characteristics
on the atomic scale. To this end, an essential ingredient is the calculation of potential
energy as a function of atomic positions. The Schrödinger equation provides a solid
fundamental basis, which in theory provides a sufficient description on which we could
base our calculations. The problem, however, is one of scales; we want to address
systems with thousands of atoms, meaning tens of thousands of electrons, and we need
to calculate the energy of these systemsmillions of times to evaluate partition functions
and identify ground states. Not even the most efficient techniques and approximations
in quantum mechanical calculations are sufficient to tackle this problem. The situation
calls for a much more efficient approach, and a viable option is provided by interatomic
potentials and molecular dynamics (MD). The resulting framework is purely classical
mechanics. This chapter describes and motivates the use of these methods, along with
a few other computational techniques of relevance in the thesis.

5.1 The Born–Oppenheimer approximation
Why is a classical mechanics approach to an atomic scale problem valid? The physics
and chemistry of a material are largely governed by its electronic structure, and elec-
trons at room temperature have a de Broglie wavelength of more than 4 nm, which is
much longer than the interelectronic distances, and thus much too long for a classical
description to be valid. The resolution is the application of the Born–Oppenheimer ap-
proximation, which formalizes the consequences of the difference in mass between the
atomic nuclei and the electrons. In this approximation, the wave function is assumed to
be separable in an electronic and an ionic part, and the electrons are assumed to instan-
taneously assume the ground state for given positions 𝒓 of the ions. The result is that
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the Schrödinger equation for the full system can be simplified to a Schrödinger equa-
tion for the ionic wave function only, but with an effective potential 𝑈(𝒓) incorporating
the energy of the electrons [62],

𝑈(𝒓) = 𝑈𝑍𝑍(𝒓) + 𝜖0(𝒓). (5.1)

Here, 𝑈𝑍𝑍(𝒓) is the potential energy from ion–ion interaction and 𝜖0(𝒓) the ground
state energy of the electrons with ions fixed in positions 𝒓. The de Broglie wavelength
of an atomic nucleus in room temperature is always much smaller than the interatomic
spacing, in particular for the heavier elements. A classical treatment of the ions is
thus warranted, and since 𝑈(𝒓) is the effective potential for the ions, we can use it in
the same way as we would use any classical potential. The quantum mechanics of the
electrons is then implicitly taken into account in the functional form of 𝜖0(𝒓). It is worth
noting that even though 𝑈(𝒓) is often referred to as the potential energy of the atoms,
it contains also the kinetic energy of the electrons via 𝜖0(𝒓).

5.2 Interatomic potentials
The possibility to use a classical potential to describe the energetics of a material is a
blessing only if we can find a proper form for the interatomic potential 𝑈(𝒓). Whereas
an exact expression is of course unattainable, many attempts have been made to find
proper functional forms that can be fitted to experimental observations or theoretical re-
sults from quantum mechanics (usually obtained with density functional theory (DFT)
calculations). Some of the first attempts can be classified as pair potentials, which are
simply sums over pairs of atoms,

𝑈(𝒓) = 1
2 ∑

𝑖,𝑗
𝑖≠𝑗

𝜙𝑖𝑗(𝑟𝑖𝑗). (5.2)

Here, 𝑟𝑖𝑗 denotes the distance between atom 𝑖 and 𝑗. The remaining task is to determine
the form of 𝜙, which, however, is a one-dimensional function and thus tractable to
parametrize empirically. Examples of pair potentials include the forms suggested by
Lennard-Jones and Morse already in the 1920s.

5.2.1 Embedded atom method
Pair potentials have merit in their simplicity but fail to reproduce fundamental prop-
erties of most materials. A deficiency particularly damaging for metals is the built-in
dependency of energy on the number of bonds in pair potentials. This bond-counting
nature forces the energy to scale linearly with the coordination number (the number of
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neighbors for a given atom). In a real metal, on the other hand, the energy scales more
closely with the square root of the coordination number; a bond formed in isolation is
stronger than a bond formed in presence of other bonds [62, 63].

The expected scaling can be reproduced by introducing a second term,

𝑈(𝒓) = 1
2 ∑

𝑖,𝑗
𝑖≠𝑗

𝜙𝑖𝑗(𝑟𝑖𝑗) + ∑
𝑖

𝐹𝑖(𝜌𝑖). (5.3)

Here, 𝐹 is a functional dependent on a yet unspecified function 𝜌. A number of poten-
tials of this or similar forms were published in the 1980s and have come to be known as
embedded atom method (EAM) [64], effective medium theory [65, 66], Finnis–Sinclair
potentials [67], glue potentials [68] etc. The nomenclature is more diverse than the
physics, and we will base the discussion on EAM, which is employed in Papers I and II.

In EAM potentials, the functional 𝐹𝑖 is referred to as the embedding term and de-
pends on a linear superposition of the electron densities from the neighboring atoms
[63],

𝜌𝑖 = ∑
𝑗≠𝑖

𝜌𝑎
𝑗 (𝑟𝑖𝑗). (5.4)

Here, 𝜌𝑎 is a function that remains to be determined and just as before, 𝑟𝑖𝑗 is simply
the distance between atom 𝑖 and 𝑗, meaning that the electron density from each atom
is approximated as spherically symmetric. Such a superposition of electron densities
can be motivated by the Hohenberg–Kohn theorems [69], from which it is known that
the energy can be written as a functional of the electron density. This concept was fur-
ther elaborated by Stott and Zaremba [70] who showed that the energy of an impurity
embedded in a host is a functional of the electron density of the unperturbed host. The
impurity may in this case simply be the same kind of atom as the host. This shows
that there is a fundamental reason for writing the energy as a functional of the elec-
tron density of the neighboring atoms, even though the exact form of this functional is
unknown.

To construct an EAM potential for a specific material, one needs to determine 𝜙,
𝐹 and 𝜌𝑎. This is typically done by choosing certain physically reasonable functional
forms with the desired number of free parameters and fitting those parameters to exper-
imental and/or first-principles data for certain materials properties, which may include
cohesive energy, lattice parameter, elastic constants, thermal expansion coefficients,
defect formation and migration energies, phonon frequencies etc, all in one or more
crystal structures. This task needs to be carried out with care and all potentials have
a limited range of applicability, largely determined by the input data in the parameter
fit.

As we have seen, EAM potentials assume a spherically symmetric electron density
centered at each atom. Their accuracy is thus dependent on a high degree of non-
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directional bonding. The late transition metals are particularly well suited in this re-
gard, because their filled 𝑑 band (and 𝑠 orbital in the case of the coinage metals) gives
rise to a predominantly spherically symmetric electronic structure and thus low degree
of directionality. For materials with a high degree of directionality, most notably co-
valently bonded solids such as diamond and silicon, other functional forms are needed
and a viable approach is to include three-body terms, which is, however, beyond the
scope of this thesis in which all closely studied materials are late transition metals.

5.3 Atomistic simulations
An interatomic potential is an extremely efficient tool for calculating energies and
forces in atomistic systems. With such a tool, one can efficiently sample a large number
of states and thus calculate a wealth of materials properties.

5.3.1 Molecular dynamics
One of the most obvious application of interatomic potentials is to temporally evolve a
system of atoms in some geometry according to Newtonian mechanics. This has been
coinedmolecular dynamics (MD). Every atom 𝑖 in aMD simulation is assigned an initial
coordinate 𝒓𝑖 and momentum 𝒑𝑖 and the system is propagated in time with each atom
acting on every other according to Newton’s second law,

𝑭𝑖 = −∇𝑈(𝒓𝑖) = ̈𝒑𝑖. (5.5)

The basic idea is simple but the actual implementation may be complicated with a
wealth of considerations regarding, for example, discretization of time and space, bound-
ary conditions, cutoffs in the interatomic potential and baro- or thermostats to mimic
a desired physical situation.

5.3.2 Time and ensemble averages
Physical quantities are usually extracted from MD simulations by taking averages over
time,

̄𝑓 = 1
𝜏 ∫

𝜏

0
𝑓(𝑡) d𝑡. (5.6)

Here, 𝑓 is the sought-for physical quantity, 𝑡 time and 𝜏 a certain time interval. The
spirit is the same as an experimental measurement, which does also always occur over
some time, short or long. It is often assumed that the time average equals the ensemble
average,

⟨𝑓⟩ =
∫ 𝑓(𝒓, 𝒑)𝑒−𝜖(𝒓,𝒑)/𝑘B𝑇 d𝑟𝑁 d𝑝𝑁

∫ 𝑒−𝜖(𝒓,𝒑)/𝑘B𝑇 d𝑟𝑁 d𝑝𝑁 . (5.7)
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If the ergodic hypothesis holds for the system at hand, i.e., all microstates are equally
probable over a sufficiently long time scale, we may indeed have ̄𝑓 = ⟨𝑓⟩. In this
context, it needs to be stressed that atomic motion occurs on the scale of picoseconds,
which means that a typical MD simulation rarely exceeds microseconds and typically
much less. The risk of having a system trapped between energy barriers in a certain
part of phase space over the time scale of the simulation is thus significant, such that
the time average will differ from the ensemble average even if the ergodic hypothesis
holds for the system under consideration. A good example is a metallic alloy, for which
atoms rarely exchange sites, hindering the use of MD for sampling configuration space.
In such systems, other computational methods are called for.

5.3.3 Monte Carlo simulations
Monte Carlo (MC) represents a wide class of computational methods that rely on sam-
pling with a component of randomness to evaluate multidimensional integrals. Here,
Monte Carlo (MC) will be described in a limited scope as applied to configurational
sampling of an alloy using the Metropolis algorithm. In such a simulation, the atoms
are fixed and the system is described by the chemical identity of the atoms on each site.
The simulation consists of changing the chemical identities on trial, and accepting or
rejecting the change based on a carefully chosen criterion. Metropolis et al. [71] chose
the criterion

𝒫 (accept) = min {1, exp (Δ𝐸/𝑘B𝑇 )} (5.8)

where Δ𝐸 is the change in potential energy caused by the trial. This choice ensures
that an ensemble of systems subject to this criterion approaches the canonical ensem-
ble [71], or in other words, a single simulation will sample a Boltzmann distribution.
In the canonical ensemble, the concentration is always conserved, which means a trial
change will always consist of a swap of chemical identity between two sites with unlike
atoms. Such MC simulations may overcome the inability of MD to properly sample all
of configuration space, because the simulation knows fewer energy barriers; all calcu-
lated quantities are ensemble averages and the algorithm is usually not designed as to
simulate a real trajectory.

5.3.4 The semi-grand canonical ensemble
The Metropolis criterion is readily generalized to ensembles other than the canonical.
The procedure is to simply switch Δ𝐸 in Eq. (5.8) to the change in the thermodynamic
potential associated with the ensemble to be sampled (excluding the −𝑇 𝑆 term). For
alloys, a common choice is the semi-grand canonical (SGC) ensemble. This ensemble
corresponds to a physical situation in which the difference in chemical potential be-
tween different species is fixed (in addition to temperature, volume and total number
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of atoms 𝑁 ). The SGC ensemble thus allows the concentrations to fluctuate, such that
a trial change can be taken as the change of chemical identity on a single site, i.e., no
swap of two sites as in the canonical ensemble. A Legendre transformation [55] reveals
that the thermodynamic potential associated with the ensemble is

𝜓 = 𝐸 + 𝑁𝑐Δ𝜇 − 𝑇 𝑆, (5.9)

where 𝑁 is the total number of atoms, 𝑐 = 𝑁𝐴/𝑁 the concentration of species 𝐴, and
Δ𝜇 = 𝜇𝐴 − 𝜇𝐵 the difference in chemical potential between species 𝐴 and 𝐵. The
modified Metropolis criterion is thus

𝒫 (accept) = min {1, exp [(Δ𝐸 + 𝑁Δ𝑐Δ𝜇) /𝑘B𝑇 ]} . (5.10)

In MC simulations of alloys, the SGC ensemble has at least two advantages over
the canonical ensemble. Firstly, the acceptance probability may get very low when
using the canonical ensemble for a system where moves that keep the energy low are
rare. The probability of lowering the energy when swapping two randomly picked
sites, as is done in the canonical ensemble, is essentially the square of the already low
probability of finding a favorable switch. Secondly, the allowance to vary concentration
makes it simple to continuously carry the system from one composition to another and
integrate the free energy along the path. The theoretical foundation for the free energy
integration is derived in a fashion similar to Sect. 4.1. The SGC partition function 𝒵
can be coarse-grained in energy and concentration,

𝒵 = ∑𝑠
exp [(−(𝜖𝑠 + 𝑁𝑐Δ𝜇)/𝑘B𝑇 ]

= ∑
𝑐,𝐸

Ω(𝑐, 𝐸) exp [−(𝐸(𝑐) + 𝑁𝑐Δ𝜇)/𝑘B𝑇 ]

= ∑
𝑐,𝐸

exp [−(𝐸 − 𝑇 𝑆(𝐸, 𝑉 , 𝑁, 𝑐) + 𝑁𝑐Δ𝜇)/𝑘B𝑇 ]

≈ ∑𝑐
exp [−(𝐹 (𝑇 , 𝑉 , 𝑁, 𝑐) + 𝑁𝑐Δ𝜇)/𝑘B𝑇 ] .

(5.11)

The last step introduced the canonical free energy 𝐹 (𝑇 , 𝑉 , 𝑁, 𝑐) in the same fashion as
in Sect. 4.1 andwith emphasis on the fact that it is defined as a function of concentration
𝑐. For every value of 𝑇 , 𝑁 and Δ𝜇, and for a sufficiently large system, the term with
the largest exponent will dominate the sum. Assuming the exponent is differentiable
in 𝑐, we have

𝜕
𝜕𝑐 (𝐹 (𝑇 , 𝑉 , 𝑁, 𝑐) + 𝑁𝑐Δ𝜇) = 0 (5.12)

so that
𝜕𝐹
𝜕𝑐 = −𝑁Δ𝜇. (5.13)
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In practice, the canonical free energy energy can thus be recovered from a MC sim-
ulation in the SGC ensemble by continuously varying Δ𝜇 and recording the average
concentration. It is worth noting that the thus calculated free energy is not the one
that is formally minimized in the SGC ensemble, but the derivation is anyway strictly
valid only for large systems in which the ensembles are equivalent and this issue has
no practical consequences.

The SGC ensemble is, however, limited in systems with multi-phase regions, because
Δ𝜇 maps to multiple values of the concentration in such regions. A MC simulation in
the SGC ensemble will not be able to stabilize in such a region, but will discontinu-
ously jump between the phase boundaries. While such jumps contain information that
may be exploited to, for example, construct phase diagrams, they prevent extraction of
information from within the multi-phase region.

5.3.5 The variance-constrained semi-grand canonical ensemble
To overcome the limitations of the SGC ensemble in multi-phase regions, Sadigh et al.
[72, 73] developed the variance-constrained semi-grand canonical (VCSGC) ensemble,
which takes inspiration from the SGC ensemble but introduces a parameter 𝜅̄ that con-
strains the fluctuations (variance) of the concentration. Its thermodynamic potential
can be written

𝜓𝑉 = 𝐸 + 𝜅̄𝑁𝑘B𝑇 (𝑐 + ̄𝜙/2)
2 − 𝑇 𝑆 (5.14)

where ̄𝜙 replaces Δ𝜇 as the parameter that drives the concentration. For a sufficiently
large value of 𝜅̄, the mapping between ̄𝜙 and 𝑐 becomes single-valued so that a simu-
lation can stabilize concentrations also inside multi-phase regions. A derivative of the
canonical free energy can be derived in the exact same way as for the SGC ensemble,
and one finds that

𝜕𝐹
𝜕𝑐 = −2𝜅̄𝑁𝑘B𝑇 (𝑐 + ̄𝜙/2) . (5.15)

It is thus possible to integrate the free energy across multi-phase regions by recording
the average concentration in a MC simulation in the VCSGC ensemble.

5.3.6 Hybrid MD–MC simulations
When discussing the energetics of alloys, it is often convenient to split the partition
function in a configurational and a vibrational part,

𝑍 = ∑𝝈 ∫Ω𝝈
𝑒−𝐸/𝑘B𝑇 d𝑟𝑁 d𝑝𝑁 . (5.16)

Here, the configurational part is represented by a sum over all possible decorations 𝝈 of
the lattice, whereas the vibrational part is represented by a multidimensional integral
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over the part of phase space Ω𝝈 consistent with each decoration. It is often advanta-
geous to evaluate the different parts with different methods; because MD is particularly
well suited for sampling the vibrational and MC the configurational part, we may com-
bine the two. In practice, this means that we run a MD simulation but interrupt it at
regular intervals to carry out a series of MC trial steps. A quantity of interest is then
calculated by time averages over the vibrational part combined with ensemble averages
over the configurational part. This technique was employed in Paper II.

5.4 Energy minimization techniques
MD and MC simulations are often used to study materials at a specific temperature.
A well-behaved system will approach equilibrium, and equilibrium properties can be
extracted by calculating averages and analyzing trajectories. As a special case, one is of-
ten interested in the equilibrium at zero temperature, i.e., the ground state. The ground
state is conveniently characterized by a minimum in potential energy and is as such, if
nothing else, attractively well-defined and of fundamental interest. For many systems
it also often provides a reasonable approximation to the equilibrium state at room tem-
perature, provided that the melting temperature is much higher. Unfortunately, it is
not straightforward to extract the ground state from MD or MC simulations, because
sampling can become prohibitively inefficient at low temperatures.

5.4.1 Spatial and configurational global optimization
The separation of the partition function in a configurational and a spatial part (as in
Eq. (5.16)) is fruitful when facing the task of finding ground states in metallic systems.
For monometallic particles, the configurational part disappears and the problem is es-
sentially to position a given number of atoms in space such that their interaction yields
the lowest energy. Given that every atom has three coordinates, this problem is extraor-
dinarily difficult already for clusters with less than a few tens of atoms. The problem
has received considerable attention and become the the target of many novel optimiza-
tion schemes [74]. A wide array of techniques exist [75, 76], many of which are based
on either genetic algorithms [77, 78] or basin hopping [79, 80, 81].

The problem of optimizing the configuration, i.e., assigning an optimal ordering of
chemical identities, is quite different, because in this case the possible states are discrete.
For a binary system with 𝑁 atoms of which 𝑁𝐴 are of type 𝐴 and 𝑁𝐵 of type 𝐵, the
number of possible configurations 𝑛 is exactly

𝑛 = 𝑁!
𝑁𝐴!𝑁𝐵! . (5.17)

Many of these are usually equivalent by symmetry, but the number is still extremely
large for a few tens of atoms and non-dilute concentrations. This problem is even more
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Figure 5.1: Schematic of simulated annealing in a hybrid MD–MC simulation, in this
case for a Au–Pd {111} surface alloy. Orange dots indicate that the MD propagation
is interrupted for MC trial steps. At high temperatures, the surface is disordered but
as low temperatures are reached, the surface assumes an ordered ground state, in this
case a honeycomb pattern.

well-studied than monoelemental optimization, but the gallery of useful optimization
techniques turns out almost the same [75, 76, 82, 83, 84, 85], even though the possibility
of lattice-based energy models for alloys opens an avenue to more specialized methods
[86]. It should be stressed that the configurational and spatial parts are dependent; the
optimal configuration may change as the positions of the atoms are changed. Global
optimization of a nanoalloy is thus significantly more difficult than global optimization
of a monoelemental particle.

5.4.2 Local optimization
The difficulty of the global optimization problem has necessitated restricted searches
for local minima. A particularly common approach has been to restrict the positions of
the atoms to the vicinity of a structural motif and then optimize the chemical configura-
tion subject to that structure, possibly allowing local relaxation [87, 88, 89]. The struc-
tures have usually been chosen from the high-symmetry motifs described in Chapter 2.
Both global minimizations and experimental observations have repeatedly pointed to
the relevance of these structures, and even if a particular configuration in the chosen
structure is not a global minimum, experimentally a nanoalloy may very well be kinet-
ically trapped in that structure. This is the philosophy of Paper II.
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5.4.3 Simulated annealing
Another widespread approach to optimization is simulated annealing (Fig. 5.1). It is
inspired by the procedure an experimentalist might follow to quench a real system into
its ground state. A MD or MC simulation is started at high temperature, where chances
are good that energy barriers can be overcome, and the temperature is gradually low-
ered. The system is then expected to approach its ground state or a local minimum if
the setup constrains the system to a certain part of phase space. There is a risk that
the system is quenched into a funnel of the potential energy surface whose bottom
is not the ground state. Still, simulated annealing does in practice often identify the
global ground state, in particular if the process is repeated multiple times. Simulated
annealing with hybrid MD–MC was employed in both Paper I and II.

5.5 Elastic strain
Elastic strain, being ameasure of the deformation of a solid body, is in general described
with a two-dimensional tensor with six independent components [90]. In this thesis,
the term is usually used in a restricted sense referring to volumetric strain, i.e., the
relative change in volume (Δ𝑉 /𝑉 ). Mathematically, the volumetric strain is the sum of
the diagonal components of the strain tensor.

In the present context, the strain needs to be calculated on a per atom basis. This
was done using the ovito software [91] in both Paper I and II. The calculation relies on
a comparison between the environment for each atom and the ideal crystal structure,
here taken as the FCC structure with the bulk equilibrium lattice parameter. This com-
parison is only possible if the local structure is sufficiently similar to the ideal crystal
structure, and is dependent on computational crystal structure identification [92]. As
a consequence, atoms at interfaces (including twin boundaries and the surface of the
particles), were excluded from the strain analyses.
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6
Summary of the papers

6.1 Paper I
Paper I introduces an algorithm for predicting nanoparticle structures in a wide size
range. At its core, it is a straight-forward application of MC simulations to the binary
metal–vacancy system. This system is an extreme example of an immiscible system
for which the SGC ensemble fails to stabilize any composition but pure vacuum and
compact bulk. It thus provides an attractive use case for the VCSGC ensemble.

The algorithm is based on simulated annealing coupled to a sequential sweep of the
concentration driving parameter ̄𝜙 of the VCSGC ensemble. MC trial steps changing
atoms to vacancies or vice versa are regularly interrupted for atomic relaxation and
the lowest energy structure for each number of atoms is recorded. The algorithm re-
lies on an a priori definition of a structural “lattice”. In the paper, we chose the most
well-studied ones, specifically single crystalline, decahedral, and icosahedral structural
motifs. Atoms are only allowed to relax locally from this lattice, such that the energy
minimum search is restricted to the a priori defined structural motifs.

Our algorithm successfully identifies previously reported high symmetry particles of
all three structural motifs, indicating that the algorithm is stable and capable of identify-
ing ground state structures. Interestingly, for single crystalline and decahedral particles
our algorithm finds particles with energy on par with the energy of the magic number
particles for any number of atoms. The primary reason is that both of these motifs pro-
vide ample opportunity for slight modifications of facet areas, shapes and asymmetries,
which all have a very small impact on the total energy. For icosahedral particles, this is,
however, not the case, since non-magic icosahedral particles are almost always stepped
yielding an energy often substantially higher than the magic number particle energy.

The map of nanoparticle size to energy anywhere in the range from about 100 to
10,000 atoms is a first of its kind, and the paper concludes with a quantification of the
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consequences for Ag, Au, Pd and Cu as calculated with EAM potentials. A Boltzmann
distribution reveals that thermodynamic equilibrium ensembles almost always include
more than one structural motif. The explanation is twofold. Firstly, the possibility to
always find low energy single crystalline and decahedral particles render these two
motifs energetically comparable in a wide size range. Secondly, and more importantly,
the different particle sizes in a polydisperse ensemble will usually not all have the same
ground state structural motif, since the rapid variations in ground state energy with
particle size imply multiple crossovers in energy between the three motifs considered.

6.2 Paper II
In Paper II, the attention is turned to nanoalloys. Specifically, the paper contrasts the
the chemical ordering in Au–Pd and Ag–Cu particles. The computational method is
hybrid MD–MC simulations with energies calculated with EAM potentials. The paper
focuses on results from simulated annealing, but simulations run at room temperature
had practically identical results.

We invoke bulk-like interactions, surfaces and strain to explain differences in chem-
ical ordering. Au–Pd mixes in all proportions in the bulk, whereas Ag–Cu has a wide
miscibility gap. Our results indicate, as do the great majority of previous theoreti-
cal studies in the nanoalloy field, that this general mixing behavior is preserved at
the nanoscale. There are, however, intriguing details at the atomic scale. For Au–Pd,
where the surface energy differs substantially, the tendency of surface segregation is
pronounced. The favorable Au–Pd bond, however, causes an excess of Pd in the subsur-
face layer, which can also be observed for flat surfaces. In the Ag–Cu system in which
bonds between like bonds are favorable, there is no such enrichment in the subsurface
layer. Although this observation may appear obvious, it is important to keep in mind
for an experimentalist who measures surface composition with a technique that probes
more than just the topmost surface layer.

Furthermore, the Au–Pd and Ag–Cu systems respond differently to strain. The in-
crease in strain when going from a single crystalline particle to an icosahedron via a
decahedron, provides an ideal playground to test this effect. Au–Pd has a small size mis-
match and the difference in chemical ordering between the three motifs is consequently
small. For Ag–Cu, however, which has a large size mismatch, there is a pronounced
difference between the motifs. The arguably most intriguing consequence is the se-
quential filling of the tetrahedra in an icosahedron, which gives rise to a previously not
reported sandwich-like structure at intermediate compositions.
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7
Outlook

This thesis presents predictions of nanoparticle structures and chemical orderings in
thermodynamic equilibrium. Even within this limited scope, there are a number of
aspects that deserve increased attention in future studies.

From an experimental viewpoint it is problematic that all of the results are strictly
valid only for particles suspended in vacuum. Nanoparticles in a laboratory are often
stabilized by organic molecules, immersed in a liquid or gas and/or in contact with a
substrate. The environment can rarely be accounted for easily but there are a number
of methods that may prove useful in this regard. Particularly attractive for nanoalloys
are cluster expansions [32, 33], which are lattice-based models that are usually fitted
to DFT data. For reasonably well-behaved systems [93] they often reach an accuracy
within 1–5meV/atom from the corresponding DFT data [94, 95] and they thus provide
an attractive substitute for interatomic potentials for predicting properties related to
chemical ordering, especially given the relative simplicity of fitting a cluster expansion
model [31]. Cluster expansions have successfully been used to study nanoparticles
from several different perspectives, including equilibrium shape and chemical ordering
with and without adsorbates [96, 97, 98, 99, 100, 101]. The algorithm of Paper I should
be particularly well suited for adaptation to cluster expansion models instead of EAM
potentials.

In addition to more realistic systems and elaborate computational methods, there is a
need to further our understanding of how structure and chemical ordering impact the
properties of nanoparticles. Nanoparticles are, for example, often used for heteroge-
neous catalysis and it is well established that both structure and chemical ordering can
have a great impact on catalytic performance [83, 102, 103, 104]. It would be intrigu-
ing to couple the methods of this thesis to predictions of catalytic activity. Further, it
would be interesting to use recently developed methods [105] to study the connection
between chemical ordering and optical properties in general and generation of hot car-
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riers in particular. Plasmonic sensing is yet another application for which alloying at
the nanoscale is relevant and a better understanding may have an impact [106, 107].

There is apparently no lack of areas where the subjects of this thesis are of relevance,
and hopefully the methods and results presented are merely a springboard to future
insights, predictions and applications.
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A
Decahedral and icosahedral

geometry

Decahedra and icosahedra1 can both be thought of as constructions based on, respec-
tively, five and twenty triangular bipyramids. Since these bipyramids have edge lengths
that are not all the same, they are not regular tetrahedra. When a decahedral or icosahe-
dral particle is built with tetrahedra based on FCC crystals, the deviation from regular
tetrahedral shape leads to strain. This appendix derives the ratios between the edge
lengths in these shapes, which indicate what strain is geometrically required.

A.1 The decahedron
Consider a decahedron with edge lengths as defined in Fig. A.1. Pythagoras’ theorem
for the yellow face at the surface yields

𝑥2

4 + 𝑏2 = 𝑎2. (A.1)

If we slice the decahedron through its equator, we obtain a new triangle with two sides
of equal length (purple triangle in Fig. A.1). The angle at its top is 𝜃 = 2𝜋/5, so with 𝑐
as the height of the triangle we may write

tan 𝜃
2 = 𝑥

2𝑐 . (A.2)
1The terms decahedron and icosahedron are often used in a more general sense, referring to any

polyhedron with ten or twenty faces. In this thesis, however, decahedron always refers to a pentagonal
bipyramid and icosahedron to a regular icosahedron having equilaterally triangular faces.
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Appendix A. Decahedral and icosahedral geometry

Figure A.1: Decahedron with variable definitions used in the text.
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Figure A.2: Relation between edge length at the perimeter (𝑥) and through the center
(𝑦) of a decahedron. Ideal tetrahedral geometry with all edges equally long (orange dot)
is not possible.
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A.2. The icosahedron

We may now apply Pythagoras’ theorem to the green triangle formed by the sides 𝑏, 𝑐
and the edge in the center, the length of which is 𝑦/2,

𝑦2

4 + 𝑐2 = 𝑏2. (A.3)

Putting the three equations together we find

𝑦2 + 𝑥2
(

1 + 1
tan2 𝜃

2
)

= 4𝑎2. (A.4)

With fixed 𝑎 (essentially controlling the volume), we see that there is one degree of
freedom; if 𝑥 is chosen, 𝑦 is determined and vice versa. This dependency precludes
the possibility of regular tetrahedra (Fig. A.2). If the edge length in the center of the
decahedron (𝑦) is taken as ideal and identical to the edge lengths connecting the apex
and the vertices at the equator (i.e., 𝑦 = 𝑎), the edge lengths at the perimeter will be
approximately 1.8% longer than ideal (𝑥 ≈ 1.018𝑎).

A.2 The icosahedron
The twenty faces of an icosahedron can be viewed as the bases of triangular pyramids,
the tips of which all meet in the center. For reasons of symmetry, the triangles on the
faces are equilateral and the distances from the center to each vertex are identical. The
question is thus what is the ratio between the edge length on the surface (𝑎) and the
radial edge length (𝑏).

A derivation can be carried out conveniently by considering a path along the surface
of the icosahedron, starting at a vertex and ending at the opposing vertex (purple line
in Fig. A.3). If this path follows an edge and then the center of two triangular faces,
the path lies in a plane. It encloses an area that can be split in three triangles with
edge lengths easily determined from Pythagoras’ theorem. It is also readily realized
that some of the angles are the same. The law of cosines may be applied to the yellow
and green triangles of Fig. A.3. For the yellow one we have

𝑏2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝜃 (A.5)

so that
𝑎 = 2𝑏 cos 𝜃. (A.6)

For the green triangle we have

3
4𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝜃. (A.7)
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Figure A.3: Icosahedron with variable definitions used in the text.

By combining the two equations, we get
3
4𝑎2 = 𝑏2 + 𝑐2 − 𝑎𝑐. (A.8)

The length 𝑐 is obtained from Pythagoras’ theorem,

𝑐 = √𝑏2 − 𝑎2

4 (A.9)

and by inserting this expression in Eq. (A.8) and squaring both sides, we obtain

5𝑎4 + 16𝑏4 − 20𝑎2𝑏2 = 0. (A.10)

Since we are deriving a relationship between 𝑎 and 𝑏, we can write 𝑏 = √𝑘𝑎 and the
equation becomes

5 + 16𝑘2 − 20𝑘 = 0, (A.11)
which has (the relevant) solution

𝑘 = 5 + √5
8 (A.12)

so that

𝑏 = √
5 + √5

8 𝑎 ≈ 0.951𝑎. (A.13)

The radial edge length of an icosahedron is thus approximately 4.9% shorter than the
edge length on the surface, or equivalently the edge length on the surface is approxi-
mately 5.1% longer than the radial edge length.
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