
Learning Negotiating Behavior Between Cars in Intersections using Deep
Q-Learning

Downloaded from: https://research.chalmers.se, 2024-03-13 06:55 UTC

Citation for the original published paper (version of record):
Tram, T., Jansson, A., Grönberg, R. et al (2018). Learning Negotiating Behavior Between Cars in
Intersections using Deep Q-Learning. IEEE Conference on Intelligent Transportation Systems,
Proceedings, ITSC, 2018-November: 3169-3174. http://dx.doi.org/10.1109/ITSC.2018.8569316

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

Learning Negotiating Behavior Between Cars in Intersections using
Deep Q-Learning

Tommy Tram1,2, Anton Jansson1, Robin Grönberg1, Mohammad Ali1, Jonas Sjöberg2

Abstract— This paper concerns automated vehicles negotiat-
ing with other vehicles, typically human driven, in crossings
with the goal to find a decision algorithm by learning typical
behaviors of other vehicles. The vehicle observes distance and
speed of vehicles on the intersecting road and use a policy
that adapts its speed along its pre-defined trajectory to pass
the crossing efficiently. Deep Q-learning is used on simulated
traffic with different predefined driver behaviors and intentions.
The results show a policy that is able to cross the intersection
avoiding collision with other vehicles 98%of the time, while
at the same time not being too passive. Moreover, inferring
information over time is important to distinguish between
different intentions and is shown by comparing the collision
rate between a Deep Recurrent Q-Network at 0.85% and a
Deep Q-learning at 1.75%.

I. INTRODUCTION

The development of autonomous driving vehicles is fast
and there are regularly news and demonstrations of impres-
sive technological progress [1]. However, one of the largest
challenges does not have to do with the autonomous vehicle
itself but rather their interaction with human driven vehicles
in mixed traffic situations. Human drivers are expected to
follow traffic rules strictly, but in addition they also interact
with each other in a way which is not captured by the traffic
rules [2], [3]. This informal traffic behavior is important,
since the traffic rules alone may not always be enough to
give the safest behavior. This motivates the development of
control algorithms for autonomous vehicles which behave
in a ”human-like” way, and in this paper we investigate
the possibilities to develop such behavior by training on
simulated vehicles.

In [4] they raise two concerns when using Machine
learning, specially Reinforcement learning, for autonomous
driving applications: ensuring functional safety of the Driv-
ing Policy and that the Markov Decision Process model
is problematic, because of unpredictable behavior of other
drivers. In the real world, intentions of other drivers are
not always deterministic or predefined. Depending on their
intention, different actions can be chosen to give the most
comfortable and safe passage through an intersection. They
also noted that in the context of autonomous driving, the

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

1Tommy Tram, Anton Jansson, Robin Grönberg and
Mohammad Ali are with Zenuity AB, Gothenberg, Sweden
{tommy.tram, anton.jansson, robin.gronberg,
mohammad.ali}@zenuity.com

2Tommy Tram and Jonas Sjöberg are with the Department of Electrical
Engineering, Chalmers University of Technology, Gothenberg, Sweden
{tram, jonas.sjoberg}@chalmers.se

dynamics of vehicles is Markovian but the behaviors of other
road users may not necessarily be Markovian.

These two concerns are addressed using a Partially Ob-
servable Markov Decision Process (POMDP) as a model
and Short Term Goals (STG) as actions. With a POMDP
the unknown intentions can be estimated using observations
and that has shown promising results for other driving
scenarios [5]. The POMDP is solved using a model-free
approach called Deep (Recurrent) Q-Learning. An initial
study of this approach was performed in [6] and in this
paper we show that the policy is able to learn a negotiating
behavior without knowing other drivers’ intentions. With
this approach a driving policy can be found using only
observations without defining the MDP states. Since we do
not train on human driven vehicles, the results presented here
cannot be considered human-like, but the general approach,
to train the algorithms using traffic data, is shown working,
and a possible next step could be to start with the pre-tuned
policies from this work, and to continue the training in real
traffic crossings.

II. OVERVIEW

This paper starts by introducing the system architecture
and defining the actions, observations and POMDP in Section
III. The final strategy of what action to take at a given
situation is called a policy and is described in Section IV.
Deep Q-learning is used to find this policy, which uses a
neural network to approximate a Q-value and is described
in Section V together with techniques used to improve
the learning, such as Experience replay, Dropout and a
recurrent layer called Long Short-Term Memory (LSTM).
We then present the simulation, reward function and neural
network configurations in Section VI. The results are then
presented in Section VII comparing the effect of the methods
mentioned in Section V. Finally, the conclusion and brief
discussion is presented in Section VIII.

III. PROBLEM FORMULATION

The objective is to drive along a main road that has one
or two intersections with crossing traffic and control the
acceleration in a way that avoids collisions in a comfortable
way. All vehicles are assumed to drive along predefined
paths on the road where they can either speed up or slow
down to avoid collisions in the crossings. In this section the
system architecture is defined along with the environment,
observations and actions.

Environment Policy Controller Vehicle
observation action acceleration

Fig. 1. Representation of the architecture

A. System architecture

Environment is defined as the world around the ego
vehicle, including all vehicles of interest and the shape/type
of the intersection. The environment can vary in different
ways, e.g. number of vehicles and intersections or the
distance to intersections. The environment is defined by the
simulation explained in section VI-A. We assume that the ego
vehicle receives observations from this environment at each
sampling instant, as shown in Fig. 1. A policy then takes
these observations and chooses a high level action that is
defined in more detail in section III-C. These actions are sent
to a controller that calculates the appropriate acceleration
request given to the ego vehicle, which will influence the
environment and impact how other cars behave.

B. Actions as Short Term Goals

Motivated by the insight that the ego vehicle has to drive
before or after other vehicles when passing the intersection,
decisions on the velocity profile is modeled by simply
keeping a distance to other vehicles until they pass. This
is done by defining the actions as Short Term Goals (STG),
eg. keep set speed or yield for crossing car. This allows the
properties of comfort on actuation and safety to be tuned
separately, reducing the policy selection to a classification
problem. The actions are then as follows:
• Keep set speed: Aims to keep a specified maximum

speed vmax, using a simple P-controller

aep = K(vmax − ve) (1)

where aep is the acceleration request and ve is the veloc-
ity of ego vehicle towards the center of the intersection,
while K is a proportional constant.

• Keep distance to vehicle N : Will control the accelera-
tion in a way that keeps a minimum distance to a chosen
vehicle N , a Target Vehicle, and can be implemented
using a sliding mode controller, where the acceleration
request is computed as

aesm =
1

c2
(−c1x2 + µsign(σ(x1, x2))) (2)

where

{
x1 = pt − pe

x2 = vt − ve

where pe and pt is the position of ego and target vehicle
respectively, shown in Fig. 2, and vt is the velocity of
target vehicle. c1 together with c2 are calibration pa-
rameters that can be set to achieve wanted performance
with a surface

σ = c1x1 + c2x2 (3)

The final acceleration request is then achieved by

ae = min(aesm, a
e
p) (4)

For more detailed information about sliding mode see
[7]. To distinguish between different cars to follow, each
vehicle will have its own action.

• Stop in front of intersection: Stops the car at the next
intersection. Using the same controller as eq. 4 while
setting vt = 0 and pt to start of intersection, the
controller can bring ego vehicle to a comfortable stop
before the intersection.

C. Observations that make up the state

ve, ae

vi, ai

crossing point

δe

pe

pi

δi

Fig. 2. Observations that makes the state

A human driver is, generally, good at assessing a scenario
and it is hard to pin-point what information is used in their
assessment. Therefore some assumptions are made on which
features that are interesting to observe. The observation ot
at time t is defined as:

ot = [pet vet aet δe pit vit ait δi ae,At+1]T (5)

With notations as follows: consider Fig. 2, position of ego
pet and other vehicle pit are defined as distance to common
reference point, called crossing point, where i is an index
of the other vehicle. The start of intersection for ego δe and
other vehicle δi also uses the crossing point as reference.
These are relevant in case a driver would choose to yield for
other vehicles, then they would most likely stop before the
start of intersection. The velocity ve and acceleration ae of
ego vehicle and velocity vi and acceleration ai of the other
vehicles are observed to include the dynamics of different
actors. The last feature in the observation, ae,At+1, is the ego
vehicle’s predicted acceleration for each possible action A,
which can be used to account for comfort in the decision.

D. Partially Observable Markov Decision Processes

The decision making process in the intersection is modeled
as a POMDP. A POMDP works like a Markov Decision
Process (MDP) [8] in most aspects, but the full state is not
observable.

At each time instant, an action, at ∈ A, is taken, which
will change the environment state st to a new state vector

st+1. Each action at from a state st has a value called the
reward rt, which is given by a reward function Rt.

One of the unobservable states could be the intentions of
other drivers approaching the intersection. The state can only
be perceived partially through observations ot ∈ Ω with the
probability distribution of receiving observation ot given an
underlying hidden state st : ot ← O(st), where O(st) is the
probability distribution.

IV. FINDING THE OPTIMAL POLICY

Assuming the MDP states are not known, we want a
model-free method of finding a policy, and for this we
use reinforcement learning. The goal is to have an agent
learn how to maximize the future reward by taking different
actions in a simulated environment. Details on the simulation
environment used is described in Section VI-A. The strategy
of which action to take given a state is called a policy π and
can be modeled in two ways:
• As a stochastic policy π(a|s) = P[A = a|S = s]
• As a deterministic policy a = π(s)

The standard assumption is made that the future reward is
discounted by a factor γ per time step, making the discounted
future reward Rt =

∑τ
t γ

t−1rt, where τ is the time step
where the simulation ends, e.g. when the agent crosses an
intersection safely.

Similar to [9], the optimal action-value function Q∗(st, at)
is defined as the maximum expected reward achievable by
following a policy π given the state st and taking an action
at:

Q∗(st, at) = max
π

E[Rt|st, at, π] (6)

Using the Bellman equation, Q∗(st, at) can be defined
recursively. If we know Q∗(st, a) for all actions a that can
be taken in state st, then the optimal policy will be one
that takes the action at that gives the highest immediate and
discounted expected future reward rt+γQ∗(st+1, at+1). This
gives us:

Q∗(st, at) = E[rt + γmax
at+1

Q∗(st+1, at+1)|st, at] (7)

The optimal policy π∗ is then given by taking actions
according to an optimal Q∗(st, at) function:

π∗(st) = arg max
at

Q∗(st, at) (8)

V. METHOD

In this section we will briefly describe Q-learning and
methods used to improve the learning such as, Experience
replay, dropout and Long Short-Term Memory.

A. Deep Q-learning

From eq. 8, the optimal policy is defined by taking an
action that has the highest expected Q-value. Because the
Q-value is not known, a non linear function approximation,
such as a neural network, is used to estimate the Q-function.
The method is known as Deep Q-Learning [9]. The neural

network used to approximate the Q-function is called a Deep
Q-network (DQN) and is denoted as Q(st, at|θπ), where θπ

is the weight and biases of the neural network for a policy
π. The state st is the input to the DQN and the output is the
Q-value for each action at ∈ A.

B. Experience Replay

Experience replay, as proposed by [9], is a method that
stores all observations o, together with taken actions a and
their rewards r as an experience memory E and then trains
the DQN using sample from experiences E′.

Looking at eq. 8, the optimal policy is greatly affected
by Q-function and if the DQN is only trained on recent
experiences E, the distribution will have a bias towards
recent experiences. As shown by [10], this can give undesired
effects on the feedback loops and lead to divergence of the
DQN.

By using experience replay, the network is instead trained
on the average of the experience. Thus reducing the time for
convergence of the DQN and oscillation due to training on
the same experience multiple times [11].

C. Dropout

Overfitted neural networks have bad generalization per-
formance [12] and to help reduce overfitting a technique
called dropout was used. By temporarily removing some
hidden neurons with probability p in the network before each
training iteration, the network learns to adapt and generalize
instead of depending too strongly on a few hidden neurons.
For more details, see [13].

D. Long short-term memory

The effect of observed behaviors over time is explored in
this paper and is done by adding a recurrent layer to the DQN
making it a Deep Recurrent Q-Network (DRQN). A regular
recurrent layer has difficulties with longer sequences because
of vanishing gradients, and [14] showed that using an LSTM
solves this problem. Instead of storing all information from
the previous time sample, LSTM stores information in a
memory cell and modifies it by using insert and forget gates.
These gates decide if a memory cell should be kept or cleared
and is learned by the network. This enables both recent and
older observations to be stored and utilized by the network.
A sequence length of 4 is used when training the LSTM,
where the first 3 observations are only used to build the
internal memory state of the LSTM cells, as described in
[15].

VI. IMPLEMENTATION

In this section we go through the experiment implemen-
tation. A simulation environment was set up to model the
interactions. From section III, both the number of observa-
tions and actions are dependent on the maximum number
of cars. In this paper we consider up to 4 cars. The Deep
Q Network can then also be fully defined with the help of
observations from section III and finally we go through the
reward function that defines our behavior.

A. Simulation environment

The simulation environment is set up as an intersection
described in section III-C. The number of other cars that are
observable at the same time can vary from 1-4, while their
intentions can vary between an aggressive take way, passive
give way or a cautious driver. The take way driver does not
slow down or yield for crossing traffic in an intersection,
while the give way driver will always yield for other vehicles
before continuing through the intersection. The cautious
driver on the other hand, will slow down for crossing traffic
but not come down to a full stop. With a maximum number
of other cars set to 4 all possible actions the ego vehicle can
take are:

• α1: Keep set speed.
• α2: Stop in front of intersection.
• α3: Keep distance to vehicle 1.
• α4: Keep distance to vehicle 2.
• α5: Keep distance to vehicle 3.
• α6: Keep distance to vehicle 4.

At the start of an episode, the ego vehicle’s position and
velocity, the number of other vehicles and their intentions
are randomly generated. The episode only ends when the ego
vehicle fulfills one out of three conditions: 1) Crossing the
intersection and reaching the other side, 2) Colliding with
another vehicle. or 3) Running out of time τm. Each car
follows the control law from eq. 4, trying to keep a set speed
while keeping a set distance to the vehicle in front of its own
lane. All cars including the ego vehicle in these scenarios
have a maximum acceleration set to 5m/s2, this was set
based on comfort and normal driving conditions.

B. Reward function tuning

Defining the reward function, the distribution was kept
around [−1, 1]. Large reward values would give large Qπ-
values, so the values are kept small to keep the gradients
from growing too large [16]. The reward function is defined
as follows:

rt = r̂t+

1− τ

τm
on success,

−2 on collision
−0.1 on timeout, i.e. τ ≥ τm
−
(

jet
jmax

)2
∆τ
τm

on non-terminating updates

where r̂t =

{
−1 if chosen at is not valid
0 otherwise

The actions α3, . . . , α6 described should only be selected
when a vehicle is observable and has not crossed the in-
tersection. This is enforced by punishing the agent with a
large negative reward r̂t if an invalid action was selected.
Switching between different STG at a high frequency could
result in an uncomfortable experience due to high jerk in
acceleration. Therefore the agent is also punished for large
acceleration jerk jet , where τ is the elapsed time since the
episode started, ∆τ the time between samples and τm is the
maximum time before a timeout.

ξ1 h(1,1) h(2,1)

ξ2 h(1,2) h(2,2)

ξ3 h(1,3) h(2,3)

ξ4 h(1,4) h(2,4)

W1 W2 W31

W1 W2 W32

W1 W2 W33

W1 W2 W34

ξ5 h(ego)

W
(ego)
1 W

(ego)
2

h(3)

h
(4)
t−1

h
(4)
t

h
(4)
t+1

Q
WQ

Fig. 3. Deep Recurrent Q Network layout with shared weights and a LSTM

C. Neural Network Setup

The DRQN structure is defined in Fig. 3. Where h are
the hidden layers of the network with weights W . Because
the observations ot from section 2, are used as input to the
DRQN, the number of features must be fixed. With up to
four other cars, the input vectors ξ are as follows:

• ξ1 = [pet vet aet δe p1
t v1

t a1
t δ1]T

• ξ2 = [pet vet aet δe p2
t v2

t a2
t δ2]T

• ξ3 = [pet vet aet δe p3
t v3

t a3
t δ3]T

• ξ4 = [pet vet aet δe p4
t v4

t a4
t δ4]T

• ξ5 = [ae,1t+1 ae,2t+1 ae,3t+1 ae,4t+1 ae,5t+1 ae,6t+1]T

In case a vehicle is not visible, the input vector ξ is set to
−1, where −1 is a vector of appropriate dimensions with all
elements set to one. The maximum speed vmax, maximum
acceleration amax and a car’s sight range pmax was used to
scale all features down to values between [−1, 1].

The output Q should be independent of which order other
vehicles was observed in the input ξi. In other words, whether
a vehicle was fed into ξ1 or into ξ4, the network should
optimally result in the same decision, only based on the
features’ values. The network is therefore structured such
that input features of one car, for instance ξ1, are used as
input to a sub-network with two layers h(1,i) and h(2,i).
Each other vehicle has a copy of this sub-network, resulting
in them sharing weights (W1 and W2), as shown in Fig. 3.
The first hidden layers are then given by:

h(1,i) = tanh (W1ξi + b1) (9)

h(2,i) = tanh
(
W2h

(1,i) + b2

)
(10)

h(ego) = tanh
(
W

(ego)
1 ξ5 + b(ego)

)
(11)

The output of each sub-network, h(2,i) and h(ego), is
fed as input into a third hidden layer h(3). The different
sub-networks’ h(2,i) outputs are multiplied with different
weights W31, . . . ,W34 in order to distinguish different cars
for different follow car actions. The ego features are also fed

into layer 3 with its own weights W (ego)
2 . The neurons in

layer h(3) combine the inputs by adding them together:

h(3) = tanh

(
W

(ego)
2 h(ego) +

4∑
i=1

W3i h
(2,i) + b3

)
(12)

The final layer h(4) uses the LSTM, described in section
V. This layer handles the storage and usage of previous
observations, making it the recurrent layer of the network.

h
(4)
t = LSTM

(
h(3)|h(4)

t−1

)
(13)

The approximated Q-value is then

Q = WQh
(4) + b4 (14)

VII. RESULTS

Metrics used to evaluate the performance was mainly the
success rate followed by collision to timeout ratio (CTR) and
average episodic reward. Success rate is defined as number of
times the agent reached the end of path without colliding or
reaching the time limit. Because both timeouts and collisions
are defined as failures, a CTR was used to distinguish the
timeouts from collisions for the last 100 episodes where a
high value corresponds to more crashes than timeouts. A
collision rate corresponding to the total amount of episodes
resulting in a collisions is then computed using success rate
and CTR averaged. To compare the performance between
different network structures an average episodic reward is
used and is defined as the total reward over an entire episode
and averaged over 100 episodes. The graphs presented are
only using evaluation episodes, with a deterministic policy.
For every 300 training episodes, the policy is evaluated
over 300 evaluation episodes and the evaluation metrics are
computed. For more details about the evaluation method see
[6].

The improvement of using Dropout and Experience replay,
from Section V, are clearly shown in Fig. 4 and 5. Studying
the red curve in Fig. 4, with all methods included, the best
policy had a success rate of 98%, average episodic reward
0.8 and CTR at 40%.

A. Effect of using Experience replay and Dropout

su
cc
es
s
ra
te

� Experience
� No Experience

training episode

Fig. 4. Success rate trend comparing using experience replay (red) and
not using experience replay (blue)

Without either method the success rate does not converge
to a value higher than 60%. When experience replay was
not used, the highest success rate was 53%, average episodic
reward −0.1 and collision to timeout ratio at 90%.

su
cc
es
s
ra
te

� Dropout
� No Dropout

training episode

Fig. 5. Success rate trend comparing using dropout (grey) and not using
dropout (red)

In the case of not using Dropout, not only was the training
time significantly higher, the best policy had a average
success rate of 58%, average episodic reward −0.7 and a
CTR at 90%. Compared to not using dropout, not using
experience replay has a higher variation on the success rate.

B. Comparing DQN and DRQN
su
cc
es
s
ra
te

� DRQN
� DQN

training episode

Fig. 6. Graphs comparing the performance of a DRQN (red) and a normal
DQN (green). Showing the DRQN outperforming the DQN.

In Fig. 6, we can see the effect off having a recurrent
layer, by comparing a DQN without a LSTM layer and with a
DRQN with LSTM. The DRQN converges towards a average
success rate of 98% with a 0.85% collision rate while the
DQN only reached a success rate of 87.5% with a higher
collision rate of 1.75%.

C. Effect of sharing weights in the network

Sharing weights for inputs from other cars showed to
converge significantly faster for the DRQN compared to
having the network train all weights independently of each
other, as shown in Fig. 7.

VIII. CONCLUSION

In this paper, Deep Q-Learning was presented in the
domain of autonomous vehicle control. The goal of the
ego agent is to drive through an intersection, by adjusting
longitudinal acceleration using short-term goals. Short-term

Fig. 7. Showing the affect of using shared weights for observations from
other vehicles. The brown curve represents a network using shared weights
while the turquoise curve shows a network without shared weights.

goals allowed a smoother and more human-like behavior
by controlling the acceleration and comfort with a separate
controller. Instead of finding a policy with continuous control
output, the problem became a classification problem. This
resulted in a policy that is able to respond to other vehicles’
actions and behaviors without knowing any traffic rules. The
policy learned when it is safe to drive ahead of another
vehicle or let them pass, without a prediction model as input,
while at the same time consider the comfort of the passenger.
The trained policy was able to generalize over different types
of driver intentions and varied number of cars.

Results show the importance of using a recurrent layer
when the environment is modeled as a POMDP. Meaning,
the agent needs multiple observations over time in order to
better predict some states, e.g. other vehicles’ intentions.

Shared weights between observed vehicles in the first
layers showed to improve convergence and performance
compared to a fully connected network structure. This means
that all observed vehicles are processed the same way
independently in which order they are fed to the network and
in practice would make it easy to scale number of observed
vehicles after training. These results are limited by simulated
traffic scenarios and predefined driving behaviors. For future
work we plan on implementing this in a real car and traffic
scenarios to record other vehicles’ behaviors to improve the
policy.

The success rate of around 98% is very promising for
recognizing behaviors. However, collisions still occur. A
collision in this paper is defined by two areas overlapping,
and in a real world implementation this does not have to
mean an actual collision but instead the safety critical area
of car. When the two areas overlap, an intervention from a
higher safety critical system would intervene. This way, in
the low chances a good action could not be found, the safety
of the vehicles can still be guaranteed.

In section III-B, a sliding mode controller was chosen, but
this can be replaced by any controller. One other option could
be a Model Predictive Controller, where safer actuation can
be achieved by using constraints. Also, the actions in this
paper used the same controller tuning for all actions, which

does not have to be the case. Two action can have the same
STG but only differ by the controller’s tuning parameters.
This way, the agent gains more flexibility while the comfort
can maintain intact, possibly increasing the success rate.

REFERENCES

[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew
Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol
Zieba. End to End Learning for Self-Driving Cars. 2016.

[2] Martin Liebner, Michael Baumann, Felix Klanner, and Christoph
Stiller. Driver intent inference at urban intersections using the
intelligent driver model. In IEEE Intelligent Vehicles Symposium,
Proceedings, 2012.

[3] Stephanie Lefevre, Christian Laugier, and Javier Ibanez-Guzman.
Evaluating risk at road intersections by detecting conflicting intentions.
In IEEE International Conference on Intelligent Robots and Systems,
2012.

[4] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe,
Multi-Agent, Reinforcement Learning for Autonomous Driving.

[5] Sebastian Brechtel, Tobias Gindele, and Rdiger Dillmann. Probabilis-
tic Decision-Making under Uncertainty for Autonomous Driving using
Continuous POMDPs.

[6] Robin Grönberg Anton Jansson. Autonomous driving in crossings
using reinforcement learning, 2017.

[7] Analysis of an acc system for sliding mode and mpc under transitional
manoeuvers. Mehran University Research Journal of Engineering and
Technology, 31(4), 2012.

[8] Richard Bellman. A markovian decision process. Journal of Mathe-
matics and Mechanics, 6(5):679–684, 1957.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
Atari with Deep Reinforcement Learning.

[10] John N Tsitsiklis and Benjamin Van Roy. An Analysis of Temporal-
Difference Learning with Function Approximation. IEEE TRANSAC-
TIONS ON AUTOMATIC CONTROL, 42(5), 1997.

[11] Long Ji Lin. Self-Improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching. Machine Learning, 1992.

[12] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R. Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. 2012.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[14] Sepp Hochreiter and Jj Urgen Schmidhuber. LONG SHORT-TERM
MEMORY. Neural Computation, 9(8):1735–1780, 1997.

[15] Guillaume Lample and Devendra Singh Chaplot. Playing FPS Games
with Deep Reinforcement Learning.

[16] Hado Van Hasselt, Arthur Guez, Matteo Hessel, Google Deepmind,
Volodymyr Mnih, and David Silver. Learning values across many
orders of magnitude.

