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Abstract
Cortisol is a steroid hormone relevant to immune function in horses and other species and shows a circadian rhythm. The

glucocorticoid dexamethasone suppresses cortisol in horses. Pituitary pars intermedia dysfunction (PPID) is a disease in

which the cortisol suppression mechanism through dexamethasone is challenged. Overnight dexamethasone suppression

test (DST) protocols are used to test the functioning of this mechanism and to establish a diagnosis for PPID. However,

existing DST protocols have been recognized to perform poorly in previous experimental studies, often indicating presence

of PPID in healthy horses. This study uses a pharmacokinetic/pharmacodynamic (PK/PD) modelling approach to analyse

the oscillatory cortisol response and its interaction with dexamethasone. Two existing DST protocols were then scrutinized

using model simulations with particular focus on their ability to avoid false positive outcomes. Using a Bayesian popu-

lation approach allowed for quantification of uncertainty and enabled predictions for a broader population of horses than

the underlying sample. Dose selection and sampling time point were both determined to have large influence on the number

of false positives. Advice on pitfalls in test protocols and directions for possible improvement of DST protocols were given.

The presented methodology is also easily extended to other clinical test protocols.

Keywords Cortisol � Dexamethasone suppression test � Bayesian inference � Oscillating baseline � Turnover model �
Inter-individual variability � NLME

Introduction

Dexamethasone and other glucocorticoids are commonly

used in equine medicine for the treatment of diseases and

clinical testing, e.g., the dexamethasone suppression test

(DST) [1–3]. In healthy horses, dexamethasone suppresses

the cortisol response [4, 5]. The mechanism is challenged

in horses affected by pituitary pars intermedia dysfunction

(PPID) [6]. PPID is an age-related degenerative disease

leading to a loss of dopaminergic neurons affecting the pars

intermedia of the pituitary gland [7]. Similarities of PPID

to Parkinson’s disease in humans have been found [8]. The

most prevalent clinical signs of PPID in horses are hair coat

abnormalities, laminitis and muscle atrophy [9]. The

prevalence of PPID in horses aged more than 15 years is

21% [10].

The idea behind the DST is to observe whether the

cortisol response is suppressed below a threshold after

dexamethasone administration [1]. Different test protocols

have been published under the name overnight DST [1, 11].

They differ in dexamethasone administration time as well

as waiting-time until cortisol measurement. Both are

designed as single-point observation test protocols which

have limitations, since DST results may indicate presence

of PPID in healthy individuals due to a circadian rhythm in
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cortisol production in addition to inter-individual vari-

ability [12]. In horses, plasma cortisol concentration dis-

plays an apparently symmetric circadian variation with

peak concentration in the morning and nadir concentration

in the afternoon/evening [13, 14].

Pharmacokinetic (PK) and pharmacodynamic (PD)

modelling is done to quantify the relationship between a

physiological response and drug exposure [15]. The dis-

position of dexamethasone in horses has been characterized

in several studies [12, 16–20]. The relationship between

dexamethasone and cortisol response has also been char-

acterised by turnover modelling with inhibition of a con-

stant [21] as well as an oscillating turnover rate [12]. Those

studies focused on modelling individual concentration–

time as well as response-time courses. Modelling studies

have not estimated potential variability between animals.

A non-linear mixed-effects (NLME) approach allows

simultaneous regression of all individuals and time courses

[22]. A merit of this technique is the estimation of inter-

individual variability (IIV) directly from data [23]. The use

of mixed effects models has historically not been exten-

sively used in veterinary science but recently has been

given more attention [24]. Mixed-effects models can be

formulated as hierarchical Bayesian models [25]. The

Bayesian approach allows for incorporation of prior

knowledge as well as modelling of all sources of variability

and uncertainty. This allows for explicit propagation of

uncertainty in parameter estimates and residual variability

to predictions made using the final adjusted model [22].

Including all sources of uncertainty and simulating pre-

dictions from the full model, as is straight-forward in the

Bayesian approach, increases the credibility of the pre-

dictions. Prior information about parameter estimates and

variability is available from an earlier study [12].

In this study, we sought to analyse data from a previous

study [12] by means of a NLME approach to investigate

the IIV. We then used the adjusted model to scrutinize DST

protocol designs, define weaknesses in two proposed test

protocols and give directions for test improvement.

Materials and methods

Experimental setup and analytical method

Six Standardbred horses (four mares and two geldings)

6–20 years old and weighing 430–584 kg were included in

the study and assigned to a randomised crossover design

including four treatments and four periods. Each treatment

started with an intravenous bolus dose immediately fol-

lowed by 3 h of constant rate infusion of dexamethasone

21-phosphate disodium salt (Dexadreson 2 mg mL-1,

Intervet AB, Sollentuna, Sweden). The dose levels were

(bolus ? infusion) 0.1 ? 0.07 lg kg-1, 1 ? 0.7 lg kg-1

and 10 ? 7 lg kg-1 dexamethasone. For the control level

0.9% saline was used. Before the bolus dose (time = 0) a

pre-dose blood sample was drawn. Additional blood sam-

ples were drawn during and after infusion at hours 1, 2, 3,

4, 5, 6, 9, 12, 18, 24, 36 and 48. A minimum of a 1 week

wash-out period was allowed between drug treatments. The

study was approved by the Ethics Committee for Animal

Experiments, Uppsala, Sweden (C333/11). Total plasma

dexamethasone and cortisol concentrations were analysed

and quantified using Ultra High Performance Liquid

Chromatography-Tandem Mass Spectrometry (UHPLC-

MS/MS). The analytical method was described before

elsewhere [21].

Dexamethasone exposure

A two-compartment model (Eq. 1, Fig. 1a) was fitted to

experimental dexamethasone-time course data.

Vc

dCp

dt
¼ InfðtÞ � Cl � Cp þ Cld Ct � Cp

� �
; Cpð0Þ ¼

D

Vc

Vt

dCt

dt
¼ Cld Cp � Ct

� �
; Ctð0Þ ¼ 0

8
><

>:

ð1Þ

Cp and Ct denote drug concentration in central (plasma)

and peripheral compartments. Vc, Vt, Cl and Cld denote,

respectively, the central and peripheral volumes, plasma

clearance and inter-compartmental distribution parameter.

Inf(t) represents the constant rate infusion regimen and D is

the bolus dose administered at time t = 0.

Cortisol turnover

Cortisol was modelled by a turnover model (Eqs. 2–4,

Fig. 1b).

dR

dt
¼ kinðtÞ � IðtÞ � koutR; Rð0Þ ¼ Reqðt ¼ 0;Cp; eq ¼ 0Þ

ð2Þ

R is cortisol concentration, kout the fractional turnover

rate and Req stands for the expression in Eq. 5. The oscil-

latory behaviour of turnover rate was modelled by Eq. 3.

Note that in the following x = 2p/24 h-1.

kinðtÞ ¼ kavg � 1þ a � cos x ðt � t0Þð Þð Þ ð3Þ

kavg is positive and corresponds to the average turnover

rate. t0 is the phase shift between - 12 and 12 h, and a, a
number between 0 and 1, describes the amplitude of the

oscillations as a proportion of kavg. Choosing a this way

ensures positivity of the turnover rate for all choices of

parameters. The period was fixed at 24 h. The inhibitory

dexamethasone mechanism function was modelled as
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IðtÞ ¼ 1�
Imax C

n
pðtÞ

ICn
50 þ Cn

pðtÞ
; ð4Þ

where Imax is maximum inhibitory capacity, IC50 the

potency of dexamethasone and n is a Hill exponent. This

model is a modified version of the single cosine model

presented in [26].

Cortisol concentration under constant
dexamethasone exposure

An oscillating turnover rate leads to oscillating cortisol

concentration. Keeping dexamethasone exposure in Eq. 4

constant at a fixed concentration Cp, eq, the cortisol

response is given by

Reqðt;Cp; eqÞ ¼ Aþ B � cos x ðt � CÞð Þ ; ð5Þ

where

A ¼ kavg

kout
� 1�

Imax C
n
p; eq

ICn
50 þ Cn

p; eq

 !

;

B ¼ kavg � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2out þ x2

p � 1�
Imax C

n
p; eq

ICn
50 þ Cn

p; eq

 !

;

C ¼ 1

x
arctan

kout sinðxt0Þ þ x cosðxt0Þ
kout cosðxt0Þ � x sinðxt0Þ

� �
:

ð6Þ

A describes the average cortisol response, B the ampli-

tude and C the phase shift of the oscillation. The model

predicts only changes in the average cortisol response and

amplitude due to changes in dexamethasone exposure. A

derivation of Req in Eq. 5 as well as for A, B and C in Eq. 6

can be found in the Appendix. The ideas are similar to the

calculations presented in Krzyzanski et al. [27].

Residual error variance model

Kinetic data was modelled on a log scale. For the drug

exposure model in Eq. 1 it was assumed that

log Cp tij
� �� �

¼ log cCp tij
� �� �

þ eij: ð7Þ

For the cortisol response model in Eq. 2 a combined

error model with proportional and additive error was

assumed. This was described by

R tij
� �

¼ R̂ tij
� �

1þ s
ð1Þ
ij

� �
þ s

ð2Þ
ij : ð8Þ

Here, Cp(tij) and R(tij) are the jth measurement of the

plasma concentration of dexamethasone in the central

compartment and cortisol, respectively, measured for sub-

ject i at time point tij. cCpðtijÞ and R̂ðtijÞ are the predicted

concentrations for subject i at time point tij. eij as well as

s
ð1Þ
ij and s

ð2Þ
ij were assumed to be normally distributed with

zero mean and respective standard deviations e as well as
r1 and r2.

Statistical parameter model

IIV was modelled by making the following assumptions

about the distribution of the parameters in Eqs. 1–4. The

process of deciding which parameters were modelled with

correlation is described in the Supplementary.

All parameters involved in the description of dexam-

ethasone exposure were modelled independently log-nor-

mally distributed, i.e.,

logðhÞ�Log-Normal ðl; s2Þ ;
l�Normal ðm0; 1Þ ;
s� Student-t ð4; s0; 0:25Þ ;

ð9Þ

Fig. 1 a Dexamethasone disposition model after the bolus ? constant rate infusion regimens. b Conceptual model of the cortisol turnover with

an oscillating baseline kin(t)

Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:75–87 77

123



where m0 and s0 are prior parameters and h stands for Cl,

Cld, Vc and Vt. Some parameters in the cortisol turnover

model were modelled with correlations as

log kavg
� �

log koutð Þ
log IC50ð Þ
logit að Þ

logit
t0 þ 12h

24h

� �

0

BBBBBB@

1

CCCCCCA

�Normal l; Xð Þ; ð10Þ

where X = LDLT, D ¼ diagðs21; s22; s23; s24; s25Þ and L is a

lower-triangular matrix. In this representation the matrix

D contains the variances and LLT is the correlation matrix.

In addition

n�Normal ðln; snÞ ;
Imax �Logit-Normal ðlImax

; sImax
Þ :

ð11Þ

Hyperparameters l in Eqs. 10, 11 and the diagonal

elements of D as well as s in Eq. 11 are distributed as

l�Normal ðm0; vÞ ;
s� Student-t ð4; s0; 0:25Þ ; s� 0 :

ð12Þ

where m0 and s0 are prior parameters, v = 2.5 for hyper-

parameters related to a as well as t0, and v = 1 otherwise.

The three-parameter Student-t distributions used in Eqs. 9,

12 for non-negative s are truncated distributions.

The correlation matrix LLT was assumed to be dis-

tributed following a LKJ distribution [28] with concentra-

tion parameter 2. This is a prior for correlation matrices

where samples resemble the identity matrix more closely

for concentration parameters closer to 1. Residual-error-

model standard deviations e and r1 and r2 were assumed to

be positive and were given half-Cauchy prior distributions

[29] with scale 2.5. Prior parameters were estimated from a

meta-analysis of Ekstrand et al. [12] as described in the

Appendix.

Analysis of the dexamethasone suppression test
protocol

We simulated two different overnight DST protocols. Each

consisted of a dexamethasone administration time and a

sampling time on the following day. Cortisol concentration

is analysed in the sampled blood plasma and the result of

the DST is positive if concentration is above a prescribed

threshold. The protocols analysed more closely are

described in Dybdal et al. [1] (protocol A) and Frank et al.

[11] (protocol B). Both protocols assume administration of

40 lg kg-1 of dexamethasone. The protocols differ in

administration route. Protocol A assumes intramuscular

(im) administration whereas protocol B assumes intra-

venous (iv) administration. Test starting times were at 9.00

a.m. (protocol B) and 5 p.m. (protocol A). Plasma sampling

times for determination of cortisol concentration were after

19 h (protocol A) and 24 h (protocol B), respectively. In

both protocols, the test is positive (indicating sick indi-

viduals) if measured cortisol concentration is above a

threshold of 10 lg L-1.

The DST protocols were analysed in light of two dif-

ferent aspects. First, we performed a Monte Carlo study to

visualise cortisol time courses for horses subjected to each

protocol. A sample of 10,000 horses was simulated from

the adjusted model. For this, residual variance parameters

and hyper-parameters (N = 1000) were taken from the

estimated posterior parameter distribution. Then, individ-

ual parameters (N = 10) were simulated from hyper-pa-

rameters and the distributions in Eqs. 9–11.

Dexamethasone- and cortisol time courses were simulated

under the two test protocols for the new subjects using

Eqs. 1–4 as well as the measurement equation (Eq. 8). The

investigated protocols assume administration of

40 lg kg-1 dexamethasone and the aim of this simulation

was to determine whether this amount is necessary or if

lower doses could be sufficient. Predicted cortisol con-

centration at sampling time was then used for further

analysis.

These concentrations were then used in a second step to

investigate both the sensitivity of the test, i.e., the proba-

bility that the test is positive for a sick subject, as well as

the specificity of the test, i.e., the probability that the test is

negative for a healthy subject [30]. The distributions of

sensitivity and specificity were simulated through a com-

bination of Monte Carlo and analytical steps. See the Ap-

pendix for the formulas used. In horses with PPID the

mechanism for dexamethasone suppression of cortisol is

challenged [6]. To quantify sensitivity, simulations from

sick horses were needed. We hypothesized that dexam-

ethasone has no suppression effect on sick individuals and

therefore these horses were sampled at baseline. The

studies reporting protocol A and B [1, 11] determined

sensitivity and specificity experimentally and this analysis

aimed to investigate if model predicted and experimentally

determined values are aligned.

Numerical analysis and parameter estimation

The software Stan version 2.18.0 [31] was used for

parameter inference through the interface CmdStan. Stan

implements the NUTS sampler [32] that uses Hamiltonian

Monte Carlo (HMC) [33] for estimation of the posterior

parameter distribution and allows models with differential

equations. PK and PD parameters were estimated in two

stages. First, PK parameters in Eq. 1 were estimated. Each

individual’s PK parameters were then summarised and

fixed to the respective conditional mean. In a second stage,

78 Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:75–87
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the PD parameters in Eqs. 2–4 were estimated. In each

stage, four Markov chains were started at random initial

parameters around the prior parameter means. Each chain

was run for 250 iterations in warm-up and sampling,

respectively. This led to a total of N = 1000 samples from

the posterior.

The convergence of the HMC algorithm was checked in

multiple ways. Numerical divergences during parameter

estimation were observed and appropriate choices about

parameter distributions were made and Stan settings were

tuned to reduce and avoid divergences [34]. The Gelman–

Rubin R̂ statistic [35] and trace plots were used to ensure

proper mixing of the Markov chains. The effective sample

size [25] was observed to be at least 10% of total samples

size (N = 1000). The energy Bayesian fraction of missing

information (E-BFMI) [36] was checked to ensure that the

parameter space was properly and efficiently explored. No

external validation data was available and therefore inter-

nal model checking was performed through posterior pre-

dictive checks (PPCs) [25]. These visualisations are similar

to visual predictive checks (VPCs) [37]. However, PPCs

include parameter uncertainty by simulating the response

from the full estimated posterior distribution, whereas

VPCs omit this. Estimated parameters were summarised by

median and 95% credible intervals (CIs) [25]. Population

predicted ranges were calculated as described in the

Supplementary.

Results

Regression of experimental time courses

The drug exposure model captured dexamethasone expo-

sure across three orders of magnitude (Figs. 2, S1). In

general, within and between subject variability in the

dexamethasone time courses were low, which suggests that

exposure of dexamethasone does not confound the cortisol

response. Observed and regressed dexamethasone-time

courses following the three dosing regimens for a repre-

sentative horse are shown in Fig. 2. The final population

model parameters as well as their predicted population

range are shown in Table 1. Summaries of individual

parameters per horse are reported in the Supplementary

(Table S1).

The observed cortisol response was well captured by the

model (Figs. 2, S2). The largest variability in cortisol

response was observed in baseline data. Increasing expo-

sure to dexamethasone suppressed both the average cortisol

response and the amplitude of oscillations (Fig. 2), which

was furthermore captured by the model. The suppression of

cortisol by dexamethasone was almost complete, which is

also evident from the estimated values of Imax close to 1

(Table 2). The typical potency value was predicted to be

37 ng L-1 varying between 22 and 56 ng L-1, and the

half-life of the cortisol response (ln (2)/kout) was predicted

to be 2.0 h varying between 1.1 and 3.4 h. Observed and

regressed cortisol response-time courses following the

three dosing regimens and baseline for a representative

horse are shown in Fig. 2. The final population model

parameters as well as their predicted population range are

shown in Table 2. Summaries of individual parameters per

horse are reported in the Supplementary (Table S2).

Uncertainty in parameter estimates and IIV are included

in the Bayesian posterior distribution and were readily

analysed. Variability in typical values and IIV standard

deviation was directly estimable. Predicted population

ranges contain variability stemming from both uncertainty

in population parameters and variability from the distri-

butional assumptions in the section ‘‘Statistical parameter

model’’. Uncertainty in population parameters was mod-

erate with larger amounts of variability observed in Cld
(Table 1) as well as a, t0 and IC50 (Table 2). Uncertainty in

IIV standard deviations was comparably larger, with 95%

Fig. 2 Dexamethasone and cortisol time course data and model

predictions for a representative horse. Different dosing regimens are

indicated by colour and respective dosing amounts are shown in the

legend. Solid lines are time courses corresponding to the subject’s

average parameters. Uncertainty in predicted time-courses is shown

by shaded areas representing 95% of uncertainty
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credible intervals often spanning double the magnitude of

the median. For parameters in the dexamethasone model

IIV was estimated to be small, with most credible intervals

reaching close to zero. For Cl the smallest amount of

variability (less than 0.2) was estimated whereas estimates

for Cld were largest (less than 0.9). Predicted IIV for the

parameters in the cortisol model was larger, particularly for

parameters kavg, a and IC50, with credible intervals being

clearly bounded from below. Estimated IIV for other

parameters was considered to be small with most vari-

ability in the predicted population range stemming from

uncertainty in estimated typical values.

After initial test runs and analysis of possible correla-

tions between individual parameters, correlation estimates

were included for kavg, a, t0, kout and IC50. The resulting

estimates can be found in the Supplementary (Table S3).

Most correlation parameters showed only a slight if any

tendency towards the positive or negative. Results suggest

possible negative correlations between kavg and a, kout and
a, and IC50 and a, but high uncertainty makes the estimates

inconclusive.

Simulation of cortisol response
versus dexamethasone plasma concentration

Model simulations of the equilibrium dexamethasone-cor-

tisol response relationship (Fig. 3a), and the amplitude of

cortisol response (Fig. 3b) with increasing dexamethasone

concentrations show that at concentrations around the

potency value (about 20 to 50 ng L-1) small changes in

dexamethasone plasma concentration produce dispropor-

tionally large changes in cortisol response and amplitude.

At concentrations well above the potency value

([ 100 ng L-1) small changes in dexamethasone plasma

concentration produce small changes in cortisol response

and amplitude. Note the almost complete suppression of

cortisol response and its variability, with increasing dex-

amethasone concentrations.

Simulation of two overnight DST protocols

We simulated time courses for healthy horses at four dif-

ferent dose levels (10, 20, 30 and 40 lg kg-1 dexametha-

sone administered intravenously) following protocols A and

B. The resulting Fig. 4 shows predicted variability in pos-

sible time-courses resulting from IIV and parameter uncer-

tainty. Additionally, predicted time courses under protocolA

and B for the horses involved in this study are shown.

The variability in cortisol response around the threshold

value (10 lg L-1) proposed in Dybdal et al. [1] was high

after administration of 10 lg kg-1 but decreased steadily

for increasing dose levels (Fig. 4). After administration of

the 40 lg kg-1 dose variability in cortisol response 19 h

after drug administration was lower than after the three

lower doses. The model-predicted cortisol response shows

that, even after the highest dose, individuals from a healthy

population might have cortisol plasma concentrations

greater than 10 lg L-1 at sampling time.

Systematic differences between the simulations of pro-

tocol A and B are shown in Fig. 4. Following protocol A,

dexamethasone is administered at 17.00 o’clock, which

coincides with cortisol decrease following the model-pre-

dicted circadian rhythm. Protocol B assumes administra-

tion at 9.00 o’clock which coincides with a peak in

Table 1 Estimated population

parameters, the IIV standard

deviation and predicted

population range for the

dexamethasone model

Parameter (unit) Typical valuea IIV std. dev.a Predicted population rangea

Cl (L h-1 kg-1) 0.50 (0.43, 0.56) 0.071 (0.0036, 0.22) 0.50 (0.39, 0.63)

Cld (L h-1 kg-1) 0.16 (0.078, 0.33) 0.40 (0.032, 0.86) 0.16 (0.049, 0.55)

Vc (L kg-1) 1.2 (0.74, 1.7) 0.15 (0.013, 0.48) 1.2 (0.62, 2.1)

Vt (L kg-1) 0.76 (0.52, 1.0) 0.14 (0.013, 0.48) 0.76 (0.42, 1.3)

aValues reported as median and 95% credible interval

Table 2 Estimated population

parameters, the IIV standard

deviation and predicted

population range for the cortisol

model

Parameter (unit) Typical valuea IIV std. dev.a Predicted population rangea

kavg (lg L-1 h-1) 15 (11, 22) 0.36 (0.15, 0.67) 15 (6.4, 37)

a (unitless) 0.30 (0.13, 0.58) 1.1 (0.77, 1.7) 0.31 (0.035, 0.85)

t0 (h) - 2.9 (- 4.3, - 1.3) 0.12 (0.0052, 0.37) - 3.0 (- 5.1, - 0.095)

kout (h
-1) 0.34 (0.27, 0.46) 0.20 (0.080, 0.45) 0.34 (0.20, 0.62)

Imax (unitless) 0.99 (0.97, 1.0) 0.41 (0.050, 0.96) 0.94 (0.81, 0.98)

IC50 (ng L-1) 37 (22, 56) 0.56 (0.20, 0.97) 37 (9.1, 130)

n (unitless) 2.3 (1.5, 3.4) 0.39 (0.062, 0.99) 2.4 (1.1, 3.8)

aValues reported as median and 95% credible interval
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predicted cortisol concentration. As can also be seen from

the individual predictions (Fig. 4), cortisol concentrations

at administration time are generally lower following pro-

tocol A than B. At sampling time, 19 h (protocol A) or

24 h (protocol B) after administration, predicted concen-

trations for protocol A were consistently lower than for

protocol B. However, differences grew smaller with

increasing dexamethasone administration. For the highest

dose (40 lg kg-1), remaining dexamethasone concentra-

tion in blood plasma was predicted to 309 ng L-1 (varying

between 101 to 694 ng L-1) at sampling time for protocol

A and 155 ng L-1 (varying between 34 to 391 ng L-1) at

sampling time for protocol B. Suppressed cortisol con-

centration after administration of the largest dose of dex-

amethasone (40 lg kg-1) was lowest roughly between 5.00

o’clock and 12.00 o’clock for protocol A and 19.00 o’clock

and 3.00 o’clock for protocol B (Fig. 4).

Prediction of sensitivity and specificity
for overnight DST protocols

Sensitivity and specificity were predicted through Monte

Carlo simulations.All results are reported asmedian (95%CI).

For protocol A, a sensitivity of 99.1% (93.1% to 99.7%) and a

specificity of 83.4% (63.3% to 99.7%) were predicted. For

protocol B, a sensitivity of 99.2% (94.2% to 99.8%) and a

specificity of 77.8% (52.8% to 96.8%) were predicted. Sen-

sitivities for bothprotocols turnedout equal.Specificity tended

towards lower values for protocol B but there is no substantial

difference, given the spread of the credible intervals.

Discussion

In this study, we used an NLME approach to investigate the

IIV in dexamethasone exposure and cortisol response in

horses. The aim was to use the adjusted model to scrutinize

DST protocol designs. We analysed two proposed test

protocols through simulation, found systematic differences

in resulting cortisol time courses and predicted sensitivity

and specificity for each protocol.

The PK/PD model used in this study was based on a

previously published model (originally published in [26]

and used in [12]). For the purpose of this work, some parts

of the original model were simplified and re-parametrised.

An analytical solution of the cortisol model equations

(Eqs. 2–4) was used to initialise the parameter estimation

(see Eq. 5). This was necessary since the cortisol response

model does not have a constant steady state, which is

typically used for initialisation. The calibrated model

(Eqs. 1, 2) mimicked the overall tendency of the experi-

mental data well. Individual PK parameter estimates

(Table S1) and most PD parameters (Table S2) agree with

previously reported values [12]. Parameter a was not

directly comparable, since a different parametrisation of

the model is used in this study. In comparison to Ekstrand

et al. [12], the model in this study does not use a second

delay compartment for the cortisol response. This affects

individual estimates for parameter kout which were sys-

tematically lower in this study, about half the previously

estimated values. We found no evidence in the data to

motivate the necessity of an additional delay compartment.

Parameters kavg, a and IC50 showed evidence of non-zero

IIV.

Large improvements in estimated precision for param-

eter n were achieved in this study. However, considerable

uncertainty in some estimated parameters remained, nota-

bly Cld, a, t0 and IC50. Dexamethasone exposure data

(Figs. 2, S1) suggest a two-compartment model, but the

influence of the second compartment is subtle, which

explains the large uncertainty in parameter estimates of

Cld. Parameters a and t0 are mostly informed by baseline

measurements, as their influence is diminished by dexam-

ethasone administration. However, as reported in the

Fig. 3 a Plot of the average response (A in Eq. 6). b Plot of the oscillation amplitude (B in Eq. 6). Variability is shown as shaded areas
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results section (Figs. 2, S2) irregular fluctuations in base-

line measurements confound the underlying oscillation of

the cortisol response, explaining the challenge in precise

estimation of these two parameters. Irregular fluctuations in

baseline measurements can be explained by handling stress

[38] as well as pulsatility in cortisol secretion [39].

The multiple sources of uncertainty, incorporation of

IIV as well as the aim to utilize the calibrated model for

prediction motivated our use of a Bayesian approach. The

resulting posterior parameter distribution includes the

general tendency of the estimated parameter values, as well

as variability in form of IIV and parameter uncertainty.

When IIV is included through the framework of NLME,

parameter estimation can get more robust, since parameter

estimates for one subject are informed by estimates of other

subjects [22]. This can be seen in parameter n, which was

estimated with much higher precision in this study than in

Ekstrand et al. [12]. This holds for the Bayesian approach

as well as the maximum likelihood approach. However,

explicit inclusion of parameter uncertainty, when using a

Bayesian approach, allows for straight forward model

prediction, despite some remaining parameter uncertainty

[25].

One clinically relevant application of modelling the

cortisol response is evaluation of DST protocols. The

overnight DST is commonly used when testing for PPID.

Fig. 4 Simulated time courses

including model-predicted

variability for healthy horses

undergoing the DST protocols

A and B with the modification

of varying the test dose of 10,

20, 30 and 40 lg kg-1

dexamethasone. The black

dashed line represents the

threshold of 10 lg kg-1

proposed by Dybdal et al. [1].

Arrows indicate time for drug

administration at 9.00 o’clock

(protocol B) or 17.00 o’clock

(protocol A) and blood sample

19 h (protocol A) or 24 h

(protocol B) after

administration. Parameter

uncertainty and IIV are

incorporated into simulations.

This variability is shown by

blue shaded areas representing

increasing amounts of

variability (see legend).

Predicted time courses for the

horses in this study are shown as

solid red lines (Color

figure online)

82 Journal of Pharmacokinetics and Pharmacodynamics (2019) 46:75–87

123



Test protocols tend to be straight forward to be usable in

both equine-clinics as well as in the field and typically

involve only one or two samples. We investigated two

overnight DST protocols through simulations, including an

analysis of their sensitivity and specificity. Both protocols

define a negative outcome as suppressed cortisol response

to less than 10 lg L-1 in blood plasma 19 or 24 h after

administration of 40 lg kg-1 dexamethasone [1, 11]. In

our simulations dexamethasone plasma concentration at

sampling time was was predicted to be 101–694 ng L-1 for

protocol A and 34–391 ng L-1 for protocol B. This result

is consistent with experimental data [16, 17]. Concentra-

tion at sampling time was above potency (22–54 ng L-1)

for most individuals. However, there is a larger risk for

dexamethasone concentration to fall below the potency

value when following protocol B. Combined with the IIV

in cortisol response, not all healthy horses will fall below

the proposed threshold (Fig. 4).

All simulations were made under the assumption of

intravenous administration of dexamethasone. Dybdal et al.

[1] used intramuscular administration of dexamethasone.

As shown by Soma et al. [17], dexamethasone plasma

concentrations reach peak concentration after intramuscu-

lar administration with a slight time delay (about 15 min)

compared to intravenous administration. However, con-

centrations at times 19 ? h after administration, relevant

for DST protocols, are comparable after intravenous as

well as intramuscular administration. We therefore decided

that it is reasonable to compare our simulations with the

data published by Dybdal et al. [1].

For the purposes of model estimation only data from

healthy horses was available. To simulate sensitivity for

DST protocols A and B, we hypothesized that sick horses

do not respond to dexamethasone administration. Their

responses were therefore simulated at baseline. This was

motivated by the known mechanism that cortisol suppres-

sion through dexamethasone is challenged in horses

affected by PPID [6]. PPID also seems to lead to a

reduction in circadian rhythm and an increase in average

baseline concentrations [1]. However, numerical values

quantifying these latter differences for the race of horses

used in this study were not available. Incorporating these

changes into the hypothesis stated above would have

increased the predicted sensitivity, which was close to

100% already. To the best of our knowledge, there is no

finding about differences in dexamethasone kinetics

between healthy horses and those affected by PPID.

Sensitivity and specificity were determined through

simulation for both protocols. The predicted specificity for

protocol A, Dybdal et al. [1] reporting 100% specificity,

was 63.3% to 99.7% and for protocol B, Frank et al. [11]

reporting 76% specificity, it was 52.8% to 96.8%. The

consistency between experimentally determined results and

our simulations makes us confident that our model captured

the overall cortisol response in healthy horses well. Pre-

dicted sensitivity for protocol A, Dybdal et al. [1] reporting

100% sensitivity, was 93.1% to 99.7% and for protocol B,

Frank et al. [11] reporting 65% sensitivity, it was 94.2% to

99.8%. An explanation for the large discrepancy between

our simulation and the experimental result for protocol B

might be that our hypothesis only applies to a population of

horses with clinically advanced PPID [40]. Such a popu-

lation was considered by Dybdal et al. [1] and simulated

sensitivity for protocol A is in agreement with experi-

mental results. Future work might consider simulations of

horses in which maximum suppression is decreased, imi-

tating a mechanism that still reacts to dexamethasone

suppression but at a reduced intensity.

DST protocols A and B use different starting times

(afternoon vs. morning) and different waiting times until

cortisol sampling (19 h vs. 24 h). Simulations show that it

can be more effective to administer dexamethasone during

a descending phase in cortisol’s circadian rhythm (Fig. 4).

Also, cortisol’s circadian rhythm can interfere with the

effectiveness of dexamethasone suppression (Fig. 4, pro-

tocol B, upswing after suppression coincides with natural

upswing in cortisol production). However, no substantial

difference in test outcome between protocols A and B was

found in this study. A finding also consistent with a study

by Sojka et al. [41] that investigated the influence of

starting time on the DST and found no statistically sig-

nificant difference between starting in the morning or the

afternoon.

Simulations showed that a dose of 40 lg kg-1 dexam-

ethasone is necessary to conduct the current test protocols,

with lower doses leading to an increased number of false

positives (Fig. 4). Small changes in dose around the

potency value result in large reduction of cortisol average

baseline and amplitude (Fig. 3), but this diminishes quickly

for concentrations above the potency value. This has

implications on dose selection and sampling time points in

the DST. A dose-increment and consequently increased

plasma exposure will decrease the number of false positive

test results in healthy individuals. It is important to con-

sider that negative adverse effects from glucocorticoids,

e.g., hyperglycaemia, hyperinsulinemia and possibly

laminitis, are assumed to increase with higher doses

[42–44]. Shorter waiting time until sampling could further

decrease the number of false positives. Cortisol is sup-

pressed quickly by dexamethasone and peak suppression is

reached earlier than 19 ? h after administration (Fig. 4).

However, this could mean sampling in the late evening or

at night (between 19.00 o’clock to 3.00 o’clock for pro-

tocol B), which might be unacceptable in the field. Protocol

A has better potential for improvement since suppression is

at its maximum during early morning hours (between 5.00
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o’clock to 12.00 o’clock for protocol A). Existing protocols

show that practical applicability is an important factor in

their design.

Ideally, serial sampling would be used. An extended

sampling protocol with 2–3 additional samples would

provide more information about cortisol behaviour and

more reliable test results. Additional collection of an

unaffected cortisol baseline would allow estimation of the

typical cortisol response for the particular horse and allow

for an increase in the predictive power of the test. How-

ever, this is not a suitable strategy for clinical routine,

especially not in the field and the cost would also be

accepted in lower extent by the owners. Given the chal-

lenge of producing a protocol that clinicians can perform,

2–3 samples after drug administration is the maximum to

be collected. Therefore, some uncertainty in interpretation

of test results remains and the diagnosis must be based not

only on the test outcome.

Conclusion

Our study presents an improved model structure and

parameter estimates for cortisol concentration in horses

during intervention with dexamethasone. The use of non-

linear mixed effects modelling allowed estimation of

variation between individuals finding IIV in parameters

kavg, a and IC50. Using a Bayesian approach allowed

straight-forward propagation of uncertainty to simulations.

The adjusted model was successfully used to scrutinize

clinical test protocols through simulation. The model out-

put and simulations indicated the importance of dose

selection with doses below 40 lg kg-1 performing unfa-

vourably. Sampling time was also found to be of impor-

tance and simulations showed that waiting times in the

window 10 to 17 h could improve test performance. In

addition, it was found that administrating dexamethasone

in synchronisation with the down-swing in cortisol’s cir-

cadian rhythm can allow for a slight prolongation in

waiting time.
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Appendix

Cortisol concentration for constant
dexamethasone concentration

The solution to the cortisol model equations (Eqs. 2–4) can

be found analytically for constant dexamethasone concen-

tration Cp = Cp, eq.

Mathematically, Eq. 2 describes a first-order differential

equation driven by an external oscillation (the turnover

rate). Using methods described by Farkas [45], it can be

shown that there exists a unique oscillating solution to

Eq. 2. This solution will have the same period as the

driving turnover rate and any other solution will tend

towards this oscillating solution. Assume that the model

equations are solved by

ReqðtÞ ¼ aþ b � cosðx ðt � t0ÞÞ þ c � sinðx ðt � t0ÞÞ ;
ð13Þ

where x = 2p/24 h-1 and t0 is the phase shift in the

turnover rate (Eq. 3). Solving for a, b and c gives

a ¼ kavg

kout
� 1�

ImaxC
n
p; eq

ICn
50 þ Cn

p; eq

 !

;

b ¼ kavg � a � kout
k2out þ x2

� 1�
Imax C

n
p; eq

ICn
50 þ Cn

p; eq

 !

;

c ¼ kavg � a � x
k2out þ x2

� 1�
Imax C

n
p; eq

ICn
50 þ Cn

p; eq

 !

:

ð14Þ

To determine characteristic parameters for the equilib-

rium oscillation, it is more convenient to write Eq. 13 in

the form ReqðtÞ ¼ Aþ B cosðx ðt � CÞÞ where A, B and

C are as in Eq. 6. This representation can be found by

standard arguments for the sum of trigonometric functions.

It can be seen from these equations that A and B depend on

the drug concentration, while C does not.

Determination of prior parameters

Prior beliefs about means and variances for hierarchically

distributed parameters were quantified through a meta-

analysis of Ekstrand et al. [12]. Therein, point estimates of

parameter values and their relative precision (coefficient of

variation, CV) in percent were reported. If h is the reported

point estimate and CV its relative precision then standard

errors r were calculated as r = (CV�h)/100. To arrive at an

estimate for the population mean and population variance

for a parameter, e.g., Cl, weighted averages of the point
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estimates were formed. Each estimate was weighted by its

squared standard error. Let hi and ri be the estimate and

standard error determined for the ith horse. Then

l̂ ¼
P6

i¼1
hi
r2
iP6

i¼1
1
r2
i

and x̂2 ¼
P6

i¼1
h2i
r2
iP6

i¼1
1
r2

0

@

1

A� l̂2; ð15Þ

where l̂ and x̂2 are the population mean and variance,

respectively.

Parameters were modelled hierarchically either through

a log-normal distribution (e.g., Cl), a (scaled) logit-normal

distribution (for a, t0 and Imax) or a normal distribution (for

n). For all parameters the prior location parameters m0 and

s0 were determined by matching mean and variance of the

respective distribution with those in Eq. 15.

For a normal distribution l̂ and x̂2 can be used directly.

Analytical formulas for the mean and variance of the log-

normal distribution exist. It holds that

l ¼ exp mþ s2

2

� �
and x2

¼ exp s2
� �

� 1
� �

� exp 2mþ s2
� �

; ð16Þ

where m and s are the location and scale parameters of the

log-normal distribution. l and x2 were matched with l̂ and

x̂2 in Eq. 15 to determine m and s. Values can be found in

the table below.

In case of the (scaled) logit-normal distribution no

closed-form solutions for mean and variance exist. There-

fore, moments were calculated by numerical integration

using SciPy’s fixed_quad function [46]. Numerical opti-

mization was used to determine location and scale

parameters. The difference between numerically approxi-

mated moments and those in Eq. 15 was used as a target

function. SciPy’s fsolve, which implements methods from

MINPACK [47], was used for numerical optimization. The

resulting optimized parameters were m and s. Values can

be found in the table below.

The parameter controlling the average turnover rate kavg
was not directly given by Ekstrand et al. [12]. Instead, the

parameter Rij = kavg, ij/kout, i for individual i and occasion

j was given.1 Note that the parameter kavg was allowed to

vary by experimental occasion in Ekstrand et al. [12]. In

the model presented herein, the parameter kavg was mod-

elled with IIV instead. Individual- and occasion-specific

parameter estimates for kavg, ij could easily be recovered as

kavg, ij = Rij�kout, i. Relative precisions were used to calcu-

late the standard errors rRij
and rkout;i of each individual-/

occasion-dependent estimate. Standard errors for kavg, ij

were then approximated by propagation of uncertainty [48]

rkavg;ij � kavg;ij
		 		

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rRij

Rij

� �2

þ
rkout;i
kout;i

� �2
s

: ð17Þ

Summing over all individuals and occasions, weighted

averages, as in Eq. 15, were formed. These were matched

with mean and variance of a log-normal distribution to get

location m and scale s for kavg. Values can be found in the

table below.

Location parameters m and s for prior distribution of

hyper-parameters l and s.

Calculation of simulation of sensitivity
and specificity

By sampling j = 1,…, M individual parameter vectors,

called hij for the ith set of hyper-parameters, sensitivity Se(i)

and specificity Sp(i) can be calculated as

SeðiÞ � 1

M

XM

j¼1

1� U
10� R̂ðhðiÞj Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̂ðhðiÞj Þ2r21 þ r22

q

0

B@

1

CA

2

64

3

75 ð18Þ

and

SpðiÞ � 1

M

XM

j¼1

"

U
10� R̂ðhðiÞj Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̂ðhðiÞj Þ2r21 þ r22

q

0

B@

1

CA

þ U
R̂ðhðiÞj Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̂ðhðiÞj Þ2r21 þ r22

q

0

B@

1

CA� 1



:

ð19Þ

Here, U is the cumulative distribution function of the

standard normal distribution, and R̂ðhðiÞj Þ is the predicted

cortisol measurement obtained in the DST. In the case of

sensitivity, sick subjects were simulated and R̂ðhðiÞj Þ was

therefore predicted at baseline without drug. For speci-

ficity, healthy subjects were simulated and R̂ðhðiÞj Þ was

predicted after administration of 40 lg kg-1 dexametha-

sone. Repeating this procedure for many sets of hyper-

Parameter h Cl Cld Vc Vt kavg a t0 kout Imax IC50 n

m0 - 0.71 - 1.7 - 0.21 - 0.15 3.0 - 0.82 - 0.71 - 0.56 1.6 - 4.1 0.75

s0 0.064 0.46 0.27 0.16 0.46 0.98 0.10 0.26 0.34 0.73 0.36

1 R0 to R3 in [12], dependent on the occasion.
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parameters and a reasonably high value of M leads to a

distribution for sensitivity and specificity, which can be

summarised by median and credible interval. A derivation

of Eqs. 18, 19 is given in the Supplementary.
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