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Asymptotic Comparison of ML and MAP Detectors
for Multidimensional Constellations

Alex Alvarado, Erik Agrell, and Fredrik Brännström

Abstract—A classical problem in digital communications is
to evaluate the symbol error probability (SEP) and bit error
probability (BEP) of a multidimensional constellation over an
additive white Gaussian noise channel. In this paper, we revisit
this problem for nonequally likely symbols and study the behavior
of the optimal maximum a posteriori (MAP) detector at asymp-
totically high signal-to-noise ratios. Exact closed-form asymptotic
expressions for SEP and BEP for arbitrary constellations and
input distributions are presented. The well-known union bound
is proven to be asymptotically tight under general conditions.
The performance of the practically relevant maximum likelihood
(ML) detector is also analyzed. Although the decision regions with
MAP detection converge to the ML regions at high signal-to-noise
ratios, the ratio between the MAP and ML detector in terms of
both SEP and BEP approach a constant, which depends on the
constellation and a priori probabilities. Necessary and sufficient
conditions for asymptotic equivalence between the MAP and ML
detectors are also presented.

Index Terms—Additive white Gaussian noise channel, bit error
probability, error probability, high-SNR asymptotics, maximum a
posteriori, maximum likelihood, multidimensional constellations,
symbol error probability.

I. INTRODUCTION

The evaluation of the symbol error probability (SEP) and
bit error probability (BEP) of a multidimensional constellation
over an additive white Gaussian noise (AWGN) channel is
a classical problem in digital communications. This problem
traces back to [1] in 1952, where upper and lower bounds
on the SEP of multidimensional constellations based on the
maximum likelihood (ML) detector were first presented.

When nonuniform signaling is used, i.e., when constellation
points are transmitted using different probabilities, the optimal
detection strategy is the maximum a posteriori (MAP) detector.
The main drawback of MAP detection is that its imple-
mentation requires decision regions that vary as a function
of the signal-to-noise ratio (SNR). Practical implementations
therefore favor the (suboptimal) ML approach where the a
priori probabilities are essentially ignored. For ML detection,
the decision regions are the so-called Voronoi regions, which
do not depend on the SNR, and thus, are simpler to implement.
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Error probability analysis of constellations for the AWGN
channel has been extensively investigated in the literature,
see e.g., [2]–[7]. In fact, this a problem treated in many—
if not all—digital communication textbooks. To the best of
our knowledge, and to our surprise, the general problem of
error probability analysis for multidimensional constellations
with arbitrary input distributions and MAP detection has not
been investigated in such a general setup.

As the SNR increases, the MAP decision regions tend
towards the ML regions. Intuitively, one would then expect
that both detectors are asymptotically equivalent, which would
justify the use of ML detection. In this paper, we show that this
is not the case. MAP and ML detection give different SEPs and
BEPs asymptotically, where the difference lies in the factors
before the dominant Q-function expression. More precisely,
the ratio between the SEPs with MAP and ML detection
approaches a constant, and the ratio between their BEPs
approaches another constant. These constants are analytically
calculated for arbitrary constellations, labelings, and input
distributions. To the best of our knowledge, this has never
been previously reported in the literature. Numerical results
support our analytical results and clearly show the asymptotic
suboptimality of ML detection.

All the results in this paper are presented in the context of
detection of constellations with arbitrary number of dimen-
sions. These multidimensional constellations, however, can be
interpreted as finite-length codewords from a code, where the
cardinality of the constellation and its dimensionality corre-
spond to the codebook size and codeword length, respectively.
In this context, the results of this paper can be used to study
the performance of the MAP and ML sequence decoders at
asymptotically high SNRs.

This paper is organized as follows. In Section II, the model
is introduced and in Section III, the error probability bounds
are presented. The main results of this paper are given in
Section IV. Conclusions are drawn in Section V. All proofs
are deferred to Appendices.

II. PRELIMINARIES

A. System Model

The system model under consideration is shown in Fig. 1.
We consider the discrete-time, real-valued, N -dimensional,
AWGN channel

Y = X + Z, (1)

where the transmitted symbol X belongs to a discrete con-
stellation X = {x1,x2, . . . ,xM} and Z is an N -dimensional
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Fig. 1. System model under consideration. For a given length-m transmitted
binary label ci, the received vector Y is processed by the MAP or ML
detector. The estimated symbol X̂ is then converted to an estimated binary
label Ĉ.

vector, independent of X , whose components are independent
and identically distributed Gaussian random variables with
zero mean and variance σ2 per dimension. The conditional
channel transition probability is

f(y|x) =
1

(2πσ2)N/2
exp

(
−‖y − x‖2

2σ2

)
. (2)

We assume that the symbols are distinct and that each of
them is transmitted with probability pi = Pr{X = xi}, 0 <
pi < 1. Neither the constellation points nor their probabilities
depend on σ. We use the set I = {1, . . . ,M} to enumerate
the constellation points. The average symbol energy is Es =∑
i∈I pi‖xi‖2 <∞. The Euclidean distance between xi and

xj is defined as δij = ‖xi−xj‖ and the minimum Euclidean
distance (MED) of the constellation as d = mini,j∈I:i 6=j δij .

For the BEP analysis, assuming that M is a power of two,
we consider a binary source that produces length-m binary
labels. These labels are mapped to symbols in X using a binary
labeling, which is a one-to-one mapping between the M = 2m

different length-m binary labels and the constellation points.
The length-m binary labels have an arbitrary input distribution,
and thus, the same distribution is induced on the constellation
points. The binary label of xi is denoted by ci, where i ∈ I.
The Hamming distance between ci and cj is denoted by γij .

At the receiver, we assume that (hard-decision) symbol-wise
decisions are made. The estimated symbol is then mapped to
a binary label to obtain an estimate on the transmitted bits.1

For any received symbol y, the MAP decision rule is2

X̂
map

(y) = argmax
j∈I

{pjf(y|xj)}. (3)

This decision rule generates MAP decision regions defined as

Rmap
j (σ) = {y ∈ RN : pjf(y|xj) ≥ pif(y|xi),∀i ∈ I} (4)

for all j ∈ I. Similarly, the ML detection rule is

X̂ml(y) = argmax
j∈I

{f(y|xj)}, (5)

which results in the decision regions

Rml
j (σ) = {y ∈ RN : f(y|xj) ≥ f(y|xi),∀i ∈ I}. (6)

Example 1: Consider the 32-ary constellation with the
nonuniform input distribution in [9, Fig. 2, Table I]3. The
constellation is shown in Fig. 2, where the area of the constel-

1This detector based on symbols has been shown in [8] to be suboptimal
in terms of BEP; however, differences are expected only at high BEP values.

2Throughout the paper, the superscripts “map” and “ml” denote quantities
associated with MAP and ML detection, respectively.

3Using three shaping bits, which results in radii 1, 2.53, 4.30.

(a) σ2 = 0.1

(b) σ2 = 0.05

(c) σ2 = 0.025

Fig. 2. ML (dashed blue) and MAP (solid red) decision regions for the
constellation in Example 1 and three values of the noise variance. The area
of the constellation points is proportional to their probabilities. As the noise
variance decreases, the MAP regions converge to the ML regions.

lation points is proportional to the corresponding probabilities.
In Fig. 2, the MAP and ML decision regions in (4) and (6)
are shown for three values of the noise variance. These results
show how the MAP regions converge to the ML regions as
the noise variance decreases. M

B. Error Probability

Throughout this paper, the SEP and BEP are denoted by
Ps(σ) and Pb(σ), respectively. Furthermore, we are interested
in the error probability (SEP and BEP) of both the MAP and
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TABLE I
VALUES OF X̂ AND hij THAT USED IN (7)–(9) GIVE SEP AND BEP

EXPRESSIONS FOR BOTH THE MAP AND ML DETECTORS. THE LAST
COLUMN SHOWS THE VALUES OF wij FOR THE ASYMPTOTIC EXPRESSIONS

IN SECTION IV.

P (σ) X̂ hij wij

Pmap
s (σ) X̂

map
1

√
pj
pi

Pml
s (σ) X̂ml 1 1

Pmap
b (σ) X̂

map γij
m

√
pj
pi

Pml
b (σ) X̂ml γij

m
1

ML detectors. To study these four error probabilities, we define
the generic error probability function

P (σ) =
∑
i∈I

pi
∑
j∈I
j 6=i

hij Tij(σ), (7)

where the transition probability Tij(σ) is given by

Tij(σ) = Pr
{
X̂(Y ) = xj |X = xi

}
(8)

= Pr
{
Y ∈ Rj(σ)|X = xi

}
. (9)

The expressions (7)–(9) represent both the MAP and ML
detectors, as well as both the SEP and BEP, as explained in
the following.

The error probability with MAP detection is obtaining by
usingRj(σ) = Rmap

j (σ) in (9), whereRmap
j (σ) is given by (4).

Similarly, the use of Rj(σ) = Rml
j (σ) in (9), where Rml

j (σ) is
given by (6), leads to the error probability with ML detection.

To study the SEP, hij in (7) should be set to one, which
gives the well-known expression

Ps(σ) =
∑
i∈I

pi
∑
j∈I
j 6=i

Tij(σ). (10)

Similarly, the BEP expression [10, Eq. (1)], [11, Eq. (1)]

Pb(σ) =
∑
i∈I

pi
∑
j∈I
j 6=i

γij
m

Tij(σ) (11)

is obtained by using hij = γij /m in (7). The four cases
discussed above are summarized in the first three columns of
Table I.

III. ERROR PROBABILITY BOUNDS

Error probability calculations for arbitrary multidimensional
constellations and finite SNR are difficult because the decision
regions defining the transition probabilities Tij(σ) in (9) are
in general irregular. Therefore, to analytically study the error
probability, bounding techniques are usually the preferred
alternative. In this section, we present two lemmas that give
upper and lower bounds on the transition probability Tij(σ).
These bounds are expressed in terms of the Gaussian Q-
function Q(x) = (1/

√
2π)

∫∞
x

exp
(
−ξ2/2

)
dξ and will then

be used to upper- and lower-bound the SEP and BEP in
Section IV.

Lemma 1: For any i, j ∈ I, j 6= i,

Tij(σ) ≤ Q
(

∆ij(σ)

σ

)
, (12)

where

∆ij(σ) =

{
δij
2

(
1 + 2σ2

δ2ij
log pi

pj

)
, for MAP,

δij
2 , for ML.

(13)

Proof: See Appendix A.
Lemma 2: For any i, j ∈ I, j 6= i and any σ < τij ,

Tij(σ) ≥


0, if δij > d,(
Q
(

∆ij(σ)
σ

)
−Q

(
d

2σ + r(σ)√
Nσ

))
·(

1− 2Q
(
r(σ)√
Nσ

))N−1

, if δij = d,

(14)

where ∆ij(σ) is given by (13),

r(σ) =
d2 − 4σ2 log maxa,b∈I {pa/pb}

2(1 +
√

3)d
, (15)

and

τij = d

(
2(1 +

√
3)
√
N

∣∣∣∣log

(
pi
pj

)∣∣∣∣+ 4 log max
a,b∈I

{
pa
pb

})− 1
2

.

(16)

Proof: See Appendix B.
The results in Lemmas 1 and 2 can be combined with (7)

to obtain upper and lower bounds on the error probability:

P (σ) ≤
∑
i∈I

pi
∑
j∈I
j 6=i

hijQ

(
∆ij(σ)

σ

)
(17)

and

P (σ) ≥
∑
i∈I

pi
∑
j∈I
δij=d

hij

(
Q
(∆ij(σ)

σ

)
−Q

( d
2σ

+
r(σ)√
Nσ

))
·

(
1− 2Q

(
r(σ)√
Nσ

))N−1

, σ < min
i,j∈I

τij , (18)

where ∆ij(σ), r(σ), and τij are given by (13), (15), and (16),
respectively. In the next section, it will be proved that both
these bounds are tight for asymptotically high SNR.

IV. HIGH-SNR ASYMPTOTICS OF THE SEP AND BEP

A. Main Results

The following theorem gives an asymptotic expression for
the error probability in (7), i.e., it describes the asymptotic
behavior of the MAP and ML detectors, for both SEP and
BEP. The results are given in terms of the input probabilities
pi, the Euclidean distances between constellation points δij ,
the MED of the constellation d, and the Hamming distances
between the binary labels of the constellation points γij . The
results in this section will be discussed later in Section IV-B.
Numerical results will be presented in Section IV-C.
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Theorem 3: For any input distribution,

lim
σ→0

P (σ)

Q
(
d

2σ

) = B, (19)

where

B =
∑
i∈I

pi
∑
j∈I
δij=d

hijwij (20)

and where hij and wij are constants given in Table I and Q(·)
is the Gaussian Q-function.

Proof: See Appendix C.
The following corollary shows that, at high SNR, the ratio

between the error probability with MAP and ML detection
approaches a constant R ≤ 1. This constant shows the
asymptotic suboptimality of ML detection: when R < 1 an
asymptotic penalty is expected, but when R = 1 both detectors
are asymptotically equivalent.

Corollary 4: For any input distribution and for either SEP
or BEP,

lim
σ→0

Pmap(σ)

Pml(σ)
= R, (21)

where

R =
Bmap

Bml =

∑
i∈I pi

∑
j∈I
δij=d

hij

√
pj
pi∑

i∈I pi
∑

j∈I
δij=d

hij
, (22)

where hij is a constant given in Table I. Furthermore, R ≤ 1
with equality if and only if pi = pj , ∀i, j : δij = d.

Proof: See Appendix D.

B. Discussion
Theorem 3 generalizes [12, Ths. 3 and 7] to arbitrary

multidimensional constellations.4 Somewhat surprisingly, The-
orem 3 in fact shows that [12, Ths. 3 and 7] apply verbatim
to multidimensional constellations. The result in Theorem 3
for the particular case of SEP with ML detection also coin-
cides with the approximation presented in [7, Eqs. (1)–(2)].
Theorem 3 can therefore be seen as a formal proof of the
asymptotic approximation in [7, Eqs. (1)–(2)] as well as its
generalization to MAP detection for SEP and to both MAP
and ML detection for BEP.

Recognizing BQ(d/(2σ)) as the dominant term in the union
bound, Theorem 3 in fact proves that the union bound is
tight for both SEP and BEP with arbitrary multidimensional
constellations, arbitrary labelings and input distributions, and
both MAP and ML detection, which, to the best of our
knowledge, has not been previously reported in the literature.
The special case of SEP with uniform input distribution and
ML detection was elegantly proved in [13, Eqs. (7.10)–(7.15)]
using an asymptotically tight lower bound.5

Note that the lower bound in (18) is identical for MAP
and ML detection when R = 1, since ∆ij(σ) = d/2 in both

4All the results in [12] are valid for one-dimensional constellations only.
5An earlier attempt to lower-bound the SEP in the same scenario was

presented in [1, Th. 3], but that bound was incorrect, which can be shown by
considering a constellation consisting of three points on a line.

cases. The upper bound in (17), however, is always different
for MAP and ML detection as long as the symbols are not
equally likely, even when R = 1.

C. Examples

Example 2: Consider the one-dimensional asymmetric
constellation with M = 3, (x1, x2, x3) = (−1, 0,+2), and
(p1, p2, p3) = (0.62, 0.07, 0.31). This probability distribution
is chosen so that the average of the constellation is zero.
Fig. 3 (a) shows the exact SEP with MAP and ML detection,
which can be analytically calculated, together with the upper
bounds in (17) (green), the lower bounds in (18) (cyan),
and the asymptotic approximations Ps(σ) ≈ BsQ(d/(2σ))
from (19) (blue) with Bmap

s = 2
√
p1p2 = 0.4167 and

Bml
s = p1 + p2 = 0.6900, i.e., Rs = 0.6038, given by

Corollary 4. The solid and dotted curves represent MAP and
ML detection, respectively. The lower bounds are only defined
when Es/σ

2 > 15.8 dB, due to the restrictions on σ in (18).
In this example the asymptotic approximation for the ML
detector is below the exact SEP, while for the MAP detector
the asymptotic approximation is above the exact SEP when
Es/σ

2 > 2.6 dB. Fig. 3 (a) also shows that there is a difference
in the SEP between the MAP and ML detector and that the
upper and lower bounds are tight and converge to both the
exact SEP and the asymptotic approximation for high SNR.

Now consider instead the one-dimensional symmetric con-
stellation with M = 3, (x1, x2, x3) = (−1, 0,+1), and
(p1, p2, p3) = (p1, 1 − 2p1, p1), where 0 < p1 < 1/2.
If p1 = 1/3, an equally likely and equally spaced 3-ary
constellation is obtained. If p1 = 1/K, this constellation is
equivalent to a constellation with K equally likely points, of
which K − 2 are located at the origin; such a constellation
was used in [14] to disprove the so-called strong simplex
conjecture.

In Fig. 3 (b), the exact SEP with MAP and ML detection,
which can be analytically calculated, is shown for different
values of p1. There is a clear performance differences between
the two detectors when p1 6= 1/3. According to Corollary 4,
Bmap

s = 4
√
p1(1− 2p1) and Bml

s = 2(1 − p1), i.e., Rs =
2
√
p1(1− 2p1)/(1−p1). Fig. 3 (c) shows the ratio of the SEP

curves and how these converge to Rs as σ → 0 (indicated by
the horizontal dashed lines). For p1 = 0.167 and p1 = 0.444,
the asymptote is the same (Rs = 0.8); however, their SEP
performance is quite different (see Fig. 3 (b)). This can be
explained using the results in Fig. 3 (d), where the solid line
shows Rs. The two markers when Rs = 0.8 correspond to
p1 = 0.167 and p1 = 0.444, which explains the results in
Fig. 3 (c) for those values of p1. M

Example 3: Consider again the constellation in Example 1
(see Fig. 2) with the labeling specified in [9, Fig. 2]. Fig. 4 (a)
shows the simulated BEPs (red markers) together with the
upper bounds in (17) (green), the lower bounds in (18) (cyan),
and the asymptotic approximations Pb(σ) ≈ BbQ(d/(2σ))
from (19) (blue). The solid and dotted curves represent MAP
and ML detection, respectively. The lower bounds are only
defined when Es/σ

2 > 20.78 dB, due to the restrictions on σ
in (18). These result show very small differences between the
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Fig. 3. Results obtained for the constellations in Example 2: (a) SEP and bounds with MAP and ML detection for the asymmetric constellation, (b) SEP
with MAP and ML detection for the symmetric constellation, (c) ratio of SEPs and asymptote for the symmetric constellation given by Corollary 4, and (d)
asymptote for the symmetric constellation as a function of the symbol probability p1.

MAP and ML detectors. To see the asymptotic behavior more
clearly, Fig. 4 (b) shows the ratio between the eight curves
in Fig. 4 (a) and Q(d/(2σ)). It is clear that the simulated
BEPs closely follow the upper bounds at these SNR values.
These results also show that both the upper and lower bounds
converge to Bmap

b = 0.1450 and Bml
b = 0.1495 for MAP and

ML detection, respectively, as predicted by Theorem 3. Unlike
Fig. 4 (a), Fig. 4 (b) clearly shows the asymptotic difference
between the MAP and ML detectors, since Rb = 0.97.

The gap between Pmap
b and Pml

b depends on the bit labeling,
but not as strongly as on the probability distribution. It can be
shown that for the probabilities in this example, 0.956 < Rb <
0.989 for any labeling. On the other hand, for this labeling,
Rb can be made equal to any value in the interval (0, 1] by
changing the probabilities. M

Corollary 4 gives necessary and sufficient conditions for
the asymptotic optimality of ML detection for both SEP
and BEP. A nonuniform distribution will in general give
R < 1, although there are exceptions. Consider for example a
constellation that can be divided into clusters, where all pairs

of constellation points in different clusters are at distances
larger than the MED. Then ML detection is asymptotically
optimal (i.e., R = 1) if the probabilities of all constellations
points within a cluster are equal, even if the clusters have
different probabilities. In this special case, (20) for SEP yields
Bmap

s = Bml
s =

∑
i∈I piGi, where Gi is the number of

neighbors at MED from point i. We illustrate this concept
with the following example.

Example 4: Fig. 5 (a) illustrates the two-dimensional con-
stellation in [15, Fig. 3 (d)]. We let the symbols in the inner
ring be used with probability p1 each and the symbols in the
outer ring with probability p2 = (1 − 4p1)/12. The radii
of the two rings are r1 = 0.71d and r2 = 1.93d, and the
average symbol energy is Es = 4p1r

2
1 + 12p2r

2
2 . Fig. 5 (b)

shows the simulated ratio Ps(σ)/Q(d/(2σ)) when p1 = 0.22
and p2 = 0.01 for ML (red circles) and MAP (red crosses)
detection. The upper bounds in (17), the lower bounds in
(18), and the asymptotic expression, all divided by Q(d/(2σ)),
are included as green, cyan, and blue curves, respectively. In
this case, the lower bounds for ML and MAP detection are
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Fig. 5. Results obtained for the constellation in Example 4: (a) Constellation
where the pairs of symbols at MED are marked with solid lines and the symbol
probabilities are indicated by the point areas, and (b) asymptotic performance
shown as the ratio between SEPs and Q(d/(2σ)).

identical, as are the asymptotes. For this specific constellation,
Gi = 2 for all i ∈ I, and hence, Bmap

s = Bml
s = 2,

independently of p1 and p2, which implies Rs = 1. In terms
of BEP, Bmap

b = Bml
b , hence Rb = 1, regardless of both the

labeling and p1 and p2. This shows that for this particular
nonuniform constellation, both ML and MAP detectors are
asymptotically equivalent for SEP and BEP for all labelings.
M

V. CONCLUSIONS

In this paper, an analytical characterization of the asymp-
totic behavior of the MAP and ML detectors in terms of SEP
and BEP for arbitrary multidimensional constellations over the
AWGN channel was presented. The four obtained results from
Theorem 3 and Table I can be summarized as

Pmap
b (σ) ≈ Q

(
d

2σ

) ∑
i,j∈I
δij=d

γij
m

√
pipj , (23)

Pml
b (σ) ≈ Q

(
d

2σ

) ∑
i,j∈I
δij=d

γij
m
pi, (24)

Pmap
s (σ) ≈ Q

(
d

2σ

) ∑
i,j∈I
δij=d

√
pipj , (25)

Pml
s (σ) ≈ Q

(
d

2σ

) ∑
i,j∈I
δij=d

pi, (26)

where the relative error in all approximations approaches zero
as σ → 0. The expressions for MAP and ML are equal if and
only if pi = pj , ∀i, j : δij = d.

Somewhat surprisingly, the results in this paper are the first
ones that address the problem in such a general setup. The the-
oretical analysis shows that for nonuniform input distributions,
ML detection is in general asymptotically suboptimal. In most
practically relevant cases, however, MAP and ML detection
give very similar asymptotic results. The results in this paper
are first-order only. An asymptotic analysis considering higher
order terms is left for further investigation.

Most modern transceivers based on high-order modulation
formats use a receiver that operates at a bit level (i.e., a bit-
wise receiver). Because of this, the binary labeling of the
constellation plays a fundamental role in the system design.
Furthermore, the use of nonequally likely symbols (proba-
bilistic shaping) has recently received renewed attention in
the literature. In this context, the asymptotic BER expressions
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Rmap
j (σ)

Rmap
k (σ)

Rmap
n (σ)

Hmap
ij (σ)

xi

d

xj

xk

d

dij

r xij

Orthotope Rmap
j (σ) ∩ Cij(σ)

|∆ij(σ)|

xn

Cin(σ)

din

Fig. 6. Geometric representation of the proofs of Lemma 1 and 2 for a 2D
constellation with MAP detection. The MAP decision regions are shown for
xj , xk , and xn, the half-space in (29) for xj (Hmap

ij (σ)), and the hypercube
for xn (Cin(σ)).

presented in this paper can be used to optimize both the
constellations and the binary labeling. This is also left for
further investigation.
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APPENDIX A
PROOF OF LEMMA 1

For MAP detection, we have from (9) and (4) that

Tmap
ij (σ) ≤ Pr

{
Y ∈ Hmap

ij (σ)|X = xi
}
, (27)

where Hmap
ij (σ) is the half-space determined by a pairwise

MAP decision (see (3)–(4)), i.e.,

Hmap
ij (σ) = {y ∈ RN : pif(y|xi) ≤ pjf(y|xj)}. (28)

Using (2), (28) can be expressed as

Hmap
ij (σ) =

{
y ∈ RN :

〈
y − xi,

dij
δij

〉
≥ ∆ij(σ)

}
, (29)

where ∆ij(σ) is given by (13) and dij = xj−xi. The value of
|∆ij(σ)| is the shortest Euclidean distance between xi and the
hyperplane defining the half-space Hmap

ij (σ). For a geometric
interpretation, see Hmap

ij (σ) in Fig. 6.

Using (29), (27) can be calculated as

Tmap
ij (σ) ≤ Pr

{〈
Y −X,

dij
δij

〉
≥ ∆ij(σ) |X = xi

}
(30)

= Q

(
∆ij(σ)

σ

)
, (31)

where (31) follows from (1)–(2) by recognizing
〈Y −X,dij/δij〉 as a zero-mean Gaussian random variable
with variance σ2.

The proof for the ML case is analogous but starts from (6)
instead of (4). If follows straightforwardly that Hml

ij (σ) is also
given by (29), where now ∆ij(σ) = δij/2 defines a hyperplane
half-way between xi and xj .

APPENDIX B
PROOF OF LEMMA 2

To lower-bound (9) for MAP detection, we first ignore all
the contributions of constellation points not at MED, i.e., we
use Pr

{
Y ∈ Rmap

j (σ)|X = xi
}
≥ 0, for all j such that

δij > d. This gives the first case in (14).
The case of δij = d is addressed by first defining an

N -dimensional hypersphere centered at the mid-point xij =
1
2 (xi + xj) and of radius r(σ) defined in (15). Second, we
inscribe an N -dimensional hypercube with half-side r(σ)/

√
N

inside this hypersphere. And third, we rotate this hypercube
so that one of its sides is perpendicular to dij . We denote
this hypercube by Cij(σ). For a geometric interpretation when
N = 2, see Fig. 6.

To lower-bound (9), we integrate f(y|x) in (2) over the
intersection of the MAP region Rmap

j (σ) and the hypercube
Cij(σ), i.e.,

Tmap
ij (σ) =

∫
Rmap

j (σ)

f(y|xi) dy (32)

≥
∫
Rmap

j (σ)∩Cij(σ)

f(y|xi) dy. (33)

We will prove that for sufficiently low values of σ, the
integration region in (33) is an orthotope (hyperrectangle),
as illustrated for xi and xj in Fig. 6. This will be done
in three steps. We will show first that the hypercube Cij(σ)
is nonempty, second that it does not intersect any region
Rmap
k (σ) for k /∈ {i, j}, and third that Cij(σ) intersects both
Rmap
i (σ) and Rmap

j (σ). Together these three facts imply that
Rmap
j (σ)∩ Cij(σ) is an orthotope, whose dimensions are then

determined, which allows the integral in (33) to be calculated
exactly.

For the first step, combining (15) and (16) and rearranging
terms yields for any i, j ∈ I with j 6= i

d2

σ2
− d2

τ2
ij

= 2(1 +
√

3)

(
dr(σ)

σ2
−
√
N

∣∣∣∣log
pi
pj

∣∣∣∣) . (34)

If σ < τij , then (34) implies

r(σ)√
N

>
σ2

d

∣∣∣∣log
pi
pj

∣∣∣∣ . (35)
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This inequality, to which we will return later, shows that
r(σ) > 0 and hence that Cij(σ) is not empty.

For the second step, we consider any i, j, k ∈ I such that
δij = d and k /∈ {i, j}. We have

d2 ≤ min
`∈{i,j}

‖xk − x`‖2 (36)

= min
`∈{i,j}

‖(xk − xij)− (x` − xij)‖2 (37)

= ‖xk − xij‖2 − 2 max
`∈{i,j}

〈xk − xij ,x` − xij〉+
d2

4
(38)

≤ ‖xk − xij‖2 +
d2

4
, (39)

where (38) follows because ‖xi−xij‖2 = ‖xj−xij‖2 = d2/4
and (39) because xi −xij = −(xj −xij) in the second term
of (38). Hence, ‖xk − xij‖ ≥ d

√
3/2. Consider now any

point y ∈ Cij(σ). By the triangle inequality, ‖y − xk‖ ≥
‖xk − xij‖ − ‖y − xij‖ ≥ d

√
3/2 − r(σ) and ‖y − xi‖ ≤

‖xi−xij‖+‖y−xij‖ ≤ d/2+r(σ), which are then combined
into

‖y − xk‖2 − ‖y − xi‖2 ≥

(
d
√

3

2
− r(σ)

)2

−
(
d

2
+ r(σ)

)2

(40)

=
d2

2
−
(

1 +
√

3
)
dr(σ) (41)

= 2σ2 log max
a,b∈I

{
pa
pb

}
(42)

≥ 2σ2 log
pk
pi
, (43)

where (42) follows from (15). Rearranging terms,

pk exp

(
−‖y − xk‖2

2σ2

)
≤ pi exp

(
−‖y − xi‖2

2σ2

)
, (44)

which via (2) and (4) implies y /∈ Rmap
k (σ).6 Hence, Cij(σ)∩

Rmap
k (σ) = ∅ and (33) can be written as

Tmap
ij (σ) ≥

∫
Hmap

ij (σ)∩Cij(σ)

f(y|xi) dy. (45)

For the third step, we return to (35), which holds for any
pair i, j ∈ I with j 6= i. In the special case when δij = d,
(35) and (13) yield

d

2
− r(σ)√

N
< ∆ij(σ) <

d

2
+
r(σ)√
N
. (46)

Since ∆ij(σ) gives the distance between xi and Rmap
j (σ),

and d/2 ± r(σ)/
√
N gives the distance between xi and two

opposite facets of the hypercube Cij(σ), (46) implies that
Hmap
ij (σ) ∩ Cij(σ) is a (nonempty) orthotope with thickness

d/2 + r(σ)/
√
N − ∆ij(σ). Carrying out the integration in

(45) over this orthotope gives the second case of (14), which
completes the proof of Lemma 2 for MAP detection.

The proof for ML detection is obtained similarly. The
hypercube Cij(σ) is defined in the same way as before, and

6If (44) is an equality, y may lie on the boundary of Rmap
k (σ), but such

points do not influence the integral in (33) and are neglected.

the analysis is identical up to (42). Equation (43) is replaced
by ‖y−xk‖2−‖y−xi‖2 ≥ 0, which via (2) and (6) implies
y /∈ Rml

k (σ). Hence, (45) is still valid and so is (46), except
that ∆ij(σ) in (46) is now equal to d/2 in accordance with
(13). The thickness of Hml

ij (σ) ∩ Cij(σ) is thus r(σ)/
√
N ,

which proves (14) for ML detection.

APPENDIX C
PROOF OF THEOREM 3

To prove Theorem 3, we first use (7) to obtain

lim
σ→0

P (σ)

Q
(
d

2σ

) =
∑
i∈I

pi
∑
j∈I
j 6=i

hij lim
σ→0

Tij(σ)

Q
(
d

2σ

) . (47)

As will become apparent later, the limit on the right hand side
of (47) exists and, hence, so does the limit on the left hand
side. To calculate the limit in the right hand side of (47), we
will sandwich it using Lemmas 1 and 2.

For MAP detection, we first study the asymptotic behavior
of the upper bound in Lemma 1

lim
σ→0

Tmap
ij (σ)

Q
(
d

2σ

)
≤ lim
σ→0

Q
(∆ij(σ)

σ

)
Q
(
d

2σ

) (48)

= lim
σ→0

Q
( δij

2σ +
σ log(pi/pj)

δij

)
Q
(
d

2σ

) (49)

= lim
σ→0

δij
2σ2 − log(pi/pj)

δij
d

2σ2

·

exp

(
−
δ2
ij

8σ2
− (σ log(pi/pj))

2

2δ2
ij

− log(pi/pj)

2
+

d2

8σ2

)
(50)

= lim
σ→0

δij
d

√
pj
pi

exp

(
−
δ2
ij − d2

8σ2

)
(51)

=

{
0, if δij > d,√

pj
pi
, if δij = d,

(52)

where (50) follows from l’Hôpital’s rule [16, Sec. 11.2].
Next, we study the asymptotic behavior of the lower bound

in Lemma 2 for δij = d (the lower bound (14) is zero for
δij > d). Assuming that all the limits exist, we obtain

lim
σ→0

Tmap
ij (σ)

Q
(
d

2σ

)
≥ lim
σ→0

(
Q
(

∆ij(σ)
σ

)
−Q

(
d

2σ + r(σ)√
Nσ

))(
1− 2Q

(
r(σ)√
Nσ

))N−1

Q
(
d

2σ

)
(53)

=

 lim
σ→0

Q
(

∆ij(σ)
σ

)
Q
(
d

2σ

) − lim
σ→0

Q
(
d+2r(σ)/

√
N

2σ

)
Q
(
d

2σ

)
 ·

lim
σ→0

(
1− 2Q

(
r(σ)√
Nσ

))N−1

. (54)
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The first limit in (54) is the same as in (48)–(52). The
second limit is zero and the last limit is one because by (15),
limσ→0 r(σ) = d/(2(1 +

√
3)). Hence, all limits exist and

asymptotically, both lower and upper bounds converge to (52).
Using this in (47) gives

lim
σ→0

P (σ)

Q
(
d

2σ

) =
∑
i∈I

pi
∑
j∈I
δij=d

hij

√
pj
pi
, (55)

which completes the proof for MAP detection.
The proof for ML detection follows similar steps. Substi-

tuting ∆ij(σ) = δij/2 from (13) into (48) yields

lim
σ→0

Tml
ij (σ)

Q
(
d

2σ

) ≤ lim
σ→0

Q
( δij

2σ

)
Q
(
d

2σ

) (56)

=

{
0, if δij > d,

1, if δij = d.
(57)

The asymptotic expression for the lower bound in (54) holds
unchanged in the ML case too. In this case, the first limit is
given by (57), the second is zero, and the third is one. This
combined with (47) completes the proof for ML detection.

APPENDIX D
PROOF OF COROLLARY 4

Equations (21)–(22) follow immediately from (19)–(20). To
prove R ≤ 1, we need to prove∑

i,j∈I
δij=d

hijpi −
∑
i,j∈I
δij=d

hij
√
pjpi ≥ 0. (58)

Using hij = hji and δij = δji, we obtain∑
i,j∈I
δij=d

hij(pi −
√
pjpi) =

1

2

∑
i,j∈I
δij=d

hij(pi −
√
pjpi)+

1

2

∑
j,i∈I
δji=d

hji(pj −
√
pipj) (59)

=
1

2

∑
i,j∈I
δij=d

hij(pi + pj − 2
√
pjpi)

(60)

=
1

2

∑
i,j∈I
δij=d

hij(
√
pi −

√
pj)

2 (61)

≥ 0, (62)

which holds with equality if and only if pi = pj , ∀i, j : δij =
d.
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