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Mikkel Jørgensen
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Abstract

Modern society depends heavily on heterogeneous catalysis, which creates strong econom-
ical and environmental incentives to improve catalyst efficiency. Heterogeneous catalysts
are often realized as metal nanoparticles (NPs) supported on oxide surfaces, and catalysts
are traditionally developed by trial and error approaches. However, rational catalyst
design can be enabled by understanding reactions on the atomic scale. Presently, com-
putational power has matured sufficiently to obtain atomic scale insights into reaction
kinetics, directly from first-principles kinetic simulations.

This thesis develops the methodologies of first-principles kinetic simulations over NPs.
Multiple factors affect modeling of reactions over NPs, such as reaction energy landscapes
and entropy changes during reaction. This makes it important to investigate different
methodological choices, within kinetic modeling.

Herein, Complete Potential Energy Sampling (CPES) is introduced as a method to
calculate adsorbate entropy. CPES directly samples the adsorbate potential energy
landscape, which allows for systematic improvements over approximate models within
mean-field kinetics. CPES is tested on CO-oxidation over Pt(111), where it improves
agreement with experimental references. Furthermore, CPES is applied to enable accurate
description of molecular entropy in zeolites.

Reaction energy landscapes on NPs are challenging to calculate as NPs contain multiple
different sites. Thus, NPs are commonly approximated using extended surfaces as model
systems. In this thesis, the challenge of mapping out NP reaction energy landscapes is
solved pragmatically using scaling relations. Kinetic Monte Carlo simulations are used to
investigate the kinetics for CO-oxidation over Pt and selective acetylene hydrogenation
over Pd/Cu single-atom alloys. It is found that kinetic couplings between the NP-sites
govern the kinetics. The kinetic couplings influence how turnover frequency and selectivity
depend on particle size, shape, and strain. Thus, the energetics of isolated sites and
extended surface models are found to have limited value as descriptors for NP catalysis.

Keywords: Heterogeneous catalysis, Nanoparticles, Methane oxidation, CO oxidation,
Acetylene hydrogenation, Kinetic modeling, Mean field approximation, Kinetic Monte
Carlo, Density functional theory, Entropy
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Chapter 1

Introduction

”What would happen if we could arrange the atoms one by one the way we want them ... I
can hardly doubt that when we have some control over the arrangement of things on a small
scale we will get an enormously greater range of possible properties that substances can
have and of different things we can do ... Atoms on a small scale behave like nothing on a
large scale, for they satisfy the laws of quantum mechanics.” Richard P. Feynman(1959)1.

This was how Richard Feynman, nearly 60 years ago, envisioned the influence that
nanotechnology will have in society. Today, his visions of manipulating matter at the
atomic scale is close to reality. Systems can be designed atom by atom, which is a
consequence of understanding the quantum mechanical behavior of atomic systems.
Insights at the smallest scale are crucial as this enables rational design, and manipulation,
of properties in nanoparticle-based technologies.

Figure 1.1: Schematic illustration of a catalytic reaction. The catalyst provides an
alternative pathway with lower energy barriers for a chemical reaction.

One technology that benefits from atomistic understanding is heterogeneous catalysis.
Heterogeneous catalysis is widely applied in modern society, for example in cleaning
of automotive exhaust, producing synthetic fuels, and chemical manufacturing. In the
chemical industry, about 90% of the production applies catalysts2 (p. 11). Because of this,
small improvements can have major impacts on a global scale. A catalyst is a substance
that speeds up a chemical reaction without being consumed in the process. In Figure
1.1, the basic principle of a catalytic reaction is illustrated. Reactants are converted to
products with lower energies as compared to the case without a catalyst. The conversion

1



of reactants proceeds on the surface of the catalyst, and to maximize the exposed surface
area, heterogeneous catalysts are often designed as metal-nanoparticles, dispersed on
porous metal-oxide supports. Catalytic cycles typically proceed in a series of steps. First,
reactants adsorb onto the surface. Next, adsorbates diffuse and react, and finally the
resulting products should desorb from the surface. Hence, it is important to understand
chemical bonding and reactions between adsorbates on surfaces; a topic that has been
investigated since the discovery of catalysis.

1.1 From Phenomenology Towards Microscopic Understanding

In 1836, J. J. Berzelius coined the term catalysis, which he explained as an invisible force
that speeds up chemical reactions3. Since then, the conceptual view of heterogeneous
catalysis has evolved from phenomenological laws towards insights at the microscopic
scale.

Multiple conceptual models have been crucial in both disseminating and developing
catalysis towards a detailed microscopic understanding. An early phenomenological model
of catalysis is the Arrhenius equation, where the overall catalytic cycle is projected onto
a single-reaction step. With this simplification, the total rate constant of a reaction can
be quantified as2 (p. 36):

k = A exp

(−Ea
kBT

)
(1.1)

where Ea is the activation energy, A is a pre-exponential factor, and T is the temperature.
As Ea appears in the exponent, small variations in Ea results in large changes in the
rate. A lower activation energy allows for a higher efficiency as the temperature can
be kept low. The Arrhenius equation does not describe the different partial steps that
constitute a catalytic cycle: Adsorption, diffusion, reaction, and desorption. Adsorption
is necessary for catalysis to proceed on the surface. In 1916, a model to describe the
fraction of molecules covering a surface is formulated by I. Langmuir. The Langmuir
model assumes equilibrium between the gas-phase species and adsorbates, an infinite
homogeneous surface where each adsorbate can occupy only one site, and no adsorbate-
adsorbate interactions. After adsorption, the reaction steps in the cycle can proceed
via different mechanisms. One type is the Langmuir-Hinshelwood mechanism,2 (p. 56)

where two reactants meet at neighboring sites to react and desorb from the surface.
Another type is the Mars-van Krevelen mechanism4, where the adsorbates react with a
lattice-atom, which must be replaced to complete the catalytic cycle. A third possibility
is the Eley-Rideal2 (p. 56) mechanism that involves a reaction between an adsorbate and
a gas-phase species. For these mechanisms to proceed efficiently, the adsorbates should
not bind too strongly nor too weakly. This crucial realization is named the Sabatier
principle, after its inventor2 (p.264). The fact that there is an optimal binding energy of
the adsorbates leads to the recognition that only a few sites might be active in a catalytic
reaction, and the concept of active sites5. The Sabatier principle is connected to the
Arrhenius equation on the atomistic scale, since Ea usually is correlated with the bond
strengths of the reactants. This correlation is formulated in the Brøndsted-Evans-Polanyi
(BEP) principle2 (p. 267), which states that the transition state energy of a reaction is a
linear function of the bond strength of the adsorbates. The Arrhenius equation describes
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the entire catalytic cycle as one single reaction step, which generally does not allow for
calculating A and Ea on the microscopic level. However, when transition state theory is
introduced around 19356, it becomes possible to calculate A for elementary reaction steps.
Presently, all these concepts remain important foundations for understanding catalysis.

The development of experimental techniques has been crucial in forming a microscopic
understanding of catalysis. In the early years of catalysis, experimental work involves
discovering new catalysts by mixing compounds and observing reactions. However, in
the early 20th century, it becomes possible to quantify the catalytic activity using mass
spectrometers7. Furthermore, the structure of crystals can be analyzed after the invention
of X-ray diffraction in the years 1914-1915 with the works of Max von Laue and Bragg8.
Despite the available X-ray diffraction technique and quantification of catalytic rates,
there is still a lack of insights into the structure of the catalyst-surface. Such insights are
made possible by the invention of electron microscopes in the 1930s. The development of
microelectronics and semiconductors after World War II, enables technological inventions
forming the field of experimental surface science9. In experimental surface science, single-
crystal surfaces are typically studied under ultra high vacuum conditions, using surface
sensitive techniques. Surface symmetry, and thus, adsorbate structures can be measured
by the invention of Low Energy Electron Diffraction (LEED). Moreover, the surface
composition can be probed using electrons, or X-ray-based techniques, such as X-ray
Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Similarly,
Infrared Spectroscopy (IR) and Ultraviolet (UV) techniques are important in determining
the species present on the surface. Temperature programmed desorption/reaction, and
micro calorimetry enable quantification of the binding strength of reactants. Surface
science generally investigates extended surfaces as model systems for nanoparticles, which
is a method that allows for systematic investigations and clear results. However, it
simultaneously gives rise to a, so-called, materials gap between the model systems and
technical nanoparticle catalysts. Thus, efforts have been made to bridge the materials
gap by performing experiments on increasingly complex stepped surfaces and well-defined
nanoparticles10–13. While the early experimental techniques rely on a vacuum for probing
the surface, presently it is becoming increasingly feasible and important to perform
measurements in-situ. For example, it is possible to perform electron microscopy on
particles during reaction with atomic resolution14, and XPS at elevated pressures15.
Moreover, understanding catalysis over single nanoparticles is becoming a reality, for
example using plasmonic techniques16;17.

The microscopic understanding of catalysis is greatly enhanced by the formulation of
quantum mechanics, forming the fields of computational chemistry and physics. Quantum
chemical methods enable determination of molecular orbitals, band structures, and
symmetry rules for chemical reactions, which have provided crucial microscopic insights18.
The development of first-principles electronic structure calculations, especially density
functional theory19;20, plays an important role in studies of catalytic reactions21. Some
of the earliest models of the catalyst surface are small clusters that locally mimic the
active site22. These cluster models are fair approximations to explain chemical bonding
between adsorbates and the catalyst surface22. With the growth of computational power,
later surface slabs are applied to model extended surfaces22, which presently is the most
common approach. Slab models enable quantitative descriptions of the adsorbate-surface
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bond, yet explicit calculations on nanoparticles still pose a special challenge due to
the system size and structural complexity. However, recently, studies of adsorption on
idealized nanoparticle-models have been conducted using first-principles calculations23–32.

Understanding trends in reaction energies is central to predict catalyst efficiency in the
computational communities. This understanding is greatly enhanced after 1969, when the
Newns-Anderson model of chemisorption is introduced33. The Newns-Anderson model
describes hybridization between the adsorbate valence orbitals and the metallic bands.
This model later leads to the d-band model34, which rationalizes trends in adsorption
energies by the d-band center. This picture has many applications, for example, the
d-band center can be a descriptor of adsorption energies for molecules on metal surfaces.
Moreover, the d-band center is correlated with the coordination numbers of nanoparticle-
sites, which suggests that the coordination number is a descriptor for the adsorption
energies21.

Microscopic understanding of catalysis can be obtained from first principles using mi-
crokinetic models35;36. Microkinetic models divide up the reaction in a series of elementary
reaction steps, including adsorption, desorption, diffusion, and reaction between adsor-
bates. Thus, a microkinetic model can include a combination of Langmuir-Hinshelwood,
Mars-van Krevelen, and Eley-Rideal mechanisms. A model that includes multiple plausible
competing reactions allows for understanding the main reaction pathways and kinetic
bottlenecks, which reveals the steps to target in catalyst design. Microkinetic models based
on experimental measurements37–43 and first-principles calculations14;44–57 have been
formulated for various catalytic reactions, primarily over extended surfaces. Nanoparticle
kinetics has been modeled in some theoretical studies52;54;58;59, however, in these studies
the considered reaction energy landscapes were simplified or the reactions were schematic.
Hence, there is a need to explore direct simulations of nanoparticle catalysis using first-
principles-based reaction energy landscapes. This is presently a significant challenge in
computational catalysis. The field of microkinetic modeling is growing, however, the
number of formulated microkinetic models is still modest60. Moreover, several different
methods are used in first-principles kinetic modeling, which makes it timely to investigate
and develop the general methodology; especially to take advantage of the advancing
computational power and accuracy.

1.2 Thesis Objectives

The main theme of this thesis is to investigate and develop methodologies for first-
principles microkinetic modeling of reactions on extended surfaces and nanoparticles. This
is achieved using mean-field modeling and kinetic Monte Carlo simulations, combined
with density functional theory calculations. Thus, methods for performing and analyzing
microkinetic simulations are explored. From this, the factors that define efficient and
effective nanoparticle catalysts are investigated, including: Reaction conditions, particle
shape/size, the model system, entropy calculations, reaction energy landscapes, and
particle strain.

The complex problem of characterizing what defines an efficient nanoparticle catalyst is
typically solved from a reductionist standpoint, where the behavior of isolated-functioning
sites are extrapolated to infer the total catalytic behavior. Often, a reaction mechanism
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Figure 1.2: Concept map of the thesis. The map illustrates the necessary compo-
nents in modeling catalysis from first principles.

and a rate-determining step are assumed to screen different materials as candidates for
successful catalysts. This procedure allows for relatively affordable predictions of catalytic
performance. However, chemical intuition is needed to choose a rate-determining step
and dominant reaction pathway, which in the presence of multiple different sites can
be deceptive, even for simple reactions. In this thesis, a systems theory approach is
adopted, where sites are combined into a system that is simulated as a whole entity.
Hence, the kinetic bottlenecks and dominant reaction pathways can be obtained for the
system. Systemic insights aid in understanding the microscopic behavior of heterogeneous
catalysis, and may ultimately improve catalyst screening.

Figure 1.2 illustrates the necessary considerations when formulating, solving, and
analyzing microkinetic models. The first step is to choose a simplified model system of the
catalyst. Simplification of the real catalyst is necessary as technical catalysts are complex
and ill-defined. In addition, a simplified model system yields a clearer understanding of
the governing mechanisms. The choice of model system can include extended surfaces
as well as nanoparticles, which both are discussed in the upcoming chapters. The next
ingredient in modeling is an energy landscape for the reaction, which is the set of Gibbs
free energy barriers for the considered elementary reaction steps. When the Gibbs free
energy barriers have been obtained, the rate constants can be calculated. Construction of
the reaction energy landscape and rate constants are discussed in Chapter 2. With access
to the rate constants of all elementary reactions, the kinetics can be simulated by solving
the chemical master equation; either approximately in the mean-field approximation or
using kinetic Monte Carlo simulations. The results of the kinetic simulations should
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be analyzed to understand the governing reaction mechanisms, and to determine which
elementary steps that control the rate. Here, the rate controlling steps are conveniently
quantified by a degree of rate control analysis. The success of a first-principles microkinetic
model depends on how well the results agree with experiments. Thus, to compare with
experiments, the model can be used to predict reaction orders and apparent activation
energies. Simulation of reaction kinetics and analysis of the results are treated in Chapter
3. To put the entire methodology into context, Chapter 4 discusses hydrogenation and
oxidation reactions over nanoparticles, with focus on comparing nanoparticles to extended
surfaces.
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Chapter 2

Rate Constants From First-Principles

This chapter discusses calculations of rate constants from first-principles using density
functional theory and transition state theory. The kinetics of catalytic reactions depends
on the rate constants of the elementary reaction steps, which are determined by the free
energy changes. The Gibbs free energy change of a reaction is the sum of enthalpy (∆H)
and entropy (∆S) terms:

∆G = ∆H − T∆S. (2.1)

∆H of the reaction is determined by electronic rehybridization, where bonds are broken
and new bonds are formed. Similarly, ∆S is determined by the potential energy landscape.
Therefore, it is essential to calculate the changes in total energy of atomic systems along
the reaction path; a task that can be performed using density functional theory.

2.1 Density Functional Theory and Implementation

The total energy of a system of atoms is calculated using the stationary Schrödinger
equation:

Ĥ |Ψ〉 = E |Ψ〉 , (2.2)

where the many-body Hamiltonian for a system of electrons and nuclei (Ĥ) can be written:

Ĥ = ĤeZ + Ĥee + ĤZZ . (2.3)

The expression (2.3) includes contributions from electron-nuclei interactions (eZ), electron-
electron interactions (ee), and nuclei-nuclei interactions (ZZ). The corresponding
Schrödinger equation to (2.3) does not allow an analytical solution for more than one
electron, and must be solved by approximations.

A common first simplification is the Born-Oppenheimer approximation, which treats
the nuclei with classical physics and invokes the adiabatic approximation. The adiabatic
approximation states that electrons move on a much shorter time scale than the nuclei.
Therefore, during atomic motion, the electrons instantaneously follow the nuclei without
undergoing transitions between stationary states. However, the stationary states vary
as the nuclei move. The adiabatic approximation holds if the ratio of the electron
to nuclei mass is small, compared to the energy difference between different adiabatic
eigenstates61 (p. 9). Classical treatment of the nuclei can be rationalized by their small
thermal wavelengths (λT ). λT is roughly the average de Broglie wavelength at a given
temperature61 (p.10). Nuclei with substantially larger spacial separation than λT do
not exhibit quantum phase coherence, and the total nuclear wavefunction is simply the
product of the individual wavefunctions. H is the most difficult case, which has a thermal
wavelength of about 0.2 Å at room temperature.
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When the Born-Oppenheimer approximation is invoked, it is sufficient to deal with
the electronic Hamiltonian Ĥe:

Ĥe = T̂ + V̂ext + V̂ee = T̂ + V̂ext + V̂H + V̂XC , (2.4)

where T̂ is the kinetic energy operator for the electrons, V̂ext is the external classical
electrostatic field set up by the nuclei, and V̂ee describes the electron-electron interactions.
In the second equality of (2.4), V̂ee is split up into the classical Hartree potential V̂H and
a quantum mechanical exchange and correlation potential V̂XC . The Hartree energy is
simply the electrostatic energy of the electrons, which has a non-physical self-interaction
that should be canceled by V̂XC .

The exchange energy stems from the indistinguishability principle and symmetrization
postulate of quantum mechanics, which states that a fermionic wavefunction is anti-
symmetric under particle permutation. These constraints modify the electronic energy
with the so-called exchange energy. Exchange will make electrons of identical spin less
likely to be close as two fermions cannot occupy the same quantum state. Correlation
energy is the energy related to correlation of electronic motion. In this sense, exchange
interaction is also a form of correlation.

Density Functional Theory (DFT) is based on the two Hohenberg-Kohn theorems19.
The first Hohenberg-Kohn theorem states that the ground state electronic density (ρ)
uniquely determines the external potential (V̂ext). This implies that ρ also determines the
ground state |Ψ〉. The second Hohenberg-Kohn theorem defines the variational energy as
a functional of ρ19

E[ρ] = 〈Ψ[ρ]|T̂ + V̂ee|Ψ[ρ]〉+

∫
ρ(r)vext(r) dr (2.5)

Where vext is the external potential. Since V̂ee depends on ρ, and vice versa, the problem
must be solved self-consistently.

The kinetic energy is a functional of the density, and it is unknown for the real
interacting system. This difficulty is circumvented in the Kohn-Sham scheme20, where the
problem is mapped onto a fictitious non-interacting system, having the same density as the
real system. The ground state of a non-interacting system is simply the Slater-determinant
composed of the individual single particle states. In the fictitious reference system (R),
the electronic Hamiltonian is61 (p. 61)

ĤR =

N∑

i=1

(
T̂R + vR(ri)

)
(2.6)

Where N is the number of electrons. The first term is the single particle non-interacting
kinetic energy operator, and vR is a reference potential which ensures that the density
coincides with the density of the interacting system. vR can be derived using variational
calculus with the constraint that ρ integrates to N :61 (p. 63)

vR(r) = vext(r) +

∫
ρ(r′)
|r− r′| dr +

δẼXC
δρ(r)

. (2.7)
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The second term in (2.7) is the Hartree potential and the third term is a chemical

potential, which is formulated as a functional derivative with respect to ρ. ẼXC is a
modified exchange-correlation energy that must be introduced when neglecting kinetic
correlations in the reference system. The Kohn-Sham equations are a set of equations
defined by (2.6). These equations must be solved self-consistently as vR depends on ρ
and vice-versa. The energy is evaluated by the Kohn-Sham functional:61 (p. 62)

EKS [ρ] = TR[ρ] +

∫
ρ(r)vext(r) dr +

1

2

∫∫
ρ(r)ρ(r′)
|r− r′| drdr′ + ẼXC [ρ] (2.8)

The only remaining unknown quantity is the exchange-correlation energy, which is the
main determiner for the accuracy of DFT.

2.1.1 Exchange Correlation Energy Approximations

The exchange-correlation energy can be viewed as the Coulomb interaction between
the density and a displaced charge density, which is brought about by exchange and
correlation61 (p. 69). This displaced charge density is called the exchange-correlation hole
ρ̃XC(r, r′) = ρ(r′) [g(r, r′)− 1]. Here g(r, r′) is the pair-correlation function, describing
the probability to find an electron at r, given that one electron is already present at r′.

The simplest and earliest kind of exchange-correlation approximation is the Local
Density Approximation (LDA)20. In LDA, the exchange-correlation is approximated by
considering the inhomogeneous electron gas as being locally homogeneous. Thus, LDA
applies the exchange-correlation hole of the homogeneous electron gas. In this way, the
exchange-correlation energy is found by integration with an energy density ε̃LDA

XC :

ẼLDA
XC [ρ] =

∫
ρ(r)ε̃LDA

XC [ρ(r)] dr . (2.9)

Spin-polarized systems can be treated by decomposing ρ into a spin-up and a spin-down
density (ρ = ρ↑+ ρ↓), where the Kohn-Sham equations must be solved separately for each
spin channel.

LDA assumes that the energy of the system only depends on a homogeneous density
at each point in space. However, for an inhomogeneous electron gas, the dependence
is non-local. To introduce some semi-local behavior and improve on LDA, the Gener-
alized Gradient Approximation (GGA) can be invoked61 (p. 86). This approximation
improves over LDA by taking into account the gradient of the density. GGA functionals
are constructed by augmenting the LDA energy density with an exchange-correlation
enhancement factor FXC [ρ]. The exchange-correlation energy within GGA is

ẼGGA
XC [ρ] =

∫
ρ(r)ε̃LDA

XC [ρ(r)]FXC [ρ(r),∇ρ(r)] dr . (2.10)

Multiple GGA functionals have been developed, and one popular choice is the Perdew-
Burke-Ernzerhof (PBE) functional62. Another GGA functional derived from PBE is
the revised PBE functional of Hammer et al.63 (RPBE), which is optimized to de-
scribe chemisorption. Metallic systems are generally well-described using PBE, whereas
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chemisorption problems might prove more difficult. For example, the lattice constant of Pd
is predicted to be 3.99 Å with PBE64, and 4.02 Å using RPBE63. The experimental value
is64 3.88 Å. For chemisorption of CO on Pd(111) at the fcc site, PBE predicts63 -1.94
eV, and RPBE yields63 -1.65 eV. In this case, the corresponding experimental value is63

-1.47 eV. This indicates that PBE performs better for the solid, whereas RPBE predicts
good chemisorption energies. In microkinetic modeling, the chemisorption energies are
most important as lattice-parameters do not enter the rate constant calculations explicitly.
Therefore, in this thesis, the XC functional is chosen according to the chemisorption
energies.

The exchange-correlation energy of GGA functionals can be improved further using
different strategies61 (chap. 5) such as, meta-GGAs including the non-interacting kinetic
energy density, or hybrid functionals including exact exchange energies, and van der Waals
functionals. van der Waals interactions can also be included using semi-empirical pairwise
atomic energy perturbations, such as D3 corrections65.

2.1.2 Projector-Augmented Wave Method

When performing DFT calculations in practice, a certain basis set is needed to represent
the Kohn-Sham orbitals. In the present work, the applied basis functions are plane
waves. Plane waves are advantageous for periodic systems as they enter the Bloch
theorem61 (p. 129). Another advantage of plane-waves is that increasing the basis-set size,
often results in monotonous convergence of the energy. Other choices of basis functions
include numerical grids and atomic orbitals61 (chap. 8).

The wavefunctions close to the nuclei oscillate rapidly due to orthogonality, and it would
require an unreasonably large plane-wave basis to describe these oscillations. To avoid
describing the oscillations explicitly, the Projector-Augmented Wave (PAW) method66 is
used. In PAW, the core electrons are treated as chemically frozen as they do not directly
partake in the rehybridization, and only the valence electrons are treated explicitly. The
valence wavefunctions are treated by introducing a linear transformation (T ) between

the true wavefunction (|Ψ〉) and a pseudo wavefunction (|Ψ̃〉). Moreover, real-space is
divided up into interstitial regions between the atomic cores and augmentation regions
surrounding the cores. |Ψ̃〉 is chosen to be a smooth function inside the augmentation

regions, which leads to a smaller basis set. The method requires that |Ψ̃i〉 = |Ψi〉 outside
the augmentation regions, and that the wavefunctions match in value and derivative at
the boundary. T only acts locally in each augmentation region, and it is the identity
transformation outside this region.

The transformation is performed using a different basis than plane-waves. This basis
is often taken as the all-electron partial waves |φi〉, which are found by integration of the
radial part of the Schrödinger equation for the isolated atom. Here i entails all angular
momentum quantum numbers and an index labeling the considered atom. i also contains
an index n that describes different partial waves for identical angular momenta. Each |φi〉
is assigned a pseudo partial wave |φ̃i〉, where outside the augmentation region, |φi〉 = |φ̃i〉.
Inside the augmentation region, |φ̃i〉 forms a complete set. Thus, using the partial waves
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as basis functions inside the augmentation regions, the transformation becomes66

T = I +
∑

i

(
|φi〉 − |φ̃i〉

)
〈p̃i| (2.11)

|Ψ〉 = T |Ψ̃〉 ,

where I is the identity operator and 〈p̃i| is a projector function. There is one 〈p̃i| for each

|φ̃i〉, which fulfills the conditions66:

∑

i

|φ̃i〉 〈p̃i| = I, 〈p̃i|φ̃j〉 = δij . (2.12)

The projectors are local operators inside each augmentation region that project out the
relevant part of the wavefunction. Hence, inside an augmentation region, the wavefunction
is augmented by part of the sum in (2.11). Outside the augmentation region, the projectors

are orthogonal to |Ψ̃〉 and no augmentation takes place.

2.1.3 Periodic Systems

The atomic model systems in the present work were mainly chosen to be periodic. The
wavefunction of an electron (ψk) in a periodic potential obeys Bloch’s theorem, which
can be stated as61 (p. 129)

ψk(r) = eik·ruk(r), (2.13)

where k is the wavevector and uk is a function with the same periodicity as the potential.
Using the periodic zone scheme67 (p. 223) and working in the first Brillouin zone, the
wavefunction of an infinite solid is described taking only one unit-cell into account. In
principle, all possible wavevectors must be included in the calculation, however, in practice
this is solved by Brillouin zone sampling. In Brillouin zone sampling, one represents the
density, hence the energy, as a sum over special wavenumbers in the first Brillouin zone
called k-points:

ρ(r) =
∑

k∈BZ

ωk

Nk∑

i=1

f
(k)
i |φ

(k)
i (r)|2, (2.14)

where φ
(k)
i (r) are the eigenstates of the Kohn-Sham equations, f

(k)
i are the occupation

numbers of the orbitals, Nk is the number of occupied electronic states with wavenumber k,
and ωk are weights that depend on the symmetry of the Brillouin zone. When symmetry
is applied, only points in the irreducible wedge of the Brillouin zone are considered.
It is necessary to solve a set of coupled Kohn-Sham equations; one for each k-point.
The number of k-points is a quantity, which must be increased until convergence in
some quantity of interest is achieved. A larger supercell will require fewer k-points for
convergence, as a larger unit-cell results in a smaller Brillouin zone.

When calculating the density, it can be useful to work with partial occupation numbers,
which is referred to as smearing of the Fermi surface. For metallic systems, this might be
necessary as different k-points can make new bands enter or exit the calculation during
the self-consistent solution of the Kohn-Sham equations.
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2.2 Local Minimum Structures and Energies

The previous sections describe how the energy of atomic systems can be obtained given
the positions of the nuclei. However, the atomic positions that correspond to local energy
minima are generally not known. Energy minima are necessary to probe, as a system will
spend a major part of its time near the minima. In this thesis, the main local optimization
procedure is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm68. The BFGS
algorithm is of the Quasi-Newton type where the atomic positions are updated according
to the Hessian matrix.

In a typical calculation of a metallic system, first the bulk-material lattice constant is
obtained, for example by fitting an equation of state. Next, a surface slab is constructed
with a certain orientation. The number of slab-layers should be sufficiently large to
converge the surface energies. Convergence can be accelerated by fixing the positions of
the lowest few layers in the local optimization, to emulate a bulk surface. A plane-wave
basis set enforces periodic boundary conditions perpendicular to the surface slab. Thus, a
vacuum layer must be introduced to ensure that the electronic density does not overlap
with its periodic repetition. To calculate adsorption energies, adsorbates are placed over
sites on the surface, and the system is relaxed. There can be multiple local minima on
a surface, and each possible minimum should be probed to find the lowest energy. The
calculations are performed at a certain adsorbate-coverage, which in periodic calculations
is determined by the simulation cell-size. For gas-phase molecules, a large cell is required
to avoid interactions between periodic repetitions of the system.

Calculations for nanoparticles require choosing a specific particle shape and size. For
large crystals, the shape that minimizes the surface free energy is the Wulff construction69.
However, for smaller particles, the equilibrium shapes change with size70, for example
between icosahedrons, decehedrons, and (truncated) ocahedrons. In catalytic reactions,
the temperature is elevated, and the lowest energy particle geometry may change dy-
namically14. Thus, in simulations where the particle geometry is fixed, multiple particle
shapes should be investigated. This is likely most important for small particles at elevated
temperatures.

After a local structural optimization is performed, vibrational energies can be calculated.
This is often done by assuming a harmonic potential and finding the vibrational frequencies
using finite differences. The vibrations become important when analyzing transition
states, and in correcting the bare DFT energies for zero-point motion. A zero-point
energy is present for confined quantum mechanical systems, as confinement lowers ∆x of
Heisenberg’s uncertainty principle. A small ∆x implies a larger ∆p, leading to zero-point
motion.

2.3 Reaction Rate Constants

After the energy calculation methods have been established, rate constants can be
estimated in Transition State Theory6;71 (TST). The TST rate constant for an elementary
reaction is derived by dividing phase-space into a reactant and product region by a specific
dividing surface71. All points on the dividing surface in phase-space define the transition
state (R‡). Reactants (R) that cross the dividing surface become products (P ). The
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main assumption of TST is that the reactant and transition state are in equilibrium, and
that the transition rate into the product region is sufficiently low that the Boltzmann
distribution remains intact71. The second assumption is that the reactants cross the
dividing surface only once. Thus, the TST estimate of the rate constant will always be
larger than the actual rate constant. The reaction can be written schematically as:

R� R‡ → P. (2.15)

The TST rate constant is expressed as an attempt-frequency ν of the molecules passing
R‡ into P , multiplied by the ratio of the partition functions as71:

kTST = ν
Z‡

ZR
, (2.16)

where Z‡ is the partition function in the transition state and ZR is the partition function
of the reactant state. ν can be found using half the average Maxwell-Boltzmann speed
〈vMB〉/2, in the direction perpendicular to the dividing surface:

ν =
〈vMB〉

2δ
=

1

δ

kBT√
2πµkBT

, (2.17)

where µ is an effective mass for the reaction coordinate, and δ is an assumed infinitesimal
width of the transition state, such that Z‡ = δZ∗. Using this, the rate constant becomes71:

kTST =
kBT√

2πµkBT

Z∗

ZR
. (2.18)

The effective mass can be interpreted by noting that
√

2πµkBT is proportional to a
1D free-translational partition function. Thus, µ allows for viewing the reaction as a
translation between the initial and transition state in phase-space.

A barrierless adsorption reaction can be modeled as an ideal-gas molecule that impinges
on a surface site with cross-sectional area Asite. The ratio of partition functions gives the
relative probabilities for the TS compared to the gas-phase:

Z‡

ZR
=
δZ∗

ZR
=
δAsite

V
, (2.19)

where V is the molecular volume in the ideal-gas. Using the ideal-gas equation of state,
one can use (2.18) to deduce the following expression71:

kTST
ads =

Asite√
2πµkBT

kBT

V
(2.20)

=
Asite√

2πµkBT
P,

where P is the gas-phase pressure of the adsorbing species. Since the reaction coordinate
is a free translation, µ is the molecular mass (M), and the rate constant coincides with
the expression from collision theory (apart from a sticking probability):

kads =
Asites0√
2πMkBT

P, (2.21)
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where Asite is the area of one adsorption site, and s0 is the sticking coefficient. If this
expression is used for the adsorption rate constant, the corresponding desorption rate
constant kdes can be determined from the equilibrium constant K:

K =
kads
kdes

= e

−∆G

kBT , (2.22)

where ∆G is the Gibbs free energy change upon adsorption. In this manner, thermody-
namic consistency is ensured. Using equilibrium constants to calculate desorption rate
constants ensures that the elementary-step rates are reasonable. However, the procedure
is not assuming the elementary-step to be in equilibrium over the entire surface from the
beginning of the simulation.

For reactions occurring on the surface, the reaction coordinate is often assumed to be
a harmonic vibration with frequency ν, which is equal to the attempt frequency in (2.16).
Assuming that the TS-mode along the reaction coordinate is low in vibrational energy
(hν � kBT ), the classical limit can be taken, where the vibrational partition function is
kBT

hν
. The rate constant can be derived as6:

kTST =
kBT

h

ZTS

ZR
, (2.23)

where ZTS is the transition state partition function, for the transverse degrees of freedom
with respect to the reaction coordinate. Calculating both partition functions in the
harmonic approximation and working with (2.23), is referred to as harmonic transition
theory. In harmonic transition state theory, the effective mass is not needed. However,
comparing (2.18) to (2.23), the effective mass is identified as

µ =
kBT

2πν2δ2
. (2.24)

2.4 Energy Barriers with Nudged Elastic Band Calculations

The free energy barrier for moving a system from the initial state to the transition state
largely determines the rate constants. Identifying transition states is therefore a critical
task. Nudged Elastic Band72 (NEB) is a method to identify transition states by finding
the Minimum Energy Path (MEP) between an initial state and final state.

To set up a NEB calculation, the initial and final atomic positions are specified. Next,
the atomic positions are interpolated between the initial and final state. The resulting
atomic configurations are called images, and the distance between each image is described
by a reaction coordinate r. The total force on each image is decomposed into parallel
(F‖) and perpendicular (F⊥ ) components as:

F = F‖ + F⊥ = −kr + F⊥ (2.25)

where k is a spring constant. Hence, each image interacts with its neighbor images parallel
to the MEP by spring-forces. To find the MEP, structural relaxation is performed on
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each image. F‖ prohibits full relaxation of each image down to a local minimum, e.g. the
initial or final state. F⊥ ensures that each image relaxes towards the MEP at the given
reaction coordinate. In this manner, the images are stretched like an elastic band along
the MEP.

After a coarse initial simulation, the highest energy image should be released from all
spring forces, and F⊥ should be reversed. This procedure is called the Climbing Image
method72. The CI method helps finding the highest point on the MEP, as the image
climbs up the MEP to the maximum energy point. If the maximum energy image has
one imaginary vibration frequency parallel to the MEP, the point is a saddle on the PES.
Typically, this saddle point is chosen to represent the transition state that separates
reactants and products in phase-space.

2.5 Adsorbate-Adsorbate Interactions

The adsorbates on a catalyst interact either by direct interactions or through the sur-
face73;74. Such phenomena can have large effects on the binding energies of certain species
and consequently may be important for the kinetics. Kinetic simulations need to take
these interactions into account by modifying the reaction energies as a function of the
adsorbate configurations. When doing this, care must be taken to preserve thermodynamic
consistency.

Adsorbate-adsorbate interactions can be implemented as functions of the adsorbate
coverages. Following this method, the energies are perturbed using the differential ad-
sorption energies as a function of the coverages. It is important to use the differential
adsorption energies instead of the average adsorption energies, as adding another adsorbate
will alter the energy of the system based on the adsorbates that are already present.
Adsorbate-adsorbate interactions can also be fitted to specific atomic arrangements. A sys-
tematic method to calculate interactions is using cluster expansion Hamiltonians75 (p. 94),
where a Hamiltonian is fitted to certain geometric occupation-patterns. The expansion
is truncated at a certain number of nearest neighbor distances, and typically including
two and three-particle interactions. In the current work, only the first nearest-neighbor
interactions, including two-particle interactions, are considered. This approach should
capture the main effects of the interactions. However, it is meaningful for future work to
further explore the limitations of this simple approach.

The adsorbate-adsorabte interactions influence the kinetics significantly. For example,
Figure 2.1 shows simulated coverages as a function of temperature for complete methane
oxidation over Pd(100) using the microkinetic model of Paper IV. The applied model
includes O-O, C-C, and OH-OH interactions. The figure shows coverages when the
interactions are turned off and are at full strength. Without any interactions, O is
poisoning the surface with a very high coverage, and there is no space for C. At full
interaction strength, there is a coverage of both C and O. This difference in coverages can
modify the rates by several orders of magnitudes, and it can also change the dominating
reaction paths. Thus, including adsorbate-adsorbate interactions are of utmost importance
for obtaining reasonable coverages and kinetics.
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Figure 2.1: Simulated coverages without adsorbate-adsorbate interactions (left) and
with adsorbate-adsorbate interactions (right) during complete methane oxidation
over Pd(100). Pressures: 0.61 mbar methane and 3.06 mbar oxygen.

2.6 Modeling Entropy in Catalytic Reactions

Adsorbate entropies must be considered as they enter the Gibbs free energy. Typically,
entropy is modeled in the canonical ensemble, using the canonical partition function (Z).
Z is a sum over all states, available to the system. The entropy and partition function of a
system are related by the connection between statistical mechanics and thermodynamics76

S = − ∂

∂T
(−kBT lnZ)V,N = kBlnZ + kBT

1

Z

(
∂Z

∂T

)

V,N

(2.26)

2.6.1 Gas-phase Molecules

For an ideal-gas molecule, the potential energy landscape of translation is flat, and the
translational, rotational, and vibrational degrees of freedom are decoupled. Thus, the
total partition function is a product of free translations, rotations, and vibrations as:

Z = ZtransZrotZvib. (2.27)

The translational part of the partition function of the free-gas molecule is given by2 (p. 89)

Ztrans(V ) = V

(
2πMkBT

h2

)3/2

, (2.28)

where V is the molecular volume of the gas, and M is the mass. V is often substituted
for the pressure using the ideal gas equation of state pV = kBT . The ideal-gas (free)
rotational partition-function can be calculated in the rigid-rotor approximation, which for
non-linear molecules gives2 (p. 92):

Zrot
non-linear =

1

σ

(
8π2kBT

h2

)3/2√
πIAIBIC , (2.29)
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where IX is the moment of inertia of the molecule around the principal axis X, and σ
is the symmetry factor of the molecule. For a linear molecule, the rigid rotor partition
function is

Zrot
linear =

1

σ

(
8π2kBT

h2

)
I. (2.30)

Finally, the vibrations are bound by a potential, which can be modeled in the harmonic
approximation to yield2 (p. 90)

Zvib =
∏

i

e
−
hνi

2kBT

1− e
−
hνi
kBT

, (2.31)

where νi is the vibrational frequency of mode number i. The harmonic approximation
assumes that the molecule is subject to a quadratic potential leading to the harmonic
oscillator energies hνi, which can be calculated using finite differences in the energies
obtained with DFT.

2.6.2 Adsorbates

The partition function of adsorbates differs from gas-phase molecules. This is owing to
the different potential energy landscapes for adsorbate translation, rotation, and possibly
vibration. Typically, translations give the largest contribution to the entropy, rotations the
next largest, and vibrations yield the smallest contribution. Thus, modeling translational
modes should be first priority when calculating entropy. The simplest approximation is to
assume that the molecule is free to translate over the surface, as a free 2D gas. This can
be reasonable for loosely bound molecules77. In this free translator model, adsorbates
are free to translate over an area78. The area is ideally determined by the equilibrium
surface-coverage. However, the equilibrium coverage depends on the entropy, and should
strictly be determined self-consistently. This problem has been addressed by defining a
standard state for the surface coverage79. However, the standard-state approach assumes
that the adsorbate is an ideal 2D gas, and should be viewed as an approximation. Another
simple approximation is to determine the free area by evaluating the entropy near the
expected equilibrium coverage. The partition function in the free translator, for the two
surface-parallel translational degrees of freedom partition is:

Ztrans-2D
free = A

2πMkBT

h2
, (2.32)

where A is the area that the adsorbate is free to translate over. The free translator
defines an upper bound to the translational entropy of any adsorbate as it corresponds
to a completely flat potential energy landscape. The remaining degrees of freedom are
assumed to be frustrated vibrations using (2.31).

While the free translator is simple, the most common approximation is the harmonic
approximation, where all adsorbate degrees of freedom are assumed to be independent
frustrated vibrations46;78;80. In this case, the full partition function is described by (2.31).
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This tacitly assumes that the adsorbate binds to only one adsorption site. If low-energy
modes are present (< 100 cm−1), it can be necessary to truncate the value, as low-energy
modes are computationally uncertain.

Kinetic models generally need to work over a range of temperatures. The free trans-
lator might be correct at high temperatures, and the harmonic approximation at low
temperatures, depending on the diffusion barriers. To capture this behavior, the hindered
translator/rotor model78;81 can be used. The hindered translator includes the diffusion
barriers of the adsorbates in the partition function. The model is simple as it approximates
the surface topology by only treating the fastest path of diffusion. The adsorbate is
considered in a sinusoidal potential, where the 2D surface-parallel partition function
becomes78:

Ztrans
HT =

Nsites
πrx
Tx

exp

(
−rx + 1

Tx

)
I20

(
rx

2Tx

)

[
1− exp

(
− 1

Tx

)]2 exp

(
2

(2 + 16rx)Tx

)
. (2.33)

Tx = kBT/hνx is the ratio between the thermal energy and the vibrational energy, and
rx = Wx/hνx is the ratio between the diffusion barrier Wx and the vibrational energy.
Nsites is the number of surface sites, and I0 is the zero-order modified Bessel function of
the first kind, arising from the periodic potential. The last exponential in (2.33) accounts
for zero-point energy corrections78. There are some uncertainties in working with the
hindered translator. For example, it treats surface symmetry in a rough way by assuming
that the potential energy surface for diffusion is a linear function [U(x, y) = U(x) +U(y)],
which is questionable for surfaces without square symmetry. The hindered translator can,
however, expected to be quite accurate for closed-shell molecules, due to the presumably
flat energy landscape for diffusion.

The harmonic approximation, free translator, and hindered translators are the most
commonly applied entropy models. However, these models are approximate, and do not
necessarily capture the entropy of the specific potential energy surface. As an alternative,
we developed the Complete Potential Energy Sampling (CPES) method in Paper I. CPES
calculates the adsorbate entropy numerically by sampling the potential energy surface.
The vibrational and rotational degrees of freedom were treated as frustrated vibrations
using (2.31), and the 2D translational partition function was numerically calculated by
DFT. It is reasonable to treat the translations explicitly, as translations are by far the
largest contribution to the entropy. The 2D translational partition function was derived
to be:

Ztrans
CPES =

2πMkBT

h2

∫∫
exp

[−U (x, y)

kBT

]
dxdy, (2.34)

where U(x, y) is the potential energy of the molecule at position (x, y) in the unit-cell.
U(x, y) is calculated with DFT by locally optimizing the adsorbate in the direction
perpendicular to the surface, for various (x, y). The partition function (2.34) is seen to be
the free translational partition function, multiplied by an integral over potential energy
surface for adsorbate translation. Thus, the potential energy is assumed to give rise to a
Boltzmann distribution of the momenta. The partition function (2.34) approaches the free
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Figure 2.2: Schematic illustration of the potential energy landscape for translation
in (a) the free translator model, (b) the harmonic approximation, (c) the hindered
translator model, and (d) CPES.

translator (2.32) in the limit of a flat potential [U(x, y)→ 0]. Moreover, (2.34) becomes
the hindered translator when applying a sinusoidal potential. Thus, the developed CPES
method includes all the approximate models. CPES has the possibility to be more accurate
as it is only limited by the accuracy of the DFT calculations. The CPES method was
later extended to include zero-point corrections82, which can be important at very low
temperatures. The four discussed models of entropy are summarized in Figure 2.2.

CPES can directly numerically integrate 2D potential energy surfaces. However, the
more complicated case of a 3D potential energy surface is important, for example, when
modeling reactions in zeolites. In Paper II, we extended CPES to model the entropy of
molecules diffusing in zeolite pores, which is a challenging problem that has attracted
large interest83–86. The molecules in zeolites show a 3D restricted gas-like behavior, as
we observed by Molecular Dynamics (MD) simulations. In the simulations, the molecule
collided frequently with the framework, which requires that the translational and rotational
partition functions are modeled as coupled. It is noteworthy that the mean-free path of
the molecule in the true gas-phase is much larger than the zeolite pore-dimension. For
example, for a gas of N2 at 1 mbar and 473 K, the mean-free path is ca. 0.2 mm, which is
106 times the cage diameter in chabazite (a small pore zeolite). Monte Carlo integration
was used to evaluate the semi-classical partition function:

ZCPES = ZvibZrot
`

Ztrans(V )

V

∫
exp

[−U(r,Φ)

kBT

]
drdΦ, (2.35)

where r is the center of mass position of the molecule and Φ is a generalized coordinate
that describes molecular rotations. The partition functions that are multiplied onto
the integral are the free-gas partition functions, which again reflects the Boltzmann
distribution of the (conjugate) momenta, determined by the potential energy surface.
The investigated molecules (N2 and CH4) are calculated to lose 1/3-1/2 of their gas-
phase entropy upon adsorption, which suggests that the entropy is ill-described for both
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the harmonic approximation and free translator. The result we obtained of losing 1/3-
1/2 of the gas-phase entropy is a slightly more detailed result than previous heuristic
estimates, where the molecules were assumed to lose one or two full translational degrees
of freedom84;87.

The approximations discussed in this section do not include adsorbate-adsorbate
interactions, which may affect the entropy. CPES can include adsorbate-adsorbate
interactions by reformulating (2.34) or (2.35) as a multi-dimensional integral over the
molecules and mapping out a potential energy surface U(r1, r2, · · · ,Φ1,Φ2, · · · ).

2.6.3 Influence of Entropy in Kinetics

First-principles microkinetic models have typically described adsorbate-entropies in the
harmonic approximation46;78;80. Moreover, weakly bound adsorbates have previously
been treated as losing one, or all, translational degrees of freedom upon adsorption45;88–90.
This thesis takes a step towards more accurate kinetic simulations, by investigating
explicitly how more detailed entropy models affects kinetics. CO oxidation over Pt(111)
was used as an archetype reaction. CO oxidation has the advantage that the reaction is
well-studied45;91–99, which enables detailed comparison to experiments. The reaction was
modeled in the mean-field approximation (see Chapter 3) using a Langmuir-Hinshelwood
mechanism45;91;94–96;99;100:

CO(g) + ∗ ↔ CO∗

O2(g) + 2∗ ↔ 2O∗ (2.36)

CO∗ + O∗ → CO2(g) + 2∗.
For all investigated models, the entropies of CO and O were found to be different. CO

translates on a flat potential energy surface with low diffusion barriers, which results in a
high entropy. O instead clearly prefers fcc binding and has high diffusion barriers, which
results in a low entropy. This can be important as mean-field models usually include
only a generic and coarse-grained site, which does not describe the detailed nature of the
site. The coarse-grained site could entail fcc, hcp, ontop, and bridge sites. When the
adsorption energies on these sites are similar, the translational entropy can be high and
should be modeled accordingly.

The lowest entropy is predicted by the harmonic approximation, which for CO lies
about 0.4 meV/K lower than the CPES result. At 500 K, this corresponds to 0.2 eV,
which can be considered a significant difference. For O, the harmonic approximation
is much better suited and lies close to the CPES entropy. To quantify the significance
of the entropy difference, Figure 2.3 compares the light-off temperature (T1/2−max) of
the four entropy models to experimental data91;93;96;99. The harmonic approximation
and free translator under and overestimate the light-off temperature, respectively. The
hindered translator and CPES agree well with the experimental references, over the entire
pressure-range. Hence, modeling the entropy in detail moves the results significantly closer
to experimentally obtained values. The effect of entropy on kinetics is readily understood
by noting that a high entropy implies a lower adsorbate free energy.

The overall conclusion from the work on entropy is that treatment of adsorbate
entropy can affect kinetic simulations significantly. Whether entropy should be modeled
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Figure 2.3: Simulated and experimental light-off temperature as a function of
pressure. The experimental references are: Campbell et al.91 (10−7 mbar), Vogel
et al.96 (10−6 mbar), Nakao et al.93 (10−2 mbar), and Calderón et al.99 (10−1-100

mbar).

with high accuracy or not depends on the desired level of detail. For more qualitative
studies, it is likely sufficient to capture the nature of the degrees of freedom. Moreover,
mobile molecules should not be modeled in the harmonic approximation. Potential energy
sampling is particularly important in zeolites where the degrees of freedom are coupled
and are far from harmonic.

Summary

This chapter has described rate constant calculations from first principles. The rate
constants depend on Gibbs free energy changes, which are determined by reaction energy
barriers, adsorbate-adsorbate interactions, and entropy changes. The uncertainties in
calculating rate constants primarily come from the accuracy of the DFT calculations,
the approximate treatment of adsorbate-adsorbate interactions, and modeling of entropy.
DFT calculations and adsorbate-adsorbate interactions give a large contribution to the
uncertainty, whereas entropy has a slightly lower impact.
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Chapter 3

Methods of Kinetic Modeling

The present chapter deals with simulating and analyzing reaction kinetics. Reaction
kinetics is important to investigate as it provides important insights into the main reaction
mechanisms and performance bottlenecks.

3.1 Chemical Master Equation

The reaction kinetics of a system is a set of transitions between various chemical states,
occurring on a high-dimensional free energy surface, separated by several maxima and
minima. In principle, reactions can be followed in space and time by solving the Newtonian
equations of motions with molecular dynamics. However, molecular dynamics is unfeasible
for simulations of reaction kinetics, because the time-scale of vibrations is several orders
of magnitude smaller than the typical time of a chemical reaction.

The chemical master equation takes advantage of the time-scale separation between
vibrations and chemical reactions by solely describing chemical transitions. This is done
by dividing phase-space into regions corresponding to different chemical states of the
system. Let α and β denote the states of the system. The chemical master equation for
α involves a sum over all states β, which can bring the system into α:75 (p. 31):

dPα
dt

=
∑

β

[WαβPβ −WβαPα] , (3.1)

where Wαβ is the transition rate from β to α, and Pα is the probability for the system
to be in α. One equation exists for each α, and the master equation should be viewed
as a set of coupled differential equations. In practice, the state is often defined by the
coverages on the catalyst sites:

α ∼ {A∗,B∗, ∗, ∗,A∗, ∗,A∗,B∗, · · ·}, (3.2)

where A and B are chemical species, and ∗ denotes an empty site, such that the set
describes the site-occupations. The chemical master equation is the key to the kinetics of
the system as it describes the time-evolution for the probability of observing the states. A
high transition rate into a particular state and a low transition rate out of the state implies
that its probability increases in time. Thus, the kinetics will follow a set of transitions
towards a set of most probable states, which defines the equilibrium. At equilibrium
dPα
dt

= 0, which is enabled by WαβPβ = WβαPα. This is known as the principle of

detailed balance, which reflects that each event is in equilibrium with its own inverse.
The chemical master equation can be solved using either the stochastic kinetic Monte
Carlo technique or approximately in the mean-field picture.
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3.2 Mean-Field Approximation

The Mean-Field Approximation (MFA) yields an approximate solution to the chemical
master equation. An advantage of the MFA is that it focuses on the average behavior
of the system by describing the coverages, which makes the results simple to analyze.
The computational cost of the MFA is considerably smaller than kinetic Monte Carlo
simulations, as the mean-field equations often can be solved on a desktop computer within
some minutes. MFA has the disadvantages of assuming infinite surfaces with only one
type of site, and a completely random adsorbate-distribution. These assumptions hinder
proper description of nanoparticles. Moreover, the adsorbate-distribution is not random
in the presence of adsorbate-adsorbate interactions. The situation is particularly severe
for attractive interactions that lead to pairing of adsorbates; an effect that can be critical
for some reactions49. Although the MFA breaks down for significant adsorbate-adsorbate
interactions, it is common practice to include interactions to obtain reasonable steady-state
coverages.

For a simple elementary reaction step, the MFA can be derived as follows. Consider a
model surface reaction between species A and B: A+B → AB. The average number of
species A on the surface is given as a weighted average over the states as:75 (p. 105):

〈NA〉 =
∑

α

PαN
(A)
α , (3.3)

where N
(A)
α is the number of species A in state α. Inserting (3.1) into (3.3), and rearranging

the indices of summation yields75 (p. 111):

d〈NA〉
dt

=
∑

α

∑

β

[
N (A)
α −N (A)

β

]
PβWαβ . (3.4)

When the reaction A∗+B∗ → AB∗ proceeds, one A is consumed, and N
(A)
α −N (A)

β = −1.
Moreover, for each β, the number of terms in the sum having non-zero Wαβ is equal to
the number of neighboring (A,B) pairs on the surface [N (AB)]. Using this, and assuming
that the transition rates for all terms are W , expression (3.4) becomes75 (p. 112):

d〈NA〉
dt

=
∑

β

−PβWN
(AB)
β = −W 〈N (AB)〉. (3.5)

If the adsorbates are randomly distributed over a homogeneous surface, the number of
pairs becomes75 (p. 112):

N
(AB)
β = ZN

(A)
β

N
(B)
β

S − 1
, (3.6)

where Z is the number of nearest neighbors of a site, and S is the number of surface sites.

The factor N
(B)
β /(S − 1) is the probability for a site to be occupied by B. Inserting (3.6)

into (3.5) gives:
d〈NA〉

dt
= − WZ

S − 1
〈N (A)N (B)〉. (3.7)
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The mean of the product is rewritten as the product of the means, augmented with the
fluctuations from the individual means:

〈
N (A)N (B)

〉
=
〈
N (A)

〉〈
N (B)

〉
+
〈[
N (A) − 〈N (A)〉

] [
N (B) − 〈N (B)〉

]〉
. (3.8)

In the limit of an infinite number of sites, S − 1 ≈ S, and when neglecting fluctuations,
(3.7) becomes

d〈NA〉
dt

= −WZ

S

〈
N (A)

〉〈
N (B)

〉
. (3.9)

Dividing by the total number of sites, the mean-field equation is found for the time-
evolution of A:

dθA
dt

= −kθAθB , k = WZ, (3.10)

where θi is the coverage of species i on the surface, and k is identified as the rate constant
of the reaction. Similar equations can be derived for θB , θAB , and the fraction of empty

sites. For multiple reactions, each reaction contributes to
dθA
dt

with a similar term, owing

to the linearity of the master equation. As the adsorbate distribution is assumed random,
θA corresponds to the probability for having species A on a surface site. The random
adsorbate distribution implies that configurational entropy is implicitly described in the
mean-field equations.

In practice, mean-field models are constructed by a list of coverages (θ) for species
that may cover the surface, and a set of reactions with rates R(θ). From this information,
a system of coupled first-order ordinary differential equations is formulated:

dθi
dt

=
∑

j

cijRj (θ) , (3.11)

where cij is an integer that describes how many i-species that are produced in reaction j.
Rj is the rate of the elementary reaction j, which is equal to the rate constant multiplied
by the relevant coverages. As an example of deriving the mean-field equations, consider
the following schematic reaction:

A2(g) + 2∗ ↔ 2A∗ (a)

B(g) + ∗ ↔ B∗ (b)

A∗ + B∗ → AB(g) + 2∗ (c)

The time-evolution of the coverage of A is given by:

dθA
dt

= 2k+a θ
2
∗ − 2k−a θ

2
A − k+c θAθB (3.12)

where k±i are the rate constants for reaction i, and * indicates an empty site. The first
term comes from the forward-reaction of (a), which requires two sites for dissociation such
that θ∗ enters squared. The factor two is present as two A are formed upon adsorption.
The second term stems from the backward reaction of (a), and is negative as A is consumed
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by the elementary step. The third term arises from reaction (c), which requires one A
and B. For species B, the coverage equation is:

dθB
dt

= k+b θ∗ − k−b θB − k+c θAθB . (3.13)

The resulting system of differential equations is often solved numerically. In the present
work, this is performed using SciPy101. Before integration, the initial conditions are
specified, which is important as different initial conditions can lead to different steady-
states. The steady-state is reached when all coverages are constant in time. A common
situation is that the rate constants vary by several order of magnitudes, which makes
the equations stiff. Therefore, an integration method that handles stiff problems must
be chosen, and in the present work the backward differentiation formula102 method was
found to be most effective.

3.3 Kinetic Monte Carlo

Kinetic Monte Carlo103 (kMC) is a stochastic method to solve the chemical master
equation. KMC has the advantage over the MFA that it enables investigations of more
realistic systems. This is primarily owing to the assumptions in MFA of random adsorbate
distributions and the infinitely large surface. A nanoparticle is an example of a finite
system with specific adsorbate patterns, where kMC must be used. KMC simulations have
the disadvantages that the results are more complex to analyze, and the computational
cost is significantly higher than in the MFA.

In kMC, the system starts in a specific state that, with time, transitions into different
states, governed by random number generation. KMC solves the master equation by
simulating the transitions between states as a function of time. This is done by simulating
a large number of reaction events and their time of occurrence. The kMC method can be
implemented using various algorithms, for which two popular choices are the Variable Step
Size Method (VSSM), also known as the n-fold way104, and the First-reaction method
(FRM)75 (Chap. 3). In the present work, the shortest computational time is obtained using
the FRM algorithm. Before performing a simulation, the types of possible reactions are
defined. When this is done, FRM can be performed by an algorithm that is summarized
in Figure 3.1.

• Step 1: The simulation is initialized by setting time t = 0, defining when the
simulation should end (tend), choosing the reaction conditions, and initializing the
site occupations. Here, an event-list is initialized to keep track of possible reactions
events, their time of occurrence, and the site where they proceed. The event-list is
updated at each simulation step.

• Step 2: For all possible events, the times of occurrence are generated, and the
event-list is populated. The time of occurrence tβα for taking the system from state
α to state β is calculated according to75 (p. 53)

tβα = t− 1

Wβα
lnu (3.14)
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Where t is the current simulation time, Wβα is the rate constant of the event, and
u is a random uniform number in the interval ]0, 1].

• Step 3: Determines whether the simulation has ended by checking if t ≥ tend.

• Step 4: Performs the chronologically next reaction in the event-list. If the next
reaction is impossible, it is discarded and the next possible event is performed.

• Step 5: The event-list is updated by adding new events made possible by the last
simulation step. This is only done in a neighborhood around the site where the
last event happened, since avoiding globally updating saves a significant amount of
computational resources for large systems.

• Step 6: Defines the end of the simulation, where quantities of interest are saved.
To lower the memory consumption, saving data and cleaning different lists should
also be done during the simulation.

Figure 3.1: A flowchart of the first reaction method of kinetic Monte Carlo.

The sites and their mutual connectivity must be given a representation in kinetic
Monte Carlo simulations. The conventional approach is to perform the simulations on
a lattice105–110. A more detailed and flexible approach is to use graph-theory to define
a global connectivity pattern110;111. In the present work, the sites were represented by
nearest neighbor lists, as described in Paper III. With this approach, the set of all
the neighbor lists gives the global connectivity pattern, similar to graph-theory. The
implemented neighbor-list approach has an advantage over a lattice-based approach, as
incommensurate lattices and dynamical catalyst changes can be accounted for in a simpler
manner. A useful way to save computational resources and simplify the simulations is
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to coarse grain the sites to entail multiple adsorbate binding positions, such as hollow,
bridge, and ontop positions. This approach was followed in this thesis.

Figure 3.2: Time evolution in kinetic Monte Carlo simulations of CO oxidation
on a 5.2 nm Pt nanoparticle. Left: Time as a function of simulation step. Right:
A histogram over the time step. Reaction conditions: 600 K, 20 mbar CO, and 10
mbar O2. The CO diffusion barrier is increased from 0.08 to 0.58 eV.

The time-step in the simulations is governed by the rate of the fastest reactions as these
events are executed with the highest probability. Figure 3.2 (left) shows time as a function
of simulation step during a short Monte Carlo simulation of CO oxidation over a Pt
nanoparticle. The time increment is small in the beginning of the simulation, and becomes
larger as the simulation proceeds. This occurs as the fastest rates decrease in speed when
approaching equilibrium. Figure 3.2 (right) shows a histogram over the time-step. The
shortest time-steps are mostly originating from the beginning of the simulation, where
the reaction is far from equilibrium. The histogram resembles an exponential distribution,
which is reasonable as the events essentially are Poisson processes.

Catalysts operate over long time scales, however, the time evolution of a simulation is
instructive to consider. Figure 3.3 shows the CO coverage on a nanoparticle during a short
simulation of the CO oxidation reaction. At 600 K (left), the facets contain free sites,
whereas the edges and corners are completely filled. At 1200 K (right), the coverages on
the edges are lower, whereas the corners and facets are empty. One interesting observation
is that there are large fluctuations in the coverages, which are most pronounced for the
low-coordinated sites, as they are less abundant. The magnitude of the fluctuations
increases with temperature and are magnified for smaller systems. Mean-field models
assume that fluctuations can be neglected, which is questionable considering the results
in Figure 3.3.

3.3.1 Observing Rare Events

A significant challenge in kMC is that the fastest reactions determine the time-step.
Diffusion can often be several orders of magnitudes faster than chemical transitions, which
renders kMC impractical for catalytic reactions. A particularly simple solution is to

28



Figure 3.3: Simulated CO coverage in CO oxidation on a 5.2 nm Pt nanoparticle
at temperature 600 K (left) and 1200 K (right). Pressures: 20 mbar CO and 10
mbar O2. The CO diffusion barrier is increased from 0.08 to 0.58 eV.

permanently slow down the fast reactions75 (pp. 162-163). This must be done while ensuring
that the fast events remain quasi-equilibrated. A more detailed approach uses the concept
of superbasins. A superbasin is defined as a set of configurations that are connected by
quasi-equilibrated elementary steps, and consequently are revisited often113–115. The
superbasin-configurations are connected by fast events, which can be slowed down to
escape the superbasin. This method can, however, be computationally expensive as it
involves logging and revisiting a huge number of configurations.

An efficient method is the generalized temporal acceleration scheme112, where entire
groups of quasi-equilibrated events are slowed down, periodically. During simulation,
the forward and backward rates of each reaction-type determine if the reaction is quasi-
equilibrated. Reactions that are flagged as quasi-equilibrated once, keep this tag for the
entire simulation. If quasi-equilibrated events are executed, the system remains in the
superbasin, whereas non-equilibrated events exit the superbasin. The concept is sketched
in Figure 3.4, where the superbasin, at a certain time, is divided into an explored and
unexpored region. The average rate of each possible reaction is calculated by summing
over the observed configurations in the superbasin112:

rm =
1∑

n∈S
∆tn

∑

n∈S
km(xn)∆tn, (3.15)

where ∆tn is the time spent in configuration xn, and km(xn) is the rate constant of
reaction m in xn. The estimated escape-time from the currently explored region of the
superbasin is given by112:

τ−1s = Rs =
∑

m∈N,QB

rm, (3.16)

where the sum runs over non-equilibrated and insufficiently executed quasi-equilibrated
events, and Rs is the escape-rate from the currently explored region. A quasi-equilibrated
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Figure 3.4: Sketch of the superbasin principle. The explored region of the super-
basin (SA) is connected by the set of events QA, and the unexplored region (SB)
is connected by the set QB . The system can leave SA or SB via non-equilibrated
events N . Figure adapted from Dybeck et al.112.

event that has been executed at least ne times, is slowed down by a factor112:

αm = min

{
2Nf

Rs
rm + r−m

, 1

}
, (3.17)

where Nf is a parameter that separates fast and slow reactions, and −m means the
reverse of step m. Thus, the fastest reactions are slowed down first and the most. As
the algorithm proceeds, Rs approaches the escape-rate of the entire superbasin, and a
non-equilibrated event will be executed. After firing a rare non-equilibrated event, all
events are unscaled and the procedure is repeated. In this manner, the scheme solves the
difficult time-scale separation issue of kMC.

In the introduction of the generalized temporal acceleration scheme112, Fischer-Tropsch
synthesis was modeled with Eley-Rideal steps, disregarding adsorbate-adsorbate inter-
actions and adsorbate diffusion. This means that most non-equilibrated reactions are
executable directly from all configurations in the superbasin, which is generally not the
case. As an example, consider the surface reaction A∗ + B∗ → AB∗ + ∗ where A and
B interact repulsively. Here, on average several quasi-equilibrated diffusion steps will
proceed before the reactants become neighbors and the reaction is possible. Thereby,
Rs is underestimated and the time-step of diffusion becomes unreasonably high; up to
multiple seconds. To resolve this, it can be beneficial to set Rs equal the rate-constant
of the fastest non-equilibrated reaction channel. This makes the algorithm escape the
superbasin more conservatively, with an upper bound on the time-step. In this thesis, the
generalized temporal acceleration scheme was implemented in MonteCoffee, as presented
in Paper III. In MonteCoffee, it is also possible use the simple method of raising barriers
for the fast steps with a constant value.
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3.4 Analyzing Reaction Kinetics

One motivation to perform kinetic simulations is that data is generated that can be
compared with experimental measurements. This section discusses the information that
can be obtained in kinetic simulations, and how to analyze the results in relation to
experiments.

3.4.1 Reaction Mechanisms

One advantage of a microkinetic analysis is that it provides information about the
governing reaction mechanisms; provided that the relevant pathways are included in the
simulations. The active mechanisms are found using the net-rates, which can be written
in a mean-field picture as:

Wi = k+i
∏

l

θl − k−i
∏

m

θm. (3.18)

Where l is the set of reactant species for the elementary reaction i, and m is the set of
products. In kinetic Monte Carlo, the net-rates are given by the number of executions
over time. The dominant reaction mechanism will be the set of reactions with the highest
net-rates that complete a catalytic cycle.

3.4.2 Turnover Frequencies and Coverages

The Turnover Frequcency (TOF) reflects the number of products formed per active site
and time-unit. In a kinetic model, the TOF can be extracted as the net-rate of product
formation. Quantitative comparison between simulated TOFs and experimental results is
generally complicated, since there are many uncertainties and approximations involved in
the modeling. Hence, it not unusual that the simulated TOF deviates with some orders of
magnitudes from experiments. However, the trends and variations across various reaction
conditions often resemble experimental behavior.

Adsorbate coverages are simple measures to analyze reactions. The most abundant
surface species can be compared to spectroscopic experiments, revealing the adsorbates
on the surface. Knowing the most abundant species can improve modeling, for example
by targeted refinement of adsorbate-adsorbate interactions or entropy estimates.

3.4.3 Reaction Orders and Apparent Activation Energies

The reaction order and the apparent activation energy are two macroscopic quantities that
can be extracted from microkinetic models and compared with experimental data. The
reaction orders and apparent activation energies are typically found by fitting Arrhenius-
type power-laws of the rate against temperature and pressures:2 (pp. 26-27,36-37):

r = A exp

(−Eapp

kBT

)∏

x

pnx
x , (3.19)
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where, A is the pre-exponential factor, Eapp is the apparent activation energy, px is the
partial pressure in species x, and nx is the reaction order in gas-species x. To obtain nx
from simulations, the TOF can be fitted to this power-law. In practice, Eapp is calculated
numerically by evaluating the derivative of r versus 1/T , over a narrow temperature
range.

Direct comparison with experimental data is not always possible as the surface structure
in experiments is less well-defined than in theoretical models. For the methane oxidation
reaction modeled in Paper IV, the reaction orders agreed with experiments116;117.
However, the apparent activation energy did not agree well with experimental values116–118.
This is likely due to surface oxidation during the experiments, which was not included in
the model. In this manner, discrepancies between experiments and a validated microkinetic
model can provide important insights about the catalyst state during experiments.

3.4.4 Degree of Rate Control

The degree of rate control119;120 of an elementary step (χi) reflects the sensitivity of the
catalytic rate r to the individual rate constants. χi is defined by:

χi =
kfi
r

(
∂r

∂kfi

)

Ki

, (3.20)

where kfi is the forward rate constant of step i, and the derivative is taken with a fixed
equilibrium constant Ki. Thus, χ reveals the slow steps that limit the catalytic rate.
The derivative can be evaluated numerically using finite differences, by increasing the
rate constant of the step slightly (∼ 1%). χ is important in microkinetic modeling as
it determines the elementary steps that affect the rate. Therefore, χ can provide useful
information for catalyst design. For single branch reaction mechanisms, it can be shown
that

∑
i

χi = 1. Thus, χi reflects the relative importance of step i for the overall kinetics.

Paper V connects the microscopic kinetics to the reaction orders and apparent
activation energies using the degree of rate control. In this way, these two macroscopic
quantities are linked to the atomic understanding; a link that previously has been unclear
for multi-step catalytic reactions121. We showed that the reaction orders have a simple
relation to χ:

nx =
∑

i

χi
∂lnWi

∂lnpx
. (3.21)

Thus, the reaction order is a weighted sum over the individual rates Wi, differentiated
with respect to the pressure of interest.

The relation between χ and the apparent activation energy was shown to be:

Eapp =
∑

i∈vib
χi

(
Ei + kBT + T 2 ∂Si

∂T

)
+

∑

j∈trans
χj

(
Ej −

kBT

2
+ kBT

2 ∂Pj
∂T

)
(3.22)

− kBT 2
∑

x

∂nx
∂T

ln px,
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where Ei is the energy barrier of elementary step i, Si is the entropic barrier, and Pj
is the sticking coefficient related to step j. The first sum runs over the steps with
vibrational reaction coordinates, and the second sum over reactions having translational
reaction coordinates. The third sum accounts for the pressure dependence of the total
rate. The zeroth order term in temperature is the largest contribution, which arises from
the elementary energy barriers. The first-order temperature terms arise from a lost degree
of freedom in the reaction coordinate, and the second order terms stem from entropic
losses and pressure dependencies.

The derived expressions provide a microscopic understanding of the reaction orders and
apparent activation energies. The expressions might be used to evaluate proposed rate-
determining steps and reaction mechanisms, for example by combining DFT calculations
and experimental measurements. Thus, the apparent activation energy does not only
reflect the bare energy barrier of the slowest elementary step. Previously, the reaction
order in the presence of a catalyst has been described as a phenomenological quantity121.
The derived expression (3.21) demonstrates the connection between reaction orders and
the elementary reactions.

3.5 Practical Formulation of Kinetic Models

Figure 3.5: Illustration of workflow for constructing first-principles microkinetic
models.

The models in this thesis were constructed using a workflow illustrated in Figure 3.5.
Formulation and refinement of a model is an iterative procedure, where the cycle in Figure
3.5 is completed multiple times before settling on a final version of the kinetic model.
The cycle begins with identifying an atomic model system of the catalyst. This is often a
crucial and difficult step as technical catalysts are complex systems, which are ill-defined
with respect to structure and composition. The next step is to identify intermediates,
which are connected by multiple elementary reaction steps that define the catalytic cycle.
Taking complete methane oxidation to CO2 over Pd surfaces as an example, the atomic
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model system can be Pd(100) or Pd(111). Plausible intermediates are hydrocarbons,
oxygen, carbon, and CO. Thereby, a starting point for a possible reaction mechanism
could be:

CH4(g) + 5∗ → C∗ + 4H∗ (3.23)

O2(g) + 2∗ → 2O∗ (3.24)

C∗ + 2O∗ → CO2(g) + 3∗. (3.25)

These steps should be reformulated as elementary steps, possibly by including alternative
pathways. After the intermediates and elementary reactions have been identified, rate
constants are calculated for the considered elementary steps and the kinetic equations
are solved. Thereafter, the computational results are compared to experimental data
by simulating measurable quantities, such as turnover frequencies, reaction orders, and
apparent activation energies. The cycle is repeated until the model has the desired level of
detail and agrees with experimental data. A validated microkinetic model opens up for the
possibility to use the simulations for predictions beyond the experimentally investigated
conditions.

3.6 Example: Analysis of Complete Methane Oxidation

When a microkinetic model has been formulated, computer simulations can be performed.
Computer simulations have the advantage that they are relatively cheap, can show long-
time behavior, and that causal connections can be addressed. In this section, a mean-field
model of complete methane oxidation (Paper IV), is discussed to give an overview of what
kind of information that can be obtained from a microkinetic model. KMC simulations
can provide the same information, however requiring more extensive data-analysis.

In Paper IV, complete methane oxidation is modeled over Pd(100) and Pd(111).
The reaction is crucial as methane is a potent greenhouse gas122;123. Moreover, complete
methane oxidation to CO2 is becoming increasingly important for the automotive industry
as the global natural-gas vehicle fleet grows124. The overall reaction is:

CH4(g) + 2O2(g)→ CO2(g) + 2H2O(g). (3.26)

Pt and Pd are know to be active catalysts, where Pt is superior in net reducing conditions
and Pd is advantageous in net oxidizing environments125. Pd oxidizes readily at most
reaction conditions123;126–128, and the high activity has been attributed to the oxidized
phase in some cases126;129, whereas other reports assigned the high activity to the metallic
state130–132. The metallic phase is difficult to stabilize during experiments, which makes
a first-principles microkinetic model a useful tool to explore the kinetics.

The developed kinetic model extends a previous model of the reaction over metallic
Pd50 by including a larger number of reaction barriers and multiple reaction mechanisms.
Furthermore, the model is constructed to compare with a previous detailed model of
the reaction over PdO(101)49. The model includes six gas-phase species, 16 adsorbed
species, and 32 elementary reactions, which enables multiple reaction pathways. The
included gas-phase species are: CH4, O2, CO2, H2O, CO, and H2. Included adsorbates
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Figure 3.6: Simulated kinetics of methane oxidation at 0.61 mbar methane and
3.06 mbar oxygen. (a) Turnover frequencies versus temperature. (b) Apparent
activation energies versus temperature. (c) Turnover frequency versus pressures
on Pd(100) at 598 K. (d) Degree of rate control versus temperature on Pd(100).

are: CH3, CH2, CH, C, H, O2, O, CO, OH, H2O, CH2OH, CH2O, CHO, COH, OCOH,
and CHOH. The simulations were performed in slight oxygen excess with pressures of
0.61 mbar methane and 3.06 mbar oxygen.

The rates of the steady-state elementary steps revealed the dominant reaction pathway.
At high temperatures, methane is sequentially dehydrogenated to C + 4H. Thereafter,
C is oxidized to CO and further to CO2 by O. Simultaneously, H is oxidized to H2O,
mainly via OH + OH→ H2O + O. At lower temperatures, instead C is oxidized by OH,
and the mechanism involves steps such as C + OH→ COH and COH + O→ OCOH.

Coverages and TOFs can be obtained from microkinetic models. We found the most
abundant adsorbates on the surfaces to be O, C and CO. O was present at all investigated
temperatures on both Pd(100) and Pd(111), whereas C and CO only were present at
low temperatures. The simulated TOFs are shown in Figure 3.6 (a). The TOFs vary
seven orders of magnitudes when increasing the temperature from 400 to 1000 K, and the
Pd(100) surface is more active than Pd(111) at all investigated conditions.

The apparent activation energy (Eapp) partly reflects the Gibbs free energy barriers of
the rate controlling steps, as was derived in Paper V. The simulated Eapp is shown in
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Figure 3.6 (b). Eapp varies between 1.2 and 0.85 eV for Pd(100) in the temperature range
400-1000 K. The variation is due to changing reaction mechanisms and rate-controlling
steps. In the limit of high temperatures, Eapp is determined by the methane adsorption
barrier and the oxygen adsorption/desorption equilibrium as:

Eapp ≈ EfCH4
−
√
pO2

KO2
∆EO2

1 +
√
pO2

KO2

, (3.27)

where EfCH4
is the energy barrier for dissociative methane adsorption, pO2 is the oxygen

pressure, ∆EO2
is the dissociative adsorption energy of O2 , and KO2

is the equilibrium
constant for oxygen adsorption.

The reaction orders reflects how the TOF responds to pressure changes. Figure 3.6 (c)
shows the logarithm of the TOF as a function of methane, oxygen, and water pressure
on Pd(100). The results for Pd(111) are similar. A higher methane pressure increases
the TOF, and methane yields a reaction order close to 1. Conversely, oxygen inhibits the
rate by blocking sites for methane dissociation and has a negative reaction order. At low
temperatures, water can promote the reaction by increasing the rate of C + OH→ COH,
which is a rate-controlling step.

The degree of rate control reflects the steps that determine the rate, and it explains
the kinetics in a compact manner. Figure 3.6 (d) shows the simulated degree of rate
controls for the main steps. The rate-controlling steps at low temperatures were found
to be C + OH→ COH and C + O→ CO. At higher temperatures, dissociative methane
adsorption eventually becomes the rate-determining step. Oxygen adsorption is slightly
inhibiting over the entire temperature range. These observations are reflected in the
coverages, as the most abundant species are connected to the rate-controlling steps. C
is present on the surface, which suggests that oxidizing C has a finite rate-control, in
agreement with the analysis. The reaction orders are also explained by the degree of rate
control, as is derived analytically in Paper V. The reaction order in methane follows the
degree of rate control for methane dissociation closely (Paper IV and Paper V). The
slightly negative oxygen order shows that oxygen adsorption is an inhibition step, and
thus it has a negative rate control. The positive order in the water pressure is readily
understood by noting that increasing the OH concentration speeds up the rate-controlling
step: C + OH→ COH. The apparent activation energy is also connected to the degree
of rate control (Paper V). The high-temperature analytical expression for the apparent
activation energy (3.27), shows that methane adsorption is the most rate-controlling step,
and oxygen adsorption is a slightly inhibiting step.

The model in Paper IV for metallic Pd can be compared with methane oxidation
over PdO(101), which was modeled in detail previously49. The reaction orders in the
methane pressure are high and positive for both PdO49;116–118 and metallic Pd surfaces.
However, the PdO catalyst has qualitatively different reaction orders in the water and
oxygen pressures. Water is known to be poisoning the PdO catalyst49;116–118;133 due to
site-blocking effects, whereas water can promote the reaction on metallic Pd. Oxygen
can promote the reaction on PdO at some conditions49;117;118, whereas it inhibits the
reaction on metallic Pd. These clear qualitative differences between Pd and PdO can aid
characterization of the active phase using only the reaction kinetics.
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These results apply mainly to extended surfaces, however, technical catalysts are
nanostructured materials. The presence of low-coordinated sites on nanoparticles could
promote this reaction23;26 as methane adsorption is the rate-determining step.

Summary

The present chapter has discussed how the chemical master equation describes reaction
kinetics. The mean-field approximation was discussed as an approximate solution to the
master equation, and kinetic Monte Carlo was presented as a stochastic method to solve
the master equation. Analysis of the results from microkinetic models was discussed with
focus on comparing with experiments. Finally, the workflow in modeling was presented,
and the information that microkinetic models can provide was discussed.
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Chapter 4

Reactions on Nanoparticles

Heterogeneous catalysts are fabricated as metal nanoparticles (< 5 nm) supported on
oxide surfaces, making it desirable to study the kinetics over nanoparticles. However, this
is challenging as the mean-field approximation breaks down for finite-sized systems with
multiple different sites, where kinetic Monte Carlo simulations are required. The present
chapter presents and discusses results from kinetic Monte Carlo simulations of reactions
over nanoparticles, which highlights the fundamental differences in reaction kinetics
between nanoparticles and extended surfaces. The effects of particle size, shape, alloying,
and strain are investigated. It is common to describe reaction kinetics of nanoparticles
using the energetics of isolated sites21, which neglects long-range kinetic couplings. This
might be appropriate for initial screening studies, however, herein it is shown that kinetic
couplings are crucial to understand the kinetics of reactions over nanoparticles.

Paper VI- Paper IX investigate CO oxidation over Pt nanoparticles and Pt(111),
which is an important reaction in automotive exhaust aftertreatment. The reaction is
often applied as a model reaction, owing to its apparent simplicity and large pool of
experimental data134. The reaction was modeled using a simple Langmuir-Hinshelwood
mechanism. We found that the facets enable O2 dissociation, whereas the edges catalyze
the CO2 formation step. This bifunctional mechanism makes nanoparticles efficient as
compared to extended surfaces.

Paper X explores hydrogenation of acetylene-ethylene gas mixtures, which is a central
reaction in polymer chemistry. The reaction was modeled over Pd/Cu Single-Atom
Alloy (SAA) nanoparticles, Pd/Cu(111), and Pd(111). Pd/Cu SAAs contain a minute
concentration of isolated Pd atoms, embedded in Cu surfaces. This catalyst design can
lead to a high selectivity135;136. The Horiuti-Polanyi mechanism was used as a model
mechanism, where acetylene is hydrogenated sequentially from C2H2 to C2H4. Desorption
of C2H4 competes with overhydrogenation of C2H4 to undesired C2H6. Here, SAAs
were found to enhance the selectivity as compared to pure Pd. Moreover, the selectivity
of nanoparticles was found to be lowered due to edge and corner sites. The reaction
mechanism over nanoparticles was found to be complex due to kinetic couplings. Thus,
acetylene hydrogenation is affected by the Pd site placement, and likely also particle
geometry.

4.1 Energy Landscape Representation

The reaction energy landscape is one of the most critical factors in reaction kinetics.
The energy landscape for extended surfaces is, in principle, straightforward to map out
using DFT calculations. However, the reaction energy landscape on nanoparticles is more
complex23;24;26;137 as nanoparticles contain multiple different types of sites, demanding a
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Figure 4.1: (a) The adsorption energies of CO (black) and O (red) over Pt as a
function of CN. (b) Calculated BEP relation for CO+O→ CO2(g).

large number of energy calculations. Previously, simplified reaction energy landscapes52;54

and schematic reactions58;59 have been used to perform kMC simulations of reactions
over nanoparticles. However, seemingly no studies have simulated specific reactions using
detailed reaction energy landscapes over nanoparticles. In this thesis, the challenge
of mapping out the nanoparticle reaction energy landscape was solved using scaling
relations. This procedure captures the main features of a nanoparticle, namely, the
energy differences between inner facet sites and low-coordinated sites. To reduce the
computational cost further, Brønsted-Evans-Polanyi (BEP) relations were used to scale
the reaction energy barriers. BEP relations have the advantage that adsorbate-adsorbate
interactions easily can be included. Different descriptors, can be used to represent the
reaction energy landscape, including the d-band center34, coordination numbers138–140,
generalized coordination numbers141–143, and the metal-site stability144.

For CO oxidation on Pt nanoparticles, we described the reaction energy landscape
using generalized coordination numbers. Recently, the generalized coordination number
CN was shown to be a good descriptor for adsorption energies on nanoparticles and
surfaces141–143. CN is an extension of the conventional coordination number, which
accounts for the coordination numbers of the nearest neighbors as:

CN =
∑

i∈{NN}

CNi

CNmax
, (4.1)

where the sum runs over the nearest neighbors to the site in question, CNi is the
conventional coordination number of the nearest neighbor i, and CNmax is the maximally
possible coordination number of neighbors in the bulk. In a fcc crystal, the ontop site
has CNmax = 12, a bridge has CNmax = 18, a three-fold hollow has CNmax = 22, and
for a four-fold hollow site CNmax = 26. It can be important to use CN as opposed to
the conventional coordination number, since CN changes more smoothly between high
and low-coordinated sites. In contrast, the conventional coordination number changes
abruptly between a facet and edge. The smoothness in CN helps the adsorbates diffuse
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Figure 4.2: Energy landscape descriptors plotted for the 1.6 nm octahedron of
Paper X with the Pd atom in the middle of the top (100) facet. (a) Conventional
coordination number, (b) generalized coordination numbers of ontop sites, and (c)
metal-site stability of ontop sites.

towards certain low energy positions. Figure 4.1 illustrates how CN is used to represent the
reaction energies over nanoparticles. The adsorption energies of CO and O are functions of
CN, and the energy barrier is a function of the adsorption energies. Thus, CN determines
the entire reaction energy landscape.

For alloys, CN cannot directly be used as a descriptor as it contains no information
about which element that defines the sites. Thus, to describe the Pd/Cu nanoparticles in
acetylene hydrogenation, the metal-site stability144 (∆EM ) was used as a descriptor for
the energies. ∆EM implicitly contains information about alloying effects. ∆EM for a site
reflects the site’s binding-strength in the nanoparticle, which can be calculated as144:

∆EM = EM−S − EM − ES(g) (4.2)

where EM−S is the metal’s energy including the site, EM is the energy of the metal with
the site removed, and ES(g) is the energy of the site in a large calculation cell. To fit
the most accurate scaling relation for a specific adsorbate, EM−S was calculated from a
relaxed structure including the adsorbate. From this relaxed structure, EM and ES(g)
were derived from single point energy calculations. Using ∆EM requires a slightly higher
number of calculations as compared to CN, as ∆EM is not a purely geometric quantity.

It is instructive to compare the different descriptors for the reaction energy landscapes.
Figure 4.2 illustrates the conventional coordination number (CN), CN, and ∆EM for
the ontop sites of the 1.6 nm Pd/Cu single atom alloy nanoparticle, used to model
acetylene hydrogenation. CN and CN seem equally good at describing (111) sites that are
surrounded by identical (111) sites. However, CN does not capture the sequential drop in
coordination when moving from the inner (111) facet towards the edges. Similarly, CN
is highly correlated with ∆EM , however, the Pd site in the Cu nanoparticle has a very
different reactivity, which CN and CN do not directly capture. Despite of this, it may be
possible to use CN to fit separate scaling relations for the alloy and mono-metallic sites.

41



4.2 Reaction Mechanisms

Nanoparticles contain a range of different sites, which results in more complex reaction
mechanisms as compared to extended surfaces. The main steady-state reaction mechanism
follows the principle of least resistance145, where the reactions proceed through the lowest
energy pathway. Thus, the elementary steps can preferentially proceed over specific
sites. The principle of least resistance and multiple sites on nanoparticles make reaction
mechanisms a non-intuitive subject.

Figure 4.3: Steady-state rates of elementary steps in CO oxidation on a 5.2 nm
truncated octahedron Pt particle. Temperature: 1100 K, pressures: CO 20 mbar,
O2 10 mbar.

The mechanism for CO oxidation over Pt nanoparticles was found to follow a reaction
pathway governed by kinetic couplings between multiple sites. Figure 4.3 shows the rates
for the elementary steps of the different sites on a 5.2 nm truncated octahedron. CO
adsorption and desorption are nearly equilibrated on the facets. O2 dissociation proceeds
preferentially over the (111) facets, as it requires two free sites and the (111) facet has
the most free sites. Moreover, O2 dissociation is slightly out of equilibrium on the (111)
facets. CO2 formation proceeds mainly over edges. This shows a reaction mechanism
where diffusion steers CO and O towards the edges where CO2 is formed. Thus, kinetic
couplings between facets and edges are crucial to understand reactions over nanoparticles.
Extended surfaces contain only one type of site, and are therefore not able to split up the
reaction mechanism over different types of sites, in this bifunctional manner.

To investigate the kinetic couplings in CO oxidation, we disabled different parts of the
particle to investigate the response of the remaining sites. In this manner, the difference
can be discovered between the sites in the system and sites in isolation. Figure 4.4 shows a
kMC simulation of the TOF for various pairs of nanoparticle-sites. The figure compares a
full simulation to a simulation, where all (111) sites are disabled. Naturally, the edge-(111)
reaction channel was killed when the (111) sites were disabled. However, the edge-edge
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Figure 4.4: CO oxidation turnover frequency of a 5.2 nm truncated octahedron.
TOF is deconvoluted into different reaction channels for a regular simulation
(orange) and all (111) sites disabled (purple). Temperature: 1100 K, pressures:
pCO = 20 mbar, pO2 = 10 mbar.

and edge-corner TOFs also depended significantly on (111) sites. This non-linear behavior
shows that long-range couplings are indeed important to understand the reaction over
nanoparticles. Kinetic couplings can be important for a large range of particle sizes, since
adsorbate diffusion often is facile. For example, the CO diffusion barrier on Pt(111) is
about 0.06 eV, which at a typical reaction temperature of 600 K amounts to a diffusion
rate of 4 × 1012 sites · s−1. An octahedral nanoparticle of 2.8 nm in diameter contains
about 400 surface ontop-sites, and the molecule can circle an empty particle billions of
times per second.

The reaction mechanism of acetylene hydrogenation over Pd/Cu single-atom alloys
was also found to be strongly affected by kinetic couplings. Figure 4.5 (a) shows the rate
of ethane formation [C2H∗5 + H∗ → C2H6(g)] for the Pd and Cu sites on the extended
Pd/Cu(111) surface and sites on a Pd/Cu nanoparticle. For the extended Pd/Cu(111)
surface, the Cu sites are the main sites where C2H6 is formed. In contrast, for the
nanoparticle, the Pd site yields a two orders of magnitudes higher C2H6 rate than Cu.
This is surprising as the reaction energies are identical on the Pd sites in Pd/Cu(111) and
the nanoparticle. The Cu sites of the inner (111) and outer (111) facets have different
C2H6 rates, which partly is attributed to the finite size of the facet. The (100) facets,
edges, and corners show a lower activity than the outer (111) sites. However, on the edges
and corners, ethylene hydrogenation [C2H∗4 + H∗ → C2H∗5] is fast relative to ethylene
desorption, which lowers the selectivity.

The reaction rates were found to be different at different areas of the particle. Figure
4.5 (b) shows the C2H6 production as a colormap. The sites closest to the Pd site are
most affected by the alloying, and produce the most C2H6. Multiple Pd site placements
were tested, and it was found that the location of the Pd site has a significant effect on the
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Figure 4.5: (a) C2H6 net-rate for the Pd and Cu sites on Pd/Cu(111), and 1.6
nm Pd/Cu truncated octahedron with one Pd atom in a (111) facet. (b) particle
geometry (Pd=blue, Cu=brown) and normalized logarithmic C2H6 TOF as a
colormap. Temperature: 320 K, pressures: pC2H2 = 1 mbar, pC2H4 = 10 mbar,
pH2 = 10 mbar.

selectivity. However, no obvious relation between the Pd/Cu alloying energy and selectivity
was found. Comparing nanoparticles to extended Pd/Cu(111), the nanoparticles contain
multiple different sites, which couple kinetically. For Pd/Cu(111), the Pd and Cu sites
also couple, however, to a much lesser extent. Moreover, the rates on the nanoparticle
were found higher than on Pd/Cu(111), and the selectivity was lower.

Both in CO oxidation and acetylene hydrogenation, the TOFs are increased by the
presence of multiple types of sites on the nanoparticles. Kinetic couplings can make two
identical sites yield different rates; if one site is placed inside a finite facet and the other in
an extended surface. Thus, a nanoparticle design strategy could be to combine sites that
are optimized for each elementary step. However, this must be done in a manner where
no sites will lower the selectivity. For CO oxidation, there should be a balance between
edge sites and (111) facets. For acetylene hydrogenation, the Pd site, edges, and corners
yield a lower selectivity, whereas (111) sites yield a high selectivity. Therefore, a design
strategy for acetylene hydrogenation is to fabricate large icosahedral Cu nanoparticles
with a low Pd concentration. The results show that the concept of an active site may
be expanded to include distant sites in a site-assembly. For site-assemblies, the kinetic
bottlenecks may not be well-described by the degree of rate control as this does not
differentiate between site-types. Thus, to enable rate-control analysis over nanoparticles,
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the degree of rate control can be redefined as a tensor χik`, which reflects the response of
the TOF on site-type ` to a change in rate constant of step number i at site-type k. In
this manner, understanding the reaction mechanisms for nanoparticles may help improve
catalyst design by investigating the complex kinetic couplings.

4.3 Effects of Particle Morphology

Industrial catalysts contain a distribution of nanoparticles with various shapes and sizes146,
which can influence catalytic activity and selectivity significantly for some reactions147–153.
Moreover, dynamical changes in shapes have been observed experimentally14. Thus, it is
relevant to investigate the effects of particle size and shape on catalytic activity. This
problem has been addressed experimentally, and different reactions have been found to be
sensitive to the particle shape147;152;153. Theoretically, shape and size effects have usually
been investigated by isolated nanoparticle sites45;138;139, for example by calculating how
the number of edge sites grow with particle diameter. However, kinetic couplings dominate
reactions over nanoparticles, which implies that isolated sites cannot be used to derive
size and shape effects.

Figure 4.6: (a) CO oxidation TOF of the considered particle shapes and sizes.
(b) Particle shapes at selected sizes and a colormap of CN for the ontop sites.
Temperature: 1100 K, pressures: pCO = 20 mbar, pO2 = 10 mbar.

The effect of particle size was investigated for CO oxidation over Pt in Paper VI and
Paper VII. Particle size was shown to be important for truncated octahedrons, partly
since the most active site changes with reaction conditions. At low pressures and high
temperatures, the edges and corners were found most active, whereas at high pressures
and low temperatures, the facets became most active. Thus, larger particles were found
most efficient at high pressures as the facets are present in larger fractions. However,
different particle shapes result in different relations between particle size and TOF. Figure
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4.6 shows the TOF as a function of particle diameter for different particle shapes. For
small diameters, the decahadral nanoparticles yield the highest TOF, whereas spheres are
most active for larger particle sizes. The presented curves have different shapes. This is
partly owing to how many sites of each type that is added when increasing the diameter.
For example, when increasing the diameter of cubes, only (100) facets and edges are
added, whereas spheres add multiple types of sites. The TOF for each type of site was
found to depend strongly on the particle geometry, owing to kinetic couplings. Thus,
only a weak correlation between the reaction energy of a site and its TOF was observed.
Therefore, it is not only important which the types of sites that are present, but rather
the total site-assembly should be considered.

CO oxidation was studied at elevated temperatures, however, the particles likely
remain solid. The melting point of a Pt nanoparticle can be estimated from its average
coordination number154 using the melting point of bulk Pt, which is155 2033 K. A 3 nm
truncated octahedral Pt nanoparticle with average CN = 10.48 has a predicted melting
point of 1775 K.

For the acetylene hydrogenation reaction over Pd/Cu nanoparticles, the effects of
shape and size were not directly simulated. However, kinetic couplings were observed,
which shows that such geometric effects could be important.

These findings demonstrate that it is important to explicitly consider different particle
shapes and sizes when modeling reaction kinetics; an often neglected component in
computational catalysis. Furthermore, it is important to consider nanoparticles from
a systemic point of view, as opposed to a set of isolated functioning sites. Thus, even
if the energy barriers are lowest on the (111) facets, it does not necessarily imply that
icosahedral nanoparticles are most efficient. For catalysts designed to operate over a large
range of reaction conditions, it could be beneficial to fabricate a wider distribution of
nanoparticle shapes and sizes.

4.4 The Strain-Activity Relation

Supported nanoparticles are known to be strained. The strain can be intrinsic in the
particle, or be imposed from external sources that alter the chemical properties of the
catalyst. Therefore, it is important to investigate relationships between strain and
catalytic activity. When a transition metal is subject to strain, the d-band width changes,
and to keep a constant degree of filling, the d-band center moves in energy34;156. This
changes the adsorption energies as the adsorbate-orbitals hybridize with the d-band.
The effects of strain on reaction kinetics have previously studied for CO oxidation over
Pt(111) using mean-field microkinetic modeling148. However, the kinetics for nanoparticles
have remained unexplored. In this thesis, the effect of strain in CO oxidation over Pt
nanoparticles is investigated. The effect of strain was found to be determined by kinetic
couplings. Thus, the influence of strain can depend strongly on the specific strain pattern,
and thus, particle shape, size, and reaction conditions.

In Paper VIII, the effects of strain in CO oxidation are compared for Pt(111) and
Pt nanoparticles using kMC simulations. For simplicity, only homogeneous full-particle
strain was investigated. Figure 4.7 (a) shows the response of TOF to strain for a 3.5 nm
truncated octahedral nanoparticle and Pt(111). Pt(111) responds to strain in a linear
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Figure 4.7: (a) The CO oxidation TOF as a function of temperature for a 3.5 nm
truncated octahedral nanoparticle (dots) and Pt(111) (squares) for different strain
values. (b) Average TOF of edges as a function of the average strain on edges
at a temperature of 1100 K. The different points correspond to different strain
patterns sampled from the TEM images of Paper IX. Pressures: pCO = 20 mbar,
pO2 = 10 mbar.

fashion: Compressive strain decreases the TOF, whereas expansive strain increases the
TOF. The decrease in TOF with compression comes the fact that both CO and O is
bound weaker for compressive strain. For nanoparticles the same trend is seen to hold at
low temperatures. However, in the limit of high temperatures where edges and corners
become more active, the most beneficial strain-value changes significantly. Compared to
Pt(111), the nanoparticle has a lower light off temperature, despite the higher average
CO binding energies. This is a clear signal that kinetic couplings are present between the
multiple sites of nanoparticles.

In Paper IX, the kMC simulations are performed using measurements of strain from
Transmission Electron Microscopy (TEM) for supported Pt nanoparticles. The TEM
images revealed that the particle-strain is sizable in magnitude (up to over 10%) and that
many sites are subject to some degree of strain. The largest strains were located near the
particle-support interface. Adding 5% of strain to the simulations changes the binding
energy of CO and O by about 0.5 eV, which is a significant difference. However, when
applying a large strain in the simulations, the catalytic activity responds by less than an
order of magnitude. Thus, when some sites are strained, the reaction can find another
pathway, in agreement with the principle of least resistance145. This again highlights
that kinetic couplings are important as nanoparticles respond non-linearly to strain. The
response is particularly interesting for edge sites, which are the most active sites after
light-off. Figure 4.7 (b) shows the average change in TOF of edges as a function of the
average strain of the edges. Despite the edges being the most active site, there is little to
no correlation between the edge-strain and the edge-TOF. This result is surprising as the
reaction energy barrier for CO∗ + O∗ → CO2(g) is a linear function of strain.
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Figure 4.8: (a) Hierarchy of effects influencing reactions over nanoparticles. (b)
Hierarchy of factors influencing kinetic modeling. The base of the pyramid is most
important. The bottom levels influence the top levels.

4.5 A Hierarchy of Effects

The findings of this thesis illustrate that the turnover frequency of reactions over nanopar-
ticles is determined by multiple factors. For a given reaction, these factors may include:
catalyst material, support material, reaction conditions, particle size, particle shape, and
strain. Whence, we can order these effects in a hierarchy of importance for computational
modeling and catalyst design.

For catalyst design, the hierarchy could be represented by a pyramid as shown in
Figure 4.8 (a). The most important design parameter is the catalyst material for a
given set of reaction conditions. After the material and operating conditions are decided,
particle size and shape become important to address. That is, the material and reaction
conditions have a stronger effect on the catalytic reaction than particle size and shape,
which can be inferred by comparing the results of Paper VI-Paper IX. The top of the
pyramid is strain, which is likely the weakest of the effects investigated in this thesis. The
optimal strain design likely depends strongly on the lower levels of the pyramid, such as
material and reaction conditions.

The hierarchy of factors that influence kinetic modeling are illustrated in Figure 4.8
(b). The model system, considered reaction mechanisms, and the reaction conditions are
foundational for modeling. For example, Paper VI-Paper X show that it is important
to model nanoparticles explicitly to realize that edges and facets can operate in synergy
to catalyze the reaction. If instead extended surfaces were modeled, this conclusion could
not have been reached. The middle level of the pyramid is reaction energies and the
related adsorbate-adsorbate interactions. The top level is the entropy modeling, which
can have a weaker, yet appreciable, influence on the simulations. Entropy is placed in
the top as the choice of entropy model depends on the reaction energies. These pyramids
should be viewed more as guidelines than absolute statements, since the levels are not
mutually exclusive, and may depend on other factors.
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4.6 Methodological Considerations in Kinetic Modeling

Kinetics insights help understanding reaction mechanisms and performance bottlenecks
in catalytic reactions. A common indirect method to understand kinetics is to analyze
reaction energy landscapes using electronic structure calculations. This method may
provide a crude picture of the kinetic behavior, however, more detailed kinetic simulations
are often required. Kinetic simulations can be performed using a reductionist approach,
where the reaction is simulated for isolated sites that represent the entire nanoparticle.
This level of detail can provide crucial information about the kinetics for simple systems
such as extended surfaces. However, to understand kinetics for nanoparticles, a systemic
approach is required. A systemic approach combines different sites into a system that
is treated as a whole entity. The kinetics of the system may be different than a linear
addition of site-performances. This allows for a bottom-up understanding that ultimately
may lead to more accurate screening studies. Thus, both systems theory and reductionist
approaches are required to gain deep insights into catalysis.

Kinetic modeling involves a range of choices and approximations, including the model
system, simulation method (kMC or MFA), reaction energy landscape, adsorbate-adsorbate
interactions, and entropy modeling. In the present work, the model systems were chosen to
be extended surfaces and idealized small nanoparticles. This enables a direct comparison
between the two types of systems, and allows for investigating the materials gap. The
overall conclusion is that the multiple sites on nanoparticles makes it preferable to model
technical catalysts using nanoparticle systems. Whether the complexity of the model
system needs to be increased further, for example by including oxide-supports, remains
an open question.

The simulation methods chosen in this thesis were based on the fact that the mean-field
approximation breaks down in the presence of multiple different sites and finite systems.
Thus, the MFA was only applied in the studies that solely treated extended surfaces.
KMC simulations are necessary to study nanoparticles, and to compare directly with
extended surfaces, kMC was performed in the cases that treated both nanoparticles
and extended surfaces. The simulations revealed that kMC simulations are extremely
important to perform for nanoparticles, since kinetic couplings dominate the investigated
hydrogenation and oxidation reactions. Thus, a simulation method that accounts for the
specific geometric placement of sites is required.

The reaction energy landscapes can be calculated using different approaches. In
the present work, DFT was used to obtain a balance between computational cost and
accuracy. This balance is understood with respect to the fact that model systems are used
as simulations cannot fully capture the complex technical catalysts. If technical catalysts
were simulatable, likely the results would be too complex to analyze. In this respect,
searching for chemical accuracy in modeling technical catalysts is likely futile. However,
for more well-defined systems, it is sensible to strive for highly accurate energy calculations.
Reaction energy landscapes can be computed directly or represented using descriptors.
For extended surfaces, it is feasible to directly calculate the reaction energy landscape.
However, nanoparticles contain multiple different sites placed in specific geometries, which
requires several calculations. Thus, herein the reaction energy landscapes on nanoparticles
were treated with descriptors, which is reasonable considering the uncertainties in the
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DFT calculations. The uncertainty related applying fitted scaling relations is negligible,
since the difference in adsorption energies between the nanoparticle-sites exceeds the
uncertainty for the studied adsorbates. Adequate descriptors need to capture the main
features of the nanoparticle energies. For example, for adsorbates to diffuse to the lowest
energy sites, it is crucial to describe the sequential changes in energy between an inner
(111) facet site and a corner site.

The kMC models of this thesis applied coarse-graining of the sites to entail ontop,
bridge, and hollow binding positions. Hence, the most stable adsorbate binding position
represents the entire coarse-grained cell. This method saves computational time, and is
sensible if the rate constants do not depend on the detailed binding position. However,
the implications of this approach should be further explored.

Adsorbate-adsorbate interactions were calculated on the extended surfaces. For the
MFA models, the adsorbate-adsorbate interactions were implemented as functions of the
coverages, and the kMC simulations include first-nearest neighbor pairwise interactions.
Thus, the kMC simulations apply a somewhat simplified scheme, which captures the main
contributions to the adsorbate-adsorbate interactions. However, the limitations of the
present approach should be further explored as the adsorbate-adsorbate interactions can
play a large role both for entropies and enthalpies. This could be achieved systematically
using graph-theoretical methods and cluster expansion Hamiltonians111;157.

Entropy modeling was investigated in the present work. It was found that direct
potential energy sampling can improve kinetic modeling. Appropriate entropy modeling
is particularly important at large temperatures since the Gibbs free energy depends
linearly on TS. However, if entropy is to be described more accurately, it is important
that the energy calculations are precise. For the CO oxidation reaction, the RPBE
exchange-correlation functional yields good reaction energies as compared to experiments
over Pt(111)63. With such a well-defined system and accurate energies, it is sensible to
improve the entropy description. For zeolites, it was shown that the entropy is about
one order of magnitude larger than what was obtained with the harmonic approximation.
Thus, in zeolites it is necessary model the entropy in greater detail.
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Chapter 5

Conclusion & Outlook

With the present state of accuracy and speed of electronic structure calculations, it is
relevant to formulate first-principles kinetic models. This thesis has investigated and
developed the methodology of first-principle kinetic simulations of catalytic reactions over
nanoparticles. This was realized in a series of papers that investigated central factors for
the methods of microkinetic modeling. Electronic structure calculations were performed
using density functional theory, and rate constants were modeled in transition state theory.
Kinetic Monte Carlo simulations were deemed necessary to model nanoparticles, as the
mean-field approximation breaks down for finite systems containing multiple different
sites. The kinetic Monte Carlo simulations were realized by developing an open-source
Python package named MonteCoffee.

Adsorbate entropy modeling was studied in the context of kinetic simulations. To
enable systematic calculations of adsorbate entropy, a method named Complete Potential
Energy Sampling (CPES) was developed. CPES was applied to model CO oxidation
over Pt(111), where the method was shown to improve agreement with experiments as
compared to the traditional harmonic approximation and free translator model. Moreover,
CPES was applied to calculate molecular entropy in zeolite systems, where the molecular
degrees of freedom are coupled due to interactions with the zeolite-framework. It was
concluded that in zeolites, potential energy sampling is required to capture the nature of
the molecular degrees of freedom.

Analysis of kinetic simulations was discussed in relation to experiments; exemplified
using the developed microkinetic model of complete methane oxidation over Pd(100) and
Pd(111). Experiments that address kinetics can reveal macroscopic quantities, such as
reaction orders and apparent activation energies. Herein, the degree of rate control was
used to link atomic understanding with macroscopic observables. An analytical expression
was derived that relates the degree of rate control to the apparent activation energy and
reaction orders.

Kinetic Monte Carlo simulations of reactions over nanoparticles have been challenging
as calculations of the reaction energy landscape is computationally expensive. Herein,
the reaction energy landscape was described using scaling relations in the generalized
coordination number and metal-site stability. The energy barriers were scaled using
Brønsted-Evans-Polanyi relations, and adsorbate-adsorbate interactions were included
between first nearest neighbors. CO oxidation was simulated over Pt nanoparticles and
Pt(111). Over nanoparticles, the reaction was found to be dominated by complex kinetic
couplings between the multiple different sites, enabled by adsorbate diffusion. Thus,
extended surfaces were found to be inadequate model systems for nanoparticles. The
kinetic couplings were found to influence the relation between catalytic turnover frequency
and particle shape, size, strain, and reaction conditions. In addition to CO oxidation,
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selective hydrogenation of acetylene was modeled over Pd/Cu single-atom alloys. The
reaction was compared for Pd(111), Pd/Cu(111), and Pd/Cu nanoparticles. Alloying Pd
with Cu is found beneficial for selectivity, owing to modification of the relative energy levels.
Over nanoparticles, the reaction mechanism was found to be complex and dominated
by kinetic couplings between the sites. The edges and corners lower the selectivity, and
the present reaction benefits from large icosahedral Cu particles, with a minimal Pd
concentration. Hence, it is concluded that explicit kinetic simulations of nanoparticles are
necessary to capture the complexity of heterogeneously catalyzed reactions. Moreover,
nanoparticles must be understood from a systemic point of view and cannot be treated as
a set of isolated sites.

To extend this thesis, there are multiple interesting aspects that can be investigated. For
example, the method of modeling adsorbate-adsorbate interactions on nanoparticles can
be studied in greater detail, both for adsorption energies and entropies. A limitation of the
present work is that it treats the catalyst nanoparticle as a static entity without including
morphological changes. Such dynamical changes could possibly be simulated by combining
the developed Monte Carlo algorithm with molecular dynamics. Furthermore, an oxide-
support may be included in the simulations to study possible spill-over phenomena.

As Richard Feynman envisioned it in his talk1 almost 60 years ago, presently we have
a much greater range of possibilities for manipulating and designing nanoscaled systems.
When designing nanoscale technology, it is central to understand the quantum mechanical
behavior of atomic systems, and the consequences this behavior has on macroscopic
catalytic properties. This thesis has improved the understanding of heterogeneous catalysis,
by developing the methodology for first-principles kinetics over nanoparticles.
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Constants for Adsorbates: Two-Dimensional (2D) Ideal Gas, 2D Ideal Lattice Gas,
and Ideal Hindered Translator Models. J. Phys. Chem. C, 120 (2016), 10283–10297.
doi: 10.1021/acs.jpcc.6b00975.

[80] Qi, W.; Ran, J.; Wang, R.; Du, X.; Shi, J.; and Ran, M. Kinetic Mechanism
of Effects of Hydrogen Addition on Methane Catalytic Combustion over Pt(111)
Surface: A DFT Study with Cluster Modeling. Comp. Mater. Sci., 111 (2016),
430–442. doi: 10.1016/j.commatsci.2015.09.002.

[81] Hill, T. L. Introduction to Statistical Thermodynamics. Dover Publications Inc.,
New York, 1986. Chapter 9.

[82] Bajpai, A.; Mehta, P.; Frey, K.; Lehmer, A. M.; and Schneider, W. F. Benchmark
First-Principles Calculations of Adsorbate Free Energies. ACS Catal., 8 (2018),
1945–1954. doi: 10.1021/acscatal.7b03438.

[83] Piccini, G.; Alessio, M.; Sauer, J.; Zhi, Y.; Liu, Y.; Kolvenbach, R.; Jentys, A.; and
Lercher, J. A. Accurate Adsorption Thermodynamics of Small Alkanes in Zeolites.
Ab initio Theory and Experiment for H-Chabazite. J. Phys. Chem. C, 119 (2015),
6128–6137. doi: 10.1021/acs.jpcc.5b01739.

[84] Paolucci, C.; Parekh, A. A.; Khurana, I.; Iorio, J. R. D.; Li, H.; Albarracin Caballero,
J. D.; Shih, A. J.; Anggara, T.; Nicholas Delgass, W.; Miller, J. T.; Ribeiro, F. H.;
Gounder, R.; and Schneider, W. F. Catalysis in a Cage: Condition-Dependent
Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. J. Am.
Chem. Soc., 138 (2016), 6028–6048. doi: 10.1021/jacs.6b02651.

[85] Piccini, G. and Sauer, J. Effect of Anharmonicity on Adsorption Thermodynamics.
J. Chem. Theory Comput., 10 (2014), 2479–2487. doi: 10.1021/ct500291x.

[86] Li, H.; Paolucci, C.; and Schneider, W. F. Zeolite Adsorption Free Energies from
ab Initio Potentials of Mean Force. J. Chem. Theory Comput., 14 (2018), 929–938.
doi: 10.1021/acs.jctc.7b00716.

[87] Nielsen, M.; Brogaard, R. Y.; Falsig, H.; Beato, P.; Swang, O.; and Svelle, S.
Kinetics of Zeolite Dealumination: Insights from H-SSZ-13. ACS Catal., 5 (2015),
7131–7139. doi: 10.1021/acscatal.5b01496.

[88] Zhu, Y.-A.; Chen, D.; Zhou, X.-G.; and Yuan, W.-K. DFT Studies of Dry Re-
forming of Methane on Ni Catalyst. Catal. Today., 148 (2009), 260–267. doi:
10.1016/j.cattod.2009.08.022.

61

http://dx.doi.org/10.1021/ja3080117
http://dx.doi.org/10.1021/acs.jpcc.5b11616
http://dx.doi.org/10.1021/acs.jpcc.6b00975
http://dx.doi.org/10.1016/j.commatsci.2015.09.002
http://dx.doi.org/10.1021/acscatal.7b03438
http://dx.doi.org/10.1021/acs.jpcc.5b01739
http://dx.doi.org/10.1021/jacs.6b02651
http://dx.doi.org/10.1021/ct500291x
http://dx.doi.org/10.1021/acs.jctc.7b00716
http://dx.doi.org/10.1021/acscatal.5b01496
http://dx.doi.org/10.1016/j.cattod.2009.08.022
http://dx.doi.org/10.1016/j.cattod.2009.08.022


[89] Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; and
Sehested, J. The Brønsted–Evans–Polanyi Relation and the Volcano Curve in Hetero-
geneous Catalysis. J. Catal., 224 (2004), 206–217. doi: 10.1016/j.jcat.2004.02.034.

[90] Riedel, J. N.; Rötzer, M. D.; Jørgensen, M.; Vej-Hansen, U. G.; Pedersen, T.; Sebök,
B.; Schweinberger, F. F.; Vesborg, P. C. K.; Hansen, O.; Schiøtz, J.; Heiz, U.;
and Chorkendorff, I. H2/D2 Exchange Reaction on Mono-Disperse Pt Clusters:
Enhanced Activity from Minute O2 Concentrations. Catal. Sci. Technol., 6 (2016),
6893–6900. doi: 10.1039/C6CY00756B.

[91] Campbell, C. T.; Ertl, G.; Kuipers, H.; and Segner, J. A Molecular Beam Study of
the Catalytic Oxidation of CO on a Pt(111) surface. J. Chem. Phys., 73 (1980),
5862–5873. doi: 10.1063/1.440029.

[92] Park, J. Y.; Zhang, Y.; Grass, M.; Zhang, T.; and Somorjai, G. A. Tuning of Cat-
alytic CO Oxidation by Changing Composition of Rh-Pt Bimetallic Nanoparticles.
Nano Lett., 8 (2008), 673–677. doi: 10.1021/nl073195i.

[93] Nakao, K.; Watanabe, O.; Sasaki, T.; Ito, S.-I.; Tomishige, K.; and Kunimori,
K. CO Oxidation on Pd(111), Pt(111), and Rh(111) Surfaces studied by In-
frared Chemiluminescence Spectroscopy. Surf. Sci., 601 (2007), 3796–3800. doi:
10.1016/j.susc.2007.04.015.

[94] Palmer, R. L. and Smith Jr., J. N. Molecular Beam Study of CO Oxidation on a (111)
Platinum Surface. J. Chem. Phys., 60 (1974), 1453–1463. doi: 10.1063/1.1681219.

[95] Gerrard, A. L. and Weaver, J. F. Kinetics of CO Oxidation on High-Concentration
Phases of Atomic Oxygen on Pt(111). J. Chem. Phys., 123 (2005), 224703. doi:
10.1063/1.2126667.

[96] Vogel, D.; Spiel, C.; Suchorski, Y.; Trinchero, A.; Schlögl, R.; and Rupprechter, G.
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