
MAD-C: Multi-stage Approximate Distributed Cluster-Combining for
Obstacle Detection and Localization

Downloaded from: https://research.chalmers.se, 2025-06-18 02:34 UTC

Citation for the original published paper (version of record):
Keramatian, A., Gulisano, V., Papatriantafilou, M. et al (2019). MAD-C: Multi-stage Approximate
Distributed Cluster-Combining for Obstacle Detection and
Localization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 11339 LNCS: 312-324.
http://dx.doi.org/10.1007/978-3-030-10549-5_25

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

MAD-C: Multi-stage Approximate
Distributed Cluster-Combining for
Obstacle Detection and Localization

Amir Keramatian , Vincenzo Gulisano , Marina Papatriantafilou(B) ,
Philippas Tsigas , and Yiannis Nikolakopoulos

Chalmers University of Technology, Gothenburg, Sweden
{amirke,vinmas,ptrianta,tsigas,ioaniko}@chalmers.se

Abstract. Efficient distributed multi-sensor monitoring is a key fea-
ture of upcoming digitalized infrastructures. We address the problem of
obstacle detection, having as input multiple point clouds, from a set of
laser-based distance sensors; the latter generate high-rate data and can
rapidly exhaust baseline analysis methods, that gather and cluster all
the data. We propose MAD-C, a distributed approximate method: it
can build on any appropriate clustering, to process disjoint subsets of
the data distributedly; MAD-C then distills each resulting cluster into
a data-summary. The summaries, computable in a continuous way, in
constant time and space, are combined, in an order-insensitive, concur-
rent fashion, to produce approximate volumetric representations of the
objects. MAD-C leads to (i) communication savings proportional to the
number of points, (ii) multiplicative decrease in the dominating com-
ponent of the processing complexity and, at the same time, (iii) high
accuracy (with RandIndex > 0.95), in comparison to its baseline coun-
terpart. We also propose MAD-C-ext, building on the MAD-C’s output,
by further combining the original data-points, to improve the outcome
granularity, with the same asymptotic processing savings as MAD-C.

Keywords: Point cloud processing · Approximations · Fog computing

1 Introduction

LIDAR (LIght Detection And Ranging), used in e.g. autonomous vehicles and
production environments, is a 3D scanning method to measure ranges with rotat-
ing pulsed lasers. A LIDAR sensor produces hundreds of thousands of points
(point clouds) per rotation, at rates of several MBps. In the presence of occlu-
sions, multiple such sensors could join local views from various angles into a
consistent global view, an overlooked benefit, to the best of our knowledge, that
can enhance resiliency and availability.

Challenges. Single-source point cloud object detection can be achieved with
clustering methods [13]. With multiple LIDAR sensors, a baseline approach of
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 312–324, 2019.
https://doi.org/10.1007/978-3-030-10549-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_25&domain=pdf
http://orcid.org/0000-0001-9037-5364
http://orcid.org/0000-0002-2136-9179
http://orcid.org/0000-0001-9094-8871
http://orcid.org/0000-0001-9635-9154
http://orcid.org/0000-0003-3307-5108
https://doi.org/10.1007/978-3-030-10549-5_25

MAD-C: Multi-stage Approximate Distributed Cluster-Combining 313

clustering the union of the sources’ point clouds is impractical due to its cumu-
lative data volumes and rates resulting in prohibitive (i) processing costs and
latency (at least linear in the number of point-clouds’ sizes) even for parallel
clustering approaches [9,11], and (ii) communication bandwidth requirements.
Edge/fog continuous data processing (i.e., distributed clustering local to each
LIDAR) could overcome these limitations. However, two opposing goals make
such an approach challenging: sharing fine-grained data (to maximize the accu-
racy) versus coarse-grained data (to minimize communication overheads).

Contributions. We propose MAD-C, a multi-stage approximate distributed
cluster-combining method for obstacle detection and localization. First, it clus-
ters each point cloud at the edge, i.e. at each LIDAR sensor. Then, it computes
a local constant size geometric summary of each object and combines it with
those of other LIDARs (in time depending only on the number of objects and
sensors, not on the point-clouds’ sizes). We show that MAD-C’s summaries are
computable in a continuous way and can be combined in an order-insensitive con-
current fashion, exploiting data parallelism. Our extensive experimental study
covers a wide spectrum of scenarios, including very demanding cases, showing
that the common view produced by MAD-C is very close to that of the afore-
mentioned baseline. We also observe significant improvements in processing and
communication efficiency, which is all the more important for edge/fog architec-
tures and use of the algorithm in time-sensitive applications.

In the following, Sect. 2 describes the system model, problem and preliminary
concepts; Sect. 3 and Sect. 4 introduce MAD-C, its properties and its algorithmic
implementation. Experimental evaluation is presented in Sect. 5, related work
discussion in Sect. 6 and conclusions in Sect. 7.

2 Preliminaries

System Model. We consider K (≥ 1) asynchronous, interconnected nodes,
each being at a known location and associated with a LIDAR and a processing
unit (i.e. nodes are edge/fog devices). We assume the existence of a spanning tree
for nodes to communicate and aggregate data. Each node knows its children and
its parent. Let S denote the sink of the network (i.e., the tree-root), in charge of
generating a global view from data from the other nodes. We first present our
methods under the spanning tree and no-message-loss assumptions, for ease of
the presentation. Later, we generalize using known results in distributed systems.

Each LIDAR, in each rotation, collects a point cloud centered at its location.
The node can process the point-cloud locally, as well as communicate raw or
processed data to others. Let ptCloudi be the point cloud from a full rotation of
LIDAR Li, consisting of ni data points, as node i’s view. A (local) view refers to
an individual ptCloudi while a merged point cloud is the union of point clouds.

314 A. Keramatian et al.

(a) 3 nodes (b) N1’s view (c) N2’s view (d) N3’s view (e)merged view

Fig. 1. A scene with three LIDAR nodes

For simplicity and w.l.o.g we assume point clouds be obtained at the same
time and views are expressed in the same coordinate system1.

Problem Description. Using point clouds from K LIDARs, We want to detect
objects, with low communication cost, while ensuring high quality of detection,
data parallelism, as well as continuous, stream-compliant processing. The goal is
to find a map that: (i) enumerates the objects and (ii) for each object, provides
a representation (e.g. volumetric, or expressed as clusters of points). Besides
detection and localization, this map can be used in scenarios with e.g. geo-fences.

Evaluation Criteria: (i) complexity in time, communication overhead and
(ii) accuracy of the outcome. For the former we estimate the number of pro-
cessing steps and the amount of information that needs to be communicated
among the nodes. For the latter we use Rand Index, which is a similarity mea-
sure between two clusterings [15].

Example. Figure 1(a) is to introduce running example to illustrate the problem
and the functionality of our proposed methods. Parts 1(b–d) respectively visualize
the local views of the 3 LIDARs. Figure 1(e) shows the merged point cloud. Notice
that (i) there is at least one object missing in each local view and (ii) the views
are complementary regarding the objects that are not occluded; e.g. they display
almost non-overlapping segments of the car. Therefore, engaging more nodes to
collect point clouds can result in higher accuracy.

Background. Given a point cloud, there are several algorithms that segment
the data points in it into scene objects [4,13], that our proposed methods can
build on. Taking, e.g. Euclidean clustering, a point cloud would be partitioned
into a set of clusters that correspond to objects and noise-points. To describe
our methods we use the latter and for self-containment we paraphrase the defi-
nition from [13] (Ch. 4): Given n points in 3D space, a Euclidean clustering is a
partitioning of them into some (unknown) number of disjoint sets (i.e. clusters),
1 Else, pre-processing can transform them into a canonical system: depending on each

LIDAR’s disposition, a rotation matrix and a translation can be applied on its point-
cloud, in constant time, in conjunction with the data-reading, along with filtering
away ground points, a common pre-processing phase [8].

MAD-C: Multi-stage Approximate Distributed Cluster-Combining 315

each containing at least a predefined number of points (minPts), so that pairs of
points pi and pj are clustered together if ||pi − pj ||2 < ε, a predefined threshold.
Points that don’t belong to any cluster are characterized as noise.

3 The MAD-C Algorithm

We now describe MAD-C and how it meets the challenges described in Sect. 1.
Due to space limitations, the proof arguments are briefly sketched. We consider a
baseline that gathers all point-clouds and performs Euclidean clustering of these
n points, with complexity O(n log n) expected processing steps [4,13].

In a nutshell, each node Li in MAD-C locally detects objects in ptCloudi and
forwards compact summaries of the local objects. The summaries get merged
with the ones of other nodes along a spanning tree, up to S, which then can
deliver the set of global objects. Compared to the baseline, MAD-C drastically
reduces data communication, while it pipelines and distributes the analysis.

In the following we address how to efficiently (i) generate local maps, i.e.
summaries of the local clusters in the local views; and (ii) gradually merge the
maps in a deterministic fashion, despite network asynchrony.
Efficient Maps and Summarization of Local Clusterings. Consider two
local clusters c1 and c2 from two views. How can we determine whether to merge
them without having to calculate pairwise distances of points in c1 and c2?
Simply considering distances between their centroids doesn’t work, as the size
and shape of clusters matter. Hash-based similarity checks don’t apply either,
since point clouds have different elements. To address these issues efficiently,
MAD-C works on summaries of local clusters.

A summary of a cluster c should ideally (i) use small space (independent of
|c|), (ii) be built incrementally as new points are added, (iii) be shared with peers
as soon as all c’s points are found and (iv) express the volume that c occupies,
to allow comparisons and merging with close/overlapping clusters.

We noticed that bounding ellipsoids satisfy these requirements. With this in
mind, and inspired by contour surfaces of a three-variable Gaussian distribu-
tion, which form 3D ellipsoids, we propose to fit Gaussian distributions to local
clusters and represent them as bounding ellipsoids.

A Gaussian distribution is characterized by a mean vector μ ∈ R
3 (center of

the distribution) and a covariance matrix Σ ∈ R
3×3 (spread of the distribution).

The family of ellipsoids corresponding to the surface plots of a three-variable
Gaussian distribution are characterized through (x−μ)T Σ−1(x−μ) = α2, where
α is a constant (i.e. a parameter of MAD-C) which we call the confidence step.
The unit eigen-vectors of Σ define the directions of the principal axes of the
ellipsoid centered at μ [7]. The Gaussian fit through maximum likelihood esti-
mation [7], allows to calculate a bounding ellipsoid incrementally by calculating
N (c’s number of points), S =

∑N
1 pi (cumulative vector sum of c’s points) and

Σ̃ =
∑N

1 pip
T
i (cumulative sum of outer products of c’s points). As soon as c is

complete, μ and Σ of the bounding ellipsoid E can be calculated through S/N
and Σ̃/N − μμT respectively (Algorithm 1, l. 10).

316 A. Keramatian et al.

(a) M1 (b) M2 (c) M3 (d) (e)

Fig. 2. (a,b,c) are local maps. (d) Mw = C (M1, M2), (e) Mw = C (Mw, M3)

Example. Figure 2a, b, and c respectively show the local maps corresponding
to Fig. 1b, c, and d. Ellipses symbolically illustrate the bounding ellipsoids. The
delimiting boxes are explained later in this section. We need some definitions to
introduce next steps and properties of MAD-C.

Definition 1. A map M is a set of objects. An object O is a set of ellipsoids.
‖M‖ denotes the number of ellipsoids in M.

In MAD-C, a node Li produces a local map Mi, i.e. a set of singletons,
each containing a bounding ellipsoid approximating a local cluster in Li’s view
(excluding noise points). The calculation of each ellipsoid’s parameters can be
embedded in the calculation of the clustering, at constant overhead per point.

Observation 1. The representation of a bounding ellipsoid of cluster c is of size
independent of |c|. The cost of calculating its parameters μ and Σ is constant
per point in c. The representation of a map Mi is of size linear in |Mi|.

Algorithm 1. GenLocalMap(i)
1: A: Euclidean clustering algorithm

2: α: confidence step in MAD-C

3: while ∃ p just clustered by A do

4: c : local cluster where p belongs

5: if c is new then

6: c.N = 0; c.S = 0[3×1]; c.Σ̃ = 0[3×3]

7: c.N = c.N + 1; c.S ← c.S + p;

8: c.Σ̃ = c.Σ̃ + p ∗ pT

9: for c ∈ detected clusters at Li do

10: μ = c.S/c.N ; Σ = c.Σ̃/c.N − μμT ;

11: E : an ellipsoid with a unique id

12: E.μ ← μ;E.Σ ← α2Σ;

13: Initialize O to contain E

14: for d ∈ {x, y, z} do

15: O.bd = [min projdE,max projdE]

16: M.addSingleton(O)

Algorithm 2. UnifyChildren(i)

1: Mw = GenLocalMap(i)

2: for all Child C do

3: get(MC); Mw = Merge(Mw,MC)

4: send Mw to parent (if any)

5: Function Merge(Mw,MC)

6: Mr ← Mw ∪ MC

7: for all Oi ∈ Mw,Oj ∈ MC do

8: if overlap(Oi.b,Oj .b) then

9: if ∃E ∈ Oi ∧ ∃E′ ∈ Oj |E ∩ E
′ then

10: Mr.Merge(Oi,Oj) with:

11: bd = Oi.bd ∪ Oj .bd, d ∈ {x, y, z}
12: RETURN Mr

Combining Ellipsoids and Maps from Multiple Nodes. While passing
maps along the tree, each node merges its working map Mw (initially its local

MAD-C: Multi-stage Approximate Distributed Cluster-Combining 317

map), with maps from its children, then it forwards the result to its parent (cf.
Algorithm 2; shadowed lines are explained later in this section).

If merging is performed on the local point clouds rather than summaries, two
local clusters become one if at least a pair of points (one from each) are within ε
distance. Similarly, objects in the Mw and each child map MC are compared to
detect if they contain ellipsoids satisfying such matches. If so, those objects are
merged ; i.e. the union of their ellipsoids is recognized as one object in Mw. In
Sect. 4 we explain how (i) to integrate ε in an ellipsoid’s representation, (ii) to
check if two ellipsoids intersect and (iii) merge two objects, all in constant time.

If the baseline is performed on the merged point cloud excluding noise, then
it generates clusters consisting of one or more local clusters because local clusters
do not break into smaller pieces in the merged point cloud. Hence:

Lemma 1. Applying the baseline on ∪K
i=1ptCloudi results in clusters, each con-

taining local clusters from local views. Likewise, the objects returned by S are
sets of ellipsoids, each of the latter corresponding directly to a local cluster.

Example. Figure 2d shows the result of Merge (M1,M2). Figure 2e shows the
Merge result of the latter and M3.

Lemma 2. Operation Merge on maps containing ellipsoids with unique iden-
tities, satisfies the reflexive, symmetric and associative properties.

This follows through line 7 of Algorithm2: if Oi and Oj have intersecting
ellipsoids, they will be merged regardless of the order of execution, implying
that Merge satisfies properties of conflict-free replicated data types [12].

Corollary 1. The network topology and timing asynchrony does not affect the
final map at S. Moreover, the Merge operations can be executed using non-
atomic multicasting, similar to gossiping or selective flooding, guaranteeing even-
tually consistent final outcome and inherent fault-tolerance properties.

Corollary 1 implies the spanning tree assumption can be lifted and besides
the sink node, any other node can construct the global map, if nodes broadcast
their views in the network. We now study the processing and communication
overhead of MAD-C, with a single sink.

Observation 2. ‖M‖ equals ‖M1‖+‖M2‖ if M is the result of Merge(M1,M2).

Lemma 3. Comparing objects O1 and O2 needs at most θ(|O1|× |O2|) compar-
isons. O(‖M1‖‖M2‖) processing steps is an upper bound on the computational
cost of merging maps M1 and M2.

This is because the number of comparisons for merging two maps is at most:(
Σ

|M1|
i=1 Σ

|M2|
j=1 |M1(i)||M2(j)|

)
≤ (Σ|M1|

i=1 |M1(i)|)(Σ|M2|
j=1 |M2(j)|) = ‖M1‖‖M2‖,

while the cost of comparison and merging is constant (see Sect. 4). This bound
is an overestimation of a worst-case because it counts unnecessary comparisons
as well. The exact bound is data-dependent and hence harder to estimate in a

318 A. Keramatian et al.

data-agnostic way, yet we experimentally study the number of comparisons in
Sect. 5. In the following we study the role of topology in the above (still worst-
case estimations), while later in this section we explain how to avoid unnecessary
comparisons.

Let γ be the number of actual objects and K be the number of LIDARs. In
each local view, while some objects might be entirely occluded, others might split
into smaller ones, though not changing the order of magnitude of objects O(γ)
detected in the view, for the same ε and minPts (cf. Sect. 2) as the baseline.

Lemma 4. Merge’s worst-case complexity is O(γ2K2) with a star or non-
balanced tree topology and O(γ2K lg K) with a balanced binary tree.

Recall that the expected cost of Euclidean clustering of n points is O(n log n)
processing steps [4,13]. Let ni be the size of ptCloudi.

Corollary 2. The overall computation cost of MAD-C is the sum of (i) the
local clustering steps,

∑K
i=1 O(ni log(ni)), (ii) Merge operations steps,

(Lemma 4, Lemma 3) and (iii) bounding ellipsoids calculation steps,
∑K

i=1 O(ni)
(Observation 1).

Lemma 5. The total volume of data (e.g. in bytes) to be transferred between
pairs of nodes in MAD-C is O(γK), O(γK2), and O(γKlgK) under star, non-
balanced tree, and balanced binary tree topologies, respectively.

The above are determined through the ellipsoids to be transferred, using
Observation 2 to find the number of ellipsoids that any node transfers to its
parent.

Considering that (i) MAD-C relies on local clustering and assuming the latter
is performed in parallel, and (ii) in the worst case, no Merge operation takes
place until the latest local clustering is completed, we have:

Corollary 3. Completion time of MAD-C is determined by maxK
i=1 O(ni log ni),

plus the time to complete Merge operations and the time to transmit the maps.

Avoiding unnecessary comparisons To avoid unnecessary one-to-one com-
parisons (e.g. when two objects occupy completely different parts of the scene),
we propose delimiting boxes as a way of distinguishing objects, so that those
that don’t need to be compared, get grouped separately. An object’s delimit-
ing box is an axis-aligned rectangular shape that encapsulates all the ellipsoids
corresponding to that object (Algorithm2, l. 11). An ellipsoid’s delimiting box
is the smallest axis-aligned circumscribed rectangle encapsulating that ellipsoid,
i.e. one closed interval for each axis (Algorithm1, l.14).

Lemma 6. If the delimiting boxes of Oi and Oj do not overlap, the two objects
do not have overlapping ellipsoids.

This follows from the definition of delimiting boxes and it helps to reduce the
comparison costs, while the other properties shown in the analysis still hold.

MAD-C: Multi-stage Approximate Distributed Cluster-Combining 319

MAD-C-ext: Delivering Data Point Labels Rather than Ellipsoids. The
baseline determines a labeling/clustering tag for each data point in the merged
point cloud. MAD-C too can be modified so that, as well as maintaining a Mw,
each parent node combines point clouds from its children and its own, and it
determines a labeling for the latter and forwards both to its parent.

4 Algorithmic Implementation of MAD-C

Ellipsoidal Overlap. Given a pair of ellipsoids Ea,Eb, the method described
in [1] determines in constant time if they intersect. It characterizes Ea,Eb respec-
tively as XT AX = 0 and XT BX = 0, where A and B are 4×4 matrices derived
from their centroids and covariance matrices by extending with a default row
and column. Ea,Eb overlap if there is at least an admissible eigenvector (one
without a zero in the fourth dimension) of A−1B that satisfies both equations.

Aura: Integrating ε in Ellipsoids. If the minimum distance of pairs of points
from two objects is less than ε, then they are grouped together by the Euclidean
clustering algorithm. We target the same behaviour with the ellipsoidal models,
adding an aura δ = ε/2 around them, simply by increasing lengths of the main
axes by δ. This is achieved by manipulating the covariance matrix of the ellip-
soid to be expanded. Suppose V ΛV T is the singular value decomposition of the
covariance matrix. Since the lengths of the main axes of the ellipsoid are the
entries in the diagonal matrix Λ, it suffices to update Λ to

(
Λ0.5 + δ.I

)2.

Data Structure for Maps. Implementation of MAD-C requires a data struc-
ture supporting maps. As described in Sect. 3, a map is a set of objects, each
being a set of ellipsoids. We employed a variant of disjoint-set data structure
with path compression technique. In our implementation, ellipsoids are initially
elements of a disjoint-set forest and objects are merged by merging their cor-
responding trees through a simple pointer operation, hence the merging cost is
constant.

5 Experimental Evaluation

We study (i) how well the ellipsoids represent local objects, (ii) the quality of
MAD-C’s approximate clustering and (iii) the quality of the clustering from all
the LIDAR nodes for both the baseline and MAD-C-ext. To complement MAD-
C’s Merge and communication worst case costs (Lemmas 3, 4 and 5) we also
empirically measure (i) the computational costs of the former (including that of
maintaining maps on local nodes) and (ii) the communication costs of the latter.

Evaluation Data. Public LIDAR datasets are usually gathered by a single
source. Therefore, we only use them to study how well the ellipsoids represent
local objects. To that end, we use 30 randomly chosen point clouds from the
KITTI dataset [5], collected by a Velodyne laser scanner in urban driving (Fig. 3).

320 A. Keramatian et al.

Fig. 3. KITTI-dataset
scene.

Fig. 4. Factory scene. Fig. 5. Random scene.

We also use datasets generated by the Webots simulator (https://www.
cyberbotics.com/overview), which simulates real-world LIDARs (VelodyneHDL-
32e, in our case) and 3D scenes. One such scene resembles a factory environment
(with Automated Guided Vehicles, lifting arm cranes and related objects) with
four LIDARs placed at the corners of the scene and one in the middle (Fig. 4).
Other scenes define random objects, as small as cubic boxes (with lengths of
80 cm) to objects as big as cars, over an area of 50 × 50m2 with LIDARs placed
at up to seven spots. Each object is randomly rotated around its vertical axes
to vary the angle with which it is exposed to LIDARs (e.g. Fig. 5). To study
MAD-C’s operational costs, which depend on the number of scene’s object and
LIDARs (Lemmas 4 and 5), random scenes have a variable number of objects.
We define 10 scenes for 10, 50 and 100 objects, for a total of 30 scenes. We use
the notation Λi for any scene to specify it contains i LIDAR nodes. We exclude
the point cloud portions falling outside the scenes’ area.

Evaluation Setup. We implemented MAD-C in C++ and used GNU scientific
library and Eigen for matrix algebra. For the baseline and local clusterings, we
employed Euclidean clustering (cf. Sect. 2) algorithm in Point Cloud Library [14],
with ε and minPts respectively set to 0.35 and 10. With these values, the baseline
reasonably detects all objects in the scenes and provides a reliable ground-truth.
All experiments were run on an Ubuntu 14.04 virtual machine with one 3.1 GHz
core and 4 GB of memory. We assume a star topology, i.e. K −1 nodes communi-
cating with a sink. Execution of fog/edge devices was emulated by individually
running them on the virtual machine and profiling the intermediate results (i.e.
local maps) and the performance measurements. The Merge was performed
afterwards. Corollary 3 suggests why this approximations hold.

We estimate running times by dividing the rdtsc [10] count, the number of
CPU cycles, by the CPU frequency clock rate. To approximate the communi-
cation times, we divide the communication volume (sum of local point clouds’
volumes for the baseline and sum of the maps’ volumes in MAD-C) by the avail-
able bandwidth. Despite the latter being a coarse-grained approximation that
favours the baseline (since the latter transfers about two orders of magnitude
more data, which causes even higher communication overheads and possibly

https://www.cyberbotics.com/overview
https://www.cyberbotics.com/overview

MAD-C: Multi-stage Approximate Distributed Cluster-Combining 321

0 1.7 3.5
confidence step

0

0.5

1

recall
precision

Fig. 6. Performance of
the bounding ellipsoid
(KITTI-dataset scenes)

0.8 1.4 1.8 2.4
Confidence Step

0.7

0.8

0.9

1

R
an

d
In

de
x

Fig. 7. Accuracy of MAD-
C and MAD-C-ext (factory
scene)

0.85

0.9

0.95

1

R
an

d
In

de
x

MAD-C
MAD-C-ext

Fig. 8. Accuracy of MAD-
C and MAD-C-ext (random
scenes)

retransmissions, especially in multi-hop networks), we show that MAD-C still
has better performance. We also count the ellipsoid comparisons in Algorithm 2
to see how effective the delimiting-box method is.

Estimating the Confidence Step α: Large α (i.e., large bounding ellipsoids)
leads to high coverage of local objects. Yet, excessively large α, can lead to
ellipsoids erroneously covering other objects’ points. To study the trade-off, we
employ precision and recall. For a local object and its bounding ellipsoid, they
measure the ratio of the correctly covered points to all covered points and the
ratio of the correctly covered points to the size of the point-set of the object, as
detected by the baseline, respectively. As shown in Fig. 6 for the KITTI dataset
(similar is the behaviour for the Webots simulations), when α is too small, local
objects are partly covered (i.e. low average recall) or not covered at all (i.e. low
average precision). This is not the case for higher values of α, until the precision
decreases again when the bounding ellipsoids erroneously start overlapping other
objects. We take [0.8, 2.4] as the desirable range for α.

Accuracy of MAD-C and MAD-C-ext. As noted in Lemma 1, objects iden-
tified by the baseline contain one or more local objects from different views.
Objects returned by the sink node in MAD-C, likewise, are composed of ellip-
soids which in turn relate to local objects. Therefore, we take local objects as
the basic elements on which MAD-C and the Euclidean clustering algorithm are
executed and compare them using the RandIndex measure (cf. Sect. 2). Figure 7
presents the accuracy of MAD-C and MAD-C-ext, respectively, for two, three,
four, and five nodes with α values 0.8, 1.4, 1.8, and 2.4 for the factory scene.
Figure 8 shows their accuracy for α = 1.5 for the random scenes; we use box plots
to present accuracy for all the 30 scenes. As shown, both MAD-C’s and MAD-
C-ext’s clustering outcomes are close to the baseline ones. In the remainder, the
experimental study of processing and communication costs assumes α = 1.5.

Execution cost of MAD-C. Figure 9 (left) shows MAD-C’s and baseline’s
execution costs (Corollary 3) for the random scenes while Fig. 9 (middle) dis-
tinguishes MAD-C’s costs for local clustering - C1 - and for the Merge
operation (including the calculations of the bounding ellipsoids) - C2. Notice

322 A. Keramatian et al.

Fig. 9. MAD-C and baseline - avg. execution cost, MAD-C’s execution costs decom-
position and MAD-C vs baseline - avg. communication cost (random scenes).

Table 1. Average number of ellipsoid comparisons
with/without the delimiting-box method.

Λ2 Λ3 Λ5 Λ7

10 obj. 16 168 46 599 92 1827 164 2951
50 obj. 72 3610 218 12738 487 38858 804 56477
100 obj. 105 12618 390 42481 1094 140380 2049 203423

Table 2. Execution times
in seconds (100 objects).

Λ2 Λ3 Λ5 Λ7

baseline 14 19 32 50

MAD-C 9 11 15 19

the logarithmic-scale y-axis, showing order(s) of magnitude difference between
MAD-C and the baseline. Table 1 quantifies the effectiveness of the delimiting-
box heuristic (Lemma 6), showing the average number of comparisons with (high-
lighting) and without the heuristic.

Communication Cost of MAD-C. Figure 9 (right) contrasts the required
average volume of communication for both MAD-C (see Lemma 5) and the
baseline for the random scenes. MAD-C improves by two orders of magnitude
the average communication cost compared to that of the baseline.

Summary. In Table 2 we estimate the total execution time for 100 objects of
MAD-C versus the baseline, assuming CPU frequency of 2 Ghz and communi-
cation bandwidth of 10 Mbps (similar to specification of devices in edge and fog
computing). As observed, MAD-C offers a considerable improvement over the
state-of-the-art, with a gap increasing accordingly to the number of LIDARs.

6 Related Work

Relevant clustering-based object detection algorithms for point clouds found in
the literature are [4,13]. To cope with point clouds’ large data volumes, parallel
analysis techniques are given in [9,11]. All these can be leveraged by MAD-C
since, as discussed, it integrates on top of any clustering algorithm. Variants
of Octrees [3], voxel grids [13], and bounding boxes [6] are efficient tools for
processing point clouds. MAD-C offers new opportunities due to the compact

MAD-C: Multi-stage Approximate Distributed Cluster-Combining 323

representation of bounding ellipsoids and their properties. ICP [2] performs geo-
metric alignment of point clouds when the relative location and pose of sources
is unknown, yet, in our work, we know this information.

7 Conclusions and Future Work

MAD-C is a multi-stage method to distributedly approximate detection and
localization of objects with multiple LIDARs. Its core phase clusters disjoint
subsets of data in a distributed and parallel fashion. Through summarization,
it drastically reduces the volume of transmitted data while approximating effi-
ciently the outcomes obtained by clustering all the raw data as a whole. The
summaries, computable in a continuous way and with constant time and space
overhead, can be combined in an order-insensitive concurrent fashion, allowing
for more general-purpose uses of MAD-C. Future work will focus on the deploy-
ment of a MAD-C prototype on an IoT test-bed.

Acknowledgements. Work supported by SSF grant “FiC: Future Factories in the
Cloud” (GMT14-0032) and VR grants “HARE: Self-deploying and Adaptive Data
Streaming Analytics in Fog Architectures” (2016-03800) and “Models and Techniques
for Energy-Efficient Concurrent Data Access Designs” (2016-05360).

References

1. Alfano, S., Greer, M.L.: Determining if two solid ellipsoids intersect. J. Guid. Con-
trol Dyn. 26(1), 106–110 (2003)

2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion
IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International
Society for Optics and Photonics (1992)

3. Elseberg, J., Borrmann, D., Nüchter, A.: One billion points in the cloud-an octree
for efficient processing of 3D laser scans. ISPRS J. Photogramm. Remote. Sens.
76, 76–88 (2013)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

5. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: CVPR, pp. 3354–3361. IEEE (2012)

7. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A.,
Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Com-
putation. STUDFUZZ, vol. 192, pp. 75–102. Springer, Heidelberg (2006). https://
doi.org/10.1007/3-540-32494-1 4

8. Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.J.: Fast segmentation of 3D
point clouds for ground vehicles. In: Intelligent Vehicles Symposium, pp. 560–565.
IEEE (2010)

9. Kumari, S., Goyal, P., Sood, A., Kumar, D., Balasubramaniam, S., Goyal, N.:
Exact, fast and scalable parallel DBSCAN for commodity platforms. In: 18th Inter-
national Conference on Distributed Computing and Networking, p. 14. ACM (2017)

https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4

324 A. Keramatian et al.

10. Paoloni, G.: How to benchmark code execution times on Intel IA-32 and IA-64
instruction set architectures. Intel Corporation, p. 123 (2010)

11. Patwary, M.A., Palsetia, D., Agrawal, A., Liao, W.k., Manne, F., Choudhary, A.:
A new scalable parallel DBSCAN algorithm using the disjoint-set data structure.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, p. 62. IEEE Computer Society Press (2012)

12. Preguica, N., Marques, J.M., Shapiro, M., Letia, M.: A commutative replicated
data type for cooperative editing. In: 29th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2009, pp. 395–403. IEEE (2009)

13. Rusu, R.B.: Semantic 3D object maps for everyday manipulation in human living
environments. KI-Künstliche Intelligenz 24(4), 345–348 (2010)

14. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE Interna-
tional Conference on Robotics and automation (ICRA), pp. 1–4. IEEE (2011)

15. Wagner, S., Wagner, D.: Comparing clusterings: an overview. Universität
Karlsruhe, Fakultät für Informatik Karlsruhe (2007)

	MAD-C: Multi-stage Approximate Distributed Cluster-Combining for Obstacle Detection and Localization
	1 Introduction
	2 Preliminaries
	3 The MAD-C Algorithm
	4 Algorithmic Implementation of MAD-C
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

