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Abstract—We present nonasymptotic upper and lower bounds
on the maximum coding rate achievable when transmitting short
packets over a Rician memoryless block-fading channel for a given
requirement on the packet error probability. We focus on the prac-
tically relevant scenario in which there is no a priori channel state
information available at the transmitter and at the receiver. An
upper bound built upon the min-max converse is compared to two
lower bounds: the first one relies on a noncoherent transmission
strategy in which the fading channel is not estimated explicitly
at the receiver; the second one employs pilot-assisted transmis-
sion (PAT) followed by maximum-likelihood channel estimation
and scaled mismatched nearest-neighbor decoding at the receiver.
Our bounds are tight enough to unveil the optimum number of
diversity branches that a packet should span so that the energy
per bit required to achieve a target packet error probability is
minimized, for a given constraint on the code rate and the packet
size. Furthermore, the bounds reveal that noncoherent transmis-
sion is more energy efficient than PAT, even when the number
of pilot symbols and their power is optimized. For example, in
Rayleigh fading, for the case when a coded packet of 168 symbols
is transmitted using a channel code of rate 0.48 bits/channel use,
over a block-fading channel with block size equal to 8 symbols,
PAT requires an additional 1.2 dB of energy per information bit to
achieve a packet error probability of 10−3 compared to a suitably
designed noncoherent transmission scheme. Finally, we devise a
PAT scheme based on punctured tail-biting quasi-cyclic codes and
ordered statistics decoding, whose performance is close (1 dB gap
at 10−3 packet error probability) to the ones predicted by our PAT
lower bound. This shows that the PAT lower bound provides useful
guidelines on the design of actual PAT schemes.

I. INTRODUCTION

Supporting the transmission of short packets under stringent
latency and reliability constraints is critically required for next-
generation wireless communication networks to address the
needs of future autonomous systems such as connected vehicles,
automated factories, and smart grids [2], [3]. Classic information-
theoretic performance metrics, i.e., the ergodic and the outage
capacity, provide inaccurate benchmarks to the performance of
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short-packet communication systems, because of the assumption
of asymptotically large blocklength [4]. In particular, these
performance metrics are unable to capture the tension between
the throughput gains in the transmission of short packets over
wireless fading channels that are attainable by exploiting channel
diversity, and the throughput losses caused by the insertion of
pilot symbols, which are often used to estimate the wireless
fading channel at the receiver [5].

A more useful performance metric for short-packet communi-
cation systems is the so called maximum coding rate R∗(n, ε),
which is the largest rate achievable for a fixed blocklength n, and
a fixed packet error probability ε. No closed-form expressions
for R∗(n, ε) are available for the channel models of interest
in wireless communication systems. However, tight bounds on
R∗(n, ε) as well as second-order expansions in the limit n→∞
have been recently reported for a variety of wireless channel
models. These results rely on the nonasymptotic information-
theoretic tools developed in [6].

In this paper, we study the maximum coding rate achievable
over Rician memoryless block-fading channels, for the case in
which no a priori channel state information (CSI) is available at
the transmitter and at the receiver. Such a setup is of particular in-
terest in sporadic short-packet transmissions subject to stringent
latency constraints. Indeed, the CSI that may have been acquired
at the receiver during previous packet transmissions is often
outdated due to the sporadic nature of the transmissions, and
delay constraints may prevent the use of a feedback link, which is
necessary for the transmitter to obtain CSI. In practical wireless
systems, the receiver typically obtains CSI through the use of
pilot-assisted transmission (PAT) schemes [5], which involve
multiplexing known pilot symbols among the data symbols
within each packet. Our goal is to investigate the performance
of such schemes when packets are short, using a nonasymptotic
information-theoretic analysis.

A. Prior Art
The Nonfading AWGN Channel: Tight upper (converse) and

lower (achievability) bounds onR∗(n, ε), based on cone packing,
were obtained by Shannon [7]. Polyanskiy, Poor, and Verdú [6]
showed recently that Shannon’s converse bound is a special case
of the so-called min-max converse [6, Thm. 27], [8], a general
converse bound that involves a binary hypothesis test between
the channel law and a suitably chosen auxiliary distribution.
Furthermore, they obtained an alternative achievability bound—
the κβ-bound [9, Thm. 25]—also based on binary hypothesis
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testing. This bound, although less tight than Shannon’s achiev-
ability bound, is easier to evaluate numerically and to analyze
asymptotically. Indeed, Shannon’s achievability bound relies on
the transmission of codewords that are uniformly distributed
on the surface of an (n− 1)-dimensional hypersphere in Rn
(a.k.a., spherical or shell codes), which makes the induced
output distribution unwieldy. Min-max and κβ bounds solve this
problem by replacing the above-mentioned output distribution
by a product Gaussian distribution, which is easier to analyze
analytically.

Characterizing the asymptotic behavior of the min-max con-
verse and the κβ bounds in the large-blocklength regime, Polyan-
skiy, Poor, and Verdú established the following asymptotic
expansion for R∗(n, ε) (see [6] and also the refinement in [10]),
which, for convenience, we state for the case of a complex AWGN
channel:

R∗(n, ε) = C −
√
n−1V Q−1(ε) +O

(
n−1 log n

)
. (1)

Here, C = log(1 + ρ), where ρ denotes the SNR, is the channel
capacity, V = ρ(2+ρ)/(1+ρ)2 is the so-called channel disper-
sion, Q(·) is the Gaussian Q function, and O(n−1 log n) com-
prises remainder terms of order n−1 log n. The expansion (1),
which is commonly referred to as normal approximation relies on
a central-limit-theorem analysis and is accurate whenR∗ is close
to capacity. Note, however, that when the blocklength is short
and the target packet error probability is low, which implies that
the maximum coding rate is far from capacity, large-deviation
analyses resulting in the classical Gallager’s random-coding
error exponent (RCEE) [11] yield more accurate approximations
than (1).

Fading Channels–no a-priori CSI: Bounds on R∗ for mul-
tiantenna fading channels offering multiple diversity branches
in time and/or frequency were reported in [4]. Specifically, the
authors of [4] considered a multiantenna Rayleigh memoryless
block-fading channel and assumed that coding can be performed
across a fixed number of independently fading blocks. The
converse bound in [4] relies on the min-max converse, whereas
the achievability bound is built upon the so-called dependence-
testing (DT) bound [6, Thm. 17]. The input distribution used
in [4] to compute the DT bound is the one induced by unitary
space-time modulation (USTM) [12], according to which the
matrices describing the signal transmitted within each coherence
block over the available transmit antennas are drawn indepen-
dently from the uniform distribution on the set of unitary matri-
ces. Then, they are scaled so as to satisfy the power constraint.
This distribution, which achieves capacity at high SNR [13]
(provided that the sum of transmit and receive antennas does not
exceed the length of the coherence block), corresponds—in the
single-input single-output (SISO) case—to the transmission of
independent shell codes over each coherence block. Note that
the resulting signaling scheme is noncoherent in that no pilot
symbols are transmitted to learn the channel. Rather, information
is conveyed through the choice of the subspace spanned by the
row of each matrix, a quantity that is not affected by the fading.
It is also worth remarking that the resulting bound assumes
the adoption of an optimal receiver, able to compute the log-
likelihood ratio of each codeword, which may be impractical.

The auxiliary distribution used in [4] to compute the min-max
converse is the one induced by USTM.

No asymptotic expansions of the form (1) are available for
fading channels with no a priori CSI. Indeed, not even capacity
is known in closed form in the ergodic setting. An attempt to
analyze the scenario of imperfect CSI at the receiver for the
case of multiple-input multiple-output (MIMO) Rayleigh block-
fading channels was undertaken in [14]. The analysis, however,
contains several inaccuracies.

For the multiple-antenna Rayleigh memoryless block-fading
case, the input distribution achieving the RCEE was studied by
Abou-Faycal and Hochwald [15]. They showed that it has the
same structure as the ergodic-capacity-achieving input distri-
bution [16]. Namely, the optimum input matrix is the product
of a real, nonnegative, diagonal matrix and an isotropically
distributed unitary matrix. Furthermore, for the SISO case, they
proved that for large SNR, the real-valued component becomes
deterministic, and the input vector becomes a shell code. The
results in [15] were partly extended to single-antenna Rician
memoryelss fading channels (coherence block of size one) in [17]
where it is shown that the optimal scalar input has uniform phase
and its amplitude is supported on a finite number of mass-points.

An upper bound on the packet error probability based on the
RCEE was derived in [18] for the MIMO case using USTM as
input distribution. Through numerical simulations, the authors
showed that this bound is close to the DT bound obtained in [4]
already at moderate error probabilities (ε ≈ 10−4) in some
scenarios.

Pilot-Assisted Transmission and Mismatched Decoding:
Analyses of PAT schemes in which the channel estimate is treated
as perfect by a decoder that operates according to the scaled
nearest-neighbor (SNN) rule, fall into the general framework of
mismatched decoding [19]–[23]. A study of the performance of
SNN decoders over fading channels under different assumptions
on the availability of CSI was presented in [23]. The analysis
relies on using a Gaussian codebook and on the generalized
mutual information (GMI)—an asymptotic quantity introduced
in [19] that provides a lower bound on the maximum coding rate
achievable for a fixed (possibly mismatched) decoding rule.1

The rate gains obtainable with more sophisticated decoders that
process jointly pilot and data symbols are studied in [24].

Nonasymptotic lower bounds on the maximum coding rate
achievable with mismatch decoding are presented in [25] for
the case of identical and independently distributed (i.i.d.),
constant-composition, and cost-constrained codes. The analysis
is based on the random-coding union bound with parameter s
(RCUs) [26], an adaptation and relaxation of the random-coding
union bound (RCU) in [6] for the case of mismatch decoder that
recovers the generalized RCEE introduced in [19].

An analysis of the performance of PAT schemes using mutual
information as asymptotic performance metric (and without
imposing any restriction on the receiver structure) was carried out
in [27] for the case of MIMO Rayleigh block-fading channels.
There, it is shown that when one is allowed to optimize the

1The authors of [19] analyze also the performance achievable over quasi-static
Rician and Nakagami fading channels for the case of perfect CSI and no CSI
with both matched and mismatched decoders, using the cut-off rate as asymptotic
performance metric.
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power allocation between pilot and data symbols, it is optimal
to use as many pilot symbols per coherence block as the number
of transmit antennas. If instead pilot and data symbols need to
be transmitted at the same power, the optimum number of pilot
symbols becomes SNR dependent, and a number of pilot symbols
much larger than the number of transmit antennas is needed in
the low-SNR regime. This investigation has been generalized to
MIMO Rician-fading channels in [28]. Finally, a comprehensive
asymptotic analysis of the performance of SNN decoders (and
generalizations thereof) over MIMO fading channels using GMI
as performance metric can be found in [29].

Channel codes for short packets: Recent developments in
the design of efficient codes in the short blocklength regime lead
to a variety of solutions enabling different trade-offs between
decoding complexity and performance (i.e., coding gain). We
refer the reader to recent surveys on the topic (see, e.g., [30],
[31]) for an extensive review of some of the most effective coding
schemes. In this paper, we consider short quasi-cyclic (QC)
binary block codes with good distance spectra obtained from
tail-biting trellises. Furthermore, we focus on ordered-statistics
decoding (OSD) [32], which is a general soft-decision decoding
algorithm that can be applied to any binary linear block code.
OSD is capable of achieving near-maximum likelihood (ML)
decoding performance for codes of dimension up to several tens
of bits with manageable decoding complexity. A few variants
of the OSD algorithms have been proposed during the past
two decades (see, e.g., [33], [34]), enabling further remarkable
performance savings at moderate blocklength with respect to the
original algorithm presented in [32]. In this paper, we stick to
the original algorithm due to the very short blocklengths under
consideration.

B. Contributions

We study the maximum coding rate achievable over a SISO
Rician memoryless block-fading channel under the assumption
of no a priori CSI. The purpose of this paper is to adapt tools
from finite-blocklength information theory to wireless channels
of practical interest in order to provide design guidelines for
low-complexity short-packet transmission.

Specifically, we present converse and achievability bounds
on the maximum coding rate that generalize and tighten the
bounds previously reported in [1], [4]. As in [1], [4], our converse
bound relies on the min-max converse. Our two achievability
bounds, which are built upon the RCUs bound, allow us to
compare noncoherent and PAT schemes in terms of performance.
Specifically, the first bound relies on the transmission of i.i.d.
shell codes per coherence block and does not require explicit
channel estimation at the receiver (while imposing no complexity
constraint on the receiver architecture). The second one, which
has a more practical flavor and has not been analyzed before
in the literature (including in our previous contribution [1]), as-
sumes PAT combined with shell codes for the transmission of the
data symbols; furthermore, the receiver is constrained to perform
ML channel estimation based on the pilot symbols followed by
SNN detection. From a technical perspective, two critical steps
allow us to obtain easy-to-evaluate expressions for our bounds.
i) We obtain a compact expression for E

[
PY |X(y|X)

s] where

PY |X denotes the Rician memoryless block-fading channel law,
s is a positive real number, and X is shell-distributed, i.e., it
is isotropically distributed and has constant modulus. ii) We
account for the availability of imperfect CSI by transforming
the Rician memoryless block-fading channel into an equivalent
Rician channel whose parameters depend on the channel estimate
and the estimation error.

Through a numerical investigation, we show that our converse
and achievability bounds delimit tightly the maximum coding
rate, for a large range of SNR and Rician κ-factor values, and
allow one to identify—for given coding rate and packet size—
the optimum number of coherence blocks to code over in order
to minimize the energy per bit required to attain a target packet
error probability.

Furthermore, our achievability bounds reveal that noncoherent
transmission is more energy efficient than PAT, even when the
number of pilot symbols and their power is optimized. For
example, for the case when a coded packet of 168 symbols
is transmitted using a channel code of rate 0.48 bits/channel
use over a Rayleigh block-fading channel with block size equal
to 8 symbols, the gap between the noncoherent and the PAT
bound is about 1.2 dB at a packet error probability of 10−3. This
gap increases by a further 0.5 dB if pilot and data symbols are
transmitted at the same power. When the power of the pilot
symbols is optimized, one pilot symbol per coherence block
turns out to suffice—a nonasymptotic counterpart of the result
obtained in [27].

We finally design an actual PAT scheme based on punctured
tail-biting QC codes and a decoder that, using OSD, performs
SNN detection based on ML channel estimates. The performance
of this coding scheme is remarkably close to what predicted by
our PAT–SNN achievability bound: 1 dB gap at 10−3 packet
error probability for a packet of 168 symbols, a code rate of
0.48 bit/channel use, and transmission over a Rayleigh-fading
channel with coherence block of 24 symbols. This shows that
our bound provides useful guidelines on the design of actual PAT
schemes. We also discuss how the performance of the decoder
can be further improved (without hampering its relatively low
computational complexity) by accounting for the inaccuracy of
the channel estimates.

Notation: Uppercase letters such as X and X are used
to denote scalar random variables and vectors, respectively;
their realizations are written in lowercase, e.g., x and x. The
identity matrix of size a × a is written as Ia. The distribution
of a circularly-symmetric complex Gaussian random variable
with variance σ2 is denoted by CN

(
0, σ2

)
. The superscript (·)T

and (·)H denote transposition and Hermitian transposition, re-
spectively, and � is the Schur product, which is defined, for
n-dimensional vectors a and b, as a � b = [a1b1, . . . , anbn].
Furthermore, 0n and 1n stand for the all-zero and all-one vectors
of size n, respectively. We write log(·) and log2(·) to denote the
natural logarithm and the logarithm to the base 2, respectively.
Finally, [a]

+ stands for max{0, a}, we use Γ(·) to denote the
Gamma function, Iν(z) the modified Bessel function of the first
kind, ‖·‖ the l2-norm, and E[·] the expectation operator.
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II. SYSTEM MODEL

We consider a SISO Rician memoryless block-fading channel.
Specifically, the random non-line-of-sight (NLOS) component is
assumed to stay constant for nc successive channel uses (which
form a coherence block) and to change independently across
coherence blocks. Coding is performed across ` such blocks; we
shall refer to ` as the number of available diversity branches. The
duration of each codeword (packet size) is, hence, n = nc`. This
setup may be used to model, e.g., frequency-hopping systems,
and is relevant for orthogonal frequency-division multiplexing
(OFDM)-based systems (such as LTE and 5G), where a packet
may consists of several resource blocks separated in frequency
by more than the coherence bandwidth of the channel (see [18]
for more details). The line-of-sight (LOS) component, i.e., the
mean of the Rician fading random variable, which is assumed to
be known at the receiver, stays constant over the duration of the
entire packet (codeword). No a priori knowledge of the NLOS
component is available at the receiver, in accordance to the no a
priori CSI assumption.

Mathematically, the channel input-output relation can be
expressed as

Yk = Hkxk + Wk, k = 1, . . . , `. (2)

Here, xk ∈ Cnc and Yk ∈ Cnc contain the transmitted and
received symbols within block k, respectively. The Rician fading
is modeled by Hk ∼ CN

(
µH, σ

2
H

)
where µH =

√
κ/(1 + κ)

and σ2
H = (1 + κ)−1 with κ being the Rician factor. Finally,

Wk ∼ CN (0, Inc
) is the AWGN noise. The random variables

{Hk} and {Wk}, which are mutually independent, are also
independent over k.

We next define a channel code.
Definition 1: An (`, nc,M, ε, ρ)-code for the channel (2)

consists of
• An encoder f : {1, . . . ,M} → Cnc` that maps the message
J , which is uniformly distributed on {1, . . . ,M} to a code-
word in the set {c1, . . . , cM}. Since each codeword cm,
m = 1 . . . ,M , spans ` blocks, it is convenient to express
it as a concatenation of ` subcodewords of dimension nc

cm = [cm,1, . . . , cm,`] . (3)

We require that each subcodeword satisfies the average-
power constraint 2

‖cm,k‖2 = ncρ, k = 1, . . . , `. (4)

Since the noise has unit variance, we can think of ρ as the
average SNR per symbol.

• A decoder g : Cnc` → {1, . . . ,M} satisfying an average
error probability constraint

1

M

M∑
j=1

Pr
{
g
(
Y `
)
6= J |J = j

}
≤ ε (5)

where Y ` = [Y1, . . . ,Y`] is the channel output induced by
the codeword x` = [x1, . . . ,x`] = f(j).

2The per-subcodeword power constraint (4) implies (i.e., is more stringent
than) the per-codeword power constraint ‖cm‖2 = `ncρ, which is more
commonly used in information-theoretic analyses. As we shall see, the per-
subcodeword power constraint facilitates the computation of the converse bound.

For given ` and nc, ε, and ρ, the maximum coding rate R∗,
measured in information bits per channel use, is defined as

R∗(`, nc, ε, ρ) = sup

{
log2M

`nc
: ∃(`, nc,M, ε, ρ)-code

}
. (6)

In words, for a fixed blocklength `nc and a fixed SNR ρ, we seek
the largest numberM∗ of codewords that can be transmitted with
average error probability not exceeding ε. The maximum coding
rate is then given by R∗ = (log2M

∗)/(`nc).
In practical applications, we are often interested in the problem

of minimizing the SNR ρ for a fixed packet error probability,
a fixed blocklength `nc, and a fixed number of information
bits log2M . This yields the following alternative optimization
problem:

ρ∗(`, nc,M, ε) = inf{ρ : ∃(`, nc,M, ε, ρ)-code} . (7)

Throughout, we will repeatedly use that upper and lower bounds
on R∗ can be translated into lower and upper bounds on ρ∗ and
vice versa. Also, we will often express our results in terms of
the minimum energy per bit E∗b/N0, which is related to ρ∗ as

E∗b
N0

(`, nc,M, ε) =
`nc

log2M
ρ∗(`, nc,M, ε). (8)

III. FINITE-BLOCKLENGTH BOUNDS ON R∗

We shall next present achievability and converse bounds on
R∗ obtained by using the nonasymptotic information-theoretic
tools developed in [6], [26]. In Section III-B, we provide an
achievability bound that is based on the RCUs [26, Thm. 1].
This bound does not require an explicit estimation of the fad-
ing channel at the receiver. Rather, it relies on a noncoherent
transmission technique in which the message is encoded onto
the one-dimensional subspace spanned by the input vector xk
in (2)—a quantity that is not affected by the fading process. This
is achieved by using i.i.d. shell codes per coherence block. As
we shall see, the optimum ML receiver computes the sum of
functions of the inner product between the subcodewords and
the corresponding received vectors; it then selects the codeword
resulting in the largest sum. Note that this decoder does not
require CSI.

In Section III-C, we provide a second achievability bound that
relies instead on PAT. We assume that the receiver uses pilot
symbols to obtain a ML estimate of the channel fading (we do not
assume the fading law to be known at the receiver), which is then
fed to a SNN decoder that treats it as perfect. This bound relies
once more on the RCUs; furthermore, i.i.d. shell codes across
the coherence blocks are used in the channel uses dedicated to
the data symbols.

Since both bounds cannot be expressed in closed form and
require Monte-Carlo simulation for their numerical evaluations
(which may be time consuming for low values of ε), we present
also easy-to-evaluate relaxations of these two bounds based on
the generalized RCEE.

In order to investigate the potential gains attainable by using
a PAT scheme in which the receiver is aware of the channel
distribution, and accounts for the imperfect nature of the CSI,
we develop in Section III-D a PAT-based achievability bound,
where knowledge of the joint distribution between the fading
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process and its (pilot-based) estimate allows the decoder to
operate according to the ML principle. This bound tightens the
one presented in [1].

Finally, in Section III-E, we present a converse bound on R∗

that relies on the min-max converse [6, Thm. 27], with auxiliary
distribution chosen as the distribution of {Yk} induced by the
transmission of independent shell codes over each coherence
block. This bound generalizes to Rician-fading channels the one
presented in [4] for the Rayleigh-fading case.

A. Achievability Bounds on R∗: Preliminaries

Throughout the paper, we shall assume that the decoder
produces an estimate m̂ of the transmitted message as follows:

m̂ = arg max
m

q`
(
cm,y

`
)
. (9)

Here, {cm}Mm=1 are the codewords and y` is the received signal.
Furthermore,

q`(x`,y`) =
∏̀
k=1

q(xk,yk) (10)

where q(xk,yk) is a bounded nonnegative function, which we
refer to as decoding metric. In the next sections we will introduce
the decoding metrics that are relevant for our achievability results.
Before doing so, we review the RCUs bound and its connections
to the generalized RCEE.

Theorem 1 (RCUs bound [26, Th. 1]): For every input distri-
bution PX` for which ‖xk‖2 = ncρ, k = 1, . . . , `, almost surely
and every decoding metric q(·, ·), there exists a (`, nc,M, ε, ρ)-
code with decoder operating according to (9) and with average
error probability upper-bounded as

ε ≤ RCUs(`, nc,M, ρ)

= inf
s≥0

E
[
e−[i`s(X

`,Y `)−log(M−1)]
+]

(11)

where

i`s
(
x`,y`

)
= log

q`
(
x`,y`

)s
E
[
q`(X`,y`)

s] (12)

is the generalized information density.
Assume now that the input distribution factorizes as

PX`(x`) =
∏̀
k=1

PX(xk) (13)

i.e., the vector X` = [X1, . . .X`] has i.i.d. nc-dimensional
components {Xk} all distributed according to PX . It follows
from (10) that the generalized information density in (12) can
be rewritten as

i`s
(
x`,y`

)
=
∑̀
k=1

log
q(xk,yk)

s

E[q(Xk,yk)
s
]

=
∑̀
k=1

is(xk,yk). (14)

Let now

E0(τ, s) = − log E
[
e−τ is(X,Y )

]
(15)

be the Gallager’s function for mismatch decoding [19]. Here,
(X,Y ) ∼ PXPY |X , where PY |X is the channel law (within a
coherence block) corresponding to the input-output relation (2).

Furthermore, fix a rate R > 0 (measured for convenience in nats
per channel use) and let

E(nc, R, ρ) = sup
s≥0,τ∈[0,1]

{E0(τ, s)− τncR} (16)

be the generalized RCEE. It follows from [26] that

E(nc, R, ρ) = sup
s≥0

lim inf
`→∞

−
log
(
RCUs

(
`, nc, 2

`ncR, ρ
))

`
. (17)

In words, for fixednc, R, ρ, the RCUs bound decays to zero expo-
nentially fast in `, with exponent given by the generalized RCEE.
An application of a Chernoff-type bound yields the following
classic achievability bound based on the generalized RCEE. This
bound is less tight than the RCUs bound in Theorem 1 but it is
often easier to evaluate numerically.

Corollary 1 (generalized RCEE bound): For every PX in (13)
for which ‖x‖2 = ncρ almost surely and every decoding
metric q(·, ·) there exists a (`, nc,M, ε, ρ)-code with decoder
operating according to (9) and with average error probability
upper-bounded as

ε ≤ e−`E(nc,R,ρ) (18)

where R = (logM)/(nc`).
Note that the absence of a prefactor in (18) (compared to e.g.,
[11, Eq. (7.3.21)]) is because PX satisfies ‖x‖2 = ncρ almost
surely.

B. Noncoherent Achievability Bound on R∗

To derive our noncoherent achievability bound, we set

q(xk,yk) = PY |X(yk|xk). (19)

Specifically, since Yk is conditionally Gaussian given Xk = xk,
the ML decoding rule obtained by substituting (19) in (10)
and then (10) in (9) can be rewritten, after some algebraic
manipulations, as

m̂ = arg max
m

∑̀
k=1

(
|yHk cm,k|2 + 2σ−2

H <
(
µHyHk cm,k

))
. (20)

Note that no CSI is required to compute (20). Next, we take PX

in (13) to be a shell distribution, i.e., the uniform distribution over
all vectors x ∈ Cnc satisfying the power constraint ‖x‖2 = ncρ
(cf. (4)). With these choices, the RCUs bound in Theorem 1,
applied to the channel (2), takes the following form.

Theorem 2 (RCUs noncoherent achievability bound): The
maximum coding rate R∗ in (6) achievable over the channel (2)
is lower-bounded as

R∗(`, nc, ε, ρ) ≥ max

{
log2(M)

nc`
: εub(`, nc,M, ρ) ≤ ε

}
(21)

where

εub(`, nc,M, ρ) = inf
s≥0

E
[
e−[

∑`
k=1 S

s
k−log(M−1)]

+]
(22)

and Ssk is given in (23). The {Wk} in (23) are defined as in (2)
and

W̃k =

[
µH
√
ncρ

0nc−1

]
+

[√
σ2

Hncρ+ 1
1nc−1

]
�Wk. (24)
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Ssk = (nc − 2) log(s)− log

(
1 + σ2

Hncρ

σ2
H

)
− log(Γ(nc))− s

(
‖Wk‖2 − ‖W̃k‖2

)
+
s|µH|2

σ2
H

− log

∫
R+

exp
(
−s
(
ρnc + σ−2

H

)
z
)(

‖W̃k‖
√
ρncz

)nc−1 Inc−1

(
2s‖W̃k‖

√
ρncz

)
I0

(
2sσ−2

H

√
z|µH|2

)
dz (23)

T sk = s
(
‖W k‖2 − ‖W̃k‖2

)
+ sφ2

d|Ĥk|2 + (nd − 1) log
(
s|Ĥk|‖W k‖φd

)
− log

(
Γ(nd) Ind−1

(
2s|Ĥk|‖W k‖φd

))
(35)

Proof: See Appendix B.
The random variables {Ssk} have the same distribution as

the generalized information density is(Xk,Yk) in (14) with
q(xk,yk) chosen as in (19). By setting µH = 0, σ2

H = 1, and
s = 1 in (23) and (24), one recovers a SISO version of the
achievability bound reported in [4, Th. 1] for the Rayleigh-fading
case. The bound in [4, Th. 1] does not involve an optimization
over the parameter s because it is based on the DT bound, which
is less tight than the RCUs bound and coincides with it when
s = 1.

Note that the expectation in (22) is not known in closed form,
which makes the numerical evaluation of the bound demanding,
especially for low values of ε. We next present an alternative
noncoherent lower bound on R∗ obtained by relaxing the RCUs
to the RCEE in Corollary 1. Although less tight than the bound in
Theorem 2, the resulting bound is easier to evaluate numerically.

Corollary 2 (RCEE noncoherent achievability bound): The
maximum coding rate R∗ in (6) achievable over the channel (2)
is lower-bounded as

R∗(`, nc, ε, ρ) ≥ max

{
log2(M)

nc`
: εub(`, nc,M, ρ) ≤ ε

}
(25)

where
εub(`, nc,M, ρ) = e−`E(nc,R,ρ) (26)

with R = (logM)/(nc`) and

E(nc, R, ρ) = max
0≤τ≤1

{E0(τ)− τncR} . (27)

Here,

E0(τ) = − log

(
c(τ)

∫ ∞
0

rnc−1e−rJ(r, τ)1+τdr

)
(28)

where

c(τ) =

((
1 + σ2

Hρnc

)
Γ(nc)

−1

)τ
e−|µH |

2/σ2
H

[
(1 + τ)

nc−2

σ2
H

]1+τ

(29)

and

J(r, τ) =

∫ ∞
0

e−
1

1+τ (σ−2
H +ρnc)z(√

rρncz
)nc−1

×Inc−1

(
2
√
rρncz

1 + τ

)
I0

(
2|µH |

√
z

σ2
H(1 + τ)

)
dz. (30)

Proof: See Appendix C.
By setting µH = 0 and σ2

H = 1 in (29) and (30), one recovers
a SISO version of the RCEE bound reported in [18, Th. 3] for
the Rayleigh-fading case.

C. Pilot-Assisted Nearest-Neighbor Achievability Bound on R∗

We assume that, within each coherence block, np out of the
available nc channel uses are reserved for pilot symbols. The
remaining nd = nc − np channel uses convey the data symbols.
We further assume that all pilot symbols are transmitted at power
ρp, and that the data symbol vectors x

(d)
k ∈ Cnd satisfy the

power constraint ‖x(d)
k ‖2 = ndρd, k = 1, . . . , `. We require that

npρp + ndρd = ncρ so as to fulfill (4).
The receiver uses the np pilot symbols available in each co-

herence block to perform a ML estimation of the corresponding
fading coefficient. Specifically, for a given pilot vector x

(p)
k and a

corresponding received-signal vector y
(p)
k , the receiver computes

the estimate
ĥk =

(
x

(p)
k

)H
y

(p)
k /‖x(p)

k ‖
2
. (31)

It follows from (31) that, given Hk = hk, we have Ĥk ∼
CN (hk, 1/(npρp)).

We further assume that the fading estimate ĥk is fed to a SNN
detector that treats it as perfect. Specifically, we consider the
decoding metric

q(xk,yk) = e−‖y
(d)
k −ĥkx

(d)
k ‖

2

(32)

where ĥk is computed as in (31). Finally, we take as input dis-
tribution PXd the uniform distribution over all vectors x ∈ Cnd

satisfying ‖x‖2 = ndρd. For convenience, we let φd =
√
ndρd.

Under these assumptions, the RCUs bound in Theorem 1 takes
the following form.

Theorem 3 (RCUs–PAT–SNN achievability bound): Fix two
nonnegative integers np (np < nc) and nd = nc − np, and two
nonnegative real-valued parameters ρp and ρd satisfying npρp +
ndρd = ncρ. The maximum coding rate R∗ in (6) achievable
over the channel (2) is lower-bounded as

R∗(`, nc, ε, ρ) ≥ max

{
log2(M)

nc`
: εub(`, nc,M, ρ) ≤ ε

}
(33)

where

εub(`, nc,M, ρ) = min
s≥0

E
[
e−[

∑`
k=1 T

s
k−log(M−1)]

+]
(34)

where T sk is given in (35), where

W k =

[
Hkφd

0nd−1

]
+ Wk and

W̃k =

[√
φ2

d/(npρp) + 1
1nd−1

]
�Wk (36)

with Wk ∼ CN (0nd
, Ind

). The expectation in (34) is
with respect to the joint distribution

∏`
k=1 PHk,Ĥk,Wk

where
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J
(
r, τ, s, ĥ

)
=
Ind−1(2s|ĥ|φd

√
r)τe

|a(ĥ)|2
(

φ2d
1+σ2pφ

2
d

− 1
σ2p

)

Γ(nd)
−τ

(s|ĥ|
√
rφd)τ(nd−1)

∫ ∞
0

e−(σ−2
p +φ2

d)z

(
√
rzφd)

nd−1 Ind−1

(
2
√
rzφd

)
I0(2|a(ĥ)|σ−2

p

√
z)dz (42)

PHk,Ĥk,Wk
= PHkPĤk|HkPWk

with PHk = CN (µH, σ
2
H) and

PĤk|Hk=h = CN (h, 1/(npρp)).
Proof: See Appendix D.

The random variables {T sk} have the same distribution as
the generalized information density is(Xk,Yk) in (14) with
q(xk,yk) chosen as in (32). As in Section III-B, we present
an alternative, easier-to-compute achievability bound, which
is obtained by relaxing the RCUs used in Theorem 3 to the
generalized RCEE in Corollary 1.

Corollary 3 (RCEE–PAT–SNN achievability bound): Fix two
nonnegative integers np (np < nc) and nd = nc − np, and two
nonnegative real-valued parameters ρp and ρd satisfying npρp +
ndρd = ncρ. The maximum coding rate R∗ in (6) achievable
over the channel (2) is lower-bounded as

R∗(`, nc, ε, ρ) ≥ max

{
log2(M)

nc`
: εub(`, nc,M, ρ) ≤ ε

}
(37)

where
εub(`, nc,M, ρ) = E

[
e−`E(nc,R,ρ,Ĥ)

]
(38)

with R = (logM)/(nc`) and where the expectation is with
respect to PĤ = CN

(
µH, σ

2
H + 1/(npρp)

)
. The error exponent

E(nc, R, ρ, ĥ) is

E(nc, R, ρ, ĥ) = max
0≤τ≤1

max
s>0

{
E0(τ, s, ĥ)− τncR

}
(39)

and the Gallager’s function for mismatch decoding E0(τ, s, ĥ)
is

E0(τ, s, ĥ) = − log c(ĥ)

∫ ∞
0

rnd−1e−rJ(r, τ, s, ĥ)dr (40)

where c(ĥ) = σ−2
p exp

(
− |µp(ĥ)|2φ2

d

1+σ2
pφ

2
d

)
with

µp(ĥ) =
σ2

Hĥ+ (npρp)−1µH

σ2
H + (npρp)−1

, σ2
p =

σ2
H(npρp)−1

σ2
H + (npρp)−1

. (41)

Furthermore, J
(
r, τ, s, ĥ

)
is given in (42) with a(ĥ) = µp(ĥ)−

ĥsτ
(
1 + σ2

pφ
2
d

)
.

Proof: See Appendix E.

D. Pilot-Assisted Maximum Likelihood Achievability Bound on
R∗

To assess the performance loss due to the mismatched SNN
decoding metric (32), we present next a PAT-based achievability
bound in which this metric is replaced by the ML metric

q(xk,yk) = PY (d)|X(d),Ĥ(y(d)
k |x

(d)
k , ĥk) (43)

where ĥk is the ML channel estimate (31). As argued in the proof
of Corollary 3,

PY (d)|X(d),Ĥ(y(d)
k |x

(d)
k , ĥk) = CN

(
µp(ĥk)x(d)

k ,Σk

)
(44)

where Σk = σ2
px(d)

k (x(d)
k )H+Ind

, and µp(ĥk) and σ2
p are defined

in (41). This implies that, given the channel estimate ĥk and the
input vector x(d)

k , the conditional probability density function
(pdf) of Y (d)

k coincides with the law of the following channel

Y
(d)
k = Zkx

(d)
k + Wk, k = 1, . . . , `. (45)

Here, Zk ∼ CN
(
µp(ĥk), σ2

p

)
and Wk ∼ CN (0nd

, Ind
).

We see from (45) that we can account for the availability of
the noisy CSI {Ĥk = ĥk} simply by transforming the Rician
fading channel (2) into the equivalent Rician fading channel (45),
whose LOS component is a random variable that depends on the
channel estimates {Ĥk}. A lower bound onR∗ for this setup can
be readily obtained by assuming that each nd-dimensional data
vector is generated independently from a shell code, by applying
Theorem 2 to each realization of {Ĥk}, and then by averaging
over {Ĥk}.

Theorem 4 (RCUs–PAT–ML achievability bound): Fix two
nonnegative integers np (np < nc) and nd = nc − np, and two
nonnegative real-valued parameters ρp and ρd satisfying npρp +
ndρd = ncρ. The maximum coding rate R∗ in (6) achievable
over the channel (2) is lower-bounded as

R∗(`, nc, ε, ρ) ≥ max

{
log2(M)

nc`
: εub(`, nc,M, ρ) ≤ ε

}
(46)

where

εub(`, nc,M, ρ) = min
s≥0

E
[
e−[

∑`
k=1 S̄

s
k(Ĥk)−log(M−1)]

+]
. (47)

The expectation in (47) is with respect to
∏`
k=1 PĤkPWk

where
PĤk = CN

(
µH, σ

2
H + (npρp)−1

)
and PWk

∼ CN (0nd
, Ind

).
The random variables {S̄sk(ĤK)} are defined similarly as in (23)
with the difference that nc, ρ, µH and σ2

H in (23) are replaced
by nd, ρd, µp(Ĥk) and σ2

p, respectively.

Given Ĥk = ĥk, the random variables {S̄sk(ĥk)} have
the same conditional distribution as the information density
is(Xk,Yk) in (14) with q(xk,yk) chosen as in (43). For the
case np = 0, the pilot-based achievability bound in Theorem 4
coincides with the noncoherent bound given in Theorem 2.
Furthermore, by setting ρd = ρp and s = 1, we recover [1,
Th. 3].3 The bound in Theorem 4 can be relaxed to a generalized-
RCEE-type bound by proceeding as in the proof of Corollary 2.

E. A Converse Bound on R∗

We next state our converse bound.4

3With (M − 1)/2 replaced by M − 1.
4This bound was first presented in the conference version of this paper [1,

Th. 2].
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Theorem 5 (Min-max converse bound): The maximum coding
rate R∗ in (6) achievable over the channel (2) is upper-bounded
as

R∗(`, nc, ε, ρ) ≤

inf
λ≥0

1

`nc

λ− log

[
Pr

{∑̀
k=1

S1
k ≤ λ

}
− ε

]+
 (48)

where the random variables
{
S1
k

}`
k=1

are obtained by setting
s = 1 in (23).

Proof: See Appendix F.
By setting µH = 0 and σ2

H = 1, one recovers a SISO version
of the min-max converse bound obtained in [4] for the Rayleigh-
fading case.

As pointed out in Appendix F, imposing the per-subcodeword
power constraint (4) is instrumental to obtain the converse
bound (48). If we replace (4) with a less stringent per-codeword
power constraint, we can obtain, for the choice of auxiliary
output distribution discussed in Appendix F, a numerically
computable converse bound only if we replace the average error
probability constraint in (5) with the more stringent maximum
error probability constraint

max
j

Pr
{
g
(
Y `
)
6= J |J = j

}
≤ ε. (49)

The resulting bound differs from (48) in that the random variable
S1
k depends on the power allocated over the kth subcodeword,
k = 1, . . . , `, and one has to maximize over all possible
power allocations across subcodewords that satisfy the overall
per-codeword power constraint. Unfortunately, no closed-form
expression is available for the solution of this `−1 nonconvex op-
timization problem, which makes the numerical computation of
the resulting bound difficult. Numerical experiments conducted
for small values of ` and for the SNR and ε values detailed
in Section IV resulted in an optimal power allocation that is
uniform across subcodewords. Note that whenever the optimal
power allocation is uniform, this new bound coincides with the
one given in (48) under the more restrictive per-subcodeword
power constraint. This suggests that the simplifying assumption
of a per-subcodeword power constraint used in this paper has a
negligible impact.

IV. NUMERICAL RESULTS

A. Dependency of R∗ and E∗b/N0 on the Rician Factor κ

In Fig. 1, we plot the RCUs noncoherent achievability bound
(Theorem 2), its RCEE relaxation (Corollary 2), and the min-
max converse bound (Theorem 5). We assume a blocklength of
n = 168 channel uses and a packet error probability of ε = 10−3.
In Fig. 1a, we set ρ = 6 dB and investigate the dependency of
R∗ on the number of diversity branches ` or, equivalently, on
the size of each coherence block nc. In Fig. 1b, we investigate
instead, for a fixed rate R = 0.48 bit/channel use (and, hence, a
fixed number of information bits, since n = 168), the minimum
energy per bit E∗b/N0 in (8) needed to achieve ε = 10−3.

We see from Fig. 1 that the bounds are tight and allow one to
identify the optimal number of diversity branches that maximizes
R∗ or, equivalently, minimizes E∗b/N0. For κ = 0 (Rayleigh-
fading) this number is `∗ ≈ 21. When ` < `∗, the performance

bottleneck is the limited diversity available. When ` > `∗,
the limiting factor is instead the fast channel variations (which
manifest themselves in a small coherence blocknc). We note also
that, as κ increases, both R∗ and E∗b/N0 become less sensitive
to `. This is expected since, when κ→∞, the Rician channel
converges to a nonfading AWGN channel. Indeed, we see that the
bounds obtained for the case κ = 103 are in good agreement with
the normal approximation (1). Note also that the agreement with
the normal approximation is better for smaller values of `. This
is because, in the AWGN case, the optimum input distribution
involves shell codes over Cn, whereas our bounds rely on shell
codes over Cnc .

As expected, the RCUs bound is tighter than the RCEE bound,
which is however easier to evaluate numerically.

B. PAT or Noncoherent?

In Fig. 2, we compare the RCUs noncoherent achievability
bound (Theorem 2) with the RCUs–PAT–SNN achievability
bound (Theorem 3). This last bound is computed for different
numbers of pilot symbols np. We consider both the case in
which pilot and data symbols are transmitted at the same power
(ρp = ρd) and the case in which the power allocation is
optimized. The min-max converse (Theorem 5) is also depicted
for reference. The parameters are n = 168, ε = 10−3,R = 0.48
bit/channel use, and κ ∈ {0, 10}. For the case ρp = ρd, we
see that the optimum number of pilot symbols decreases as the
size nc of the coherence block decreases, as expected. Indeed,
when the coherence block is small, the rate penalty resulting for
increasing the number of pilot symbols overcomes the rate gain
resulting from the more accurate channel estimation. When one
performs an optimization over the power allocation, however,
one pilot symbol per coherence block suffices (the curve for
np = 1 overlaps with the corresponding envelope in both Fig.
2a and Fig. 2b). This is in agreement with what was proven in [27,
Th. 3] using mutual information as asymptotic performance
metric. Furthermore, the optimum power allocation turns out to
follow closely the asymptotic rule provided in [27, Th. 3].

We see from both Fig. 2a and Fig. 2b that the noncoherent
achievability bound outperforms the RCUs–PAT–SNN achiev-
ability bounds. For example, when κ = 0 and ` = 28, the
gap between the RCUs noncoherent achievability bound and
the RCUs–PAT–SNN achievability bound with optimum power
allocation is about 1.2 dB. This gap increases further by 0.6 dB
if the additional constraint ρp = ρd is imposed. For the same `,
when κ = 10, the gap between the RCUs noncoherent achiev-
ability bound and the RCUs–PAT–SNN achievability bound with
optimum power allocation is about 3.6 dB, with an additional
0.4 dB if the constraint ρp = ρd is imposed. Note also that when
κ = 10 and nc = 2, transmitting even just a single pilot symbol
yields a significant performance reduction, because of the loss
in spectral efficiency.

In Fig. 3, we compare the PAT–RCUs–SNN achievability
bound (Theorem 3) with its RCEE relaxation (Corollary 3) for
the case ρd = ρp. We see that for ` = 28, the gap between the
bounds is about 0.5 dB.
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Fig. 1. RCUs noncoherent achievability bound (Theorem 2), its RCEE relaxation (Corollary 2), and min-max converse (Theorem 5); κ ∈ {0, 10, 1000}, ε = 10−3

and n = 168.
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Fig. 2. E∗

b/N0 for n = 168, ε = 10−3 and R = 0.48 bit/channel use; min-max converse (Theorem 5), RCUs noncoherent achievability bound (Theorem 2), and
RCUs–PAT–SNN achievability bound (Theorem 3). The dashed lines are obtained by assuming ρd = ρp; the solid lines are obtained by optimizing over the power
allocation.

C. Practical PAT Coding Schemes

We discuss next the design of actual PAT-based coding
schemes with moderate decoding complexity. We shall focus
for simplicity on the case ` = 7 and nc = 24. Furthermore,
we assume that 81 information bits need to be transmitted in
each codeword, which yields R ≈ 0.48 bit/channel use. We
allocate np channel uses per coherence block to pilot sym-
bols, and use the remaining (24− np) channel uses to carry
coded symbols, which belong to a quaternary phase shift keying
(QPSK) constellation. Similar to [18], we select a (324, 81)
binary QC code and puncture a suitable number of codeword
bits to accommodate the pilot symbols within the prescribed 168

channel uses. The code is obtained by tail-biting termination of a
rate−1/4 nonsystematic convolutional code with memory 14 and
generators [47633 57505 66535 71145] in octal notation [35,
Table 10.14]. After encoding, a pseudo-random interleaving is
applied to the codeword bits, followed by puncturing. For the cho-
sen parameters, the number of punctured bits is 14np−12 and the
blocklength after puncturing (expressed this time in real rather
than complex channel uses) is 336 − 14np. For the (322, 81)
punctured code, we evaluated the weight enumerator function
(WEF) using the method described in [36]. The lower part of the
WEF isA(X) = 1+60X36+275X37+421X38+586X39+. . . .
Hence, the (322, 81) code has minimum distance 36 with a
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Fig. 3. Comparison between RCUs–PAT–SNN (Theorem 3) and RCEE–PAT–SNN (Corollary 3) for κ = 0, n = 168, and ε = 10−3 with ρd = ρp. The min-max
converse (Theorem 5) and the RCUs noncoherent bound (Theorem 2) are included for reference.

multiplicity of minimum weight codewords equal to 60. At the
receiver side, the pilot symbols are used to perform ML channel
estimation according to (31). The bit-wise log-likelihood ratio
(LLR) are computed by assuming the estimates ĥk, k = 1, . . . , 7
to be perfect. Decoding is then performed via OSD [32]. The
order of OSD is set to t = 3, which provides a reasonable trade-
off between performance and decoding complexity. The OSD
builds a list L of 1 +

∑t
i=1

(
81
i

)
= 88642 channel input vectors

corresponding to candidate codewords, out of which the decision
is obtained as

x̂ = arg max
x∈L

∏̀
k=1

exp
(
−‖y(d)

k − ĥkxk‖
2
)

(50)

where xk denotes the vector of coded QPSK symbols transmitted
over the kth coherence interval. We shall refer to the decoder
operating according to this rule as OSD–SNN. When the list L
includes all input vectors corresponding to valid codewords, the
decoding rule (50) is equivalent to SNN in (32). We also analyze
a second scheme, in which a re-estimation of the fading channel
is performed by using the initial OSD decision x̂. Specifically,
x̂ is used to update the ML channel estimates, yielding new
bit-wise LLR. A second OSD attempt is then performed with
the updated input. We refer to this second scheme as OSD with
re-estimation (OSD–REE).

In Fig. 4, we compare the performance of the OSD–SNN
coding scheme to what is predicted by the PAT–RCUs–SNN
achievability bound (Theorem 3) for different values of np, for
the case ρp = ρd. We see that the gap is within 1 dB for all
values of np considered here. This shows that the performance
reference provided by the PAT–RCUs–SNN achievability bound
is accurate. For the parameters considered in Fig. 4, setting np =
4 yields the best performance, as predicted by the PAT–RCUs–
SNN bound.

In Fig. 5, we compare the performance of the OSD–REE
coding scheme with what is predicted by the RCUs–PAT–ML
achievability bound in Theorem 4. This bound is relevant since
the OSD–REE coding scheme improves on the SNN decoding
rule by allowing decision-driven channel re-estimation. The gap
between the bound and the code performance is now larger: about
1.3 dB for ε = 10−3 and np = 4. This is due to the fact that
the RCUs–PAT–ML achievability bound assumes ML decoding,
which yield too optimistic performance estimates. Comparing
Figs. 4 and 5, we see that the performance gains of the OSD–REE
coding scheme over the OSD–SNN one are limited to fractions
of dBs, e.g., for np = 4 and ε = 10−3, the gain is about 0.5 dB.

V. CONCLUSION

We presented bounds on the maximum coding rate achievable
over a SISO Rician memoryless block-fading channel under
the assumption of no a priori CSI. Specifically, we presented
converse and achievability bounds on the maximum coding rate
that generalize and tighten the bounds previously reported in [1],
[4]. Our two achievability bounds, built upon the RCUs bound,
allow one to compare the performance of noncoherent and PAT
schemes. As in [1], [4] our converse bound relies on the min-max
converse.

Through a numerical investigation, we showed that our con-
verse and achievability bounds delimit tightly the maximum
coding rate, for a large range of SNR and Rician κ-factor values,
and allow one to identify—for given coding rate and packet
size—the optimum number of coherence blocks to code over in
order to minimize the energy per bit required to attain a target
packet error probability.

Furthermore, our achievability bounds reveal that noncoherent
transmission is more energy efficient than PAT even when the
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Fig. 4. Performance of the OSD–SNN coding scheme for np = {1, 2, 4, 8}; the RCUs–PAT–SNN (Theorem 3), the min-max converse (Theorem 5), and the
RCUs noncoherent bound (Theorem 2) are also plotted for reference; nc = 24, ` = 7, R = 0.48 bit/channel use, and κ = 0.
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Fig. 5. Performance of the OSD–REE coding scheme for np = {1, 2, 4, 8}; the RCUs–PAT–ML bound (Theorem 4), the min-max converse (Theorem 5), and the
RCUs noncoherent bound (Theorem 2) are plotted for reference; nc = 24, ` = 7, and R = 0.48 bit per channel use, and κ = 0.

number of pilot symbols and their power is optimized.5 When the
power of the pilot symbols is optimized, one pilot symbol per co-
herence block turns out to suffice—a nonasymptotic counterpart
of the result obtained in [27].

We finally designed an actual PAT scheme based on punctured
tail-biting QC codes and a decoder that, using OSD, performs
SNN detection based on ML channel estimates. A comparison
between the PAT scheme and our bounds reveals that the bounds
provide accurate guidelines on the design of actual PAT schemes.
We also discussed how the performance of the decoder can be
further improved (without hampering its relatively low compu-

5We limit our comparison to the two achievability bounds because no tight
converse bound for the PAT case is available, even asymptotically.

tational complexity) by accounting for the inaccuracy of the
channel estimates via joint processing of pilot and data symbols.
Developing nonasymptotic information theoretic bounds for this
setting is an open problem.

An important final remark is that our comparison between
noncoherent and PAT schemes is somewhat biased towards the
noncoherent case. Indeed, our RCUs noncoherent bound relies
on ML decoding (which implies also knowledge of the fading
law and requires solving (20), which is unfeasible when the
number of information bits is larger than a few tens because of
complexity), whereas the performance predicted by the RCUs–
PAT–SNN bound can be approached using a low-complexity
SNN decoder, which does not require knowledge of the fading



12

law. Designing low-complexity noncoherent coding schemes
able to approach our RCUs noncoherent bound is an important
open issue.

APPENDIX

A. Auxiliary Lemmas

We state next two lemmas that will be useful for proving our
achievability and converse bounds on R∗.

Lemma 1: Let X be an isotropically distributed vector in
Cnc with norm equal to

√
ρnc, let H ∼ CN

(
µH, σ

2
H

)
, and let

W ∼ CN
(
0, σ2

wInc

)
Furthermore, let Y = HX + W . The

conditional pdf of Y given H = h is

PY |H(y|h) =
Γ(nc) exp

(
−‖y‖

2+|h|2ρnc

σ2
w

)
πncσ2

w

(
‖y‖|h|√ρnc

)nc−1

×Inc−1

(
2‖y‖|h|√ρnc

σ2
w

)
. (51)

Proof: Under the assumptions of Lemma 1, the random
variable (σ2

w/2)‖y‖2 follows (given h) a noncentral χ-squared
distribution with 2nc degrees of freedom and noncentrality
parameter 2|h|2ncρ/σ

2
w. Furthermore, the output vector y is

isotropically distributed. We then obtain (51) by recalling that
the surface area of an nc-dimensional complex sphere of radius√
ncρ is

2πnc(
√
ncρ)2nc−1

Γ(nc)
. (52)

Lemma 2: Under the assumptions of Lemma 1, the pdf of Y
is

PY (y) =
Γ(nc) e

− ‖y‖
2

σ2w
− |µH|

2

σ2
H

πncσ2
wσ

2
H

∫ ∞
0

e
−z
(
ρnc
σ2w

+ 1

σ2
H

)
(
‖y‖√ρncz

)nc−1

×Inc−1

(
2‖y‖√ρncz

σ2
w

)
I0

(
2|µH|

√
z

σ2
H

)
dz. (53)

Proof: We obtain (53) by averaging (51) over |H|2, which
has pdf

P|H|2(z) =
exp
(
− 1
σ2
H

(
z + |µH|2

))
σ2

H

I0

(
2|µH|

√
z

σ2
H

)
. (54)

B. Proof of Theorem 2

We let Xk =
√
ncρUk where {Uk}`k=1 are independent and

isotropically distributed unitary vectors in Cnc . For the chosen
decoding metric (19), the generalized information density in (12)
can be decomposed as

i`s
(
u`,y`

)
=
∑̀
k=1

is(uk,yk) =
∑̀
k=1

log
PY |U (yk|uk)

s

E
[
PY |U (yk|Uk)

s] (55)

where

PY |U=uk = CN (µH
√
ncρuk,Σk) (56)

with Σk = Inc
+ σ2

Hncρuku
H
k . To evaluate the expected value

in (55), it is convenient to express PY |U (yk|uk)
s as a scalar

times a Gaussian pdf as follows:

PY |U (yk|uk)
s

= (πnc det(Σk))
1−s

s−ncPỸ |U (yk|uk) (57)

=
(
πnc
(
1 + ρncσ

2
H

))1−s
s−ncPỸ |U (yk|uk) (58)

where PỸ |U=uk
= CN

(
µH
√
ncρuk, s

−1Σk

)
. Note now that

the conditional pdf PỸ |U describes a channel with input-output

relation Ỹ =
√
ncρH̃U + W̃ , where U is an nc-dimensional

isotropically distributed unitary vector, H̃ ∼ CN
(
µH, s

−1σ2
H

)
,

and W̃ ∼ CN
(
0, s−1Inc

)
. Applying Lemma 2 in Appendix A

to this channel (which entails replacing σ2
H in (53) by s−1σ2

H

and σ2
w by s−1) we obtain (59), and (60) then follows from (58).

Finally, to evaluate the expectation in the RCUs bound (11),
we observe that (56) and (60) imply that for every nc×nc unitary
matrix V,

is
(
VHuk,yk

)
= is(uk,Vyk) . (61)

This in turn implies that when Yk ∼ PY |U=uk the probability
distribution of is(uk,Yk) does not depend on uk. Hence, we
can set without loss of generality uk = [1, 0, . . . , 0]

T , k =
1, . . . , `. For this choice of {uk}, it follows from (56) and (60)
that is(uk,Yk) has the same distribution as the random variable
Ssk defined in (23).

C. Proof of Corollary 2

We evaluate Corollary 1 for X =
√
ncρU where U is unitary

and isotropically distributed. Furthermore, we choose the ML
decoding metric (19). For this choice, the maximum over s in the
Gallager’s function for mismatch decoding (16) is achieved by
s = 1/(1 + τ) [11, p. 137]. Let now F0(τ) = e−E0(τ,(1+τ)−1),
where E0

(
τ, (1 + τ)−1

)
is defined in (15). Standard manipula-

tions of the generalized information density reveal that

F0(τ) =

∫
Cnc

E
[
PY |U (y|U)

1
1+τ

]1+τ

dy. (62)

Note now that the expectation inside the integral in (62) can
be computed as in Appendix B; specifically, its value coincides
with the right-hand side of (60) provided that one replaces s
in (60) with (1 + τ)−1. Substituting this expression in (62) and
computing the integral in spherical coordinates, we obtain (28).

D. Proof of Theorem 3

We use the PAT scheme described in Section III-C. We let
X

(d)
k =

√
ρdndU

(d)
k where

{
U

(d)
k

}`
k=1

are nd-dimensional
independent and isotropically distributed unitary vectors. The
pilot symbols and the corresponding np-dimensional received
vectors are used to obtain a ML estimate of the fading according
to (31). We assume that the receiver uses the decoding SNN
decoding metric (32). A decoder that operates according to (32)
treats the channel estimates ĥk as perfect, which is equivalent
to assuming that

Y
(d)
k ∼ P

Ỹ (d)|Ĥ=ĥk,U(d)=u
(d)
k

= CN
(
ĥk
√
ρdndu

(d)
k , Ind

)
. (63)
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E
[
PỸ |U (yk|Uk)

]
=
s2Γ(nc) e

−s‖yk‖2−s
|µH|2
σ2
H

πncσ2
H

∫ ∞
0

e
−s
(
ρnc+ 1

σ2
H

)
z(

‖yk‖
√
ρncz

)nc−1 Inc−1(2s‖yk‖
√
ρncz) I0

(
2s|µH|

√
z

σ2
H

)
dz (59)

E
[
PY |U (yk|Uk)

s]
=
s2−ncΓ(nc) e

−s‖yk‖2−s
|µH|2
σ2
H

πsnc(1 + ρncσ2
H)
s−1

σ2
H

∫ ∞
0

e
−s
(
ρnc+ 1

σ2
H

)
z(

‖yk‖
√
ρncz

)nc−1 Inc−1(2s‖yk‖
√
ρncz) I0

(
2s|µH|

√
z

σ2
H

)
dz (60)

This allows us to rewrite the generalized information density
in (14) as

i`s
(
x`,y`

)
=
∑̀
k=1

is

(
u

(d)
k ,y

(d)
k , ĥk

)

=
∑̀
k=1

log
PỸ (d)|Ĥ,U(d)

(
y

(d)
k |ĥk,u

(d)
k

)s
E
[
PỸ (d)|Ĥ,U(d)

(
y

(d)
k |ĥk,U

(d)
k

)s] . (64)

To evaluate the expected value in (64), we proceed similarly as
in Appendix B and obtain

E
[
PỸ (d)|Ĥ,U(d)

(
y

(d)
k |ĥk,U

(d)
k

)s]
=

e−s(‖yk‖
2+ρdnd|ĥk|2)

Γ(nd) Ind−1

(
2s‖yk‖|ĥk|

√
ρdnd

)
πsnd

(
s‖yk‖|ĥk|

√
ρdnd

)nd−1 . (65)

Finally, to evaluate the expectation in the RCUs bound (11),
we observe that (63) and (65) imply that for every nc×nc unitary
matrix V,

is

(
VHu

(d)
k ,y

(d)
k , Ĥk

)
= is

(
u

(d)
k ,Vy

(d)
k , Ĥk

)
. (66)

This in turn implies that when Y (d) ∼ P
Y (d)|H=hk,U(d)=u

(d)
k

(the
actual conditional pdf of the output vector), the probability dis-
tribution of is(u

(d)
k ,Y

(d)
k , Ĥk) does not depend on u

(d)
k . Hence,

we can set, without loss of generality, u
(d)
k = [1, 0, . . . , 0]

T ,
k = 1, . . . , `. One can finally show that under this choice of
input vector, is(u

(d)
k ,Y

(d)
k , Ĥk) has the same distribution as the

random variable T sk in (35).

E. Proof of Corollary 3

We use the PAT scheme introduced in Section III-C and
evaluate Corollary 1 for X(d) =

√
ncρU

(d) where U (d) is an nd-
dimensional unitary and isotropically distributed random vector.6

Furthermore, we choose the SNN decoding metric (32). Assume
that ML channel estimation yields the channel estimate Ĥ = ĥ.
Let F0

(
τ, s, ĥ

)
= exp(−E0(τ, s, ĥ)), where E0(τ, s, ĥ) is

defined as in (15) (we indicate explicitly its dependency from
the channel estimate ĥ). Furthermore, let

PỸ |U=u,Ĥ=ĥ = CN
(
ĥ
√
ρdndu, Ind

)
. (67)

6To keep the notation compact, we shall denote U (d) and the corresponding
output vector Y (d) simply as U and Y .

Our assumptions imply that

F0

(
τ, s, ĥ

)
= E

EU ′

[
PỸ |U ,Ĥ(Y |U ′, ĥ)s

PỸ |U ,Ĥ(Y |U , ĥ)s

∣∣∣∣∣U ,Y
]τ (68)

where PY ,U ,U ′(y,u,u
′) = PU (u′)PU (u′)PY |U ,Ĥ(y|u, ĥ).

Here, PY |U ,Ĥ is the conditional output distribution of the
channel, given the input u and the channel estimate ĥ. Since
PH|Ĥ=ĥ = CN

(
µp(ĥ), σ2

p

)
where µp(ĥ) and σ2

p are defined
in (41), we conclude that

PY |U ,Ĥ=ĥ = CN
(√

ρdndµp(ĥ)u, ρdndσ
2
puuH + Ind

)
. (69)

We next evaluate the two expectations in (68). Using (67)
and (65), we can write the inner expectation as in (70). Sub-
stituting (70) into (68) and using (69), we obtain (71) where
a(ĥ) = µp(ĥ) − ĥsτu, u = 1 + σ2

pρdnd, and Σ =(
ρdndσ

2
pUUH + Ind

)−1
. Note that the term inside the expec-

tation is proportional to the law of a channel with input-output
relation Ỹ =

√
ρdndH̃U+W , where H̃ ∼ CN

(
a(ĥ), σ2

p

)
and

W ∼ CN (0, Ind
). Using Lemma 2 in Appendix A to evaluate

this expectation, and computing the outer integral in spherical
coordinates, we obtain (72). Finally, we obtain (38) by using (72)
in (16) and by taking an expectation over Ĥ .

F. Proof of Theorem 5

We use as auxiliary channel in the min-max converse [6,
Thm. 27], the one for which y` has pdf

QY `

(
y`
)

=
∏̀
k=1

PY (yk) (73)

where PY is given in (53). Note now that for every nc ×
nc unitary matrix V, we have PY (Vyk) = PY (yk) and
PY |X

(
yk|VHxk

)
= PY |X(Vyk|xk). Along with (23), and

because of the per-codeword power constraint (4), this imply
that the Neyman-Pearson function β

(
x`, QY `

)
defined in [6, Eq.

(105)] is independent of x`. Hence, we can use [6, Thm. 28] to
conclude that R∗ is upper-bounded as

R∗(`, nc, ε, ρ) ≤ 1

nc`
log

1

β1−ε(x`, QY `)
. (74)

Without loss of generality, we shall set xk = [
√
ncρ, 0 . . . , 0],

k = 1, . . . , `. It follows by the Neyman-Pearson lemma [37]
that

β1−ε
(
x`, qY `

)
= Pr

{
r`
(
x`,Y `

)
≥ γ

}
, Y ` ∼ QY ` (75)
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EU ′

(PỸ |U ,Ĥ(y|U ′, ĥ)

PỸ |U ,Ĥ,(y|u, ĥ)

)s =
exp
(
s
(
‖y −√ρdnduĥ‖2 − ‖y‖2 − ρdnd|ĥ|2

))
(s‖y‖|ĥ|√ρdnd)nd−1

Γ(nd) Ind−1(2s‖y‖|ĥ|√ρdnd) (70)

F0

(
τ, s, ĥ

)
=

∫
Cnd

Ind−1

(
2s|ĥ|

√
‖y‖2ρdnd

)τ
e
ρdnd
u (|a(ĥ)|2−|µp(ĥ)|2)

Γ(nd)
−τ
πnd

(
1 + σ2

p ρdnd

)
(s|ĥ|

√
‖y‖2ρdnd)τ(nd−1)

EU

[
e−(y−√ρdnda(ĥ)U)

H
Σ(y−√ρdnda(ĥ)U)

]
dy (71)

F0

(
τ, s, ĥ

)
=
e
|a(ĥ)|2

(
ρdnd
u − 1

σ2p

)
− |µp(ĥ)|2ρdnd

u

Γ(nd)
−τ
σ2

p

∫ ∞
0

exp(−r) rnd−1

(s|ĥ|√rρdnd)τ(nd−1)
Ind−1

(
2s|ĥ|√rρdnd

)τ
×
∫ ∞

0

exp
(
−
(
σ−2

p + ρdnd

)
z
)(√

rzρdnd

)nd−1 Ind−1(2
√
rzρdnd) I0

(
2|a(ĥ)|σ−2

p

√
z
)
dzdr (72)

where γ is the solution to

Pr
{
r`
(
x`,Y `

)
≤ γ

}
= ε, Y ` ∼ PY `|X` (76)

and

r`
(
x`,y`

)
=
∑̀
k=1

r(xk,yk) =
∑̀
k=1

log
PY |X(yk|xk)

PY (yk)
. (77)

Finally, we obtain (48) by relaxing (74) using [6, Eq. (106)]
(which yields a generalized Verdú-Han converse bound, cf. [38])
and by exploiting that whenYk ∼ PY |X=xk the random variable
r(xk,Yk) is distributed as Ssk in (23) with s = 1.
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University, Istanbul, Turkey, and the M.Sc. degree in
communications engineering from Technical Univer-
sity of Munich (TUM), Munich, Germany, in 2014
and 2017, respectively. He is currently pursuing the
Ph.D. degree at the Institute for Communications Engi-
neering of TUM, funded by Munich Aerospace Center.
He is also a member of the Information Transmission
Group at German Aerospace Center (DLR).

Gianluigi Liva (M’08–SM’14) was born in Spilim-
bergo, Italy, in 1977. He received the M.S. and the
Ph.D. degrees in electrical engineering from the Uni-
versity of Bologna (Italy) in 2002 and 2006, respec-
tively. Since 2003 he has been investigating chan-
nel codes for high data rate CCSDS (Consultative
Committee for Space Data Systems) missions. From
October 2004 to April 2005 he was researching at
the University of Arizona in Tucson, where he was
designing low-complexity error correcting codes for
space communications.

Since 2006 he is with the Institute of Communications and Navigation at the
German Aerospace Center (DLR), where he currently leads the Information
Transmission group. In 2010 he has been appointed lecturer for channel coding
at the Institute for Communications Engineering (LNT), Technische Universität
München (TUM). In 2012 and 2013 he has been lecturing for channel coding
at the Nanjing University of Science and Technology (China). Since 2014
he is lecturer for channel codes with iterative decoding at the Institute for
Communications Engineering (LNT), Technische Universität München (TUM).
His main research interests include satellite communications, random access
techniques and error control coding. He is/has been active in the DVB-SH, DVB-
RCS and DVB-S2 standardization groups, as well as in the standardization of
error correcting codes for deep-space communications within the CCSDS.

He received the 2007 IST Mobile & Wireless Communication Summit Best
Paper Award. He has been co-chair of the First DLR Workshop on Random
Access and Coding (2013), of the 2014 Sino-German Workshop “Bridging
Theory and Practice in Wireless Communications and Networking” in Shenzhen
(China), of the IEEE ICC 2014 Workshop on Massive Uncoordinated Access
Protocols (MASSAP) in Sydney (Australia), of the 2015 Munich Workshop on
Coding and Modulation and of the 2018 IEEE European School on Information
Theory.


	Introduction
	Prior Art
	Contributions

	System Model
	Finite-blocklength bounds on R*
	Achievability Bounds on R*: Preliminaries
	Noncoherent Achievability Bound on R*
	Pilot-Assisted Nearest-Neighbor Achievability Bound on R*
	Pilot-Assisted Maximum Likelihood Achievability Bound on R*
	A Converse Bound on R*

	Numerical Results
	Dependency of R* and Eb*/N0 on the Rician Factor  
	PAT or Noncoherent?
	Practical pat Coding Schemes

	Conclusion
	Appendix
	Auxiliary Lemmas
	Proof of Theorem 2
	Proof of Corollary 2
	Proof of Theorem 3
	Proof of Corollary 3
	Proof of Theorem 5

	References
	Biographies
	Johan Östman
	Giuseppe Durisi
	Erik G. Ström
	Mustafa C. Coskun
	Gianluigi Liva


