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Abstract: Using predictor antenna systems for modern wireless moving relays and base stations on top of vehicles such as
buses, trains etc. proves to be a reliable approach for collecting channel state information to such fast moving nodes. Recently,
it has been shown that coupling between different ports of a multiport antenna system used as a part of a predictor system can
reduce the prediction performance. In this study, by integrating position and velocity vectors in the channel covariance matrix as
seen at the antenna ports in a rich multipath environment, the authors quantify the impact of antenna coupling on prediction
performance. Moreover, practically these predictor systems are designed for a certain target velocity. They further quantify the
adverse effect of velocities, different from the target velocity, on prediction performance. In case open-circuit decoupling is
necessary, the sensitivity of the predictor antenna system performance with respect to the accuracy of the input network

parameters is disclosed.

1 Introduction

No doubt, in modern mobile communications systems, channel
state information (CSI) at the transmitter side plays a remarkable
role in enabling many salient features. Among these features,
beam-forming, multi-user scheduling, spatial multiplexing, and
space division multiple access stand out. As the wireless
communication systems evolve and progressively become more
sophisticated, delays in the feedback control loops become more
critical. This naturally results in outdating of the CSI at the
transmitter in particular when transmitting to a moving vehicle.
The issue becomes more severe for larger control loop delays,
higher velocities, and higher carrier frequencies whose occurrence
is highly likely in practise.

To alleviate the issue, for speeds up to pedestrian velocities,
prediction based on the past received channel estimates by Wiener
or Kalman methods can be used. Nevertheless, these prediction
methods become insufficient for vehicular velocities beyond 50
km/h at typical mobile carrier frequencies [1-5].

To resolve the foregoing problem, Sternad et al. in [1] propose
the use of a predictor antenna system on the vehicle, wherein at
least two in-line antennas are used. The first one, referred to as
predictor antenna, is there to constantly measure the CSI and feed
it back to the transmitter. The second antenna — in the direction of
travel — is the receive antenna. To communicate with this receiving
antenna, the transmitter can use the measured CSI by the predictor
antenna.

This concept has been already demonstrated by field
measurements in [1]. It was clarified that the presence of the
coupling between the nearby predictor and receive antennas can
reduce the prediction reliability and deteriorate the system
performance. The latter is a discipline of its own which was first
treated in [6] and later studied further in the frame of the predictor
antenna system in [2].

In [2], different decoupling methods available in the literature
were briefly reviewed [7-10]. It was concluded that among
different decoupling methods, the open-circuit method is
computationally the most effective one. In the aforementioned
reference, the limitation in the accuracy of this decoupling method
was also clarified [2]. Consequently, it was stressed that the
foregoing method works best for the multiport antenna systems
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which approximate minimum scattering antennas [11, 12]. The
fidelity of the open-circuit decoupling method has also been
verified through an extensive measurement campaign in downtown
Dresden, Germany [2].

In this paper, we first find a method to model a moving
multiport/multi-element antenna system. We later provide a generic
formula rendering the covariance matrix of received signals at the
ports of a moving multiport antennas system. This formula yields
the covariance in a rich Rayleigh fading environment. By virtue of
this formula, we can precisely quantify the prediction performance
reduction caused by coupling.

In addition, as described in [1, 2], unless the predictor system
benefits from a mechanically sophisticated antenna system,
wherein the separation between the predictor and the receive
antennas varies in real-time proportional to the velocity of the
vehicle, in practise a predictor system can be optimised only for a
specified velocity. In the latter case, even in an ideal scenario, i.e.
no coupling between the elements etc., any deviation from the
intended velocity results in a reduced prediction performance. In
this paper, we further quantify the prediction deterioration caused
by varying velocity.

In addition, in case decoupling is necessary, it is important to
reveal the impact of defective decoupling on prediction
performance. For instance, the accuracy of the proposed open-
circuit decoupling method depends on the accuracy of the input
network parameters. In this paper, we disclose the effect of the
accuracy of the input network parameters used for decoupling on
predictor antenna system performance.

The overall structure of this paper is as follows. We present a
notion of the phase centre matrix for multiport antennas in order to
model its movement. Using this matrix, we introduce a formula for
calculation of the covariance matrix in a Rayleigh multipath
environment in Section 2. Section 3 is dedicated to quantify the
effects of coupling in the predictor antenna system performance.
Accordingly, Section 4 investigates the accuracy of the predictor
antenna system against the variation in velocity of the vehicle.
Investigation on the accuracy of the open-circuit decoupling
method on prediction versus relative errors in input network
parameters is presented in Section 5. This paper ends with a
conclusion in Section 6.

367

This is an open access article published by the IET under the Creative Commons Attribution License

e~



To set the notations, matrices are denoted by bold letters. The
column vectors are shown by an overbar sign. The superscript -7
indicates transpose and the dagger sign is the Hermitian transpose.

2 Multiport antenna movement modelling

The main concern in this paper is to quantify the performance
deterioration caused by coupling in the predictor antenna system as
well as the inaccuracy caused by the variation in the velocity of the
vehicle. To address it, before anything, we need to formulate the
antenna movement and insert it in the covariance matrix. The
resultant formula can be used not only to address the foregoing
issues but also to study the dependency of the open-circuit
decoupling method on the accuracy of the input network
parameters. To this end, first, we define an essential parameter
which models the antenna movement. This parameter serves to
derive an analytical formula to obtain the random received signals
in an arbitrary general multipath scenario at the ports of a moving
multiport antenna system.

To compactly formulate the problem, we assume both predictor
and receive antennas to be part of a multiport antenna system
which can, in general, have an arbitrarily large number of radiation
elements or ports. Here, G,, () represents the matrix of open-
circuit embedded far-field patterns of this, say, n-element antenna
system whose rows are its corresponding vertical § and horizontal
y polarisation components. The symbol Q signifies the solid angle
and Z,,, is the input impedance matrix of this multiple antenna
system whose terminated embedded far-field pattern matrix is
denoted by G(Q).

2.1 Phase centre matrix

To analyse the performance of a moving multiport antenna system,
we first need to mathematically model the movement of a multiport
antenna. It is known that for short distances the displacement of a
single-port antenna can be modelled by an appropriate change in its
phase centre. For a multi-element antenna system, defining a
suitable phase centre matrix containing information about its array
configuration proves to be useful. For this purpose, let us
decompose the open-circuit embedded far-field pattern matrix as

G=G"-P (1
where the diagonal phase centre matrix, P, is defined as
P= diag(exp( — jkr, - 1), ..., exp(— jkr, - 15)) 2)

The vectors r, ..., r, indicate the position vectors of the radiation
elements’ phase centres. The vector r is the unit vector in the
spherical coordinate system and k is the wave number. Moreover,
G” is a 2 x n matrix whose columns contain information about the
open-circuit embedded far-field pattern of each element when
located at the global phase reference point. If a multiport antenna
system has similar radiation elements that approximate minimum
scattering antennas, the columns of G’ are all the same. Now, if
we assume that this multi-element system moves with the speed of
v, after a certain time, z, the foregoing position vectors become

rp=ri+v-t i=1,2,..,n. 3)

If = is not too long to violate first-order approximation on the
embedded far-field pattern calculations, the above position vectors
can replace r; (i =1, 2, ..., n) in (2) yielding a new phase centre
matrix, denoted by P,. Then, the open-circuit embedded far-field
pattern matrix of this antenna system in the new position, G;, can
be simply achieved by

G =G".p,. 4
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2.2 Covariance matrix for moving multiport antennas

Having defined the phase centre matrix, it is sufficient to pursue a
similar path to those formerly published in [13, pages 32-34] (see
also [14, eqs. 3—8]) in order to derive the desired formula. Doing so
and after some algebra, we derive the temporal covariance matrix
of the received signals, C,, at different ports of a multiport moving
antenna system at a certain time delay, z. The result is given in (5).

In (5), 4 and #n denote the wavelength and the free space
intrinsic wave impedance, respectively; G, is the embedded (or
terminated) far-field pattern matrix in volts per metre; and Z, in
ohm is a diagonal matrix of terminating impedances at different
ports; I' shows the polarisation matrix containing information
about incoming waves of co- and cross-polarisation from Q and Q'
directions; and finally, P(Q, Q') stands for the joint probability
density function of the incoming waves from foregoing directions,
known as angle of arrival (AoA). This equation plays a key role in
the remainder of this paper and is credible in a general correlated
non-uniform zero-mean complex Gaussian multipath environment.
Note that for the sake of conciseness, we used the embedded (or
terminated) far-field pattern matrix instead of the open-circuit one
in the equation below:

2 .
a;@ZI f / PiQ) GM'(@) Q. Q) GQ- P
’7 4 (5)
(Q)P(Q’, Q)dQ'dQZ,

3 Coupling effects on prediction performance

The presence of antenna elements in the vicinity of each other
causes mutual coupling, which in turn deforms the shapes of their
far-field radiation patterns. In predictor antenna systems, this
difference can degrade the performance. In this section, we wish to
reveal the influence of pattern perturbation due to coupling in
deterioration of temporal correlation p as the main performance
metric for predictor antenna systems [1, 2].

Note that the eventual prediction performance may rely on
several factors including the velocity of the vehicle, sampling rate,
antenna properties etc. Nevertheless, to concentrate on the effect of
coupling alone, we first assume that the equidistant radiation
elements are aligned with the velocity vector with separation
d=v-75 This leads to r,=r_, i=2,..,n In addition,
throughout this paper, we presume that the coherence length of the
channel is far longer than the radiation element separation (i.e.
> d). In other words, we assume that the spatial coherence time of
the channel is substantially longer than the time it takes for the
receive antenna to reach the spatial measurement location of the
predictor antenna.

Furthermore, we arbitrarily choose two classical types of two-
element lossless thin wire antennas with separation d above an
infinite perfect electric conductor (PEC) plane: (i) quarter-
wavelength monopoles and (ii) horizontal half-wavelength dipoles
at a height 2 = 0.104. above the PEC plane whose orientation is
perpendicular to the direction of the vehicle. Remember that
throughout this paper, A. indicates the wavelength at the resonance
frequency of the corresponding antennas in the open-circuit state.
These antennas approximate minimum scattering antennas, and
therefore represent proper choices for our study [2]. It is worth
stating that we choose the second antenna type only as an example
of a low-profile antenna just for double verification of the
presented formulation. In particular, their configuration makes the
effect of coupling between them slightly exaggerated, highlighting
the impact of decoupling even more than the case of quarter
monopoles. The embedded element far-field patterns plus the input
network parameters for these structures are simulated based on the
method of moments [15, Section 8.4]. For better illustration, Fig. 1
shows this setup for the case of quarter-wavelength monopoles.

First of all, formula (5) has been used to realise the temporal
correlation between the two-port signals at 7 = 7z, time delay in a
rich uniform multipath environment. This multipath environment is
a reference environment likely due to the fact that it can be
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emulated in a reverberation chamber [16]. The corresponding
results are shown in Fig. 2.

Undoubtedly, a rich uniform multipath environment represents
only an ideal scenario. In reality, the AoA — at least in the elevation
plane — is non-uniform. This gives rise to a question as for how the
coupling, in general, can impact the predictor performance in non-
uniform multipath environments. To address this curiosity, we need
to choose a certain distribution for the AoA. Since the predictor
antenna system can have any arbitrary direction in the azimuth
plane, we presumably consider uniform AoA in this plane. In
contrast, for the elevation (or zenith) plane, we resort to the double-
exponential distribution as one of the most common ones in the
literature [17]. The double-exponential distribution is specified by
the mean elevation angle 0, and the spread angles o*. The
parameter ¢ refers to the spread angle for the 6 < 6, (toward the
sky) and o~ belongs to the 8 > 6,,, range (toward the ground).

The results of the correlations for the two antennas under study
are all presented in Fig. 2. In these figures, the selected values for
O, and ¢* are given within the figures. Recall that ideally, the
correlation for the predictor antenna system at z, delay is one,
rendering zero normalised mean square prediction error (NMSE)
=1—|p[ [1, 5]. We observe that coupling for different spread
angles ¢* and mean elevation angles 6,, affect differently and alter
the prediction performance. However, all in all, the NMSE does
not exceed 0.2 for the monopole case and 0.6 for the horizontal
dipole case. These results are in harmony with the measurement
results in [2], and clearly confirm the effectiveness of the predictor
antenna system. Last but not least, using the open-circuit
decoupling method, as shown in [2], one can compensate for the
coupling and remove its impact. At the right velocity, the foregoing
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Fig. 1 Sample scenario in which two monopoles above a PEC plane move
with speed of v in an isotropic environment (Al = d = 0.21.)
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decoupling results in perfect correlation regardless of the
separation between the two antennas. This has been demonstrated
through an independent simulation tool and the corresponding
results are presented by circles in Fig. 2.

4 Effects of velocity variation
antenna system performance

Remember that the element separation between the predictor
antenna and the receive antenna in this system is directly
proportional to the velocity of the vehicle [1]. If the element
separation is fixed, dependent on the sampling rate and the number
of radiation elements, the prediction is probably only optimum for
one or a certain number of specified speeds, which is in practise
hard to hold onto. Thus, the predictor system is subject to sampling
quantisation error in time and consequently space since they are
linked through the velocity vector. This could be due to coarse
sampling or inaccurate speed estimation.

A predictor antenna system should be designed in a way that the
front (i.e. predictor) antenna has placed a distance d metres ahead
of the nearest rearward antenna, where

in predictor

d=vy- T 6)

with v, being the maximum design velocity and 7, being the
maximum predictor horizon in time that the communication system
is expected to require [1].

4.1 Effect of underspeeding in prediction performance

If the velocity of the vehicle is less than the design velocity v < vy,
then the condition (6) ensures that 7 < ;. Thus, the rearward
antenna at time delay 7 is guaranteed to be located at a position
behind the position at which the predictor antenna produced the
latest channel estimate. Therefore, in case of underspeeding, we
can obtain the appropriate channel prediction estimate for the
rearward antenna (i.e. receiver antenna) at the corresponding delay
by interpolating among the present and past channel estimates from
the predictor antenna. One such interpolation scheme was
suggested and used in [3]. Note that in this way, the error in
prediction can be avoided in the digital domain which requires only
computational resources. As long as the sampling is sufficiently
dense, the adverse impact of quantisation error on the predicted
CSI is negligible. Clearly, too high sampling rate on the predictor
antenna signal adds unnecessary computation burden on the
system, and therefore should be avoided.
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Fig. 2 Normalised temporal correlation versus the element separation in double-exponential non-uniform multipath environments. The AoA distribution in
the azimuth plane is uniform. Parameters 6,, and ¢* stand for mean elevation angle and the associated spread angles around it. The minimum antenna

separation is 0.031,
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Fig. 3 Temporal correlation for the overspeeding scenario. v, denotes the intended speed

(a) Case of two monopoles above the PEC, (b) Case of two horizontal dipoles above the PEC

4.2 Effect of overspeeding in prediction performance

In contrast, in a scenario in which the vehicle's speed exceeds the
design speed, the condition (6) is not fulfilled. Thus, we can no
longer obtain the channel prediction estimate for the receive
antenna by interpolation, rather extrapolation to the positions in
front of predictor antenna must be used. This will have rapidly
increasing errors when the extrapolation horizon increases, which
must be quantified. Thus, the main goal in this section is to reveal
how sensitive the prediction performance is with respect to
overspeeding. In this framework, we also answer the question
about whether removing coupling will be still beneficial in cases,
where there is a discrepancy between the speed of the vehicle and
the design speed.

To resolve this issue we only need to use the expression in (5),
with a proper phase centre matrix, P, in the presence and the
absence of coupling. For the sake of simplicity, let us again assume
that the antenna elements are in-line with the vehicle's velocity
vector. Clearly, the role of the embedded far-field patterns of the
antennas is crucial in this paper. To see how, let us again choose the
cases of two quarter-wavelength monopoles, and also two
horizontal dipoles at &2 = 0.104, above an infinite PEC plane with
d =0.554. and A. Fig. 3 shows the temporal cross-correlation
versus the relative speed of the vehicle in the presence of coupling
and after its removal using the open-circuit decoupling method
[10].

It is clear from this simulation that for overspeeding exceeding
10-20% of the target speed, coupling compensation does not seem
to be advantageous for the two selected antennas with the specified
separations. We stress that these results are quite dependent on the
element separation and the types of antennas used. Therefore, for
an arbitrary antenna setup, one needs to use (5) and plug in a
proper phase centre matrix corresponding to the desired speed to
determine whether the coupling compensation is still useful or not.

5 Dependency of open-circuit decoupling method
on Z-matrix

The open-circuit decoupling method (or short-circuit decoupling
method) depends on the input impedance matrix (or input
admittance matrix) for a voltage driven (or current driven)
antennas, as well as the termination impedances (admittance) [7, 8,
10, 12, 18]. Therefore, the accuracy of the decoupling method is
also a function of the accuracy of the corresponding input network
matrices. To the best of our knowledge, this dependency has not
been studied yet likely because a reliable metric for its study has
been missing. Nevertheless, the temporal cross-correlation at a
certain time delay which has been defined in the frame of the
predictor antenna system on moving vehicles can play the role of a
reliable criterion for the aforementioned accuracy study. In this
section, we study the temporal cross-correlation at the different
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separation between the elements to find out how the open-circuit
decoupling method depends on the errors which exist in the input
impedance matrix.

For the sake of conciseness, we resort to one of the two former
selected antennas, say monopoles. First of all, let us assume that
the diagonal terminating impedance matrix, Z,, is presumably error
free. The impedance matrices of these antennas, Z, have four
entries. Owing to symmetry within the structure and reciprocity,
the impedance matrices are symmetric. Thus, the number of
variables that exist in each matrix is two, say, z;, and z,, which both
have independent real and imaginary components.

Our study reveals that the impact of variations in resistance and
reactance of z,, and z,, are negligible. Thus, we only concentrate on
the presence of an error in z, or z; on the temporal cross-
correlation. For this specific example, to study the impact of errors
in the mutual impedance, we use a normalised error for its non-
zero resistive and reactive parts. In this respect, the relative
resistive and reactive errors are, respectively, defined as

1) o
5r12 - Rz & M2 Sz )

wherein § and §’ are arbitrary added independent errors. Bear in
mind that the temporal cross-correlation of unity indicates no error.
The less the temporal cross-correlation with respect to unity, the
more the impact of the error on the open-circuit decoupling
method. The results of our study are shown in Fig. 4. In this figure,
the contours of maximum temporal cross-correlation with respect
to the relative error in resistive and reactive components of the
mutual impedances are plotted. Note that this study is made for two
different multipath environments: first, in a rich uniform multipath
environment which is a common reference multipath environment
in the literature [16], and second, in a double-exponential non-
uniform multipath environment which is more compliant with
measurement campaigns [17].

We observe that for the same element separations, the
sensitivity of the open-circuit decoupling method with respect to
the mutual impedance error is larger in uniform multipath
environments compared with non-uniform environments. Although
not shown, we also noted that half-wavelength horizontal dipoles
above an infinite PEC are more sensitive to the mutual impedance
error compared with quarter-wavelength monopoles above the
PEC.

In general, the sensitivity of the maximum temporal cross-
correlation in a predictor antenna system with respect to the
relative mutual impedance error is not significant. This is in
harmony with former studies on the measurement data as
illustrated in Figs. 3 and 4 in [2]. Recall that this sensitivity is
subject to our criterion or judgement metric. One could use an
alternative parameter to describe this sensitivity. Nevertheless,
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Fig. 4 Contours of maximum temporal cross-correlation versus relative errors in resistive and reactive components of mutual impedances for two monopoles
above an infinite PEC plane. For the non-uniform multipath case, we selected uniform distribution for the AoA in the azimuth plane and double-exponential

distribution in the elevation plane with 6,, = 45°, 6" = 18° and 6~ = 6°

when it comes to multipath environments, temporal cross-
correlation (at the corresponding time delay) makes sense.

As a final point, the impact of overspeeding and underspeeding
(i.e. misalignment of positions of the two antennas at the intended
time delay) seems to be more critical than the application of the
open-circuit decoupling method for the two investigated antenna
cases. Note that all the foregoing points are solely credible for a
rich multipath environment and may not be generalised to other
applications in which the open-circuit decoupling method is used.

6 Conclusion

The main concern of this paper was the predictor antenna system in
moving relays. We clarified that the pattern deformation in the
presence of coupling reduces these systems’ performances. We
introduced a general formula whereby one can quantify the impact
of different factors such as coupling, velocity, position
misalignment etc. on prediction performance. For cases of quarter-
wavelength monopoles on an infinite PEC plane and half-
wavelength horizontal dipoles at 0.10 of the resonant wavelength
above this ground plane, we quantified the reduction of
performance due to coupling in terms of element separation. We
showed that due to the adverse effect of coupling, the NMSE does
not exceed 0.2 for the case of monopoles and 0.6 for the horizontal
dipole case.

To avoid mechanical complexity in the implementation of the
predictor antenna system, typically this system is designed for a
certain target velocity [1]. However, a vehicle can barely hold onto
a constant speed. Any variation in speed can potentially deteriorate
the prediction performance. The effect of underspeeding can be
alleviated by continuous sampling of the signal at the port of the
predictor antenna and some extra processing in the digital domain.

IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 3, pp. 367-372

Nevertheless, this method does not help for cases of overspeeding.
In the latter scenario, we further quantified the prediction
performance reduction versus velocity. This paper also showed that
decoupling is not generally useful for prediction reliability.

Finally, our simulations revealed that, when it comes to
predictor antenna system, the impact of the accuracy of the self-
impedances on the open-circuit decoupling method is negligible.
Thus, we investigated the effect of relative error in resistive and
reactive components of the mutual impedance on the accuracy of
the open-circuit decoupling method. We observed that the impact
of error in mutual impedance was relatively higher in uniform
multipath environments. Moreover, though not shown, we also
clarified that the open-circuit decoupling method for monopole
antennas showed less sensitivity with respect to the relative mutual
impedance error compared with horizontal dipoles at & =0.14,
above a PEC ground plane. In this paper, our metric for
performance evaluation of a predictor antenna system and accuracy
study of the open-circuit decoupling method was the temporal
cross-correlation at the desired time delay. Be it of interest, this
parameter can simply be mapped to the NMSE of time-varying
complex orthogonal frequency-division multiplexing channel
coefficients by virtue of [1, eq. 8]. Last but not least, despite the
fact that the presented study was restricted to a two-port predictor
antenna system, the formula introduced here holds for any array of
an arbitrary number of radiation elements.
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