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ARTICLE INFO ABSTRACT

Keywords: A novel framework for simulation of transient viscoelastic fluid flow is proposed. The viscoelastic stresses are
Non-Newtonian flow calculated at Lagrangian nodes which are distributed in the computational domain and convected by the fluid.
Rheology

The coupling between the constitutive equation and the fluid momentum equations is established through robust
interpolation with radial basis functions.

The framework is implemented in a finite volume based flow solver that combines an octree background
grid with immersed boundary techniques. Since the distribution of the Lagrangian node set is performed entirely
based on spatial information from the fluid solver, the ability to simulate flows in complex geometries is therefore
as general as for the fluid solver itself.

In the Lagrangian formulation the discretization of the convective terms in the constitutive equations is
avoided. No re-formulation of the constitutive equation is required for stable solutions. Numerical experiments
are performed of UCM and Oldroyd-B fluids in a channel flow and of a four mode PTT fluid in a confined cylinder
flow. The computed flow quantities consistently converge and agree excellently with analytical and numerical

Computational fluid dynamics
Immersed boundary methods
Confined cylinder

data for fully developed and transient flow.

1. Introduction

Viscoelastic flows are present in many industrial processes where it is
often important to predict the outcome in terms of quality and repeata-
bility. Simulation tools can therefore be extremely useful, but require
models which accurately describe the underlying physics and that are
efficiently implemented in a numerical framework.

Viscoelastic fluids are described with constitutive models that pro-
vide equations for the viscoelastic stress tensor. The Upper Convected
Maxwell (UCM) model and the Oldroyd-B model [1] are generalizations
of linear viscoelastic models. They do not impose any limit on polymer
elongation and may therefore produce unbounded normal stresses. For
the same reason they pose numerical challenges and are useful for study-
ing the performance of numerical algorithms for viscoelastic flows [2].

Nonlinear models can describe the stresses in a more physically cor-
rect way. By adding a quadratic term to the UCM model the Giesekus
model is obtained [1]. The Finitely Extensible Nonlinear Elasticity
(FENE) models, e.g. FENE-P and FENE-CR [3], are derived by treating
the viscoelastic fluid as a dilute solution of nonlinear, finitely extensible
dumbbells. Another popular model is the PTT model, which was pro-
posed in 1977 by Thien and Tanner [4]. The model is derived using
network theory for non-affine motions between polymer chains.

Another important aspect is numerical stability. Instabilities and
convergence issues can arise even for moderate Weissenberg num-
bers, commonly referred to as the High Weissenberg Number Prob-
lem (HWNP) [5]. Different strategies to remedy the issues have been
proposed. Some aim to enhance the ellipticity of the problem through
diffusion, such as Elastic-Viscous Stress Splitting (EVSS) [6] or both-
sides diffusion (BSD). Other strategies are to reduce the stiffness of the
equations or to preserve positive definiteness of the conformation ten-
sor. Some examples are the Positive Definiteness Preserving Scheme
(PDPS) by Stewart et al. [7], the Square Root Conformation Repre-
sentation (SRCR) by Balci et al. [8], and the Log-Conformation Rep-
resentation (LCR) by Fattal and Kupferman [9,10]. A comparison be-
tween different stabilization approaches can be found in Chen et al.
[11].

A common approach for simulating viscoelastic flow is to
solve all equations with an Eulerian discretization using finite ele-
ments [12,13] or finite volumes [14,15]. The Eulerian frame of refer-
ence is suitable for diffusion-dominated problems. Viscoelastic consti-
tutive equations are however hyperbolic and often include no physical
diffusion term. In finite volume methods, the convective term in the
constitutive equation therefore needs to be discretized with specialized
high-order schemes in order to avoid numerical diffusion [15].
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An alternative approach is the Lagrangian frame of reference. Ras-
mussen and Hassager [16] developed a Lagrangian method to solve the
equations of viscoelastic flow with an integral UCM model using finite
elements. The entire deformation history was stored and re-meshing
was necessary. Harlen et al. [17] proposed a split Lagrangian-Eulerian
method in which viscoelastic Stokes flow was calculated by solving the
constitutive equations in the Lagrangian frame of reference in the nodes
of a co-deforming mesh. Equations for velocity and pressure were solved
with an Eulerian finite element method. As the mesh was distorted the
nodes were reconnected with Delaunay triangulation to form new ele-
ments. Halin et al. [18] developed a finite element method in which the
constitutive equation was integrated along particle trajectories, denoted
the Lagrangian Particle Method (LPM). Local polynomial approxima-
tions were fitted to the stress in each element for evaluation of the finite
element integrals. At least 3 particles were therefore required in each
two-dimensional element for the simulations not to fail. The method was
later refined to the Adaptive Lagrangian Particle Method (ALPM) [19],
in which particles were created and deleted when necessary. A fairly
large number of particles was still needed for stable transient result.
A backward-tracing version of the method was also later proposed,
denoted BLPM [20]. Phillips and Williams [21] used a semi-Lagrangian
finite volume method in which the convective terms in all equations
were calculated by tracing the vertices of control volumes backwards in
time. The remaining terms were then integrated over a staggered grid
arrangement.

Eulerian finite volume discretization on non-staggered grids is a
well-established approach in computational fluid dynamics. Additional
models, e.g. coupling to heat transfer or simulation of multiphase
flow with the Volume of Fluid (VOF) method can be added with the
same discretization. Furthermore, the Lagrangian frame of reference
may be preferable when calculating the viscoelastic stresses. Hence
there is a need for a robust and efficient method to combine the two
approaches.

In this paper such a framework is presented. The constitutive equa-
tion is solved at Lagrangian nodes which are convected by the fluid.
The stresses are then interpolated to the fluid grid using radial basis
functions (RBF) [22,23] and included in the momentum equations. The
novelty of the method is in the combination of the mesh-free node set
and the robust information transfer between the Lagrangian and Eule-
rian frames through interpolation. The method thus imposes no lower
limit on the number of nodes per cell for the interpolation to succeed. In
addition, the Eulerian grid never needs to be re-meshed due to distortion
as in co-deforming Lagrangian approaches.

No stabilization technique other than both sides diffusion is required
to obtain stable results and the framework supports viscoelastic flow in
arbitrary geometry with exterior and immersed boundary conditions.
The method is suitable for extension to two-fluid flows, for which the
constitutive equation would only need to be solved in the viscoelastic
subset of the domain.

The framework is implemented in IPS IBOFlow® [24], which is an
incompressible flow solver that utilizes implicit immersed boundary
methods to impose boundary conditions of interior objects in the com-
putational domain [25,26]. The fluid momentum and continuity equa-
tions are discretized on a Cartesian octree grid which is automatically
generated and dynamically refined. The solver is suitable for simula-
tion of flows including complex moving geometries and for applications
with multiple coupled physical phenomena. The solver has been suc-
cessfully employed to simulate e.g. conjugated heat transfer [27], fluid-
structure interaction [28] and two-phase flows of shear thinning fluids
with the Volume of Fluids (VOF) method, with applications for seam
sealing [29,30] and adhesive extrusion [31].

The rest of the paper is structured as follows. First the govern-
ing equations are stated, followed by a presentation of the numerical
method. In the results section the accuracy and performance is validated
with numerical experiments. First viscoelastic channel flow is simulated
and compared to analytic solutions for steady and transient flow. The
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flow past a confined cylinder of a PTT fluid with four relaxation modes
is then studied and the results are compared to available numerical data.
Finally, the last section summarizes the paper and some future work is
outlined.

2. Governing equations

Viscoelastic fluid flow is modeled with the incompressible fluid mo-
mentum and continuity equations

p(;—l:+pu~Vu=—Vp+Vva+f, (1)

V-u=0, 2
where p is density, u velocity, p pressure, ¢ extra stress and f a body
force. The extra stress may be decomposed in a solvent contribution
and a viscoelastic contribution as

oc=2uS +7, (3)

where u is solvent viscosity, S = %(Vu + (Vw)T) strain rate and 7 vis-
coelastic stress. A constitutive equation for r can be written on the form

\V4
At + F(r)r =298, “

where 1 is relaxation time, F a relaxation function,  polymeric viscosity

and Y the upper convected derivative of z, reading [1]

()

In (5) d/dt denotes the material time derivative, i.e. the Lagrangian
derivative, which in the Eulerian frame of reference reads

©)

A viscoelastic material may in general be modeled with multiple re-
laxation modes. For a material with N modes the stress modes 7, where
k=1,...,N, are then described by (4) with relaxation times A, poly-
meric viscosities n;, and relaxation function F,. The total viscoelastic
stress is the sum of the stress modes, namely

N
=Y 5
k=1

(O]

3. Numerical method

A simulation framework is proposed in which the viscoelastic stresses
are solved in a Lagrangian node set distributed in the viscoelastic fluid.
The momentum and continuity equations (1) and (2) are solved us-
ing an Eulerian finite volume discretization and are integrated in time
using the implicit Euler method. Coupling to the constitutive equa-
tion is established through the divergence of the viscoelastic stress
tensor, which is interpolated to the Eulerian grid by using radial ba-
sis functions (RBF). The main steps carried out in each simulation
time step are:

¢ Solve the constitutive equation and convect the stresses in La-
grangian nodes.

Interpolate viscoelastic stresses to Eulerian grid using RBF.
Integrate V - 7 over fluid cells and add as sources in the discretized
momentum equation.

¢ Solve the momentum and continuity equations.

Control the distribution of Lagrangian nodes.

The involved steps are described in detail below.
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Fig. 1. Concept of Lagrangian node trajectory in the fluid flow field.

3.1. Solution of the constitutive equation

Consider a set of Lagrangian nodes distributed in the viscoelastic
fluid. The position x of a node that is convected by the fluid is described
by

dx

— =u, 8
i ()]
where u is the local velocity. Convection and evolution of N viscoelastic
stress modes in the node are thus described by the system of ordinary
differential equations (ode)

X=u
7, = G(r1, Vu)

Ty = Gy(Ty, V)

where (+) denotes time derivative. The corresponding right hand sides
Gy follow directly from the constitutive equation and are evaluated at
the node. The quantities u and Vu in the right hand side of (9), are
obtained at the node from the fluid grid by bilinear or trilinear interpo-
lation, respectively for two and three dimensions. In Fig. 1 the concept
of transporting and calculating the stresses in a Lagrangian node is il-
lustrated.

A suitable method is needed to solve the ode system (9). In the cur-
rent work it is solved using a backward differentiation formula (BDF)
that is available in the Sundials CVODE library [32,33]. A linear system
of equations for the solution to (9) from time 7,_, to t, then takes the
form

q
AI,,}’,,Y,, + Z an,iyn—i = 0’ (10)

i=0

where the subscript n denotes a property at time t,, Ar, =t,—1,_; is
the local step size, y, and a,,, ..., a, | are coefficients, y, is the solution
vector and q is the order of the method. In the current work g =2 is
chosen due to its stability properties. More specifically it is A-stable,
such that for x <0 the method is unconditionally stable for the scalar
model problem y = «y [33].

The ode system (9) is solved for a global fluid time step through
multiple local time steps. The number of steps is based on local error es-
timation in the ode solver. For more details the reader is referred to [33].

The coupling between viscoelastic stresses and fluid momentum
is explicit, since the velocity field is kept fixed when calculating the
stresses and vice versa. The ode system is however solved implicitly, in
the sense that y, depends on y,, in (10). Since u and Vu vary along the
node trajectory they are interpolated to the node in each iteration.

For all components of y the relative and absolute integration tol-
erances are set to 107%. The tolerances correspond to the relative and
absolute differences of the solved variables between two subsequent it-
erations. The chosen tolerances were found to produce consistent results
while even smaller values did not give further improvement.
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3.2. Interpolation of viscoelastic stresses

Radial basis functions (RBF) are used to interpolate the viscoelastic
stress from the Lagrangian nodes to the Eulerian grid. The interpolant
f(x) of a function f(x), whose values are known in a set of points {x,- },.]:CI,
is calculated as [22]

N,
N . 1
fo0 =Y wibElx—x;)+v" [X] (1n
i=1

where {w,-}fi”l are the interpolation weights, ¢(r) the RBF, ¢ a scaling
parameter and v a vector of first order polynomial coefficients. The in-
terpolation weights and the polynomial coefficients are obtained from

solving the linear system

A Bl [w f
I M a
where
Aij =¢(§|X,‘_Xj|)7 (13)
T
B= [1 ! ] (14)
X, Xy,
w=[w; - wy 1T (15)
f=[£x) - foxy )T (16)

Different choices of basis function are possible. In the current work
one of Wendland’s compactly supported RBF is used, reading [22]

Y]
sn={177"

0<r<i
0. .

r>1 an

This particular RBF is unconditionally positive definite, such that A
is positive definite and (12) yields a unique solution [23].

The interpolation could in principle be performed using all points
where f is known. However, since the computational cost for solving
the dense system (12) increases rapidly with the number of points, only
those within a search radius R; are included. For this, R = \/EAx/Z,
where Ax is the local cell size, was chosen. When interpolating the
stresses to a cell center the search radius then covers at least all nodes
in that cell by construction. The scaling parameter & = 10~ was cho-
sen, which was found suitable by testing the interpolation routine for
a wide range of values. It is remarked that for non-uniform or unstruc-
tured grids, a relevant length scale, e.g. the longest cell side, could be
chosen to define R;.

An efficient method to find all nodes located within distance R;
from the point of interpolation is necessary to keep the computational
cost low. For this an R-tree data structure from the Boost C+ + li-
braries [34] is used, so that the nodes are spatially subdivided into boxes
with decreasing size at each level. This allows for fast neighbor searches.
Since R; is defined in relation to the cell sizes of the Eulerian grid, an
alternative approach would be to store the nodes residing in each cell
and look in the nearest cells when searching for the nodes. The R-tree
approach is however both efficient and general, as it puts no special
demand on the structure of the fluid grid. It is therefore used in the cur-
rent implementation but other suitable node search strategies are also
possible.

3.3. Coupling between equations

The divergence of the viscoelastic stress tensor is integrated over
the Eulerian control volumes and added as a source in the discretized
momentum equation. In Fig. 2 a two-dimensional control volume with
its faces and neighbors is shown.
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.E

e »n

Fig. 2. Two-dimensional control volume with faces and neighbors.

The integral of the stress divergence is calculated using Gauss’s di-
vergence theorem as

/ VerdV =) A7,
AV f

where the sum is taken over the cell faces, Ay, fif and 7y are the sur-
face area, surface normal and viscoelastic stress, at face f, respectively.
The face stress is approximated with linear interpolation from the cells
sharing the face.

At wall boundaries the stresses are linearly extrapolated to the face
from the value at the center of the boundary cell and its neighbor in the
opposite direction from the boundary. This gives a better approximation
at the face than setting the wall stress equal to the cell center value.

For calculation of steady flows, both sides diffusion (BSD) may be
introduced in (1). An artificial viscous stress 7, = —u,,S is then added to
both sides of the equation. In the discretization this term is treated im-
plicitly as a standard viscous term on the left hand side and calculated
explicitly on the right hand side. The explicit part is calculated accord-
ing to the improved BSD method proposed by Fernandes et al. [35].
The velocity gradient Vu is then first calculated in each cell using cen-
tral differences. The divergence term —u,V - S is then calculated as for
the viscoelastic stress in (18). Since the explicit and implicit parts differ
whenever transient features are present in the velocity field, numerical
diffusion is introduced. This results in fictitious stress responses in time
dependent flow. The approach is therefore not suitable for accurate pre-
diction of transient flows [36]. When the flow reaches a steady state,
however, the explicit and implicit parts cancel. BSD may therefore be
used to stabilize simulations where the final steady flow is of interest.

18

3.4. Node distribution

The Lagrangian nodes are distributed in the Eulerian fluid cells as
follows. Each cell is divided into n‘S’plit sub-volumes, where ngy; > 1 is
the number of sub-volumes along each spatial direction and d is the
dimension of the problem. A node is then placed at the center of each
sub-volume. The node distribution in a two-dimensional cell is shown
in Fig. 3 for ngy = 2 and ngyp; = 3.

During the simulation, the node set is maintained in each time step
before solving the constitutive equations. A Lagrangian node is added
at the center of each sub-volume that does not contain a node in its
close neighborhood. The neighborhood is defined as the box with the

Fig. 3. Subdivision of a two-dimensional cell for distributing Lagrangian nodes

with ng,; = 2 (left) and ngy; = 3 (right).
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same center as the sub-cell and with the side Ax/ngyj; (1 + €pejgn), Where
€neigh > 0. Stresses in added nodes are interpolated from the current node
set. In this work ¢, = 0.1 was found suitable.

A number n,, >1 is also defined, corresponding to the maximum
number of nodes in each sub-volume. If the number of nodes in a sub-
volume exceeds n,,,,, nodes are deleted until the number of nodes is
equal to n,,,. This is done by identifying the pairwise closest nodes,
delete them and create a new node that is given their mean position
and stress. The strategy for adding and deleting nodes is inspired by
that of the Adaptive Lagrangian Particle Method by Gallez et al. [19].
An addition in the current work is that also the deletion step is carried
out in the individual sub-volumes.

3.5. Expected accuracy

Since the velocity gradient is required in the constitutive equation,
the accuracy of the solution to the constitutive equation is limited to
that of Vu. For central differences, it holds that for example at cell
facee
(S—Z)e =t Aqu +O(AXD), (19)
where up and ug are the velocities at the current and neighbor cells
sharing the face. Here (19), which can be easily be verified using Taylor
expansion, is given in one dimension for simplicity. While (19) is true
for the velocity gradient at the face, which is used in the discretization of
the momentum equation, it is not necessarily true for arbitrary positions.
Therefore the accuracy of the calculated stress can be expected to be at
most second order but likely lower on average.

The accuracy of the stresses in the cell centers are further constrained
by that of the interpolation routine. In simplified terms, the interpola-
tion error depends on the distance between nodes [22]. Assume that the
mean distance between two nodes is

Ax

I, = ,
Asplit

(20)

which is true upon initialization the node set. The interpolant can then
be written as

f=r+Eq,,

where £ is the interpolant, f the exact value and E denotes the error
which increases with [,

@n

3.6. Implementation

The proposed method is implemented in IPS IBOFlow, an incom-
pressible Navier-Stokes flow solver. The fluid momentum and continuity
equations, are discretized on a Cartesian octree grid. Boundary condi-
tions imposed on the flow equations from internal objects are treated
with the immersed boundary method [25,26]. The generation of the oc-
tree grid is fully automatic and dynamic. A key feature of the framework
is therefore the capability to easily handle moving complex geometry.

One advantage with the proposed method is that discretization of
the convective term in the Eulerian form is avoided. Another advantage
is the geometrical flexibility resulting from the mesh-free nature of
the Lagrangian node set. The only boundary condition that needs to
be specified for the constitutive equation is the stress at inlets. Effects
from other flow boundaries such as walls, outlets and symmetries are
implicitly imposed on the constitutive equation through the velocity
gradient. Thus complex geometries that can be handled by the fluid
solver are also supported by the viscoelastic stress solver. Further, the
mesh-free formulation avoids the need of re-meshing the Eulerian grid
due to distortion, as for co-deforming mesh approaches.

Since the Lagrangian nodes in principle could be distributed in only
a subset of the domain, the framework is suitable for extension to mul-
tiphase flow applications. The constitutive equation does then not need
to be solved in the non-viscoelastic subset of the domain. This property
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could significantly reduce the computational cost compared to using a
finite volume discretization covering the whole domain. The equation
system is also more or less trivially parallelizable, since the equation
system for each Lagrangian node is independent of the other nodes at
the time of solution.

4. Results

In this section the proposed simulation framework is validated by
numerical experiments. First the method is evaluated for viscoelastic
channel flow, in which the convergence towards the analytic solution
is assessed. Simulations of flow past a confined cylinder of a four-mode
PTT fluid are then compared to numerical results from the literature.

4.1. Fully developed channel flow

Viscoelastic flow in a two-dimensional channel is simulated and com-
pared to analytical solutions for fully developed flow. At the inlet and
outlet Dirichlet conditions are used for pressure and periodic bound-
ary conditions are used for velocity and viscoelastic stresses. Lagrangian
nodes exiting through the outlet thus re-enter at the inlet. The channel
has height 2H and length H, where H = 0.01m. The choice of a relatively
small length is possible due to the periodic inlet and outlet.

The flow starts at rest and a constant pressure drop is imposed over
the channel through the inlet and outlet boundary conditions. Transient
calculations are then carried out until the flow is fully developed. This
is defined with respect to the condition

b = Pull
!l

where ¢, is velocity, shear stress or normal stress at global time step n,
€] IS a tolerance, and ||¢|| denotes the norm

< Etol> (22)

[lull = (23)

where ¢, ; is the value at the center of cell i. In all simulations of the
channel flow values below 5.0 - 10~!° were reached for the stresses and
below 5.0 - 10~3 for the velocity.

The flow is simulated for the UCM and Oldroyd-B models with a sin-
gle relaxation mode. Then F(z) = 1 in (4). A viscosity ratio g is defined
as

=_*
H+n
which for the UCM model is zero by definition and for the Oldroyd-B
model 0< f<1. Here g = 1/9 is used, which is a common choice. BSD
is used as stabilization due to the large stresses at fully developed con-
ditions.

The level of elasticity is characterized Deborah number De =
AU /H [2]. The Reynolds number is defined as Re = pHU /#,, where
ny = 4 +n. The parameters n =1 Pa s and U = 0.1 m/s are constant
and De is varied between simulations by changing A. For all flows the
Re = 0.001. The pressure drop over the channel corresponding to a given
mean velocity is calculated from the analytic solution of Waters and
King [37].

The flow is simulated with the respective models for three parame-
ters sets. In Table 1 4, De and the artificial viscosity y; are listed. The

)

Table 1
Channel flow parameters.
A(s) De 1y (Pas)
0.01 0.1 102
0.1 1 108
1 10 104
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Table 2

Grids used in the convergence study for the channel flow.
Grid H/Ax #cells
G1 5 50
G2 10 200
G3 20 800
G4 40 3200
G5 80 12,800

Deborah numbers cover two orders of magnitude. The values of u;, were
found suitable for stable results for the respective flows.

The flows are simulated with five uniform grids of varying resolution
to study the accuracy of the method. The grids are defined in Table 2.
Relatively long time steps are taken, with At/ A = 1072, in order to reach
fully developed flow as fast as possible.

In Fig. 4 the calculated velocity, shear stress and normal stress are
shown across the channel at x = %H for the UCM fluid and De = 10
for the grids G1, G3 and G5. The remaining two grids follow the same
trends and are omitted. In these simulations ngy;; = 2 and ny,, = 5 are
used. However, it is found that no nodes are added or deleted in this
flow, so for this case the value of n,,,, is actually redundant. Velocities

1.0 I
o Gl
08H o g3
¢ Gb f
o 0.6 H — Analytic w/
b o
> 04 _})’/D;:
0.2
0.0
0.0 0.5 1.0 1.5 2.0
u/U
1.0 I T
3 =
0.8 o 03 -
¢ G5
o 0.6 '\K — Analytic|]
e
> 04 KN
0.2 *::\
0.0
0.0 02 04 06 08 1.0 1.2
Tz:c/Tz:v,w
1.0 T I
o Gl
08 o @3 ]
o G5
= 0.6 —  Analytic|]
=
= 04
0.2
0.0
00 02 04 06 08 10 1.2
Tay /[ Tey,w

Fig. 4. Simulated fully developed velocity (top), shear stress (middle) and nor-
mal stress (bottom) calculated with the UCM model for De = 10. Computed using
Rgplit = 2.
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10~4 e
&
10~°
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Axz/H

Fig. 5. Relative errors with respect to analytical solution in fully developed
channel flow for velocity (top) and normal stress (bottom) for De = 0.1 (O),
De =1 (/\) and De = 10 (x).

have been normalized with U and the stresses with the analytical wall
stresses T ,, and 7y ,, respectively. The velocity and normal stress
clearly converge to the analytic solution with increased resolution and
the shear stress practically overlaps the analytical curve for all grids.
The corresponding results for De = 1 and De = 0.1 are visually iden-
tical and are therefore omitted. The convergence rates for the three Deb-

orah numbers are estimated using relative errors calculated as

_ e - ¢analytic||

[ g 25)

| |¢analytic| |
where ¢,naiytic is the analytic solution. Thus the errors in all computa-
tional cells contribute to the global error E.

The relative errors of velocity and normal stress, respectively, are
shown in Fig. 5. The convergence is consistent with grid refinement and
practically identical for the different Deborah numbers. The order of ac-
curacy as Ax— 0 is estimated by the linear slope in log space for the
errors obtained on the three finest grids. The resulting slopes are 2 for
both the velocity and the normal stress for all three Deborah numbers. In
other words the computed quantities converge with second order rate,
which is the expected maximum rate due to the accuracy of the momen-
tum and continuity discretization and of the unstructured interpolation.

Since the RBF interpolation includes a linear term and fluid dis-
cretization is second order accurate, the linear shear stress profile should
in principle be calculated exactly. However, small round-off errors occur
in each part of the algorithm due to the precision and tolerances of the
iterative solvers. The relative shear stress errors are found to be below
107? for all simulated flows.

Another aspect of the proposed method is the resolution of the La-
grangian node set. In Fig. 6 the errors obtained on the five grids are
shown for De = 0.1 using ngy;; = 2,3, 4. The velocity errors overlap while
the accuracy of the normal stress increases with ng,;;. The convergence
with grid refinement is at second order rate for the individual values of
ngyic and is thus not affected by increased resolution of the node set. The
decreased errors for increasing ngy;, instead reflect the accuracy of the
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Tax

Ax/H

Fig. 6. Relative errors with respect to analytical solution in fully developed
channel flow for velocity (top) and normal stress (bottom) for Aplie = 2 ),
e = 3 (O and ngprie = 4 (0,).

unstructured stress interpolation from the nodes. Although the normal
stress is more accurately predicted for larger values of ng,;;, the results
suggest that increased grid resolution is the preferred refinement strat-
egy as it also improves the accuracy of the velocity.

The simulations with the Oldroyd-B model with g = 1/9 produced
results equivalent to those for the UCM model. They are therefore not
subject to further discussion.

4.2. Transient channel flow

Starting from rest, a constant pressure drop is imposed over the chan-
nel and the flow is calculated over time. The Oldroyd-B model with a
single relaxation mode is used and the results are compared to the ana-
lytic solution by Waters and King [37].

Again, U =0.1m/s and n = 1.0Pa s are constant and the Deborah
number is varied through A. In addition the viscosity ratio g is varied
between simulations through the solvent viscosity u. First, flows with
p=1/9,1/18,1/29 are simulated for De = 0.1, 1. To avoid diffusing the
solution in time y, = 0 is used.

The computed velocity is compared to the analytical solution at the
center of the channel, with equal distance to the inlet and outlet. In
Fig. 7 the velocity for the first five milliseconds calculated with three
time step lengths are shown for De = 0.1 and De = 1 with g = 1/27. The
analytical solution of Waters and King. [37] is also included. The results
are obtained with grid G3, defined in Table 2. The results clearly con-
verge to the analytic solution and the velocities obtained with the two
smallest time steps practically overlap with the analytic solution. Thus
At/4 =107 and At/4 = 10* for De = 0.1 and De = 1, respectively, are
used for the following simulations.

The computed velocities for f = 1/9,1/18,1/27 are compared to the
analytical solution in Fig. 8 for De = 0.1 and in Fig. 9 for De = 1. As in
the temporal convergence study, the results overlap with the analytic
solution in all cases.

An interesting point of study is the performance as § — 0. The simu-
lations are therefore repeated with g = 0.001 and g = 0 for De = 0.1. For
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Fig. 7. Temporal convergence of centerline velocity for De = 0.1 (top) and De =

1 (bottom) with g =1/27.
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Fig. 8. Centerline velocities for transient startup of channel flow for De = 0.1.
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Fig. 9. Centerline velocities for transient startup of channel flow for De = 1.
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Fig. 10. Centerline velocity for transient startup of channel flow with De = 0.1
and g = 0.001.
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Fig. 11. Centerline velocity for transient startup of channel flow with De = 0.1
and f =0.

these small viscosity ratios it was found necessary to introduce a small
amount of BSD with y, = 0.01 Pas to maintain the numerical stability.
A smaller time step Ar/4 = 10~* was therefore used to reduce the effect
of diffusing the solution in time. The results are shown in Fig. 10 for
f# =0.001 and in Fig. 11 for g = 0. At the small yet nonzero g = 0.001 the
numerical solution matches the analytic solution excellently. At g =0,
the resemblance is still good, but with some discrepancies at the velocity
magnitude peaks. The frequency of the oscillations is however precisely
predicted also for this case.

4.3. Confined cylinder flow

Flows past confined cylinders and spheres are commonly used as
benchmark problems for viscoelastic flows, see [12-14,38,39] for some
examples with models of varying complexity. Due to the confining chan-
nel and the narrowing section around the cylinder the flow includes
shear and extensional characteristics, both of which are important for
viscoelastic flows.

A viscoelastic polyisobutylene solution flowing past a symmetrically
confined cylinder in a channel is studied. The fluid is modelled by a
PTT model with four relaxation modes. The linear form of the relaxation
function is used, for mode i reading

Eidi
F=1+—"2Tr(r),
1

where ¢; is a non-dimensional parameter related to maximum exten-
sion of the polymer network. The values of the parameters are cho-
sen to match those used in the FEM-simulations performed by Baaijens
et al. [12] and are summarized in Table 3.

In Fig. 12 the flow geometry is illustrated. The cylinder is positioned
at x/R =0 and y/R = 0. At the inlet to the left the velocity and stress
profiles obtained from simulations of 2D channel flow are prescribed.

(26)
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Table 3
Parameters for the PTT model used in the con-
fined cylinder flows.

Mode n, (Pas) A(s) €

1 0.443 0.00430 0.39

2 0.440 0.0370 0.39

3 0.0929 0.203 0.39

4 0.00170 3.00 0.39
Table 4

Parameters for the simulations of the confined
cylinder flow case.

U (m/s) 7o (Pa) De Re

0.0115 16.9 0.25 0.019

0.0424 62.2 0.93 0.069

0.1074 157.5 2.32 0.174
]

Fig. 12. Symmetrically confined cylinder geometry.

The right boundary is an outlet with zero pressure while the top and
bottom boundaries are walls with the no slip condition. The total length
of the channel is 20R with equal distance upstream and downstream
of the cylinder. At the cylinder wall the implicit immersed boundary
method [25,26] is used to impose the no slip condition. Stresses are
extrapolated to faces inside the immersed boundary in the same way as
for exterior wall faces when integrating V - 7.
The Reynolds number is defined as pUR/#, with

4
Mo = Z ;-
i=1

Following Baaijens et al. [12] the Deborah number, i.e. the ratio of the
fluids relaxation time and the time scale of observation, is used to char-
acterize the elasticity of the flow, defined as De = AU /R. The mean re-
laxation time 1 is calculated as

@7

(28)

Three flow rates are studied for which the parameters are summa-
rized in Table 4. The stress value 7, = 37,U /R is used to normalize the
stress quantities. The elasticity number El = De/Re ~ 13 for the three
flows. Hence elasticity dominates inertia.

The transient flow is simulated until it is fully developed. Adaptive
time steps are used, calculated such that the CFL condition uAt/Ax <0.1
is satisfied throughout the domain, where u and Ax are the local velocity
and cell size, respectively. A small amount of both sides diffusion with
uy, = ny was found sufficient for these simulations.

A grid independence study is performed for the highest Deborah
number by comparing the stress and velocity profiles for the fully devel-
oped flow. Four uniform grids are used, which are defined in Table 5.
For these simulations ngp;; = 2 and n,,,, = 5 are used for the Lagrangian
node set. The influence of these parameters on the numerical results are
discussed later in this section. The resulting adaptive time steps are ap-
proximately in the range 2.5 - 10™* < At/ < 1.5 - 1073 for the grids used.

Numerical results obtained with the different grids are first com-
pared across the channel downstream of the cylinder at x/R = 1.5, since
this is an important region of the flow. In Fig. 13 the results from the
four grids are shown. Velocity is normalized by U and stress quantities

27

Journal of Non-Newtonian Fluid Mechanics 266 (2019) 20-32

Table 5
Grids used in the convergence study for the
confined cylinder flow.

Grid Ax Neeiis
M1 R/10 8-103
M2 R/20 32-103
M3 R/40 128-103
M4 R/60 288-10°
15 H e
—— M1 )
M2
~ 10H
= --- M3 =
osll— M4/’x’
0.0 E.
0.0 0.5 1.0 1.5
u/U
2.0 —
. ‘/M |
1.5 M1
M2
1.0 s
s \\\ --- M3
— M
0.5 < =l
0.0
-1 0 1 2
Nl/’To
2.0 i\
b \N
S 10H—— M1 o,
= M2 :}
05H --- M3
— M4 f
0.0
—-1.0 —-0.5 0.0 0.5

sz/TO

Fig. 13. Simulated U (top), N; (middle) and Tyy (bottom) for the confined cylin-
der flow at x/R = 1.5 and with De = 2.32 with the grids defined in Table 5.

by 7. The normal stress difference is defined as

Ny =1 — 1y (29)

It is obvious the resolution of the coarsest grid M1 is insufficient.
The quantities calculated on the three finer grids, however, are very
close across the channel. The grids are further compared by studying
N, along the channel centerline downstream of the cylinder. The results
from the different grids are shown in Fig. 14. From these results it is clear
that also the resolution of grid M2 is insufficient to resolve the large
variations near the stagnation point at the cylinder wall. The normal
stress differences from the two finest grids, on the other hand, are very
close also in this area. The remaining simulations in this section are
therefore performed with grid M3.
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Fig. 14. Simulated N; for the confined cylinder flow along y/R = 0 and with '-g EE nsplis = 3 7
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z/R for 0 <t/ < 1/2 and De = 2.32 near the points defined in Table 6, using gl =
2,3,4 and n,,, = 3.
Fig. 15. Location of points in cylinder channel for monitoring transient stresses. 5
An important aspect of the proposed method is the behavior of the 4 "

stress field near steep stress gradients, particularly how the predicted
stresses are affected by how Lagrangian nodes are added and deleted
between time steps. If these operations introduce significant errors to the

3 e
7

Ni/7o

resulting stress field, non-smooth transient variation or discontinuous 2 / Nsplit = 2 [
jumps in the stresses would be produced. The transient stress quantities / -—- Ngplit = 3
are therefore monitored in a set of relevant points. 1 / — Ny = 4 1
Three points are located at the cross section x/R = 0, which is the 0 I .
narrowest part of the flow. In this area the stress gradients are large, 0.0 0.1 0.2 0.3 0.4 0.5
both in the streamwise and the cross-streamwise direction, due to the ¢ /5\
combination of shear and extensional flow. Large gradients especially
occur near the channel and cylinder walls. Two points along the chan-
nel centerline are also included, at x/R = +1.5. At the upstream point, g
node trajectories diverge and addition of Lagrangian nodes is therefore 0.7 —
expected. The five points are shown in Fig. 15 and defined in detail in 0.6 —
Table 6. - 05 ,/
The flow is simulated at De =2.32 for 0 < ¢/ < 1/2 using ngy; = £ 0.4 /|
2,3,4 and n,,, = 3. The amount of addition and deletion is quantified by = 0.3 / Neplit = 2
. spli
recording the number of nodes that are added and deleted, respectively, // . L _3
within one cell length from each of point. In Fig. 16 the fraction of the 0.2 / feamlis 1
time steps in which at least one node is added or deleted, respectively, 0.1 — Tplit =4
are shown. 0.0 L L
Node addition occurs to a certain degree near all the studied points, 0.0 0.1 0.2 0.3 0.4 0.5
possibly with exception for p,,; where the amount is very low. The t/\
deletion follow the same trend, but is less frequent than the addition.
Both operations increasingly occur as ngp;, and thus the node density, 6
is increased.
In Fig. 17 the obtained transient normal stress differences are shown 5 l—"
at Pyalls Pchan and Py, defined in Table 6. The corresponding shear 4 /
e
~ 3
Table 6 < Nsplit = 2
Location of points in cylinder channel for 2 / —— Nt =3 ]
monitoring transient stresses. 1 _ . H
/ —  Ngplit = 4
Point x/R y/R 0 T T
Pual 0 2 0.0 0.1 0.2 0.3 0.4 0.5
DPchan 0 1.5 t/ 2
Deyi 0 1
g;i;n I;S g Fig. 17. Transient normal stress difference for De = 2.32 at p,.; (tOP), Pehan

(middle) and py (bottom), defined in Table 6, using ngy;; = 2,3,4 and ny,, = 3.
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Fig. 18. Transient shear stress for De = 2.32 at p,,;; (top), pp., (middle) and

Pey1 (bottom), defined in Table 6, using ngy; = 2,3,4 and ny,, = 3.

stresses are shown in Fig. 18. The solutions obtained with the different
node sets essentially overlap, and no discontinuous jumps are observed.
Similar results for p,ps and pgown are shown in Fig. 19. The shear stresses
are zero along y/R = 0 and have therefore been omitted.

The analysis has been repeated for ng,, =5. The node addition
and deletion is then less frequent, which is expected, but the transient
stresses overlap those for n.,,, = 3. The results indicate that the errors
introduced when nodes are added or deleted are very small.

It is remarked that some viscoelastic startup effects are visible in
the transient curves, e.g. as smooth oscillations of N; at p.,,. The flow
patterns follow from the elastic overshoot that occurs when the flow is
initiated from rest, and are similar to those that were simulated for the
transient channel flow, discussed in Section 4.2.

The remaining results presented have been calculated using ng,j;; = 2
and n,,, =5, i.e. the parameters used in the grid independence study.
The simulations are compared qualitatively to finite element simulations
performed by Baaijens et al. [12]. This is made in cross sections and
along the channel centerline y/R = 0. The cross sections are located in
the upstream and downstream neighborhoods of the cylinder at x/R =
—1.5 and x/R = 1.5, respectively, and far upstream of the cylinder at
x/R = -5.
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Fig. 19. Transient normal stress difference for De = 2.32 at py (top) and paqun
(bottom), defined in Table 6, using ngy; = 2,3,4 and ny,,, = 3.
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Fig. 20. Profiles of U (top), N; (middle) and Tyy (bottom) across the channel
at De = 0.25, computed with the proposed method ( - ) and compared to FEM-
simulations ([]) of Baaijens et al. [12].
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Fig. 21. Profiles of U (top), N; (middle) and 7,,, (bottom) across the channel
at De = 0.93, computed with the proposed method ( - ) and compared to FEM-
simulations ([J) of Baaijens et al. [12].

In Figs. 20-22 the computed velocities and stress quantities are
shown in the cross sections, respectively for the three flows. The re-
sults show overall agreement with the simulations of Baaijens et al. In
particular, considering that they are produced by two completely dif-
ferent numerical methods. Some differences are visible at the highest
Deborah number for N; at x/R = —1.5. Note however that the authors
do not have access to the raw data of Baaijens et al., which could explain
small discrepancies.

The results are further compared along the channel centerline, y/R =
0. The velocity and normal stress differences are shown in Figs. 23-25
respectively for the three flows. The shear stress is zero along y/R =
0 and is omitted. Again overall resemblance is found. For De = 2.32,
better agreement for N; around x/R = —1.5 is observed, compared to the
discrepancies in Fig. 22. Some differences in N; for De = 2.32 are visible
downstream of the cylinder. On the contrary, the comparison across
the channel in Fig. 22 suggest that the simulations are in reasonable
agreement in the area.

In conclusion, reasonable agreement with the simulations performed
by Baaijens et al. is obtained. Some differences are observed at the high-
est Deborah number. The discrepancies may however be result of uncer-
tainties in the data.

The computational performance of the stress calculation is evaluated
by simulating 100 time steps in the cylinder case with different numbers
of nodes and processor threads. The results show that the simulation
time is approximately proportional to the number of nodes and in-
versely proportional to the number of processor threads. In other words
the calculation scales well with the number of nodes and is suitable
for GPU parallelization. This is useful for efficient calculation of large
problems.
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Fig. 22. Profiles of U (top), N; (middle) and 7, (bottom) across the channel

at De = 2.32, computed with the proposed method ( - ) and compared to FEM-
simulations ([(J) of Baaijens et al. [12].
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Fig. 23. U (top) and N; (bottom) along channel centerline at De = 0.25, com-

puted with the proposed method ( - ) and compared to FEM-simulations ([]) of
Baaijens et al. [12].
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Fig. 25. U (top) and N; (bottom) along channel centerline at De = 2.32, com-
puted with the proposed method ( —) and compared to FEM-simulations ([]) of
Baaijens et al. [12].

5. Conclusion

A novel Lagrangian-Eulerian framework for simulation of viscoelas-
tic flow has been proposed, in which the constitutive equation is solved
in Lagrangian nodes that are convected by the fluid. The constitutive
equation is coupled to the fluid momentum through the divergence
of the viscoelastic stress. A robust and accurate radial basis function
method is therefore used to interpolate the stresses to the fluid cell cen-
ters.

Numerical simulations of viscoelastic channel flow compared
well with analytic solutions for fully developed and transient flows,
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respectively, for UCM and Oldroyd-B fluids. The simulation framework
produced results with consistent convergence towards the analytic
solution over a wide range of the viscoelastic flow domain.

The proposed simulation framework also produced results in good
agreement with available numerical data for a more realistic viscoelastic
fluid modelled as a PTT fluid with four relaxation modes in flow past a
confined cylinder. This flow is of more complex nature and includes both
shear flow and extensional flow characteristics. The agreement there-
fore further validates the simulation framework. It also demonstrates
that the framework is compatible with immersed boundary methods.
Further and more detailed studies of benchmark flows should however
be carried out with the proposed method.

In the Lagrangian formulation of the constitutive equation, the
discretization of the convective term in the corresponding Eulerian
transport equation is avoided. In addition, no re-formulation of the equa-
tions, e.g. the log-conformation approach, was required to obtain stable
solutions. No other stabilization than both sides diffusion was used.

The equation systems in the nodes are independent at the time of so-
lution. The framework is therefore trivially parallelizable, which makes
fast calculation of the viscoelastic stresses possible, for example through
GPU acceleration. In addition, a performance study also showed that the
simulations scale well with the number of nodes and the number of pro-
cessor threads used for calculating the viscoelastic stresses.

The spatial discretization of the constitutive equation does not re-
quire any pre-processing step, but is reduced to the task of distributing
the Lagrangian nodes throughout the fluid domain. The distribution of
the node set is carried out based on information from the fluid solver
where to place nodes and at which distribution density, so the flexibility
and ability to simulate flow in complex geometries is as general as for
the fluid solver itself. The combination of the automatically generated
fluid grid and the immersed boundary method is therefore promising
for simulation of viscoelastic flows in complex, possibly moving geome-
tries. Extension to simulation of multiphase flows of viscoelastic fluids
is more or less straightforward. This may be done in a computationally
efficient way, as Lagrangian nodes only needs to exist in the viscoelastic
part of the domain.

In conclusion, a highly capable framework for simulation of vis-
coelastic flows has been proposed. In future work we will present more
detailed benchmark studies of the proposed method and the extension
to multiphase flow in two and three dimensions, with applications in
adhesive extrusion, part assembly and hemming processes.
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