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a b s t r a c t 

A novel framework for simulation of transient viscoelastic fluid flow is proposed. The viscoelastic stresses are 
calculated at Lagrangian nodes which are distributed in the computational domain and convected by the fluid. 
The coupling between the constitutive equation and the fluid momentum equations is established through robust 
interpolation with radial basis functions. 

The framework is implemented in a finite volume based flow solver that combines an octree background 
grid with immersed boundary techniques. Since the distribution of the Lagrangian node set is performed entirely 
based on spatial information from the fluid solver, the ability to simulate flows in complex geometries is therefore 
as general as for the fluid solver itself. 

In the Lagrangian formulation the discretization of the convective terms in the constitutive equations is 
avoided. No re-formulation of the constitutive equation is required for stable solutions. Numerical experiments 
are performed of UCM and Oldroyd-B fluids in a channel flow and of a four mode PTT fluid in a confined cylinder 
flow. The computed flow quantities consistently converge and agree excellently with analytical and numerical 
data for fully developed and transient flow. 
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. Introduction 

Viscoelastic flows are present in many industrial processes where it is
ften important to predict the outcome in terms of quality and repeata-
ility. Simulation tools can therefore be extremely useful, but require
odels which accurately describe the underlying physics and that are

fficiently implemented in a numerical framework. 
Viscoelastic fluids are described with constitutive models that pro-

ide equations for the viscoelastic stress tensor. The Upper Convected
axwell (UCM) model and the Oldroyd-B model [1] are generalizations

f linear viscoelastic models. They do not impose any limit on polymer
longation and may therefore produce unbounded normal stresses. For
he same reason they pose numerical challenges and are useful for study-
ng the performance of numerical algorithms for viscoelastic flows [2] . 

Nonlinear models can describe the stresses in a more physically cor-
ect way. By adding a quadratic term to the UCM model the Giesekus
odel is obtained [1] . The Finitely Extensible Nonlinear Elasticity

FENE) models, e.g. FENE-P and FENE-CR [3] , are derived by treating
he viscoelastic fluid as a dilute solution of nonlinear, finitely extensible
umbbells. Another popular model is the PTT model, which was pro-
osed in 1977 by Thien and Tanner [4] . The model is derived using
etwork theory for non-affine motions between polymer chains. 
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Another important aspect is numerical stability. Instabilities and
onvergence issues can arise even for moderate Weissenberg num-
ers, commonly referred to as the High Weissenberg Number Prob-
em (HWNP) [5] . Different strategies to remedy the issues have been
roposed. Some aim to enhance the ellipticity of the problem through
iffusion, such as Elastic-Viscous Stress Splitting (EVSS) [6] or both-
ides diffusion (BSD). Other strategies are to reduce the stiffness of the
quations or to preserve positive definiteness of the conformation ten-
or. Some examples are the Positive Definiteness Preserving Scheme
PDPS) by Stewart et al. [7] , the Square Root Conformation Repre-
entation (SRCR) by Balci et al. [8] , and the Log-Conformation Rep-
esentation (LCR) by Fattal and Kupferman [9,10] . A comparison be-
ween different stabilization approaches can be found in Chen et al.
11] . 

A common approach for simulating viscoelastic flow is to
olve all equations with an Eulerian discretization using finite ele-
ents [12,13] or finite volumes [14,15] . The Eulerian frame of refer-

nce is suitable for diffusion-dominated problems. Viscoelastic consti-
utive equations are however hyperbolic and often include no physical
iffusion term. In finite volume methods, the convective term in the
onstitutive equation therefore needs to be discretized with specialized
igh-order schemes in order to avoid numerical diffusion [15] . 
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An alternative approach is the Lagrangian frame of reference. Ras-
ussen and Hassager [16] developed a Lagrangian method to solve the

quations of viscoelastic flow with an integral UCM model using finite
lements. The entire deformation history was stored and re-meshing
as necessary. Harlen et al. [17] proposed a split Lagrangian-Eulerian
ethod in which viscoelastic Stokes flow was calculated by solving the

onstitutive equations in the Lagrangian frame of reference in the nodes
f a co-deforming mesh. Equations for velocity and pressure were solved
ith an Eulerian finite element method. As the mesh was distorted the
odes were reconnected with Delaunay triangulation to form new ele-
ents. Halin et al. [18] developed a finite element method in which the

onstitutive equation was integrated along particle trajectories, denoted
he Lagrangian Particle Method (LPM). Local polynomial approxima-
ions were fitted to the stress in each element for evaluation of the finite
lement integrals. At least 3 particles were therefore required in each
wo-dimensional element for the simulations not to fail. The method was
ater refined to the Adaptive Lagrangian Particle Method (ALPM) [19] ,
n which particles were created and deleted when necessary. A fairly
arge number of particles was still needed for stable transient result.
 backward-tracing version of the method was also later proposed,
enoted BLPM [20] . Phillips and Williams [21] used a semi-Lagrangian
nite volume method in which the convective terms in all equations
ere calculated by tracing the vertices of control volumes backwards in

ime. The remaining terms were then integrated over a staggered grid
rrangement. 

Eulerian finite volume discretization on non-staggered grids is a
ell-established approach in computational fluid dynamics. Additional
odels, e.g. coupling to heat transfer or simulation of multiphase
ow with the Volume of Fluid (VOF) method can be added with the
ame discretization. Furthermore, the Lagrangian frame of reference
ay be preferable when calculating the viscoelastic stresses. Hence

here is a need for a robust and efficient method to combine the two
pproaches. 

In this paper such a framework is presented. The constitutive equa-
ion is solved at Lagrangian nodes which are convected by the fluid.
he stresses are then interpolated to the fluid grid using radial basis
unctions (RBF) [22,23] and included in the momentum equations. The
ovelty of the method is in the combination of the mesh-free node set
nd the robust information transfer between the Lagrangian and Eule-
ian frames through interpolation. The method thus imposes no lower
imit on the number of nodes per cell for the interpolation to succeed. In
ddition, the Eulerian grid never needs to be re-meshed due to distortion
s in co-deforming Lagrangian approaches. 

No stabilization technique other than both sides diffusion is required
o obtain stable results and the framework supports viscoelastic flow in
rbitrary geometry with exterior and immersed boundary conditions.
he method is suitable for extension to two-fluid flows, for which the
onstitutive equation would only need to be solved in the viscoelastic
ubset of the domain. 

The framework is implemented in IPS IBOFlow® [24] , which is an
ncompressible flow solver that utilizes implicit immersed boundary
ethods to impose boundary conditions of interior objects in the com-
utational domain [25,26] . The fluid momentum and continuity equa-
ions are discretized on a Cartesian octree grid which is automatically
enerated and dynamically refined. The solver is suitable for simula-
ion of flows including complex moving geometries and for applications
ith multiple coupled physical phenomena. The solver has been suc-

essfully employed to simulate e.g. conjugated heat transfer [27] , fluid-
tructure interaction [28] and two-phase flows of shear thinning fluids
ith the Volume of Fluids (VOF) method, with applications for seam

ealing [29,30] and adhesive extrusion [31] . 
The rest of the paper is structured as follows. First the govern-

ng equations are stated, followed by a presentation of the numerical
ethod. In the results section the accuracy and performance is validated
ith numerical experiments. First viscoelastic channel flow is simulated
nd compared to analytic solutions for steady and transient flow. The
21 
ow past a confined cylinder of a PTT fluid with four relaxation modes
s then studied and the results are compared to available numerical data.
inally, the last section summarizes the paper and some future work is
utlined. 

. Governing equations 

Viscoelastic fluid flow is modeled with the incompressible fluid mo-
entum and continuity equations 

𝜕𝐮 
𝜕𝑡 

+ 𝜌𝐮 ⋅ ∇ 𝐮 = −∇ 𝑝 + ∇ ⋅ 𝜎 + 𝐟 , (1)

 ⋅ 𝐮 = 0 , (2)

here 𝜌 is density, u velocity, p pressure, 𝜎 extra stress and f a body
orce. The extra stress may be decomposed in a solvent contribution
nd a viscoelastic contribution as 

= 2 𝜇𝐒 + 𝜏, (3)

here 𝜇 is solvent viscosity, 𝐒 = 

1 
2 (∇ 𝐮 + (∇ 𝐮 ) 𝑇 ) strain rate and 𝜏 vis-

oelastic stress. A constitutive equation for 𝜏 can be written on the form

▽
𝜏 + 𝐹 ( 𝜏) 𝜏 = 2 𝜂𝐒 , (4)

here 𝜆 is relaxation time, F a relaxation function, 𝜂 polymeric viscosity

nd 
▽
𝜏 the upper convected derivative of 𝜏, reading [1] 

𝜏 = 

𝑑𝜏

𝑑𝑡 
− ∇ 𝐮 𝑇 ⋅ 𝜏 − 𝜏 ⋅ ∇ 𝐮 . (5)

In (5) d / dt denotes the material time derivative, i.e. the Lagrangian
erivative, which in the Eulerian frame of reference reads 

𝑑𝜏

𝑑𝑡 
= 

𝜕𝜏

𝜕𝑡 
+ 𝐮 ⋅ ∇ 𝜏. (6)

A viscoelastic material may in general be modeled with multiple re-
axation modes. For a material with N modes the stress modes 𝜏k , where
 = 1 , … , 𝑁, are then described by (4) with relaxation times 𝜆k , poly-
eric viscosities 𝜂k and relaxation function F k . The total viscoelastic

tress is the sum of the stress modes, namely 

= 

𝑁 ∑
𝑘 =1 

𝜏𝑘 . (7) 

. Numerical method 

A simulation framework is proposed in which the viscoelastic stresses
re solved in a Lagrangian node set distributed in the viscoelastic fluid.
he momentum and continuity equations (1) and (2) are solved us-

ng an Eulerian finite volume discretization and are integrated in time
sing the implicit Euler method. Coupling to the constitutive equa-
ion is established through the divergence of the viscoelastic stress
ensor, which is interpolated to the Eulerian grid by using radial ba-
is functions (RBF). The main steps carried out in each simulation
ime step are: 

• Solve the constitutive equation and convect the stresses in La-
grangian nodes. 

• Interpolate viscoelastic stresses to Eulerian grid using RBF. 
• Integrate ∇ · 𝜏 over fluid cells and add as sources in the discretized

momentum equation. 
• Solve the momentum and continuity equations. 
• Control the distribution of Lagrangian nodes. 

he involved steps are described in detail below. 
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Fig. 1. Concept of Lagrangian node trajectory in the fluid flow field. 
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.1. Solution of the constitutive equation 

Consider a set of Lagrangian nodes distributed in the viscoelastic
uid. The position x of a node that is convected by the fluid is described
y 

𝑑𝐱 
𝑑𝑡 

= 𝐮 , (8)

here u is the local velocity. Convection and evolution of N viscoelastic
tress modes in the node are thus described by the system of ordinary
ifferential equations (ode) 

 

 

 

 

 

 

 

𝐱̇ = 𝐮 
̇𝜏1 = 𝐺 1 ( 𝜏1 , ∇ 𝐮 ) 
⋮ 
̇𝜏𝑁 = 𝐺 𝑁 ( 𝜏𝑁 , ∇ 𝐮 ) 

, (9)

here ̇(∙) denotes time derivative. The corresponding right hand sides
 k follow directly from the constitutive equation and are evaluated at

he node. The quantities u and ∇ u in the right hand side of (9) , are
btained at the node from the fluid grid by bilinear or trilinear interpo-
ation, respectively for two and three dimensions. In Fig. 1 the concept
f transporting and calculating the stresses in a Lagrangian node is il-
ustrated. 

A suitable method is needed to solve the ode system (9) . In the cur-
ent work it is solved using a backward differentiation formula (BDF)
hat is available in the Sundials CVODE library [32,33] . A linear system
f equations for the solution to (9) from time 𝑡 𝑛 −1 to t n then takes the
orm 

𝑡 𝑛 𝛾𝑛 ̇𝐲 𝑛 + 

𝑞 ∑
𝑖 =0 
𝛼𝑛,𝑖 𝐲 𝑛 − 𝑖 = 𝟎 , (10)

here the subscript n denotes a property at time t n , Δ𝑡 𝑛 = 𝑡 𝑛 − 𝑡 𝑛 −1 is
he local step size, 𝛾n and 𝛼𝑛, 0 , … , 𝛼𝑛, 1 are coefficients, y n is the solution
ector and q is the order of the method. In the current work 𝑞 = 2 is
hosen due to its stability properties. More specifically it is A-stable,
uch that for 𝜅 < 0 the method is unconditionally stable for the scalar
odel problem 𝑦̇ = 𝜅𝑦 [33] . 

The ode system (9) is solved for a global fluid time step through
ultiple local time steps. The number of steps is based on local error es-

imation in the ode solver. For more details the reader is referred to [33] .
The coupling between viscoelastic stresses and fluid momentum

s explicit, since the velocity field is kept fixed when calculating the
tresses and vice versa. The ode system is however solved implicitly, in
he sense that 𝐲̇ 𝑛 depends on y n in (10) . Since u and ∇ u vary along the
ode trajectory they are interpolated to the node in each iteration. 

For all components of y the relative and absolute integration tol-
rances are set to 10 −6 . The tolerances correspond to the relative and
bsolute differences of the solved variables between two subsequent it-
rations. The chosen tolerances were found to produce consistent results
hile even smaller values did not give further improvement. 
22 
.2. Interpolation of viscoelastic stresses 

Radial basis functions (RBF) are used to interpolate the viscoelastic
tress from the Lagrangian nodes to the Eulerian grid. The interpolant

 ̂( 𝐱) of a function f ( x ), whose values are known in a set of points 
{
𝐱 𝑖 
}𝑁 𝑐 
𝑖 =1 ,

s calculated as [22] 

 ̂( 𝐱) = 

𝑁 𝑐 ∑
𝑖 =1 
𝑤 𝑖 𝜙( 𝜉|𝐱 − 𝐱 𝑖 |) + 𝐯 𝑇 

[ 
1 
𝐱 

] 
, (11)

here 
{
𝑤 𝑖 

}𝑁 𝑐 
𝑖 =1 are the interpolation weights, 𝜙( r ) the RBF, 𝜉 a scaling

arameter and v a vector of first order polynomial coefficients. The in-
erpolation weights and the polynomial coefficients are obtained from
olving the linear system 

 

𝐴 𝐵 

𝐵 𝑇 𝟎 

] [ 
𝐰 

𝐯 

] 
= 

[ 
𝐟 
𝟎 

] 
(12)

here 

 𝑖𝑗 = 𝜙( 𝜉|𝐱 𝑖 − 𝐱 𝑗 |) , (13)

 = 

[ 
1 ⋯ 1 
𝐱 1 ⋯ 𝐱 𝑁 𝑐 

] 𝑇 
(14)

 = [ 𝑤 𝑖 ⋯ 𝑤 𝑁 𝑐 
] 𝑇 , (15)

 = [ 𝑓 ( 𝐱 𝑖 ) ⋯ 𝑓 ( 𝐱 𝑁 𝑐 )] 
𝑇 . (16)

Different choices of basis function are possible. In the current work
ne of Wendland’s compactly supported RBF is used, reading [22] 

( 𝑟 ) = 

{ 

(1 − 𝑟 ) 2 , 0 ≤ 𝑟 ≤ 1 
0 , 𝑟 > 1 . (17)

This particular RBF is unconditionally positive definite, such that A
s positive definite and (12) yields a unique solution [23] . 

The interpolation could in principle be performed using all points
here f is known. However, since the computational cost for solving

he dense system (12) increases rapidly with the number of points, only

hose within a search radius R s are included. For this, 𝑅 𝑠 = 

√
2 Δ𝑥 ∕2 ,

here Δx is the local cell size, was chosen. When interpolating the
tresses to a cell center the search radius then covers at least all nodes
n that cell by construction. The scaling parameter 𝜉 = 10 −3 was cho-
en, which was found suitable by testing the interpolation routine for
 wide range of values. It is remarked that for non-uniform or unstruc-
ured grids, a relevant length scale, e.g. the longest cell side, could be
hosen to define R s . 

An efficient method to find all nodes located within distance R s 

rom the point of interpolation is necessary to keep the computational
ost low. For this an R-tree data structure from the Boost C++ li-
raries [34] is used, so that the nodes are spatially subdivided into boxes
ith decreasing size at each level. This allows for fast neighbor searches.
ince R s is defined in relation to the cell sizes of the Eulerian grid, an
lternative approach would be to store the nodes residing in each cell
nd look in the nearest cells when searching for the nodes. The R-tree
pproach is however both efficient and general, as it puts no special
emand on the structure of the fluid grid. It is therefore used in the cur-
ent implementation but other suitable node search strategies are also
ossible. 

.3. Coupling between equations 

The divergence of the viscoelastic stress tensor is integrated over
he Eulerian control volumes and added as a source in the discretized
omentum equation. In Fig. 2 a two-dimensional control volume with

ts faces and neighbors is shown. 
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Fig. 2. Two-dimensional control volume with faces and neighbors. 
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The integral of the stress divergence is calculated using Gauss’s di-
ergence theorem as 

Δ𝑉 
∇ ⋅ 𝜏𝑑𝑉 = 

∑
𝑓 

𝐴 𝑓 ̂𝐧 𝑓 ⋅ 𝜏𝑓 , (18)

here the sum is taken over the cell faces, A f , 𝐧̂ 𝑓 and 𝜏f are the sur-
ace area, surface normal and viscoelastic stress, at face f , respectively.
he face stress is approximated with linear interpolation from the cells
haring the face. 

At wall boundaries the stresses are linearly extrapolated to the face
rom the value at the center of the boundary cell and its neighbor in the
pposite direction from the boundary. This gives a better approximation
t the face than setting the wall stress equal to the cell center value. 

For calculation of steady flows, both sides diffusion (BSD) may be
ntroduced in (1) . An artificial viscous stress 𝜏𝑏 = − 𝜇𝑏 𝐒 is then added to
oth sides of the equation. In the discretization this term is treated im-
licitly as a standard viscous term on the left hand side and calculated
xplicitly on the right hand side. The explicit part is calculated accord-
ng to the improved BSD method proposed by Fernandes et al. [35] .
he velocity gradient ∇ u is then first calculated in each cell using cen-
ral differences. The divergence term − 𝜇𝑏 ∇ ⋅ 𝐒 is then calculated as for
he viscoelastic stress in (18) . Since the explicit and implicit parts differ
henever transient features are present in the velocity field, numerical
iffusion is introduced. This results in fictitious stress responses in time
ependent flow. The approach is therefore not suitable for accurate pre-
iction of transient flows [36] . When the flow reaches a steady state,
owever, the explicit and implicit parts cancel. BSD may therefore be
sed to stabilize simulations where the final steady flow is of interest. 

.4. Node distribution 

The Lagrangian nodes are distributed in the Eulerian fluid cells as
ollows. Each cell is divided into 𝑛 𝑑 

split 
sub-volumes, where 𝑛 split ≥ 1 is

he number of sub-volumes along each spatial direction and d is the
imension of the problem. A node is then placed at the center of each
ub-volume. The node distribution in a two-dimensional cell is shown
n Fig. 3 for 𝑛 split = 2 and 𝑛 split = 3 . 

During the simulation, the node set is maintained in each time step
efore solving the constitutive equations. A Lagrangian node is added
t the center of each sub-volume that does not contain a node in its
lose neighborhood. The neighborhood is defined as the box with the
ig. 3. Subdivision of a two-dimensional cell for distributing Lagrangian nodes 
ith 𝑛 split = 2 (left) and 𝑛 split = 3 (right). 
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23 
ame center as the sub-cell and with the side Δ𝑥 ∕ 𝑛 split (1 + 𝜀 neigh ) , where
 neigh > 0. Stresses in added nodes are interpolated from the current node
et. In this work 𝜀 neigh = 0 . 1 was found suitable. 

A number n max ≥ 1 is also defined, corresponding to the maximum
umber of nodes in each sub-volume. If the number of nodes in a sub-
olume exceeds n max , nodes are deleted until the number of nodes is
qual to n max . This is done by identifying the pairwise closest nodes,
elete them and create a new node that is given their mean position
nd stress. The strategy for adding and deleting nodes is inspired by
hat of the Adaptive Lagrangian Particle Method by Gallez et al. [19] .
n addition in the current work is that also the deletion step is carried
ut in the individual sub-volumes. 

.5. Expected accuracy 

Since the velocity gradient is required in the constitutive equation,
he accuracy of the solution to the constitutive equation is limited to
hat of ∇ u . For central differences, it holds that for example at cell
ace e 
𝜕𝑢 

𝜕𝑥 

)
𝑒 
= 

𝑢 𝑃 − 𝑢 𝐸 

Δ𝑥 
+  (Δ𝑥 2 ) , (19)

here u P and u E are the velocities at the current and neighbor cells
haring the face. Here (19) , which can be easily be verified using Taylor
xpansion, is given in one dimension for simplicity. While (19) is true
or the velocity gradient at the face, which is used in the discretization of
he momentum equation, it is not necessarily true for arbitrary positions.
herefore the accuracy of the calculated stress can be expected to be at
ost second order but likely lower on average. 

The accuracy of the stresses in the cell centers are further constrained
y that of the interpolation routine. In simplified terms, the interpola-
ion error depends on the distance between nodes [22] . Assume that the
ean distance between two nodes is 

 𝑝 = 

Δ𝑥 
𝑛 split 

, (20)

hich is true upon initialization the node set. The interpolant can then
e written as 

 ̂= 𝑓 + 𝐸( 𝑙 𝑝 ) , (21)

here 𝑓 is the interpolant, f the exact value and E denotes the error
hich increases with l p . 

.6. Implementation 

The proposed method is implemented in IPS IBOFlow, an incom-
ressible Navier-Stokes flow solver. The fluid momentum and continuity
quations, are discretized on a Cartesian octree grid. Boundary condi-
ions imposed on the flow equations from internal objects are treated
ith the immersed boundary method [25,26] . The generation of the oc-

ree grid is fully automatic and dynamic. A key feature of the framework
s therefore the capability to easily handle moving complex geometry. 

One advantage with the proposed method is that discretization of
he convective term in the Eulerian form is avoided. Another advantage
s the geometrical flexibility resulting from the mesh-free nature of
he Lagrangian node set. The only boundary condition that needs to
e specified for the constitutive equation is the stress at inlets. Effects
rom other flow boundaries such as walls, outlets and symmetries are
mplicitly imposed on the constitutive equation through the velocity
radient. Thus complex geometries that can be handled by the fluid
olver are also supported by the viscoelastic stress solver. Further, the
esh-free formulation avoids the need of re-meshing the Eulerian grid
ue to distortion, as for co-deforming mesh approaches. 

Since the Lagrangian nodes in principle could be distributed in only
 subset of the domain, the framework is suitable for extension to mul-
iphase flow applications. The constitutive equation does then not need
o be solved in the non-viscoelastic subset of the domain. This property
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Table 2 

Grids used in the convergence study for the channel flow. 

Grid H / Δx #cells 

G1 5 50 
G2 10 200 
G3 20 800 
G4 40 3200 
G5 80 12,800 
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fl  
ould significantly reduce the computational cost compared to using a
nite volume discretization covering the whole domain. The equation
ystem is also more or less trivially parallelizable, since the equation
ystem for each Lagrangian node is independent of the other nodes at
he time of solution. 

. Results 

In this section the proposed simulation framework is validated by
umerical experiments. First the method is evaluated for viscoelastic
hannel flow, in which the convergence towards the analytic solution
s assessed. Simulations of flow past a confined cylinder of a four-mode
TT fluid are then compared to numerical results from the literature. 

.1. Fully developed channel flow 

Viscoelastic flow in a two-dimensional channel is simulated and com-
ared to analytical solutions for fully developed flow. At the inlet and
utlet Dirichlet conditions are used for pressure and periodic bound-
ry conditions are used for velocity and viscoelastic stresses. Lagrangian
odes exiting through the outlet thus re-enter at the inlet. The channel
as height 2 H and length H , where 𝐻 = 0 . 01m . The choice of a relatively
mall length is possible due to the periodic inlet and outlet. 

The flow starts at rest and a constant pressure drop is imposed over
he channel through the inlet and outlet boundary conditions. Transient
alculations are then carried out until the flow is fully developed. This
s defined with respect to the condition 

||𝜙𝑛 − 𝜙𝑛 −1 ||||𝜙𝑛 || < 𝜀 tol , (22)

here 𝜙n is velocity, shear stress or normal stress at global time step n ,
 tol is a tolerance, and || •|| denotes the norm 

|𝜙𝑛 || = 

√ √ √ √ 

𝑁 cells ∑
𝑖 =1 

𝜙2 
𝑛,𝑖 
, (23)

here 𝜙n,i is the value at the center of cell i . In all simulations of the
hannel flow values below 5 . 0 ⋅ 10 −10 were reached for the stresses and
elow 5 . 0 ⋅ 10 −13 for the velocity. 

The flow is simulated for the UCM and Oldroyd-B models with a sin-
le relaxation mode. Then 𝐹 ( 𝜏) = 1 in (4) . A viscosity ratio 𝛽 is defined
s 

= 

𝜇

𝜇 + 𝜂
, (24)

hich for the UCM model is zero by definition and for the Oldroyd-B
odel 0 < 𝛽 < 1. Here 𝛽 = 1∕9 is used, which is a common choice. BSD

s used as stabilization due to the large stresses at fully developed con-
itions. 

The level of elasticity is characterized Deborah number De =
𝑈∕ 𝐻 [2] . The Reynolds number is defined as Re = 𝜌𝐻𝑈∕ 𝜂0 , where

0 = 𝜇 + 𝜂. The parameters 𝜂 = 1 Pa s and 𝑈 = 0 . 1 m/s are constant
nd De is varied between simulations by changing 𝜆. For all flows the
e = 0 . 001 . The pressure drop over the channel corresponding to a given
ean velocity is calculated from the analytic solution of Waters and
ing [37] . 

The flow is simulated with the respective models for three parame-
ers sets. In Table 1 𝜆, De and the artificial viscosity 𝜇 are listed. The
b 

Table 1 

Channel flow parameters. 

𝜆 (s) De 𝜇b (Pa s) 

0.01 0.1 10 2 

0.1 1 10 3 

1 10 10 4 

F

m
𝑛

24 
eborah numbers cover two orders of magnitude. The values of 𝜇b were
ound suitable for stable results for the respective flows. 

The flows are simulated with five uniform grids of varying resolution
o study the accuracy of the method. The grids are defined in Table 2 .
elatively long time steps are taken, with Δ𝑡 ∕ 𝜆 = 10 −2 , in order to reach

ully developed flow as fast as possible. 
In Fig. 4 the calculated velocity, shear stress and normal stress are

hown across the channel at 𝑥 = 

1 
2 𝐻 for the UCM fluid and De = 10

or the grids G1, G3 and G5. The remaining two grids follow the same
rends and are omitted. In these simulations 𝑛 split = 2 and 𝑛 max = 5 are
sed. However, it is found that no nodes are added or deleted in this
ow, so for this case the value of n max is actually redundant. Velocities
ig. 4. Simulated fully developed velocity (top), shear stress (middle) and nor- 
al stress (bottom) calculated with the UCM model for De = 10 . Computed using 
 split = 2 . 
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Fig. 5. Relative errors with respect to analytical solution in fully developed 
channel flow for velocity (top) and normal stress (bottom) for De = 0 . 1 ( ○), 
De = 1 ( △) and De = 10 ( × ). 
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Fig. 6. Relative errors with respect to analytical solution in fully developed 
channel flow for velocity (top) and normal stress (bottom) for 𝑛 split = 2 ( ○), 
𝑛 split = 3 ( □) and 𝑛 split = 4 ( ⋄, ). 
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l  
ave been normalized with U and the stresses with the analytical wall
tresses 𝜏xx, w and 𝜏xy, w , respectively. The velocity and normal stress
learly converge to the analytic solution with increased resolution and
he shear stress practically overlaps the analytical curve for all grids. 

The corresponding results for De = 1 and De = 0 . 1 are visually iden-
ical and are therefore omitted. The convergence rates for the three Deb-
rah numbers are estimated using relative errors calculated as 

 𝜙 = 

||𝜙 − 𝜙analytic ||||𝜙analytic || , (25)

here 𝜙analytic is the analytic solution. Thus the errors in all computa-
ional cells contribute to the global error E 𝜙. 

The relative errors of velocity and normal stress, respectively, are
hown in Fig. 5 . The convergence is consistent with grid refinement and
ractically identical for the different Deborah numbers. The order of ac-
uracy as Δx →0 is estimated by the linear slope in log space for the
rrors obtained on the three finest grids. The resulting slopes are 2 for
oth the velocity and the normal stress for all three Deborah numbers. In
ther words the computed quantities converge with second order rate,
hich is the expected maximum rate due to the accuracy of the momen-

um and continuity discretization and of the unstructured interpolation.
Since the RBF interpolation includes a linear term and fluid dis-

retization is second order accurate, the linear shear stress profile should
n principle be calculated exactly. However, small round-off errors occur
n each part of the algorithm due to the precision and tolerances of the
terative solvers. The relative shear stress errors are found to be below
0 −9 for all simulated flows. 

Another aspect of the proposed method is the resolution of the La-
rangian node set. In Fig. 6 the errors obtained on the five grids are
hown for De = 0 . 1 using 𝑛 split = 2 , 3 , 4 . The velocity errors overlap while
he accuracy of the normal stress increases with n split . The convergence
ith grid refinement is at second order rate for the individual values of
 split and is thus not affected by increased resolution of the node set. The
ecreased errors for increasing n split instead reflect the accuracy of the
25 
nstructured stress interpolation from the nodes. Although the normal
tress is more accurately predicted for larger values of n split , the results
uggest that increased grid resolution is the preferred refinement strat-
gy as it also improves the accuracy of the velocity. 

The simulations with the Oldroyd-B model with 𝛽 = 1∕9 produced
esults equivalent to those for the UCM model. They are therefore not
ubject to further discussion. 

.2. Transient channel flow 

Starting from rest, a constant pressure drop is imposed over the chan-
el and the flow is calculated over time. The Oldroyd-B model with a
ingle relaxation mode is used and the results are compared to the ana-
ytic solution by Waters and King [37] . 

Again, 𝑈 = 0 . 1 m/s and 𝜂 = 1 . 0 Pa s are constant and the Deborah
umber is varied through 𝜆. In addition the viscosity ratio 𝛽 is varied
etween simulations through the solvent viscosity 𝜇. First, flows with
= 1∕9 , 1∕18 , 1∕29 are simulated for De = 0 . 1 , 1 . To avoid diffusing the

olution in time 𝜇𝑏 = 0 is used. 
The computed velocity is compared to the analytical solution at the

enter of the channel, with equal distance to the inlet and outlet. In
ig. 7 the velocity for the first five milliseconds calculated with three
ime step lengths are shown for De = 0 . 1 and De = 1 with 𝛽 = 1∕27 . The
nalytical solution of Waters and King. [37] is also included. The results
re obtained with grid G3, defined in Table 2 . The results clearly con-
erge to the analytic solution and the velocities obtained with the two
mallest time steps practically overlap with the analytic solution. Thus
𝑡 ∕ 𝜆 = 10 −3 and Δ𝑡 ∕ 𝜆 = 10 −4 for De = 0 . 1 and De = 1 , respectively, are
sed for the following simulations. 

The computed velocities for 𝛽 = 1∕9 , 1∕18 , 1∕27 are compared to the
nalytical solution in Fig. 8 for De = 0 . 1 and in Fig. 9 for De = 1 . As in
he temporal convergence study, the results overlap with the analytic
olution in all cases. 

An interesting point of study is the performance as 𝛽→0. The simu-
ations are therefore repeated with 𝛽 = 0 . 001 and 𝛽 = 0 for De = 0 . 1 . For
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Fig. 7. Temporal convergence of centerline velocity for De = 0 . 1 (top) and De = 
1 (bottom) with 𝛽 = 1∕27 . 

Fig. 8. Centerline velocities for transient startup of channel flow for De = 0 . 1 . 

Fig. 9. Centerline velocities for transient startup of channel flow for De = 1 . 

Fig. 10. Centerline velocity for transient startup of channel flow with De = 0 . 1 
and 𝛽 = 0 . 001 . 

Fig. 11. Centerline velocity for transient startup of channel flow with De = 0 . 1 
and 𝛽 = 0 . 
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26 
hese small viscosity ratios it was found necessary to introduce a small
mount of BSD with 𝜇𝑏 = 0 . 01 Pas to maintain the numerical stability.
 smaller time step Δ𝑡 ∕ 𝜆 = 10 −4 was therefore used to reduce the effect
f diffusing the solution in time. The results are shown in Fig. 10 for
= 0 . 001 and in Fig. 11 for 𝛽 = 0 . At the small yet nonzero 𝛽 = 0 . 001 the
umerical solution matches the analytic solution excellently. At 𝛽 = 0 ,
he resemblance is still good, but with some discrepancies at the velocity
agnitude peaks. The frequency of the oscillations is however precisely
redicted also for this case. 

.3. Confined cylinder flow 

Flows past confined cylinders and spheres are commonly used as
enchmark problems for viscoelastic flows, see [12–14,38,39] for some
xamples with models of varying complexity. Due to the confining chan-
el and the narrowing section around the cylinder the flow includes
hear and extensional characteristics, both of which are important for
iscoelastic flows. 

A viscoelastic polyisobutylene solution flowing past a symmetrically
onfined cylinder in a channel is studied. The fluid is modelled by a
TT model with four relaxation modes. The linear form of the relaxation
unction is used, for mode i reading 

 𝑖 = 1 + 

𝜀 𝑖 𝜆𝑖 

𝜂𝑖 
Tr ( 𝜏) , (26)

here 𝜀 i is a non-dimensional parameter related to maximum exten-
ion of the polymer network. The values of the parameters are cho-
en to match those used in the FEM-simulations performed by Baaijens
t al. [12] and are summarized in Table 3 . 

In Fig. 12 the flow geometry is illustrated. The cylinder is positioned
t 𝑥 ∕ 𝑅 = 0 and 𝑦 ∕ 𝑅 = 0 . At the inlet to the left the velocity and stress
rofiles obtained from simulations of 2D channel flow are prescribed.
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Table 3 

Parameters for the PTT model used in the con- 
fined cylinder flows. 

Mode 𝜂p (Pa s) 𝜆 (s) 𝜀 

1 0.443 0.00430 0.39 
2 0.440 0.0370 0.39 
3 0.0929 0.203 0.39 
4 0.00170 3.00 0.39 

Table 4 

Parameters for the simulations of the confined 
cylinder flow case. 

U (m/s) 𝜏0 (Pa) De Re 

0.0115 16.9 0.25 0.019 
0.0424 62.2 0.93 0.069 
0.1074 157.5 2.32 0.174 

Fig. 12. Symmetrically confined cylinder geometry. 
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Table 5 

Grids used in the convergence study for the 
confined cylinder flow. 

Grid Δx N cells 

M1 R/10 8 · 10 3 

M2 R/20 32 · 10 3 

M3 R/40 128 · 10 3 

M4 R/60 288 · 10 3 

Fig. 13. Simulated U (top), N 1 (middle) and 𝜏xy (bottom) for the confined cylin- 
der flow at 𝑥 ∕ 𝑅 = 1 . 5 and with De = 2 . 32 with the grids defined in Table 5 . 

b

𝑁  

 

T  

c  

N  

f  

t  

v  

s  

c  

t

he right boundary is an outlet with zero pressure while the top and
ottom boundaries are walls with the no slip condition. The total length
f the channel is 20 R with equal distance upstream and downstream
f the cylinder. At the cylinder wall the implicit immersed boundary
ethod [25,26] is used to impose the no slip condition. Stresses are

xtrapolated to faces inside the immersed boundary in the same way as
or exterior wall faces when integrating ∇ · 𝜏. 

The Reynolds number is defined as 𝜌UR / 𝜂0 , with 

0 = 

4 ∑
𝑖 =1 
𝜂𝑖 . (27)

ollowing Baaijens et al. [12] the Deborah number, i.e. the ratio of the
uids relaxation time and the time scale of observation, is used to char-
cterize the elasticity of the flow, defined as De = 𝜆̄𝑈∕ 𝑅 . The mean re-
axation time 𝜆̄ is calculated as 

̄ = 

∑
𝑖 𝜆𝑖 𝜂𝑖 ∑
𝑖 𝜂𝑖 

. (28)

Three flow rates are studied for which the parameters are summa-
ized in Table 4 . The stress value 𝜏0 = 3 𝜂0 𝑈∕ 𝑅 is used to normalize the
tress quantities. The elasticity number El = De ∕ Re ≈ 13 for the three
ows. Hence elasticity dominates inertia. 

The transient flow is simulated until it is fully developed. Adaptive
ime steps are used, calculated such that the CFL condition u Δt / Δx ≤ 0.1
s satisfied throughout the domain, where u and Δx are the local velocity
nd cell size, respectively. A small amount of both sides diffusion with

𝑏 = 𝜂0 was found sufficient for these simulations. 
A grid independence study is performed for the highest Deborah

umber by comparing the stress and velocity profiles for the fully devel-
ped flow. Four uniform grids are used, which are defined in Table 5 .
or these simulations 𝑛 split = 2 and 𝑛 max = 5 are used for the Lagrangian
ode set. The influence of these parameters on the numerical results are
iscussed later in this section. The resulting adaptive time steps are ap-
roximately in the range 2 . 5 ⋅ 10 −4 < Δ𝑡 ∕ ̄𝜆 < 1 . 5 ⋅ 10 −3 for the grids used.

Numerical results obtained with the different grids are first com-
ared across the channel downstream of the cylinder at 𝑥 ∕ 𝑅 = 1 . 5 , since
his is an important region of the flow. In Fig. 13 the results from the
our grids are shown. Velocity is normalized by U and stress quantities
27 
y 𝜏0 . The normal stress difference is defined as 

 1 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦 . (29)

It is obvious the resolution of the coarsest grid M1 is insufficient.
he quantities calculated on the three finer grids, however, are very
lose across the channel. The grids are further compared by studying
 1 along the channel centerline downstream of the cylinder. The results

rom the different grids are shown in Fig. 14 . From these results it is clear
hat also the resolution of grid M2 is insufficient to resolve the large
ariations near the stagnation point at the cylinder wall. The normal
tress differences from the two finest grids, on the other hand, are very
lose also in this area. The remaining simulations in this section are
herefore performed with grid M3. 
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Fig. 14. Simulated N 1 for the confined cylinder flow along 𝑦 ∕ 𝑅 = 0 and with 
De = 2 . 32 with the grids defined in Table 5 . 

Fig. 15. Location of points in cylinder channel for monitoring transient stresses. 
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Fig. 16. Fraction of time steps with node addition (top) and deletion (bottom) 
for 0 ≤ 𝑡 ∕ ̄𝜆 ≤ 1∕2 and De = 2.32 near the points defined in Table 6 , using 𝑛 split = 
2 , 3 , 4 and 𝑛 max = 3 . 
An important aspect of the proposed method is the behavior of the
tress field near steep stress gradients, particularly how the predicted
tresses are affected by how Lagrangian nodes are added and deleted
etween time steps. If these operations introduce significant errors to the
esulting stress field, non-smooth transient variation or discontinuous
umps in the stresses would be produced. The transient stress quantities
re therefore monitored in a set of relevant points. 

Three points are located at the cross section 𝑥 ∕ 𝑅 = 0 , which is the
arrowest part of the flow. In this area the stress gradients are large,
oth in the streamwise and the cross-streamwise direction, due to the
ombination of shear and extensional flow. Large gradients especially
ccur near the channel and cylinder walls. Two points along the chan-
el centerline are also included, at 𝑥 ∕ 𝑅 = ±1 . 5 . At the upstream point,
ode trajectories diverge and addition of Lagrangian nodes is therefore
xpected. The five points are shown in Fig. 15 and defined in detail in
able 6 . 

The flow is simulated at De = 2 . 32 for 0 ≤ 𝑡 ∕ ̄𝜆 ≤ 1∕2 using 𝑛 split =
 , 3 , 4 and 𝑛 max = 3 . The amount of addition and deletion is quantified by
ecording the number of nodes that are added and deleted, respectively,
ithin one cell length from each of point. In Fig. 16 the fraction of the

ime steps in which at least one node is added or deleted, respectively,
re shown. 

Node addition occurs to a certain degree near all the studied points,
ossibly with exception for 𝑝 wall where the amount is very low. The
eletion follow the same trend, but is less frequent than the addition.
oth operations increasingly occur as 𝑛 split , and thus the node density,

s increased. 
In Fig. 17 the obtained transient normal stress differences are shown

t 𝑝 wall , 𝑝 chan and 𝑝 cyl , defined in Table 6 . The corresponding shear
Table 6 

Location of points in cylinder channel for 
monitoring transient stresses. 

Point x / R y / R 

p wall 0 2 
p chan 0 1.5 
p cyl 0 1 
p ups −1 . 5 0 
p down 1.5 0 Fig. 17. Transient normal stress difference for De = 2.32 at 𝑝 wall (top), 𝑝 chan 

(middle) and 𝑝 cyl (bottom), defined in Table 6 , using 𝑛 split = 2 , 3 , 4 and 𝑛 max = 3 . 

28 
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Fig. 18. Transient shear stress for De = 2.32 at 𝑝 wall (top), 𝑝 chan (middle) and 
𝑝 cyl (bottom), defined in Table 6 , using 𝑛 split = 2 , 3 , 4 and 𝑛 max = 3 . 
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Fig. 19. Transient normal stress difference for De = 2.32 at 𝑝 ups (top) and 𝑝 down 

(bottom), defined in Table 6 , using 𝑛 split = 2 , 3 , 4 and 𝑛 max = 3 . 

Fig. 20. Profiles of U (top), N 1 (middle) and 𝜏xy (bottom) across the channel 
at De = 0 . 25 , computed with the proposed method ( – ) and compared to FEM- 
simulations ( □) of Baaijens et al. [12] . 
tresses are shown in Fig. 18 . The solutions obtained with the different
ode sets essentially overlap, and no discontinuous jumps are observed.
imilar results for 𝑝 ups and 𝑝 down are shown in Fig. 19 . The shear stresses
re zero along 𝑦 ∕ 𝑅 = 0 and have therefore been omitted. 

The analysis has been repeated for 𝑛 max = 5 . The node addition
nd deletion is then less frequent, which is expected, but the transient
tresses overlap those for 𝑛 max = 3 . The results indicate that the errors
ntroduced when nodes are added or deleted are very small. 

It is remarked that some viscoelastic startup effects are visible in
he transient curves, e.g. as smooth oscillations of N 1 at 𝑝 chan . The flow
atterns follow from the elastic overshoot that occurs when the flow is
nitiated from rest, and are similar to those that were simulated for the
ransient channel flow, discussed in Section 4.2 . 

The remaining results presented have been calculated using 𝑛 split = 2
nd 𝑛 max = 5 , i.e. the parameters used in the grid independence study.
he simulations are compared qualitatively to finite element simulations
erformed by Baaijens et al. [12] . This is made in cross sections and
long the channel centerline 𝑦 ∕ 𝑅 = 0 . The cross sections are located in
he upstream and downstream neighborhoods of the cylinder at 𝑥 ∕ 𝑅 =
1 . 5 and 𝑥 ∕ 𝑅 = 1 . 5 , respectively, and far upstream of the cylinder at
 ∕ 𝑅 = −5 . 
29 
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Fig. 21. Profiles of U (top), N 1 (middle) and 𝜏xy (bottom) across the channel 
at De = 0 . 93 , computed with the proposed method ( – ) and compared to FEM- 
simulations ( □) of Baaijens et al. [12] . 
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Fig. 22. Profiles of U (top), N 1 (middle) and 𝜏xy (bottom) across the channel 
at De = 2 . 32 , computed with the proposed method ( – ) and compared to FEM- 
simulations ( □) of Baaijens et al. [12] . 

Fig. 23. U (top) and N 1 (bottom) along channel centerline at De = 0 . 25 , com- 
puted with the proposed method ( – ) and compared to FEM-simulations ( □) of 
Baaijens et al. [12] . 
In Figs. 20–22 the computed velocities and stress quantities are
hown in the cross sections, respectively for the three flows. The re-
ults show overall agreement with the simulations of Baaijens et al. In
articular, considering that they are produced by two completely dif-
erent numerical methods. Some differences are visible at the highest
eborah number for N 1 at 𝑥 ∕ 𝑅 = −1 . 5 . Note however that the authors
o not have access to the raw data of Baaijens et al., which could explain
mall discrepancies. 

The results are further compared along the channel centerline, 𝑦 ∕ 𝑅 =
 . The velocity and normal stress differences are shown in Figs. 23–25
espectively for the three flows. The shear stress is zero along 𝑦 ∕ 𝑅 =
 and is omitted. Again overall resemblance is found. For De = 2 . 32 ,
etter agreement for N 1 around 𝑥 ∕ 𝑅 = −1 . 5 is observed, compared to the
iscrepancies in Fig. 22 . Some differences in N 1 for De = 2 . 32 are visible
ownstream of the cylinder. On the contrary, the comparison across
he channel in Fig. 22 suggest that the simulations are in reasonable
greement in the area. 

In conclusion, reasonable agreement with the simulations performed
y Baaijens et al. is obtained. Some differences are observed at the high-
st Deborah number. The discrepancies may however be result of uncer-
ainties in the data. 

The computational performance of the stress calculation is evaluated
y simulating 100 time steps in the cylinder case with different numbers
f nodes and processor threads. The results show that the simulation
ime is approximately proportional to the number of nodes and in-
ersely proportional to the number of processor threads. In other words
he calculation scales well with the number of nodes and is suitable
or GPU parallelization. This is useful for efficient calculation of large
roblems. 
30 
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Fig. 24. U (top) and N 1 (bottom) along channel centerline at De = 0 . 93 , com- 
puted with the proposed method ( – ) and compared to FEM-simulations ( □) of 
Baaijens et al. [12] . 

Fig. 25. U (top) and N 1 (bottom) along channel centerline at De = 2 . 32 , com- 
puted with the proposed method ( – ) and compared to FEM-simulations ( □) of 
Baaijens et al. [12] . 
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. Conclusion 

A novel Lagrangian-Eulerian framework for simulation of viscoelas-
ic flow has been proposed, in which the constitutive equation is solved
n Lagrangian nodes that are convected by the fluid. The constitutive
quation is coupled to the fluid momentum through the divergence
f the viscoelastic stress. A robust and accurate radial basis function
ethod is therefore used to interpolate the stresses to the fluid cell cen-

ers. 
Numerical simulations of viscoelastic channel flow compared

ell with analytic solutions for fully developed and transient flows,
31 
espectively, for UCM and Oldroyd-B fluids. The simulation framework
roduced results with consistent convergence towards the analytic
olution over a wide range of the viscoelastic flow domain. 

The proposed simulation framework also produced results in good
greement with available numerical data for a more realistic viscoelastic
uid modelled as a PTT fluid with four relaxation modes in flow past a
onfined cylinder. This flow is of more complex nature and includes both
hear flow and extensional flow characteristics. The agreement there-
ore further validates the simulation framework. It also demonstrates
hat the framework is compatible with immersed boundary methods.
urther and more detailed studies of benchmark flows should however
e carried out with the proposed method. 

In the Lagrangian formulation of the constitutive equation, the
iscretization of the convective term in the corresponding Eulerian
ransport equation is avoided. In addition, no re-formulation of the equa-
ions, e.g. the log-conformation approach, was required to obtain stable
olutions. No other stabilization than both sides diffusion was used. 

The equation systems in the nodes are independent at the time of so-
ution. The framework is therefore trivially parallelizable, which makes
ast calculation of the viscoelastic stresses possible, for example through
PU acceleration. In addition, a performance study also showed that the

imulations scale well with the number of nodes and the number of pro-
essor threads used for calculating the viscoelastic stresses. 

The spatial discretization of the constitutive equation does not re-
uire any pre-processing step, but is reduced to the task of distributing
he Lagrangian nodes throughout the fluid domain. The distribution of
he node set is carried out based on information from the fluid solver
here to place nodes and at which distribution density, so the flexibility
nd ability to simulate flow in complex geometries is as general as for
he fluid solver itself. The combination of the automatically generated
uid grid and the immersed boundary method is therefore promising

or simulation of viscoelastic flows in complex, possibly moving geome-
ries. Extension to simulation of multiphase flows of viscoelastic fluids
s more or less straightforward. This may be done in a computationally
fficient way, as Lagrangian nodes only needs to exist in the viscoelastic
art of the domain. 

In conclusion, a highly capable framework for simulation of vis-
oelastic flows has been proposed. In future work we will present more
etailed benchmark studies of the proposed method and the extension
o multiphase flow in two and three dimensions, with applications in
dhesive extrusion, part assembly and hemming processes. 
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