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ABSTRACT
The modulation effect, namely, the amplification or attenuation of near-wall small-scale (SS) structures by outer large-scale
(LS) structures, is one of two commonly accepted ways that outer LS turbulent fluctuations can influence near-wall ones. Mode
decomposition based on filtering is widely used to analyze the modulation effect. In the present study, a new approximation is
proposed based on empirical mode decomposition (EMD) to investigate the aforementioned amplitude modulation effect. Both
methods are used, and their results are compared for two-point and single-point analyses. It has been shown that the LS and
SS signals that are decomposed by filtering and EMD follow identical paths. Despite the similarities of the signals, the suggested
method exhibits a slightly higher correlation coefficient R compared to the method based on filtering for the two-point analysis.
For the one-point analysis, however, the suggested method gives a rational correlation coefficient for the one-point analysis
compared to the two-point analysis, while the existing method seems far from giving a rational correlation coefficient value,
which is too low compared to that of the two-point analysis. The suggested method is relevant to many recent studies that
questioned the reliability of calculating the correlation coefficient with the existing method. The variation of R for identical
signals extends the discussion of the correlation-coefficient calculations to the very first process, namely, obtaining LS and SS
data from the original signal.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5079601

I. INTRODUCTION

Many studies have addressed the existence of large-scale
(LS) and very-large-scale motions that are very important
for wall turbulence at high Reynolds numbers.1–3 Jiménez1

reported the existence of large eddies with streamwise lengths
of the order of 10–20 boundary-layer thicknesses in the log-
arithmic region of wall-bounded flows. These large eddies
involve mostly streamwise velocity fluctuations and contain
most of the streamwise kinetic energy. Many subsequent
studies have reported that log-law LS motions strongly influ-
ence near-wall turbulent structures.4–8

There are two commonly accepted ways that outer LS
structures can affect near-wall turbulence, namely, footprint-
ing and the modulation effect. In footprinting, LS motions
interact with the corresponding large near-wall motions,

resulting in footprints of the outer LS structures in the vicinity
of the wall. The modulation effect is amplification or attenua-
tion of near-wall small-scale (SS) structures by the LS motions
in the log-law region.9

To investigate the modulation effect in the velocity sig-
nal, the latter must be decomposed into large and small scales.
Two methods are frequently used to do this, namely, (i) proper
mode decomposition and (ii) filtering by defining the cutoff
wavelength that separates the large and small scales. Mathis
et al.5 proposed what is now a widely used method for analyz-
ing amplitude modulation, in which filtering is used to decom-
pose the signal. However, a number of recent studies have
criticized the reliability of the correlation coefficient defined
by that method. The criticism is focused on how the statistical
asymmetry of the signal affects the modulation. Schlatter and
Örlü6 showed that the correlation coefficient
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where E denotes the envelope of the signal, can be used to
quantify the amplitude modulation and is related to the skew-
ness of the signal. However, they concluded that because R
depends on the skewness of the original data, it is insuffi-
cient for defining the degree of modulation. Mathis et al.7
then showed that the LS motions strengthen with increasing
Reynolds number and that the amplitude modulation effect
helps increase the skewness. Recently, Agostini et al.10 sug-
gested accounting for the skewness of the SS fluctuations to
obtain their envelope, and they presented a new method that
defines two separate envelopes for the positive and negative
small-scale fluctuations.

In the present study, we use both the existing filtering
method5 and empirical mode decomposition (EMD) as a new
approximation to decompose signals and analyze the ampli-
tude modulation effect of the outer LS structures on the
inner SS structures. EMD splits the raw signal into oscilla-
tory components known as intrinsic mode functions (IMFs).11

Unlike filtering, which divides a given signal into two energy
containing signals, each IMF contains different energy lev-
els. Dynamical Mode Decomposition (DMD) is another widely
used method to extract dynamic modes of flow fields.12 How-
ever, whereas the EMD method can decompose complex,
non-linear, non-stationary data to a small number of com-
ponents, DMD needs modifications to improve the perfor-
mance when the spatial complexity is smaller than the spectral
complexity.13

However, in this study, it is shown that the SS and LS sig-
nals obtained by both decomposition methods are identical
regarding the paths that they follow, but the correlation coef-
ficient R obtained differs between the two methods. There-
fore, the present study extends the discussion of estimating
the correlation coefficient to the very first step of analyzing
the modulation effect, namely, decomposing the signal into
large and small scales.

II. NUMERICAL METHODS
An implicit, two-step time-advancement finite-volume

method is used.14 Central differencing is used in the spatial
domain, and the Crank–Nicolson scheme is used in the tem-
poral domain. Discretizing the Navier–Stokes equation for ui,
it becomes

un+1
i = un

i + ∆tH
(
un
i ,un+1

i

)
−

1
ρ
α∆t

∂pn+1

∂xi
−

1
ρ

(1 − α)∆t
∂pn

∂xi
, (1)

where H
(
un
i ,un+1

i

)
includes convection, viscosity, and source

terms and α = 0.5 (Crank–Nicolson). Equation (1) is solved to
give un+1

i , which does not satisfy continuity. An intermediate
velocity field is computed by subtracting the implicit part of
the pressure gradient,

u∗i = un+1
i +

1
ρ
α∆t

∂pn+1

∂xi
. (2)

Taking the divergence of Eq. (2) while requiring continuity (for
the face velocities, which are obtained by linear interpolation)
be satisfied on level n + 1, i.e., ∂un+1

i,f /∂xi = 0, we obtain

∂2pn+1

∂xi∂xi
=

ρ

∆tα

∂u∗i,f
∂xi

. (3)

The numerical procedure at each time step is summarized
as follows:15

1. Solve the discretized filtered Navier–Stokes equation for
u, v, and w.

2. Create an intermediate velocity field u∗i from Eq. (2).
3. The Poisson equation [Eq. (3)] is solved with an efficient

multigrid method.16

4. Compute the face velocities (which satisfy continuity)
from the pressure and the intermediate velocity as

un+1
i,f = u∗i,f −

1
ρ
α∆t

(
∂pn+1

∂xi

)
f
. (4)

5. Steps 1–4 are performed until convergence is achieved
(normally after two or three iterations). The convergence
criteria are 10−7 for velocity and 10−5 for pressure. The
residuals are computed using the L1 norm and are scaled
with the integrated streamwise volume flux (continuity
equation) and momentum flux (momentum equations).

6. Next time step.

Note that although no explicit dissipation is added to pre-
vent odd–even decoupling, dissipation is present implicitly.
The intermediate velocity field is computed at the cell cen-
ters [see Eq. (2)] subtracting a pressure gradient. When, having
solved the pressure Poisson equation, the face velocity field is
computed, the pressure gradient at the faces [see Eq. (4)] is
added. This is very similar to the Rhie–Chow dissipation.17

A constant volumetric driving force is used in the stream-
wise momentum equation by which the frictional Reynolds
number Reτ = 550 is prescribed based on uτ (friction veloc-
ity) and δ (half the channel height). The friction velocity, uτ ,
is based on the driving pressure gradient. Periodic bound-
ary conditions are used in the streamwise and spanwise
directions, while the usual no-slip boundary conditions are
enforced at the walls. With respect to the streamwise, wall-
normal, and spanwise directions, the domain size is 2πδ × 2δ
× πδ, meshed with 258 × 98 × 258 cells. The grid resolution
is ∆x+ ≈ 13, ∆z+ ≈ 6, and a stretching of 1.03 is used in the
wall-normal direction.

The time step is ∆t = 0.0012, and the nondimensional time
step is ∆t+ = ∆tu2

τ/ν = 0.22, where ν is the kinematic viscos-
ity. The variables u, v, and w represent the streamwise, wall-
normal, and spanwise velocities, respectively. Unless stated
otherwise, the results are averaged over time and over all
homogeneous directions (i.e., x1, x3, and t); the average is
denoted by an overbar ( ·̄).

III. AMPLITUDE MODULATION AND HILBERT
TRANSFORM

Amplitude modulation refers to the modulation of a high-
frequency signal (carrier signal) by a low-frequency com-
ponent (modulating signal). Mathis et al.5 described Hilbert
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FIG. 1. Example of finding a modulating wave by Hilbert
transformation: (a) raw signal. (b) Hilbert transformation is
applied to give the modulating wave, shown in red.

transformation briefly, and we use the same simple sinusoidal
function that they used to describe how Hilbert transforma-
tion is used to find an envelope to an amplitude-modulated
signal.

For any amplitude-modulated signal x(t), it is possible to
find a modulating signal m(t) by applying Hilbert transforma-
tion to the original signal to obtain a Hilbert-transformed sig-
nal X. With the definition of the Hilbert transform, X and
the original signal x(t) form a harmonic conjugate pair, the
associated complex analytic signal Z(t) of x(t) defined as

Z(t) = x(t) + iX(t).

The modulus of this complex signal, namely,

A(t) =
√
x(t)2 + X(t)2,

gives the envelope of the raw signal x(t).

Let x(t) = (B + sin(2t)) sin(10t), where c(t) = sin(10t) and m(t)
= sin(2t) define the carrier signal and the modulating signal,
respectively. Here, the offset is B = 2 and must be subtracted
from the results of Hilbert transformation to obtain the mod-
ulating signal. Of course, when working with data obtained in
experimental or numerical studies, the analytical form of the
carrier and modulating signals that form the raw signal x(t) is
unknown.

If we apply Hilbert transformation to the signal x(t)
[Fig. 1(a)], as described above, we can find the modulating wave
m(t), which is given as the red line in Fig. 1(b).

IV. DECOUPLING BY FILTERING AND HILBERT
TRANSFORMATION

Figure 2 shows the process for amplitude-modulation
analysis following Mathis et al.5 In Sec. III, we generated a

FIG. 2. Decoupling procedure5 for two-
point analysis.
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sinusoidal signal corresponding to the smaller scale in Fig. 2
to describe how to obtain the envelope by Hilbert transfor-
mation. The correlation coefficient R can be obtained by using
either the modulating wave or its filtered envelope depending
on the complexity of the raw signal.

Figure 2 shows a two-point application in which the larger
scale (LS) is obtained from the instantaneous streamwise fluc-
tuating velocity signal in the log-law region and the smaller
scale (SS) is obtained at the location of the inner peak of the
kinetic energy k (y+ ' 15). Amplitude-modulation analysis is
also possible with one-point application, in which both the SS
and LS signals are obtained from the inner velocity signal (see
Sec. VI A 2).

The subscripts i, o, S, and L correspond to “inner,” “outer,”
“small-scale,” and “large-scale,” respectively. For instance, u+

i,S
and u+

i,L represent the small and large scales, respectively, at
the inner peak location. For the outer peak location, u+

o,S and
u+
o,L represent small and large scales, respectively.

V. SCALE DECOMPOSITION BY EMPIRICAL MODE
DECOMPOSITION BY HILBERT–HUANG
TRANSFORMATION

EMD by Hilbert–Huang transformation is based on the
assumption that any data signal consists of different simple
intrinsic modes of oscillations, the raw signal being a superpo-
sition of those oscillations. Each oscillatory mode is referred to
as an IMF11 and satisfies the following two conditions: (i) the
numbers of local extrema and zero crossings must be equal or
differ by one at the most, and (ii) the mean value of the curve
constructed by connecting the maxima and minima should
always be zero.

A. EMD algorithm
Let X(t) be a continuous time series to which we apply

EMD by means of the following algorithm.

i. Find all the local maxima and local minima; see Fig. 3(a).

FIG. 3. Illustration of procedure for finding local maxima and
applying a cubic spline. (a) All local maxima (red points) and
local minima (green points). (b) Apply a cubic spline and
construct the mean curve (m11, the thick black line).

FIG. 4. An example of obtained intrinsic mode functions (IMFs) by applying empirical mode decomposition (EMD). The upper signal in the left figure is the raw data, and
the subsequent seven signals are the IMFs obtained by applying EMD to the raw data. (a) The raw data (most upper signal) and the first three IMFs. (b) IMFs 4–6 and the
residual.
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FIG. 5. Contours of pre-multiplied energy spectra kzφuu(kz)/u2
τ for streamwise

velocity fluctuations. The “outer peak” is indicated by the red star, and the dashed
line marks the cutoff wavelength.

ii. Construct envelope curves for the maxima and minima
and obtain the mean curve of these two envelope curves,
i.e., m11(t); see Fig. 3(b).

iii. Calculate h11(t) = h10(t) − m11(t). The first IMF is con-
structed from the raw data, i.e., h10 = X(t). The first
index in hij represents the number of the IMF in the
construction, and the second represents the iteration
number.

iv. Steps (i)–(iii) are performed recursively: h1k(t) = h1(k−1)(t)
− m1k(t). The stopping criterion is defined as follows: let
0 ≤ t ≤ T, then

sdn =
T∑
t=0

*..
,

���hn(k−1)(t) − hnk(t)���
2

h2
n(k−1)(t)

+//
-
.

Empirically, a number sdn < ε is used as the stopping
criterion, where ε is between 0.2 and 0.3.

v. When the first IMF h1k(t) is found, it is subtracted from
h10(t) to give h20(t). The process then restarts from step
(i) to find the second IMF.

vi. Set ci(t) = hik(t), where ci(t) is the ith IMF. The overall cal-
culation stops when subtraction at step (v) gives either
monotonic or constant data.

Consequently, a set of IMFs is obtained (Fig. 4).

VI. SCALE DECOMPOSITION BASED ON FILTERING
VERSUS EMD

To define the energy map, the pre-multiplied energy
spectra for the streamwise velocity fluctuations are plotted.
The energy peak located in the near-wall region is called the
“inner peak” and is usually regarded as the energetic signature
of the near-wall cycle of turbulence production.5,18 In Fig. 5,
this inner peak is located near y+ = 15 and λ+

z = 100. The so-
called “outer peak” is located in the logarithmic region and is
usually seen as the energetic signature of the large-scale orga-
nization of the velocity field (superstructures). In Fig. 5, this
outer peak is located near y+ = 150 and λz = 1.

According to the energy map, λz/δ = 0.5 could be a rea-
sonable cutoff wavelength for the present study. First, the
filtering-based method shown in Fig. 6(a) is used to investigate
the amplitude modulation effect of the outer LS structures on
the inner SS structures.5 The outer data u+

o (from y+ = 150)
enter the process shown in Fig. 6(a) from the right-hand side,
while the inner data u+

i (from y+ = 15) enter from the left-hand
side.

By applying a low-pass filter to the outer fluctuation data
u+
o, we obtain the large scales u+

o,L. By applying a high-pass filter
to the inner data u+

i , we obtain the small scales u+
i,S. Then, by

applying Hilbert transformation to u+
i,S, we obtain an envelope

E(u+
i,S) for the inner SS data. According to Mathis et al.,5 this

FIG. 6. Illustration of decoupling procedures of the two methods. u+
i is from y+ = 15, and u+

o is from y+ = 150. (a) Decoupling procedure based on filtering.5 (b) Proposed
decoupling procedure based on EMD.
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FIG. 7. Results of applying the right- and left-hand side versions of the two methods [see Figs. 6(a) and 6(b)]. Red line: present method; black line: method of Mathis et al.5

(a) Left-hand side version. (b) Right-hand side version.

FIG. 8. u+
o,L and EL(u+

i,S) for conventional and EMD-based approximations, the latter being the present method: two-point analysis. (a) Two-point analysis by filtering.5 (b)
Two-point analysis by EMD-based procedure.

FIG. 9. Modulation effect can be ana-
lyzed using either outer or inner large-
scale (LS) data.
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FIG. 10. Results obtained with the right-hand side version of the two methods
[see Figs. 6(a) and 6(b)]: one-point analysis. Red line: present method; black line:
method of Mathis et al.5

envelope tracks not only the LS modulation due to the outer
LS structures but also the SS structures of the inner data.
Therefore, to remove this effect, we must low-pass filter the
envelope to obtain the data EL(u+

i,S).
Here we suggest using the process shown in Fig. 6(b) to

investigate the amplitude modulation for a given signal based
on EMD. In the present study, the first four IMFs are summed
to obtain the SS data and the fifth IMF is taken as the LS data.
u+
o,L is obtained by applying EMD to the outer data [right-hand

side of Fig. 6(b)]. On the left-hand hand side, in the first step,
EMD is applied to the inner data u+

i , and the first four IMFs are
summed to obtain the SS u+

i,S. Hilbert transformation is then
applied to obtain the envelope E(u+

i,S) of the SS data. Finally,
EMD is applied again and the fifth mode is taken as EL(u+

i,S) to
extract the modulation effect on the SS structures of the inner
data.

A. Results and discussion
1. Two-point analysis

The data EL(u+
i,S) obtained with the left-hand side method

[see Figs. 6(a) and 6(b)] match very well [Fig. 7(a)]. The LS data
obtained by low-pass filtering (black line) and the fifth IMF
mode obtained by EMD also match almost perfectly [Fig. 7(b)].

Figures 7(a) and 7(b) show that the present method is
compatible with that of Mathis et al.5 However, the main aim
of analyzing the modulation effect is to find the correlation
between the LS and SS data. In Figs. 8(a) and 8(b), the LS data,
u+
o,L, of the outer logarithmic region and EL(u+

i,S) of the inner
region are plotted for the present method and that of Mathis
et al.5 Both methods exhibit correlation for negative fluctua-
tions in the same time intervals, namely, between 4000 and
6000 and after 8000. For the correlation coefficient R that
defines the degree of modulation, we obtain values of 0.26 and
0.29 with the method of Mathis et al.5 and the present method,
respectively.

2. One-point analysis
The one-point analysis to estimate the degree of ampli-

tude modulation should give similar results to those of the
two-point analysis. This is based on the idea that the LS

FIG. 11. u+
i,L and EL(u+

i,S) for both conventional and EMD-based approximations: one-point analysis. (a) One-point analysis with the filtering method of Mathis et al.5

(b) One-point analysis with EMD-based procedure.
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FIG. 12. Raw signal x(t) = (2 + sin(2t)) sin(10t) + sin(2t).

motions from the outer layer affect the SS inner structures
via footprinting on the LS inner structures, a relationship that
is illustrated in Fig. 9.

Therefore, in this part, we consider data obtained at
y+ = 15. The same procedure is applied as using the two-point
analysis given in Figs. 6(a) and 6(b) to decompose the signal
into its LS and SS components, represented as u+

i,L and u+
i,S,

respectively. The LS data obtained by low-pass filtering (black
line) and the fifth IMF mode obtained by EMD are shown,
and they match almost perfectly (Fig. 10), similar to two-point

analysis results. Only the right-hand side version of the meth-
ods is used because the left-hand side version is the same as
in Fig. 7(a) that is obtained from the inner data.

In Figs. 11(a) and 11(b), the LS data u+
i,L of the inner log-

region and EL(u+
i,S) of the inner region are plotted for the

method of Mathis et al.5 and the present method. Both meth-
ods exhibit correlation for negative fluctuations at the same
time intervals of 4000–6000 and after 8000, similar to the
two-point analysis, as expected. With the method of Mathis
et al.5 and the present method, we obtain values of 0.01 and
0.12, respectively, for the correlation coefficient R that defines
the degree of modulation.

It is very interesting that there is a huge difference in the
correlation coefficient R despite the similarity between the LS
data obtained by filtering and EMD (Fig. 10). For the present
method, comparing the one-point and two-point analyses, a
slightly lower correlation coefficient is reasonable because the
modulation effect is obtained indirectly by the footprint of the
superstructures for the former (Fig. 9). Therefore, the correla-
tion coefficient R = 0.12 seems reasonable for the one-point
analysis compared to R = 0.29 obtained for the two point
analysis with the EMD-based method.

3. Validation of correlation coefficient R with simple
sinusoidal signal

We now add an LS part to the equation used in Sec. III,
which is equal to the modulating signal m(t) = sin(2t), namely,

x(t) = (B + sin(2t)) sin(10t) + sin(2t).

In Sec. III, we used the SS part of this signal, namely, (2 +
sin(2t)) sin(10t), to explain the amplitude modulation. Now we

FIG. 13. Validation of conventional and EMD-based decoupling procedures with a simple sinusoidal signal. (a) Analysis results by filtering.5 (b) Analysis results by EMD-based
decoupling procedure.
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add sin(2t) to the signal, which corresponds to the LS part of
the signal x(t). By decomposing the signal with the EMD and
filtering methods, we separate the LS data as xLS and the SS
data as xSS. We then apply Hilbert transformation to the SS
part and obtain an SS envelope EL(xSS). Note that with the
existing method, no second filtering is necessary because of
the relative simplicity of the raw signal x(t). After those oper-
ations, both EL(xSS) and xLS should be very close to the signal
sin(2t). The error, namely, the difference between the LS and
SS envelopes obtained and the actual signals [which are both
sin(2t)], is found to be less than 0.05 for both methods.

The original signal is shown in Fig. 12. Both methods
clearly divide the original signal into LS and SS parts and suc-
cessfully define an envelope to the SS part by Hilbert trans-
formation [Figs. 13(a) and 13(b)]. The correlation coefficient is
R= 0.99 in both cases, thereby showing that both meth-
ods have identical reference for relatively simple data. How-
ever, with more-complicated data, the decomposition method
could be an important factor.

VII. CONCLUSION
In this study, an EMD-based decoupling procedure

is suggested and compared with the existing filtering-
based approximation for amplitude-modulation analysis. It is
shown that the LS and SS signals obtained with either fil-
tering or EMD follow almost the same path and capture
the correlation for negative fluctuations, with the same time
intervals. However, although the signals obtained with EMD
and filtering-based amplitude-modulation analysis approxi-
mations exhibit qualitatively very similar signals, quantitative
analysis by comparing the correlation coefficient R, which
defines the degree of modulation, may vary. Comparable cor-
relation values are obtained in two-point analysis, namely, R
= 0.26 and 0.29 for the filtering and EMD cases, respectively.
While a reduction is expected for the one-point analysis com-
pared to the two-point analysis because of the indirect effect
of footprinting, the filtering-based approximation gives too
low a correlation coefficient R for the one-point analysis com-
pared with the two-point analysis, namely, R = 0.01. However,
the EMD-based approximation gives a correlation coefficient
of R = 0.12 for the one-point analysis, which is a reason-
able value compared to that obtained with two-point analy-
sis. Therefore, we claim that signals decoupled to large and
small scales by EMD-based amplitude analysis better capture
the correlation compared to the conventional filtering-based
amplitude-analysis approximation.
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