
Thesis for the Degree of Licentiate of Engineering

A Discrete Dipole Approximation
Forward Solver for Microwave Breast

Imaging

Samar Hosseinzadegan

Department of Electrical Engineering
Group of Biomedical Electromagnetics

Chalmers University of Technology

Göteborg, Sweden 2019



A Discrete Dipole Approximation Forward Solver for Microwave Breast
Imaging
Samar Hosseinzadegan

c© Samar Hosseinzadegan, 2019.

Technical report number: R003/2019
ISSN 1403-266X

Department of Electrical Engineering
Group of Biomedical Electromagnetics
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone: +46 (0)31 – 772 1000
Email: samarh@chalmers.se

Front Cover: The figure on the front cover shows magnitude of an electric field
distribution generated with the DDA code.

Typeset by the author using LATEX.

Chalmers Reproservice
Göteborg, Sweden 2019



To my family





Abstract

Breast cancer has the highest incidence rate of cancers in women worldwide. Early
detection results in a higher survival rate. Drawbacks in conventional imaging modal-
ities, including painful exams, have limited periodic breast screening. Microwave to-
mography has the potential to be a compelling alternative or complement to other
imaging techniques. Advantages of microwave tomography is that it is harmless, com-
fortable, and cost effective. Microwave tomography has not yet fully been translated
into the clinic, even if clinical trials are ongoing.

One important challenge is high computational demands of microwave tomog-
raphy algorithms. 3D tomography algorithms require multiple hours and a large
amount of hardware resources to produce images. 3D imaging algorithms are usually
implemented and tested for simulations setup and barely used in clinical settings. 2D
microwave tomography algorithms are computationally less expensive compared to
3D algorithms. Few imaging groups have been successful in integrating the acquired
3D data into the 2D tomography algorithms for clinical applications.

The microwave tomography algorithms include two main computation problems;
forward and inverse. The forward problem has to be solved multiple times and
the resulting computational cost is the time limiting step in microwave tomography
algorithms, and this thesis is devoted to addressing it.

In this thesis, the two-dimensional forward problem is modelled and formulated.
In particular, the two-dimensional discrete dipole approximation (DDA) is proposed
as a new forward solver for microwave tomography. The accuracy of the 2D DDA with
respect to sampling number, size, and contrast of target are investigated. Moreover,
the 2D DDA time efficiency and computation time are studied.

The forward solver computation times for direct, iterative, and iterative combined
with fast Fourier transformation (FFT) solvers are calculated. The observations
imply that the 2D DDA is an accurate, reliable, and rapid forward solver, and using
the Krylov subspace methods combined with the FFT accelerate the computation
time significantly.

Keywords: breast cancer, microwave imaging, tomography, forward problem, com-
putation time.
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Part I

Introductory Chapters





Chapter 1
Introduction

According to the World Health Organization (WHO), breast cancer has the highest
rate of incidence in women compared to the other cancer types, and a notable in-
cidence growth has been observed in developing countries [1]. Changes in women’s
lifestyle have been a primary factor for this increase [1]. To reduce the mortality
rate, extensive cancer screening programs targeting early detection have been imple-
mented in more developed regions for women after age 40. It would be desirable to
also screen younger women but it is currently not recommended partially because
the accumulated exposure of X-ray radiation over long periods increases the cancer
risk. In developing countries, however, lack of financial resources constitutes a major
obstacle for launching regular screening programs. New low-cost systems would pave
the path for a wider deployment of such programs.

Conventional imaging technologies suffer from several drawbacks and improv-
ing state-of-the-art imaging techniques or introducing new screening technologies is
needed to improve the accuracy in detection. X-ray mammography is a standard
device for breast screening but has a relatively high rate of missed breast tumour
detection, termed false negatives, but the false positive rate is also high. Moreover,
the use of ionizing X-rays is not completely safe [2, 3].

Generally, screening devices should be designed such that they would be cost ef-
fective, sensitive to various tissue types, user-friendly, harmless and comfortable for
patients [4]. Microwave technology has great potential to meet these requirements.
Microwave tomography is in a developing stage, and has not yet been fully translated
into the clinic. One of the known barriers is the substantial computational resources
required to reconstruct images. The existing limitations in computational aspects of
microwave tomography is the driving goal of this project. We are currently developing
a new fast reconstruction algorithm for the systems at Chalmers University of Tech-
nology, and at Dartmouth College. The focus of this thesis is on the electromagnetic
simulations, i.e. forward models, for these microwave imaging systems.
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Chapter 1. Introduction

1.1 Breast cancer overview

Cancer is formed by mutations in genes which lead to an uncontrolled cell-growth of
normal body cells. These mutations cause irregular and chaotic cell division and the
formation of tumours in affected areas. Breast cancer tumours form mainly in the
fibroglandular tissue, including the lobules and the ducts. In addition, the adipose
(fatty tissue) within the breast can also be affected [5]. Also, men can get breast
cancer but it is less common.

Breast cancer types are mainly categorized according to their growth patterns
and location. They are categorized as either invasive or non-invasive (in situ). These
two main categories are divided into subcategories based on the location within the
breast as [5]:

• Ductal carcinoma in situ (DCIS)

• Lobular carcinoma in situ (LCIS)

• Invasive ductal carcinoma (IDC)

• Invasive lobular carcinoma (ILC)

Among these types, the invasive ductal carcinoma (IDC) is the most common type
which initially forms in ducts and in later stages invades the surrounding tissues.
Furthermore, breast cancer is staged based on the size of the tumour from 0 to
4, where 0 stage refers to non-invasive, in situ, i.e. tumours localized to its original
location. In stage 4, the tumour has metastasized to nearby tissues as well as possibly
to distant organs including lungs, brain, liver, or bones [6].

For the purpose of determining the stage of the tumour or monitoring treat-
ment progress, imaging techniques such as X-ray mammography, magnetic resonance
imaging (MRI), computerized tomography (CT), and position emission tomography
(PET) are used. Brief summaries of these techniques are given in Section 1.1.3.

1.1.1 Global statistics

In this section, the 2018 global breast cancer statistics are summarized. These data
are provided by the GLOBOCAN 2018 platform and are compiled by the Interna-
tional Agency for Research on Cancer (IARC) [7].

Figure 1.1a shows that lung cancer has the highest incidence rate with more than
two million cases. This is an epidemic proportion of about 11%, i.e. the proportion
of lung-cancer to all cancer types, for both genders. Breast cancer is estimated to
be second, with only slightly lower epidemic proportions. Figure 1.1b illustrates the
mortality rates due to different cancer types for both genders worldwide. Figures
1.2a and 1.2b show the estimated percentages for female breast cancer incidence
and mortality. As is noted, breast cancer is the most common cancer type among

2



1.1. Breast cancer overview

women with a proportion of about 24% of all types of cancer. The mortality rate
due to this disease is the highest of all cancer types and estimated to be about 15%
of all cancers, or 626,679 over the year. In North America, Australia, Northern
and Southern Europe, higher incidence rates have been reported. Rates for South
America and Eastern Europe and most parts of Africa and Asia are low, as are shown
in Figure 1.3.

As can be seen in Figures 1.3 and 1.4, there is no direct relation between incidence
and mortality rates. The incidence of breast cancer is shown with colors, darker colors
correspond to higher incidence rate, and is seen that it is highest in the industrialized
world. In Figure 1.4, the mortality rate is shown, with darker regions corresponding
to higher rates, which are found in developing regions such as Africa. This data
illustrates that mortality rates could be reduced with improved economic development
and a corresponding expansion of wellfare and health care sectors of these countries.
One key factor to reduce the mortality rate is early detection. Moreover, other factors
such as genetics can also impact the incidence and mortality rates.

1.1.2 Risk factors

In this section, risk factors are briefly discussed and are summarized based on the
study performed by P. Maisonneuve [8]. The global incidence and mortality patterns
are an indication of existing risk factors. According to this study, breast cancer risk
factors can be divided into three main groups as:

• Demographic, lifestyle, and environmental factors

• Reproductive and hormonal factors

• Genetic factors

The two main factors in the first group are age and race. The incidence rate
increases with age. Breast cancer is very common in women over age 50 and its
incidence increases until age 70 and decreases afterwards [8]. It is also mentioned
that breast cancer rates are higher among white women compared to black women.
Moreover, there is a lower incidence rate among those of Asian origin and Pacific
Islanders [8]. In addition to age and race, other demographic and lifestyle factors such
as obesity, diet, and physical activity can also affect breast cancer risks which are
categorized within the demographic and lifestyle group. The breast cancer risk is also
related to the women reproductive and hormonal changes during their lives. Various
reasons including the early age at menarche, first pregnancy age, breastfeeding and
etc stimulate cell growth and consequently risk of breast cancer. The chance of
developing cancer for women with a first-degree relative diagnosed with breast cancer
is higher compared to others. It is predicted that the risk for these cases is doubled
compared to others [8].
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1.1. Breast cancer overview
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Figure 1.3: Estimated age-standardized incidence rates for 2018 worldwide for female
breast cancer in all ages, Source GLOBOCAN 2018, IARC.
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Figure 1.4: Estimated age-standardized mortality rates for 2018 worldwide for female
breast cancer in all ages, Source GLOBOCAN 2018, IARC.

1.1.3 Breast screening

Early detection of breast cancer is the key to improving the chance of survival. The
validity of this claim has been confirmed universally [9–11]. One of the most cited
studies on the correlation between regular screening and mortality was performed by
Shapiro et al. [11] in the 1970s. The objective was to evaluate periodic breast cancer
screening which included mammography and palpation. Two randomized women
groups of size 31,000, aged 40 to 64 years were selected. Study group women were
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Chapter 1. Introduction

Figure 1.5: Mammogram device. The figure is borrowed from [18].

offered a screening examination, and the control group received usual practices and
medical care. The results of this study showed that regular screening contributed to
lower mortality compared to the control group. Similar observations from studies in
various research groups over the last few decades have also been reported [12–15].

Breast imaging is usually performed for detection, diagnosis (after the clinician has
seen an abnormality in a mammogram), and tumour progression monitoring during
treatment. Conventional imaging techniques include X-ray based mammography
screening, computed tomography (CT scan), magnetic resonance imaging (MRI), and
positron emission tomography (PET scan). In addition to these, newer techniques
such as digital breast tomosynthesis, contrast mammography, and contrast-enhanced
MRI can be used in both screening and diagnosis (ch. 18 in [16]).

The primary method for routine breast cancer screening is X-ray mammography,
Figure 1.5. A standard mammogram produces two-dimensional projections of the
breast from two different angles, craniocaudal (CC: top-bottom view) and medio-
lateral oblique (MLO: side view at a specific angle). Additional CC views or spot
compression can be performed in cases of the presence of an abnormality. The oper-
ating principle for mammography is based on imaging of the contrast between various
tissue-types within the breast as a greyscale image. This technique requires firm and
even compression to ensure enhanced resolution and higher contrast. Unfortunately,
mammography is considered uncomfortable and painful by many patients.

One study on assessing diagnosis accuracy for different imaging techniques was
performed by Berg et al. [17]. In that study the diagnostic performance of different
imaging devices on 258 patients with proven lesions was tested. It was shown that
mammography had an accuracy of about 70.2%, i.e. 181 patients out of 258 were
correctly diagnosed. It was also limited to 67.8% in sensitivity (i.e. true positive) and
75% in specificity (i.e. true negative), respectively [17]. Distracting lesions and breast
density are primary confounding features for missing a breast tumor. Moreover, due
to the radiation exposure young women are sometimes not screened regularly because
of the risk/benefit balance.

6



1.1. Breast cancer overview

Magnetic resonance imaging, MRI, which uses strong magnetic (non-ionizing)
fields, is an alternative for breast imaging. MRI is mostly used as a complement to
mammography for further evaluation of suspicious findings. One of the advantages
with MRI over X-ray mammography is that it is insensitive to normal dense breast
tissue [19]. It is also used with a gadolinium contrast agent which can be toxic
to women with compromised kidneys [20]. Therefore, it has also been used more
frequently for screening and diagnosing young women. MRI is, however, significantly
more expensive than other imaging methods, and is, therefore, not suitable for use
in screening. Another problem is a high rate of false-positives which leads to over
diagnosis in screening [19,21].

Ultrasound screening can be used as a complementary imaging tool to both X-ray
mammography and MRI. It sends high-frequency sound waves from the transducer
into the breast, and the reflected echos are collected for further processing and image
generation [22]. One caveat about ultrasound screening is that its precision is highly
operator-dependant, which introduces considerable risk of errors in the diagnosis. It
is also known to have a high number of false positives. Berg et al. [23] investigated
the impact of combined screening, ultrasound and X-ray mammography, compared to
X-ray mammography alone. In that study, they concluded that although ultrasound
may reveal small and node-negative breast cancers not visible in mammography, the
increased number of false positives is significant [23].

A CT scanner encircles the body and creates an image from measured X-ray
projections at a large number of angles. The measured projections are processed to
create cross-sectional images of the body. CT scanning is usually not used for screen-
ing, but sometimes for further investigations after detection [24]. As an example, it
can be used to inspect a tumor (location, size, and shape) before and after treatment
planning, or as guidance in needle biopsy [24].

PET scanning is a technology based on nuclear medicine. In PET scans, a ra-
dioactive sugar is injected into the patient. Its decay produces radioactivity that is
measured outside the body with detectors encircling the body. Images are formed
in a similar way as CT-scans. This imaging technique is mostly used during treat-
ment planning since the metabolic activity frequently illustrates changes earlier under
treatment than morphological changes such as tumor size (ch. 19 in [16]).

The aforementioned drawbacks in conventional imaging techniques illustrate the
need and room for developing new image acquisition techniques to further improve
diagnosis. Microwave technology appears to be a promising technique for this situ-
ation. The technology is harmless, cost-effective, comfortable, and sensitive enough
to various tissue types. These characteristics make it an intriguing candidate to
complement or replace other modalities.
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Chapter 2
Microwave Imaging

With microwave imaging, it is possible to retrieve characteristic information of the
interior of an object. Such information could be position, shape, size, and dielectric
properties and also information about smaller objects immersed within the large
objects. The operating principle is based on transmitting electromagnetic waves
through the object and then measuring and processing the forward and back-scattered
waves.

Microwave imaging has been studied for a variety of applications over recent
decades. These applications range from medical diagnosis, i.e. breast imaging [25],
brain imaging [26–28], kidney imaging [29], cardiac imaging [30], and bone density
measurements [31] to other fields including geophysical monitoring [32], civil engi-
neering [33], and industrial engineering [34].

For cancer detection, microwave medical imaging relies on contrast in dielectric
parameters between malignant tumour tissue and the surrounding normal breast-
tissue. Although microwave imaging for medical applications has been extensively
investigated since the 1970s, this imaging modality has not yet been widely trans-
ferred to the clinic.

One of the earliest medical microwave imaging systems was introduced by Larsen
and Jacobi who used microwave signals to image canine kidneys [29, 35]. From the
1970s until now, multiple imaging systems have been built by many microwave imag-
ing groups, and their drawbacks and limitations have been investigated extensively.

In microwave imaging, the computational aspects are known as a barrier to the
development and usability of the technology. It will be discussed further in Chapter 3.
Aside from these known challenges, medical microwave imaging has been introduced
as an alternative or complement to conventional imaging systems such as mammog-
raphy, with the motives being recognized as low-cost, harmless, non-invasive, and
convenience.
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Chapter 2. Microwave Imaging

2.1 Imaging methods

The information to be recovered from scattered field measurements varies in practical
applications based on different operating principles. The objectives can range from
localization and detection of the presence of an object to full reconstructions of quan-
titative images of the object. For biomedical purposes the most common application
is to completely image the electromagnetic parameter distributions (e.g. dielectric
permittivity, electric conductivity) of the objects under test [36].

Microwave imaging methods could be divided into at least two categories, qualita-
tive and quantitative methods, based on the characteristics and information content
of the output image. In qualitative imaging methods, the reconstructed information
is restricted to relative maps of scattering signal strengths revealing only location,
size and shape of scatterers. One advantage of these methods is their computational
efficiency and short reconstruction time. A disadvantage is that they require broad
band measurements. This could lead to longer measurement times depending on the
techniques used. Conversely, quantitative imaging methods aim at reconstructions of
dielectric maps of the object under-test. These methods are known to be computa-
tionally demanding and in many implementations restricted to cases where a priori
information about the object is available (chapter 5 in [36]).

Qualitative methods that have been researched include holography and radar-
based imaging. Quantitative methods usually refer to tomography. These three
different imaging methods will be further described here.

2.1.1 Radar-based imaging

Multiple radar-based systems have been developed and tested in both experiments
and clinical settings [37–39], and their fundamental assumption is based on the dif-
ferences between dielectric properties of healthy and malignant tissues over the mi-
crowave frequency range [37].

In active radar-based imaging, the target is illuminated by signals transmitted and
received by an array of antennas. Data are also acquired in multiple planes and are
simultaneously processed to produce the whole 3D image via a reconstruction algo-
rithm [40]. The operating principle is based on transmission and reception of pulses.
The short high energy pulses are transmitted and the returning echos are recorded.
The commonly used imaging radar systems are Real Aperture Radar (RAR) and
Synthetic Aperture Radar (SAR).

2.1.2 Holography

Another microwave-based imaging technique, microwave holography, has also been
used to image dielectric targets [41]. This technique is relatively new in the field of
medical imaging but has been employed for concealed weapons and contraband at

10



2.1. Imaging methods

airports and other secure locations [42]. In modern microwave holography, coherent
back-scattered signals are acquired on a surface and the reconstruction of object is
performed through multiple direct and inverse Fourier transformations. Unlike the
case in tomography, the reconstructions are not typically done in 2D slices. The mea-
sured data from the surface are simultaneously processed into a single reconstruction
to produce a 3D distribution of the target [41,43].

2.1.3 Microwave tomography

Microwave tomography utilizes scattered electric field data from an object to re-
construct quantitative maps of the property distributions, usually permittivty and
conductivity. For breast cancer detection, this technology aims at imaging the differ-
ences in properties between healthy and malignant tissues. Systems typically operate
in the range of 500 MHz - 3 GHz.

Microwave tomography is in a developing stage, and has reached the stage of
clinical trials in some cases [25,31]. Historically, the large property contrast between
different biological tissues has been a major barrier in microwave tomography [44]
and [45].

2.1.3.1 Microwave tomography systems

In microwave tomography, the target is illuminated with microwave signals from
multiple directions, and the resulting scattered signals are measured at multiple lo-
cations. The illumination is made by consecutive transmissions from one antenna
at a time in an array of antennas enclosing the imaging region. Antenna arrays are
often configured in a circular pattern. For the Chalmers system, all antennas act as
both transmitters and receivers, where the antennas that are not transmitting, act as
receivers [46, 47]. Measurements are repeated until all combinations of transmit and
receive antennas have been measured. A schematic representation of such systems is
illustrated in Figure 2.1.

The challenges for these systems are signal power loss, limited penetration depth,
low resolution, and a need for enormous computational resources [40]. These chal-
lenges have hindered the development process for imaging systems and their algo-
rithms. In microwave imaging, one important aspect is to optimize power penetration
into the body and between antennas and the skin. To accomplish this, various cou-
pling liquids such as water, glycerin and others are used. This coupling liquid also
has an indirect impact on the image resolution. A better resolution (the smallest
distinguishable pixel), requires higher frequency with a concomitant shorter wave-
length; however, at the price of a shallower penetration depth. This in turn becomes
a challenge for imaging, especially for deep-body organs. The remarkable signal at-
tenuation in both biological tissues and the matching liquid lowers the penetration
depth as well as the usable frequency range.
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Figure 2.1: Schematic representation of an imaging system

For these imaging systems, it is crucial that the transmitted waves also penetrate
through the object under test. A biological tissue placed in air exhibits a significant
contrast to the background and thus a high degree of scattering from the air/skin
interface. With a lower coupling medium contrast, waves are better able to penetrate
and thus allow for higher signal strength inside the body. Therefore, more accurate
measurements can be acquired for signals reaching into the body. The lower scattered
waves are capable of deeper penetration into the organs. For deeper penetration, two
hypotheses have been suggested and employed [40]. The first approach is based on
the same principle as was introduced by Larson and Jacobi [29]. In their experimental
set-up, the antennas and the organ were immersed in water, which, then acted as a
coupling liquid and lowered the contrast. Many different coupling liquids have been
explored later. For example, Dartmouth College has used saline solutions in their
early imaging systems. The coupling liquid used in the current imaging system is a
mixture of glycerin and water. The disadvantages of using coupling liquids include
the power loss and difficulty in maintenance of the imaging system [40]. The second
approach is to place antennas in direct contact with the body to provide high coupling
efficiency. In this case, wasted power is less of an issue.

12



2.1. Imaging methods

2.1.4 Chalmers/Dartmouth breast imaging system

The first clinical microwave breast imaging system was developed at Dartmouth
College [25]. In this system, a circular array consisting 32 monopole antennas was
submerged in a saline bath, as the coupling fluid between the antennas and the breast.
The operating frequency range for this system was from 300 to 900 MHz. The data
from multiple imaging planes, from the patient chest wall to nipple position, were
acquired, and this data processed to reconstruct images.

Several generations of systems have been developed at Dartmouth College [25,31].
The recently developed imaging system at Chalmers University of Technology is also
built on a similar basis [46, 47]. The microwave-based tomography system consists
of a set of 16 monopole antennas. These antennas, located in the imaging tank, are
equiangularly spaced on a circle of diameter 15.2 cm. The imaging tank is filled
with a liquid mixture of glycerin and water. In contrast to other coupling liquids
(i.e. saline or water), the mixture of glycerin and water is used to lower the contrast
between background and breast tissue. With a reduced contrast, the reflections from
the skin are correspondingly reduced. This coupling liquid also ensures that the
surface waves and the undesirable multi-path signals are virtually eliminated by the
high-conductivity nature of this liquid.

This conductive material is also beneficial in modeling the imaging domain and
antennas, i.e. its contribution to computational aspects will be further discussed in
Chapter 3.
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Chapter 3
Computational Aspects for Microwave
Tomography

In this section, state-of-the-art in medical microwave tomography algorithms is dis-
cussed. A number of methods and algorithms have been investigated by multiple
research groups since the possibility of employing microwave signals for medical imag-
ing was first studied [25, 29, 48, 49]. Notwithstanding the centralized focus on these
algorithms, they have scarcely been translated into the real world. Principal among
the causes for this are the low efficiency of different numerical methods and the
presence of high-contrast among different tissue types. Additionally, the design of
imaging systems and improving their measurement accuracy can contribute to future
success or usefulness in microwave tomography. For medical imaging, high sensitivity
and specificity are desirable, and these characteristics generally narrow the choices of
algorithms.

The objective of microwave tomography is to create images of the dielectric prop-
erties, i.e. permittivity and conductivity. To construct an image, an inverse problem
of Maxwell’s equations is typically solved; that is, to infer the source from observations
of electromagnetic waves. One important aspect of inverse problems is whether it is
well-posed or ill-posed. A well-posed problem satisifies the following postulates [50]

• Existence: meaning that the solution to the problem exists,

• Uniqueness: meaning that the existing solution is unique,

• Continuity: meaning that the solution is continuous with respect to initial
conditions and boundary conditions.

These requirements were formulated based on a concept introduced by Jacques Hadamard
[50]. The problem is well-posed if all of the three postulates are satisfied. If at least
one of these conditions is not fulfilled, the problem is referred to as an ill-posed
problem.
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The inverse scattering problems in microwave tomography are known to be ill-
posed due to the existence of non-unique solutions, and also that the solutions do
not depend continuously on the data. To obtain a unique solution, a large amount of
measurement data is required, and this impacts the size of tomographic-system and
the problem. Moreover, the solutions do not depend continuously on the data which
is due to the irregular dependency of reconstructing dielectric property distributions
to the changes in noisy measurement data [51]. To overcome the lack of continuity,
reconstruction algorithms need to be regularized.

3.1 Microwave tomography algorithms

Here we present a brief introduction to image reconstruction algorithms for microwave
tomography.

3.1.1 Overview of image reconstructions

Electromagnetic image reconstruction is considered as two problems:

• Direct or forward problem

• Inverse problem

The electromagnetic forward problem is designed to predict the electromagnetic
propagation in a domain with known dielectric parameters and initial and bound-
ary conditions. The inverse problem recovers the dielectric properties as a function
of scattering during electromagnetic propagation through the domain. The inverse
problem in microwave tomography is ill-posed due to the large property contrasts
between tissues and is also non-linear. Therefore, more computationally expensive
iterative optimization algorithms are required.

The main principle of these types of optimization algorithms is to minimize the
difference between measured data and a computed solution (i.e. forward solution).
In each iteration the dielectric properties within the domain are updated and the
process is repeated until convergence criteria are satisfied. A general overview for
reconstruction algorithms employed in microwave tomography [52] is given in Figure
3.1. An examination of reconstruction algorithms reveals that the forward solution is
recalculated at each iteration such that a majority of the computational complexity
in these algorithms is due to the forward problem. Accordingly, the forward problem
formulation and its computational complexity constitute a notable degree of impor-
tance for actual applications from the medical imaging point of view. The forward
problem will be further discussed in detail in Section 3.2.
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Figure 3.1: Microwave tomography algorithm overview.
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3.1.2 Important challenges

A primary challenge is to accurately model the field distributions for the dielectric
property distributions while maintaining reasonable computation times. The amount
of computational resources required for a 3D reconstruction algorithm is exception-
ally high in comparison to 2D algorithms. Consequently, some medical microwave
tomography research groups have concentrated on 2D tomography, and 3D modeling
has to a large extent been used only in simulations and barely in clinical applications.

Most of the study cases on biomedical microwave tomography indicate that there
exists a limitation in incorporating acquired measurements data with reconstruction
algorithms. One challenge is the use of 2D reconstruction algorithms integrated with
actual 3D measured data. The clinical prototype developed at Dartmouth College
has been used successfully in 2D imaging [25]. Apart from the Dartmouth research
group, the imaging group at the Chalmers University of Technology has also been able
to produce 2D images using the 3D acquired data from the prototype system [46,47].

3.2 The forward problem

To solve the forward problem effectively, we need to understand electromagnetics and
its fundamentals.

3.2.1 Electromagnetics field theory

Maxwell’s equations characterize the physical interactions between fields, fluxes and
material properties in an environment. The complex form of these equations in the
frequency domain is written as

∇̄ × Ē = −iωB̄, (3.1)
∇̄ × H̄ = J̄ + iωD̄, (3.2)

∇̄ · D̄ = ρ, (3.3)
∇̄ · B̄ = 0. (3.4)

where Ē is the electric field, B̄ is the magnetic flux density, H̄ is the magnetic field,
D̄ is the displacement field, J̄ is the free current density, ρ is the charge density, ω is
frequency, and i is the imaginary unit. The following constitutive relationships can
be used to replace fields and fluxes:

J̄ = σĒ, (3.5)
B̄ = µH̄, (3.6)
D̄ = εĒ. (3.7)
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3.2. The forward problem

where σ is the electrical conductivity, ε = ε0εr is the environment permittivity which
can also have a complex value in form of ε = ε0εr+

σ
ωi
, and µ = µ0µr is the environment

permeability. ε0 and µ0 denote free-space permittivity and permeability, respectively.
εr and µr denote relative permittivity and permeability of the material, respectively.

In absence of free charge or current, inserting 3.5 to 3.7 into 3.1 to 3.4 gives:

∇̄ × Ē = −iωµH̄, (3.8)
∇̄ × H̄ = iωεĒ, (3.9)
∇̄ · (µH̄) = 0, (3.10)
∇̄ · (εĒ) = 0. (3.11)

(3.12)

Taking the curl of 3.8 and inserting 3.9 into it gives:

∇̄ × (∇̄ × Ē) = ω2µεĒ (3.13)

Rearrangement of this equation results in

∇̄ · (∇̄ · Ē)− ∇̄2Ē = k2Ē (3.14)

where k2 = ω2µε is the squared wavenumber. The wavenumber can be a real constant
or a complex number for energy absorbing media. For nonmagnetic material (i.e.
µr = 1) with a complex permittivty ε, squared wavenumber is in form of

k2 = ω2µ0ε0εr + iωµ0σ (3.15)

In regions where ρ = 0, (∇̄ · Ē) goes to zero which leads to the Helmholtz equation

∇̄2Ē − k2Ē = 0 (3.16)

The solutions to this equation in inhomogeneous media are needed in order to solve
the forward problem. Analytic solutions are typically known for simple geometries
such as spheres and infinite cylinders. For more realistic cases, different numerical
methods have been developed. Some of these numerical solvers will be discussed in
Section 3.3.

3.2.2 Scattering problem formulation

One application for the Helmholtz equation is to separate its formulation into the
incident and scattered fields. The problem is solved in a bounded region V ⊂ Rd,
d = 2, 3, as shown in Figure 3.2. The problem is to determine the scattered electric
field, Ēscat, due to the scattering object and the incident field such that

Ētot = Ēinc + Ēscat (3.17)
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Figure 3.2: Investigation domain.

The total electric field Ētot satisfies (3.16) in Rd\D̄ as well as the boundary conditions
on ∂D. With a given incident field Ēinc and dielectric properties of the background,
the problem is to solve for the unknown scattered field Ēscat.

3.3 Numerical methods

To solve the electromagnetic equations involved in microwave scattering problems,
different numerical methods have been employed. The most popular schemes are the
finite-difference (FD), finite-difference time-domain (FDTD), finite element methods
(FEM), and method of moments (MoM). Among these numerical methods, the FDTD
and FEM methods have been employed as the forward solver for the microwave
imaging systems at Chalmers University of Technology and Dartmouth College. A
brief overview of these methods is given in Sections 3.3.1 and 3.3.2.

3.3.1 Finite-Difference Time-Domain method

The FDTD method is one of the most commonly applied numerical solvers to mi-
crowave problems. Its popularity is due to being efficient and straightforward in
implementations. In the FDTD method, the problem is solved on a structured Carte-
sian grid, and the equations are formulated in the time domain [53]. In this method,
the entire solution domain is discretized, and the spacing discretization must be
sufficiently small to resolve the object and to provide enough resolution over a wave-
length. For example this is necessary for handling both the small electromagnetic
wavelengths and the small tumors in the breast. In this format, a very dense com-
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3.3. Numerical methods

putational domain is obtained. The computation time scales up rapidly for larger
problem sizes. Moreover, modeling some components such as antennas are difficult in
FDTD because of their complex geometry requiring even denser meshes than usual
which subsequently adds to the computational complexity.

A related drawback of this method in imaging is its inflexibility for handling ge-
ometries of arbitrary shape. Moreover, the boundary conditions are not explicitly
considered in the original FDTD scheme. For imaging purposes, we are interested in
an open space for the electric field calculations which require enlarging the compu-
tation domain. Consequently, the computational complexity is expected to grow in
this case [54].

The FDTD scheme developed for the Chalmers microwave imaging system has
been implemented and tested [54], and a complete description of the implementation
of this method is given in [54].

3.3.2 Finite element method

The FE method has been widely used as a numerical solver for the forward problem.
In this method, the imaging domain is subdivided into small domains of simple shapes
such as tetrahedra (3D) or triangles (2D) [55]. The resulting sub-domains comprise
a complete mesh in this scheme. The unstructured sub elements have made the FE
method a powerful tool in dealing with complex geometries, especially those with an
arbitrary form. For example, in a situation where a complex shape of object resides
in a relatively uniform medium, the shape and the area immediately surrounding it
can be finely disceretized, while the more homogeneous zones can be more coarsely
sampled without loss of accuracy. The electric field within the imaging domain is
expressed with the help of a linear polynomial on each of these meshes. For an
accurate approximation to the electric field distributions, a minimal size of elements
is necessary, and the finer meshes result in a massive system of equations with a
huge number of unknowns. Consequently, the computational complexity grows in
this case and requires many hours to produce an image. However, these costs are
largely instigated by the fact that the resulting matrices are banded for which there
are numerous efficient computation methods. Another drawback of this method is
that it also uses large computer resources. The FE method usually requires more
CPU time and memory compared to FDTD for the 3D setting but are comparable
in 2D problems for similar resolution.

The Dartmouth research group has used the FE scheme for calculating the electric
field of the clinical imaging system. In their scheme, they implemented the dual mesh
approach [56] to image tissue properties. First, a uniform, dense mesh is used to
calculate the electric field distributions over the entire domain and then a less dense
mesh is used for representing the dielectric property distributions in the imaging
domain. In this way, they have been successful in obtaining images in near real time.
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3.3.3 Other numerical methods

In addition to the finite difference and finite element methods, there exist other
numerical solvers that are usually some derivative of integral equations. The methods
which are meant for the integral equations are typically converted into a linear system
of equations, which are solved to obtain the electric field in the domain. The method
of moments (MoM) and the discrete dipole approximation (DDA) belong to this
category. The DDA will be discussed further in the next chapter.
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Chapter 4
The Discrete Dipole Approximation

In this section, an overview of the discrete dipole approximation is given. We briefly
discuss its fundamentals, and possible applications and implementations.

4.1 Introduction

The idea of the discrete dipole approximation was first introduced in 1964 to study
the optical properties of monomer units, such as a molecular aggregates, molecular
crystals, or polymers [57]. Later in 1973, this method was proposed by Purcell
and Pennypacker [58] to calculate absorption and scattering for dielectric grains of
arbitrary shape using a set of point dipoles, but they did not name this method as
the discrete dipole approximation or the coupled dipole approximation as is used
today. Later Draine and his colleagues further explored this method [59–61]. They
implemented the DDA and made it publicly available as a computer code named
DDSCAT [61, 62]. The more theoretical aspects of the convergence and accuracy of
the DDA and comparisons of available open source codes of the DDA was further
studied in detail by Yurkin and his colleagues [63–65], who also developed another
open source code, ADDA [66] with additional computational efficiency improvements.
One good comprehensive review of the DDA and its development is given in [67]. To
the best of our knowledge, a comprehensive review paper on the DDA after this
publication does not exist.

The DDA, sometimes called as the coupled dipole method or approximation, is
used to calculate light scattering properties of an object with an arbitrary geometry.
The DDA principle is based on the idea of replacing the object with an array of
dipoles (Figure 4.1).

The DDA can be formulated and developed in different ways [68]. Although other
derivations deviate from the original implementation by Purcell and Pennypacker,
and have typically not been called DDA, their equivalence has been proven [69, 70],
and Yurkin [68] has explained and compared these derivations briefly.

23



Chapter 4. The Discrete Dipole Approximation

Figure 4.1: The discretized forward model zone.

4.2 DDA and the 2D forward problem

In general, the forward model zone consists of a coupling medium and set of antennas
enclosing the scatterer. The electric field due to this scattering is the sum of the
incident and scattered electric fields in the form of Equation 3.17. We employ the
DDA, instead of the FDTD or FE schemes, to calculate the electric field in the forward
model zone. In the following sections, ∗̄ and ¯̄∗ are vector and matrix notations,
respectively.

4.2.1 The 2D DDA formulations

In the context of the DDA, the forward model zone is replaced with arrays of dipoles
equally spaced in N small cells such that

D = lim
N→∞

N⋃

i=1

Di (4.1)

where D and Di represent the forward model zone and cells, respectively. The two-
dimensional incident electric field due to a transmitting antenna is caused by a vertical
electrical line source (ELS) and is described as

Ēinc(r̄i) =
I0ωµ0

4
H2

0 (kbR̄i) (4.2)

where Ēinc(r̄i) denotes the incident electric field at any dipole location r̄i. I0, ω,
and µ0 are the current amplitude, operating frequency and free-space permeability,
respectively. H2

0 is the zero-order Hankel function of the second kind, kb is the
background wavenumber, R̄i are the dipole distances from the transmitting antenna.
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4.2. DDA and the 2D forward problem

Moreover, the scattered electric field at a particular location can be considered as the
joint responses from all other dipoles, and in this format reads as:

Ēscat(r̄i) =
N∑

j=1
j 6=i

¯̄GijP̄j (4.3)

The operator ¯̄G contains the information about all dipole interactions (i.e. ¯̄Gij are the
elements of the interaction matrix for all i and j), and the term P̄j is the polarization
at each dipole location. Its value represents the material properties which are assumed
to be constant inside each of these cells. Using (3.17), (4.1), and (4.3) produces the
total electric field at any dipole location ri [61]:

Ētot(r̄i) = Ēinc(r̄i) +
N∑

j=1
j 6=i

¯̄GijP̄j, (4.4)

The ¯̄Gij term from the Green’s function for the 2D Helmholtz equation [71] describes
the interactions between two dipoles located at ri and rj and is written as

¯̄Gij =
−i
4
H

(2)
0 (kbr̄ij) (4.5)

where r̄ij is the distance between nodes i and j. Moreover, at the macroscopic level,
the total electric field is proportional to the polarization P via

P = ε0χEtot (4.6)

where χ is electric susceptibility. Additionally, the vector P and the total electric
field in the microscopic analysis are also related to each other via

P = Nε0αEloc (4.7)

where N is the number of molecules per unit volume and Eloc is the microscopic
electric field sensed by each molecule. This is also the field that polarizes them to
exhibit dipole moment p. The term α expresses the relationship between the suscep-
tibility as a macroscopic parameter and the molecular polarizability as a microscopic
parameter.

The polarizability term α is usually modelled via the Clausius-Mossotti polar-
izability for the 3D case. The Clausius-Mossotti polarizability relates the relative
permittivity εr of a dielectric to the polarizability α of the molecules constituting
the dielectric property. For a spherical inclusion located in free space, the dipole
polarizability is [60,72]

αCM = 3v
εr − 1

εr + 2
(4.8)
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Figure 4.2: Photograph of the measurement set up including the tank, antennas and
the phantom cylinders.

here εr and v are the relative permittivity and volume of the sphere. In [73], this
equation is generalized to an arbitrary background as

α3D = 3v
εt − εb
εt + 2εb

(4.9)

where εb and εt are the complex permittivities of the background and target, respec-
tively. The applicability of this formulation to the 3D case has been previously tested
in [73].
To increase the accuracy, we suggest to use a more suitable polarizability term for the
microwave imaging systems. Since our imaging system, Figure 4.2, consists of a tank
filled with a liquid mixture of glycerin and water with different polarization behaviour
on the molecular level, we select a more general form of the Clausius-Mossotti rela-
tionship, the Maxwell-Garnett formula. The main advantage to the Clasius-Mossoti
model is that it is also valid for composite media which is the normal situation for
many applications including our microwave imaging system. The Maxwell-Garnett
formula can be expressed as

εmix − εb
εmix + 2εb

=
K∑

k=1

ck
εk − εb
εk + 2εb

(4.10)

In Equation 4.10, εmix denotes the composite medium consisting of K media with
permittivities, εk. The coefficients, ck, relate the volume of the inclusion to its concen-
tration which is defined as m

MrV
where V , m, Mr are volume, mass, and the molecular

weight of the inclusion, respectively. The general formula for the dimensionless α in
m-dimensions is [74]:

α = m
εt − εb

εt + (m− 1)εb
(4.11)
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Based on Equations (4.10) and (4.11), the two dimensional α in the form of the
Maxwell-Garnett formula is expressed as:

α2D :=
εmix − εb
εmix + εb

=
K∑

k=1

ck
εk − εb
εk + εb

(4.12)

The concentration coefficients ck are modified based on the area of the inclusion for
the 2D case.

In this format, using (4.6) and (4.7), the equation (4.4) converts to:

Ēinc(r̄i) =
P̄i
αi
−

N∑

j=1
j 6=i

¯̄Gij P̄j (4.13)

The system of equations (4.13) is solved for vector P̄ , and then the equation (4.4)
is used to calculate the total electric field in the forward model zone. The solution
to the linear system of equations can be obtained via direct or inverse solvers. Such
solvers are further discussed in section 4.2.2.

Samples of the results from the proposed 2D DDA are presented here. COMSOL
multiphysics is also used as baseline results to benchmark the 2D DDA forward
solutions. The 2D DDA solver is employed to calculate the electric field distributions
in the forward model zone. To accomplish this, an array of dipoles is utilized to model
the physical geometry of our imaging system. Figure 4.3 presents a 2D geometry of
a uniform grid with different numbers of dipoles. In the forward model, an extended
square modeling zone with size length of 40 cm is considered. Two circular inclusions
are assumed within the imaging domain. An inclusion (target #1) of diameter 6 cm
is at x = 4 and y = −2 and another inclusion (target #2) is of diameter 3 cm located
at x = −3 and y = 4. The transmitting antenna is located at x = −7.62 cm. The
2D DDA forward solutions are investigated with respect to multiple parameters:

• Number of dipoles for representing the geometry

• Target size

• Property contrast

A comprehensive study of these parameters and their impact is provided in Paper A.
Here some cases for electric field distributions are presented.
In these simulations, accuracy is tested for the number of dipoles to be 900 and
3600. For two circular inclusions, two cases with different relative permittivities are
investigated:

1 . Relative permittivities of targets #1 and #2 are set to 25 and 45, respectively,

2 . Relative permittivities of targets #1 and #2 are set to 45 and 25, respectively.
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Figures 4.4 and 4.5 show the magnitude and phase distributions for the 900 and
3600 number of dipole cases along with the COMSOL solution. Our observations
show that the 900 dipole case does not capture the perturbation around the objects,
while the 3600 case does. Additionally, when adequate numbers of dipoles within the
forward model zone are used, the 2D DDA and COMSOL results are comparable.

4.2.2 Direct and iterative solvers overview

In general, systems of equations are represented in the form of

¯̄Ax̄ = b̄ (4.14)

where ¯̄A is the given coefficient matrix, x̄ is the unknown vector, and b̄ is also known.
A linear system of equations can be solved via direct or iterative solvers. The direct
solver refers to methods such that the solutions are obtained in one step. One way
to obtain x̄ is to invert the matrix ¯̄A and multiply the right hand side, b̄, by it. This
approach is problematic in certain conditions including:

• The matrix ¯̄A is not invertible,

• The matrix ¯̄A is not square,

• The matrix ¯̄A is singular or close to singular.

Even if the matrix ¯̄A is invertible, calculation of its inversion matrix, ¯̄A−1, is usu-
ally very expensive, especially for large numbers of unknowns. In such cases, other
direct solvers are employed. Common methods to directly calculate the solution in-
clude Gaussian elimination, LU decomposition, Cholesky, and QR decomposition.
The details of these algorithms are given in reference [75]. Direct solvers are not
practical if the matrix size is large. For example, if the matrix is of size n, Gaussian
elimination has complexity of O(n3). Consequently, for systems with large numbers
of unknowns, iterative solutions are often favored instead of direct solutions. The it-
erative solutions are not obtained in one step, they start by assuming an approximate
solution for the unknown x̄. It requires multiple intermediate-steps to determine the
"exact" solution to the system. The Krylov subspace based methods such as the
conjugate gradient (CG) algorithms and its variants are popular for solving linear
systems of equations due to their computational efficiency.

If the matrix ¯̄A in (4.14) is positive definite, the system of equations can be solved
with the CG method. For the cases where these properties are not satisfied, other
CG-type methods are typically used. The body of iterative algorithms consists of
three main parts: initialization, inside loop, and iteration check. The inside loop
reveals that the matrix-vector multiplication is the most computationally expensive
operation in an iterative method. Therefore, it requires substantial attention to
restrain the computation time.
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Figure 4.3: Diagrams of the 2D forward model zone utilizing (top) 900, and (bottom)
3600 dipoles, respectively.
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# Dipoles: 900 # Dipoles: 3600 FEM

Figure 4.4: Plots of magnitude (top) and phase (bottom) distributions for f =1.0
GHz, σ = 1, εr,b = 22, εr,t1 = 25, εr,t2 = 45, d1 = 3 (cm), d2 = 6 (cm).

# Dipoles: 900 # Dipoles: 3600 FEM

Figure 4.5: Plots of magnitude (top) and phase (bottom) distributions for f =1.0
GHz, σ = 1, εr,b = 22, εr,t1 = 45, εr,t2 = 25, d1 = 3 (cm), d2 = 6 (cm).
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4.2.3 The 2D DDA as a system of equations

The following system of equations is used to calculate the polarization P̄ [59]:

Ēinc(r̄i) =
P̄i
αi
−

N∑

j=1
j 6=i

¯̄Gij P̄j (4.15)

The system of equations (4.15) can be reduced to the following master relationship
[73]:

αiĒinc(r̄i) = P̄i − αi
∑

j 6=i

¯̄GijP̄j (4.16)

This can be rearranged in matrix format to produce:



1 −α1G12 −α1G13 . . . −α1G1N

−α2G21 1 −α2G23 . . . −α2G2N

−α3G31 −α3G32 1 . . . −α3G3N

...
...

... . . . ...
−αNGN1 −αNGN2 −αNGN3 . . . 1







P1

P2

P3

...
PN




=




α1Einc(r1)

α2Einc(r2)

α3Einc(r3)
...

αNEinc(rN)




(4.17)

Here ri is the spatial location of each dipole. This is a general square matrix which can
be solved with any number of direct or iterative solvers. In this form, the computation
time is not substantially less than other numerical solvers such as FDTD or FE
schemes. However, iterative solvers are known to be more time efficient compared to
direct solvers. The set of equations in (4.15) can also be rearranged in matrix format
as




1
α1

−G12 −G13 . . . −G1N

−G21
1
α2

−G23 . . . −G2N

−G31 −G32
1
α3

. . . −G3N

...
...

... . . . ...
−GN1 −GN2 −GN3 . . . 1

αN




︸ ︷︷ ︸
¯̄Aij




P1

P2

P3

...
PN




=




Einc(r1)

Einc(r2)

Einc(r3)
...

Einc(rN)




(4.18)

where ¯̄A = (diag( 1
α

) − ¯̄G). As was mentioned, the matrix-vector multiplication is
the most computationally expensive operation in inside loop calculations for itera-
tive solvers such as conjugate gradient (CG) based approaches. This matrix-vector
multiplication is typically operated over many iterations until a converged solution
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is obtained. To increase the computational efficiency, the matrix ¯̄Aij is broken into
two parts - the diagonal and off diagonal terms, respectively such that:

¯̄AijP̄j =




1
α1

0 0 . . . 0

0 1
α2

0 . . . 0

0 0 1
α3

. . . 0
...

...
... . . . ...

0 0 0 . . . 1
αN







P1

P2

P3

...
PN




+




0 −G12 −G13 . . . −G1N

−G21 0 −G23 . . . −G2N

−G31 −G32 0 . . . −G3N

...
...

... . . . ...
−GN1 −GN2 −GN3 . . . 0







P1

P2

P3

...
PN




(4.19)

The first matrix-vector operation on the right hand side can be performed pointwise
as a vector-vector multiplication. The second matrix-vector operation on the right
hand side is the dominant operation in computation time for the iterative CG-type
algorithms. The key to handling this matrix-vector operation efficiently lies in the
matrix properties of ¯̄G. The matrix ¯̄G is complex and symmetric and more detail on
these formulations and the implementations is given in next section.

4.2.4 Krylov subspace methods for the DDA

Krylov subspace algorithms are used to solve large scale systems of equations. These
methods are usually named as conjugate gradient based algorithms. Moreover, they
have been involved in solving linear system of equations raised in various applications
including those from the electromagnetic field simulations [76–78]. These methods
usually handle sparse matrices (meaning most elements are zero) often having narrow
bandwidth. Particularly, discretization of partial differential equations (PDEs) with
the FE method or FD methods leads to these conditions. The most commonly used
method from Krylov subspace algorithms is the conjugate gradient (CG) algorithm.
The iterative CG algorithm is employed for real, symmetric, and positive definite
systems, meaning that ¯̄AT ȳ ¯̄A > 0 for an arbitrary vector ȳ. Here T indicates the
transpose of a matrix. The idea behind iterative CG type algorithms is to form an
(orthogonal) basis for the Krylov subspace.

We introduced the DDA to solve the forward problem in microwave tomography.
For this application, we are ultimately required to solve a system of linear equations
(4.18) considered as

¯̄Ax̄ = b̄, ¯̄A = (aij) ∈ Cn×n, x̄, b̄ ∈ Cn (4.20)

which is complex symmetric (non-Hermitian), meaning that ¯̄A = ¯̄AT 6= ¯̄AH . For such
system of equations, different iterative solvers such as the quasi-minimal residual
(QMR) [79], the BiCG-type methods such as (SCBiCG) [76], the conjugate orthogo-
nal conjugate gradient (COCG) [77], and the conjugate orthogonal conjugate residual
(COCR) [78] have been previously employed. Regarding computational efficiency,
the COCG and COCR algorithms are preferred to other types since they require one
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matrix-vector multiplication per iteration and thus impacts the overall computation
time. The principles of these algorithms are similar to those of the CG algorithms.
The main difference is in constructing a useful basis for the j-dimensional Krylov
subspace Kj( ¯̄A; r̄0) for a linear system. r̄0 = b̄ − ¯̄Ax̄0 is the initial residual for the
initial guess to the solution, x̄0. Details on the COCG and COCR methods are given
in Algorithms 1 and 2 [77,78].

x ←x0;
r ←b−Ax0;
ρ← (r, rt);
p ← rt;
while || r|| > TOL do

q ← Ap;
µ← (p,qt);
if µ = 0 then

Quit (failure)
end
α← ρ

µ
;

x ← x + αp;
r ← r− αq;
if x is accurate enough then

Quit (Convergence);
else

β ← ρ;
ρ← (r, rt);
β ← ρ

β
;

p = rt + βp;
end
return x

end

Algorithm 1: The COCG algorithm

x ←x0;
r ←b−Ax0;
ρ← (r, rt);
p ← rt;
q ← Ap;
while || r|| > TOL do

µ← (q,qt);
if µ = 0 then

Quit (failure)
end
α← ρ

µ
;

x ← x + αp;
r ← r− αq;
rt ← rt − αqt;
t ← Art;
if x is accurate enough then

Quit (Convergence);
else

β ← ρ;
ρ← (r, rt);
β ← ρ

β
;

p = rt + βp;
q = t + βq;

end
return x

end

Algorithm 2: The COCR algorithm
In Algorithms 1 and 2, the most prominent operations regarding computational as-
pects are matrix-vector multiplications ¯̄A × p̄ and ¯̄A × r̄t, respectively. These oper-
ations can be performed in the form of relationship (4.19). Generally, the operator
¯̄G × P̄ ( matrix-vector multiplication) has computational cost of order O(N2). The
matrix-vector multiplications can be done efficiently under specific circumstances.
One approach is to employ the fast Fourier transformation (FFT). Details on this
topic are given in following section.
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4.2.5 Matrix-vector multiplication using the FFT

The matrix-vector multiplication can be done fast for some structured matrices such
as Toeplitz and circulant matrices [80]. These matrices can be multiplied by vectors
in O(n log n) computational cost, instead of O(n2). A Toeplitz matrix ¯̄T is unique
such that it has regular repetition of the individual coefficients, but they are not
necessarily symmetric:

¯̄T =




a b c d e

f a b c d

g f a b c

h g f a b

i h g f a




(4.21)

A circulant matrix ¯̄C is a special Toeplitz matrix of the form

¯̄C =




a b c d e

e a b c d

d e a b c

c d e a b

b c d e a




(4.22)

The unique property of a circulant matrix is that it can be represented by the values in
a single row. With respect to computational efficiency, there is a substantial savings in
terms of memory requirements. The matrix ¯̄G in (4.19) is symmetric block-Toeplitz,
meaning that each of theN portions of the matrix in size of n×n (where n =

√
N ) are

themselves Toeplitz matrices (Figure 4.6). The Toeplitz submatrices are symmetric
and can be converted to circulant matrices. To accomplish this, columns and rows
for the Toeplitz submatrices are padded appropriately to produce circulant matrices
in the form of:
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Figure 4.6: Block-Toeplitz matrix ¯̄G.
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¯̄C1 =

g1 g2 . . . gn−1 gn gn−1 . . . g2

g2 g1 g2
. . . gn−1 gn . . . g3

... g2 g1
. . . ... gn−1

. . . ...

gn−1
. . . g2 g1 g2

. . . gn−1 gn

gn gn−1
. . . g2 g1 g2

. . . gn−1

gn−1 gn gn−1
. . . g2 g1 g2

. . .
... gn−1 gn gn−1

. . . g2 g1 g2

g2
. . . gn−1 gn gn−1

. . . g2 g1







The remaining circulant matrices ¯̄Ci, where 2 ≤ i ≤ N are also calculated in a similar
way. Consequently, the system of equations with coefficient matrix ¯̄G is converted to
a large circulant linear system.

Multiplication of a vector solution x̄ = (x0, x1, . . . , xn) by circulant matrices ¯̄C, is
equivalent to an operation called a circular convolution. According to the convolution
theorem, this convolution is performed using the n-point Fourier transformation, and
it means that the Fourier transform of a convolution is the point-wise product of
Fourier transforms. This indicates that we can multiply ¯̄C × x̄ for any circulant
matrix ¯̄C in O(n log n) operations. This implies that to multiply ¯̄C × x̄, we just need
to:

• Employ the fast Fourier transform (FFT) of the first column of the matrix and
the vector,

• Multiply the two together pointwise,

• Take the inverse FFT to recover the result.

Subsequently, the matrix-vector multiplication with O(N2) computational complexity
is reduced to an O(N logN) operation. With this formulation, the computation time
is reduced dramatically and it significantly improves to overall computation time
efficiency.

The computational aspects of the 2D DDA is studied in Paper B. Here we present
some samples for the computation times. The computation times for the direct and
iterative solvers are summarized in Table 4.1. For comparison, the computation
times for both MATLAB, as an interpretive language, and C++, a classic compiler-
based code, implementations are investigated. The results indicate that it is useful
to compare performance both with MATLAB and C++ code. While the interpretive
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codes struggle computational time-wise with constructs such as loops, they contain
highly optimized matrix operations which can often overcome such disadvantages.
These examinations show that the computation time for the 2D DDA is significantly
decreased in the iterative approach combined with FFT. The best performance is
achieved in C++ using an open source C++ package for fast Fourier transform
calculations denoted as FFTW packages [81].
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Chapter 5
Summary of Papers

5.1 Paper A

The focus of this paper is on assessing the validity of the 2D DDA for computing the
2D electric field distributions in the microwave imaging systems. In this paper, the
novel concept of using the 2D DDA as the forward solver of the imaging systems is
investigated. The 2D electric field distribution for the microwave imaging system is
numerically simulated for a simplified breast tumor model. The primary motivation
is that 2D DDA has the potential to decrease the computation time, which has been
intensively explored in Paper B.

Paper A starts with the modeling and formulations of the 2D DDA for electric
field distributions. Next, the formula for adequate sampling size and number of
dipoles are proposed based on the available sampling size formulae for the 3D case.
Three different parameters and their contributions to the accuracy of the 2D DDA
are studied. The three parameters include:

• Number of dipoles

• Inclusion size

• Inclusion property contrast

The aim is to explore the impact of these parameters on solution accuracy. To accom-
plish that, the COMSOL Multiphysics software is used for baseline results to bench-
mark the DDA simulations. Additionally, the simulation results are compared to
measurement data. These comparisons show that the DDA, FE, and measurements
show comparable results regarding both magnitude and phases. Our observations
illustrate that 2D DDA is accurate for relatively large objects with high contrast per-
mittivity properties when employing the adequate number of dipoles representing the
geometry. In this way, the 2D DDA can be used as a forward solver in reconstruction
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algorithms for microwave imaging to replace FDTD or FE forward solvers previously
implemented.

5.2 Paper B

In this paper, we focus on the computational aspects of the 2D DDA. We explore
the 2D DDA formulations and the possibilities for integrating these formulations into
the microwave imaging systems while retaining accuracy with a robust algorithm
concerning the polarization terms.

Paper B starts with the 2D DDA formulations in detail. Next, the system of
equations provided by the 2D DDA is investigated. In this case, the iterative conju-
gate orthogonal conjugate gradient (COCG) method is used for solving the forward
problem where the time-limiting step is the matrix-vector multiplication per itera-
tion. For the sake of reduced computation time, the matrix-vector multiplication
step is formulated such that the Block-Toeplitz matrix is multiplied by the vector
solutions. The reason to do that is to exploit the reduced computation costs for the
block-Toeplitz matrices times a vector operation. The idea is to expand each Toeplitz
matrix into a circulant matrix for which the convolution theorem is applied for fast
computation utilizing the fast Fourier transform (FFT).

The results demonstrate that this formulation is accurate and efficient. Compar-
ing the computation times for the direct solvers, the iterative solvers (COCG and
COCR), and the iterative solver using the fast Fourier transformation (COCG-FFT
and COCR-FFT), indicates that this approach significantly decreases the compu-
tation time. For the purpose of further algorithm optimization, we study the grid
size and analysis of appropriate error tolerance levels for the conjugate gradient type
iterative process. The results indicate that employing the iterative solver with ap-
propriate error tolerance level combined with the FFT on the suitable grid size allow
the forward solution time to decrease to the order of 0.1 second.
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Conclusion and Future Work

In this thesis, validity of using the 2D DDA to calculate the electric field distributions
for the microwave imaging systems is studied. Our investigations show that 2D DDA
can be used as a viable and accurate forward solver. The accuracy of the proposed
method is dependant on the number of dipoles. In Paper A, we have also proposed a
formula for the minimum number of dipoles, which can be considered as a modified
version of the 3D case applied to a microwave imaging system. The results indicate
that this method can also handle a large contrast range within the forward model
zone. The larger targets with high contrast contribute to a higher error compared to
smaller targets with lower contrast.

The main motive to employ the 2D DDA is to reduce the computational com-
plexity in the microwave tomography algorithms, and produce images in few minutes
instead of multiple hours. To accomplish this, in Paper B, the linear system of equa-
tions from the 2D DDA is solved using Krylov-based iterative algorithms combined
with the FFT. The proposed solver is time efficient for cases where the forward model
zone is finely discretized and size of it is chosen appropriately. Additionally, choice
of an interpretive language such as MATLAB or a classic compiler-based code such
as C++ impacts time efficiency. Although the 2D DDA have been studied and in-
vestigated, there is a possibility to improve the accuracy, and it can be done by
investigating the dipole polarizabilty for the microwave imaging systems.

We would like to employ the 2D DDA in a microwave tomography algorithm.
Our plan is to build a new, 2D tomographic imaging algorithm utilizing the 2D
DDA forward solver as a fundamental building block. Within that construct, we will
examine how best to structure the forward solution grid and the parameter mesh (or
grid) as a means of optimizing the computation time required to form the Jacobian
matrix, a key to reducing computation time.

In addition, because the forward solutions only change marginally from one re-
construction iteration to the next, there may be ways to optimize the forward solu-
tion time further since the CG-based algorithms require a starting estimate for the
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forward solution. In this context, instead of supplying the forward solution for a ho-
mogeneous medium, the integrated reconstruction algorithm may be able to supply
better estimates of the forward solution. This may substantially reduce the number
of CG iterations required for an accurate solution and significantly reduce the overall
computation time further.

Besides, study of the convergence rate for the COCG and COCR can also con-
tribute to time efficiency. The 2D DDA based reconstruction algorithm will be
benchmarked with the FE and FDTD based algorithms developed at Dartmouth
and Chalmers groups. To accomplish this, experimental data such as measured data
from phantoms can be used. In addition, the dipole polarizabilty for the microwave
imaging systems should be studied, as it substantially impacts the accuracy with
respect to target’s characteristics.
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