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ABSTRACT

Modern software systems, such as smart systems, are based on a

continuous interaction with the dynamic and partially unknown

environment in which they are deployed. Classical development

techniques, based on a complete description of how the system

must behave in different environmental conditions, are no longer

effective. On the contrary, modern techniques should be able to pro-

duce systems that autonomously learn how to behave in different

environmental conditions.

Machine learning techniques allow creating systems that learn

how to execute a set of actions to achieve a desired goal. When a

change occurs, the system can autonomously learn new policies

and strategies for actions execution. This flexibility comes at a cost:

the developer has no longer full control on the system behaviour.

Thus, there is no way to guarantee that the system will not violate

important properties, such as safety-critical properties.

To overcome this issue, we believe that machine learning tech-

niques should be combined with suitable reasoning mechanisms

aimed at assuring that the decisions taken by the machine learning

algorithm do not violate safety-critical requirements. This paper

proposes an approach that combines machine learning with run-

time monitoring to detect violations of system invariants in the

actions execution policies.
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1 INTRODUCTION

There is a need for the systems to be “smart". Smart systems are

systems that continuously sense the environment in which they

operate, are able to detect changes, and react to those changes.

The environment in which smart systems operate is usually dy-

namic, uncontrollable, and partially known. For example, in the au-

tomotive domain, drivers behaviours are sometimes unpredictable,

animals unexpectedly can cross roads, etc. Smart systems have to

deal with such unpredictability and uncertainty in a “self-adaptive"

manner. Self-adaptation refers to the capability, performed at run-

time without human intervention, of a system in autonomously

changing its behaviour in response to changes [1, 2].

Classical development techniques require to fully describe the

system behaviour in all the different environmental conditions. This

is unpractical — if not even impossible — in smart systems where

there is a high number of environmental conditions to be considered

for adaptation. For this reason, modern development techniques for

smart systems must rely on techniques that allow creating systems

that autonomously learn how to behave in different environmental

conditions.

Machine learning techniques are able to autonomously learn

how to act on a running system to achieve a desired goal. Such

techniques are based onmodels trained on data and examples rather

than logic programs with predefined rules. The programmer is re-

placed by a machine that can continuously update its models as new

data comes from the environment. After training them, machine

learning models allow for the effective handling of changes i.e.,

when a change occurs the system autonomously learns new poli-

cies for actions execution. The use of machine learning drastically

changes how software systems are developed, i.e., the choice of

which the actions to be executed in the different environmental

condition is no longer in the developer’s hands but is rather au-

tomatic. In this paper, we use reinforcement learning since it is a

powerful machine learning technique for decision making.

The automatic support provided by machine learning techniques

moves control from the developers to the system hands. Thus, the

developer is no longer able to ensure that the systemwill not violate

important properties, i.e., invariants, that may be used to represent

for example safety-critical properties. In the automotive domain, for

example, the developer has no longer control on ensuring whether

a self-driving car is going to take a decision that is safe for the par-

ticular situation or not. Wrong decisions performed by the machine

learning engine may result in car accidents and serious injuries

for the passengers. Thus, we believe that while there is a need for

systems to be self-adaptive, there is also a need to “keep intelligence

under control".

We envision a new approach, in the following named WiseML,

to ensure that machine learning decisions do not cause the viola-

tion of a set of “important" properties. This approach combines

machine learning, and specifically Reinforcement Learning (RL) [3],

with run-time monitoring techniques which aim at ensuring the

preservation of important safety-critical requirements. On one side,

WiseML allows the systems to adapt through the use of machine

learning techniques. On the other side, WiseML employs run-time

monitoring to continuously check that the policies suggested by
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reinforcement learning will not violate a set of safety-critical re-

quirements.

The paper is structured as follows. Section 2 describes some of

the challenges of reinforcement learning when used as instrument

to enable run-time adaptation. Section 3 describes WiseML, our

envisioned approach. Section 4 presents reinforcement learning: a

machine learning technique that can be used within WiseML to

enable self-adaptation. Section 5 presents monitoring techniques

that can be used within WiseML. Section 6 discusses the proposed

approach. Section 7 concludes with final remarks.

2 CHALLENGES OF REINFORCEMENT

LEARNING

At each step, a reinforcement learning agent perceives observation

(the state of the environment), applies actions, and receives a reward.

The goal that the agent has to achieve is expressed by conveying a

reward signal for each action it applies. The agent will eventually

learn a policy, i.e. the action to be applied to the observed state,

which maximises the cumulative expected reward. In this section,

we describe some of the challenges of reinforcement learning as

also pointed out by Koopman [4].

Overfitting problem - Reinforcement Learning (RL) techniques

require a set of training data that have to be independent of the

validation data to avoid overfitting. One main problem with ma-

chine learning methods is that they are optimised for average cost

function and they do not guarantee for corner cases. Challenges

in this area are compromised by the fact that when using methods

such as neural networks, it is difficult for humans to understand

the rules that have been learned by simply looking at its weights.

Black swan - When the neural network learns the rules from a

training set, if certain data is missing or wrongly correlated to the

training data, the network may fail and potentially cause safety

hazards. In other words, if there is a special case that the system has

not experienced, it cannot correctly predict such case; this is known

as the black sworn problem [5]. Hence, it is hard to detect and isolate

bugs where the behaviour is not expressed with traditional lines

of codes but entrusted to a neural network. The network would

need to be retrained with also the potential risk to “unlearn" correct

behaviours.

Reward hacking - An incorrect specification of the reward func-

tion can cause unexpected behaviours to the agent. One of the prob-

lems is reward hacking [6]: when the reward function is not exactly

representing the designer’s intention, the agent might optimise

towards an imprecise reward function and behave unexpectedly

meaning that the agent exploits the reward function and manages

to get a high reward without achieving the designer’s intentions,

but instead optimising towards the rewards function that is indeed

not exactly representing the designer’s intentions. For example,

in the case of a cleaning robot, the reward function might give a

positive reward for not seeing any mess then the agent might learn

to disable its vision rather than cleaning up. Instead, if the reward is

given only when the robot actually cleans up then the robot might

learn to make a mess first and then cleaning up so that it keeps

receiving more and more rewards.

3 WISEML

Figure 1 shows an overview of WiseML.

WiseML considers both functional and non-functional require-

ments in the adaptation framework. Functional requirements are

the Goals (G)WiseML must achieve. Non-functional requirements

refer to the properties WiseML must ensure and they are repre-

sented in the form of Invariants (I).

WiseML receives as input the goalsG to be achieved ( 2 ) and a

set of invariants I to be ensured ( 3 ). It perceives the state of the

environment through a set of input variables ( 1 ) and performs

the actions ( 4 ) to apply to the environment that aims at reaching

the desired goals.

WiseML uses a reinforcement learning agent as machine learn-

ing engine, indicated in Fig. 1 using an appropriate component,

and a monitor component ( 7 ). Once trained the reinforcement

learning agent automatically computes the action to be executed.

The monitor component blocks the actions that most probably

will violate invariants and provides feedback to the machine learn-

ing component so that it will learn from mistakes intercepted by

the run-time monitor ( 8 ). The interplay between the machine

learning and the monitoring components is designed to enable the

integration of enforcement techniques as well as other techniques

able to manage the erroneous behaviours intercepted by the moni-

tor. For instance, this would permit to switch to a safety mode in

the case of the system is in a critical situation.

For example, an RL agent in charge of driving may receive re-

wards related with the following goals: stay in the middle of the

lane, drive to the desired speed, avoid obstacles etc. The monitor will

continuously check at runtime that the agent does produce actions

that will violate important invariants of the system: keep a certain

distance to the other vehicles, do not go off road, do not crash, etc.
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Figure 1: Overview ofWiseML.
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Machine learning. The reinforcement learning agent observes

the state of the environment to detect how it reacts to the performed

stimuli, i.e., the chosen actions ( 1 ). We envision the reinforcement

learning agent to use a Reward Shaping component, that issues

rewards to the agent to drive it towards the goals to be achieved,

penalising it for acting bad and rewarding it for acting well. Based

on the rewards it collects, it learns a policy, i.e. a function that maps

the observations from the environment to actions to be performed

on it. The reward function can also be affected by the feedback

received by the monitor component, in case the selected action

caused a violation of any invariant ( 8 ). In this sense, the monitor

plays the role of a teacher for the learning algorithm. Eventually,

the agent will learn a policy that maximises the cumulative reward

by trial and error with the environment. Once an action is selected,

it is then performed on the environment 4 .

Monitoring. It aims at detecting whether the actions chosen

by the machine learning component ( 6 ) are going to cause a

violation of any invariant. In this sense, the monitoring algorithm

should be predictive, i.e., it should detect violations of invariants

before they will occur. The monitoring component relies on the

Runtime Enforcer to ensure that the behaviour of the RL agent is

compliant with certain properties, i.e., the invariants of the system.

The Runtime Enforcer acts on the running system by allowing and

forbidding actions of being executed.

The monitor evaluates the effect of actions on an abstract rep-

resentation of the system, which is maintained updated using the

information detected using the input variables ( 5 ). If the evalu-

ation detects a violation, the monitoring component prevents the

action for being executed ( 7 ) and sends feedback to the machine

learning component ( 8 ). This feedback will be then integrated

into the reward function by the reward shaping component. If no

violation has been detected, then no barrier is activated ( 7 ) and

the action is performed.

For example, referring to the automotive domain, functional

safety standards such as the ISO26262 can be used as a guide for

the definition of the monitored properties as in the approach of

Heffernan et al. [7]. The usage of approaches that perform predictive

runtime verification of timed properties may also be investigated [8,

9]. For instance, the approach in [9] exploits the structure of the

property to predict faults before they will actually materialize. The

verification monitor might also provide additional information such

as the minimum (maximum) time when the property can be violated

(satisfied) in the future.

4 MACHINE LEARNING

Reinforcement learning (RL) is an area of machine learning that

deals with decision-making. An RL agent interacts with the envi-

ronment by performing actions and it receives a reward. The agent

will learn to choose actions that maximize the cumulative reward.

In model-based reinforcement learning, the RL agent computes

an optimal policy on a model of the world, usually formalized

as a Markov Decision Process (MDP) extended with the reward

information associated to the transitions from one state to another.

The RL agent is also able to operate in a completely unknown

environment, i.e., it is able to learn the best strategy to be employed

when the only way to collect information about the environment

is by interacting with it. Basically, the RL agent will learn a policy

without knowing a priori a model of the environment, in this case,

we refer to model-free reinforcement learning.

In our approach we will use a combination of model-free and

model-based RL. First, we formalize the goals in terms of reward

functions at design-time. Then, at run-time, the monitor can inter-

fere with the reward function in case a violation of the invariants

is detected. This mechanism is called reward shaping and it steers

the RL agent to perform actions that will not trigger the monitor in

the future, guiding it towards its goals [10].

5 MONITORING

Our envisioned approach (WiseML) uses monitoring techniques

at run-time to prevent violations of invariants that will be caused

by the actions chosen by the machine learning engine. Since the

goal of monitoring is to avoid the execution of actions that will

cause violations, monitoring should be predictive. According the

available knowledge of the system and or the environment, different

monitoring approaches might be conceived and/or adopted.

Given the current model of the environment, the invariant that

must be ensured and the action a to be executed, the predictive
monitoring engine aims at detecting whether an action execution

will cause a violation of an invariant. In the case of no model of

the environment is available, the predictive monitor can only make

predictions on the structure of the property, on its current partial

satisfaction, and on the distance, in terms of actions, to be performed

in order to have a failure [9].

In general, the selection and design of predictive monitors open

interesting challenges. These include the definition of appropriate

semantics that consider whether a property will be satisfied or vio-

lated, the probability and distance from the potential failure, as well

as whether it is possible to control the system and its environment

in a way that satisfy the properties of interest (or avoid the failure).

Since properties satisfaction must be verified at run-time, seman-

tics must be defined taming the complexity of the corresponding

verification algorithms.

Solutions for these problems may exploit multi-valued seman-

tics [11]. These semantics are usually employed since two-valued

semantics cannot be used to monitor all properties, such as liveness

properties, and the satisfaction of these properties rely on how the

system will behave. An example of these semantics is LTL3. The se-
mantics of LTL3 is defined as follows: 1) satisfied; 2) violated; and 3)
inconclusive. The same authors also extend LTL3 with four-valued
semantics: 1) satisfies the property, 2) violates the property, 3) will

presumably violate the property, or 4) will presumably conform to

the property in the future, once the system has stabilized.

Another aspect to be considered in the selection of the monitor

is the type of invariants that should be ensured. Invariants describe

guarantees that the system must ensure. These may include prop-

erties that predicate on explicit time as well as branching or linear

notions of time. Examples of invariants that use a linear notion

of time and implicit and explicit time are “if the left turn signal

of the vehicle is on, it must eventually turn left" and “if the left

turn signal of the vehicle is on, it must turn left within 10 seconds",

respectively. Depending on the invariants to be analysed, different
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run-time monitors can be considered and used. It is important to

note that these monitors cannot predict exactly what will be the

behaviour of the system and if specific failures can be prevented.

However, they should be able to inform the system about the possi-

bility and probability of a failure. The output of our monitors may

be exploited to enhance the system with run-time mechanisms to

avoid failures. Triggered by our monitors, these mechanisms may

be able to act before the failure and take all the possible actions to

prevent failures.

We plan to automatically generate a predictive monitor from the

invariants using methods such as PREDIMO [12], a novel approach
where the properties to be monitored are specified in terms of

scenarios. This approach automatically synthesises a monitor by

exclusively exploiting the structure of the property and a partial

knowledge of the behaviour of the environment. By taking into

account the actual status and also the foreseen possible evolutions

of both system and environment in the near future, the generated

monitors provide an estimate of a potential incoming failure, in

terms of the distance to the failure and the degree of controllability

of the system. This enables the definition of run-time mechanisms

that, e.g. by avoiding specific actions or forcing other ones, might

prevent failures in the near future.

We will also evaluate the possibility of realizing monitors based

on game theory, like the approaches in [13–15].

6 DISCUSSION

WiseML is based on the idea to not program all the behaviours

and adaptation that the system should perform at design-time but

instead set up goals to achieve and train the system to achieve

them. Reinforcement learning is a framework that fits perfectly

with our needs of learning and adapting in order to reach the

desired goal. However, as pointed out in Section 2, using machine

learning techniques instead of traditional software imposes some

challenges. Decisions are not driven anymore by software written

by programmers following the requirements but on data and the

reward signal. With runtime monitoring, we envision to create a

satefy envelope around the machine learning system. The monitor

will prevent the RL agent to choose an action that violates important

invariants and it will train the agent to perform better in the future.

The correct selection of the reinforcement learning algorithm

and of the monitoring engine is crucial for obtaining an implemen-

tation of WiseML that behaves as expected. The machine learning

algorithm should be chosen depending on whether there is full or

partial observability about the environment in which the system is

deployed. Most likely the RL agent will have some initial knowl-

edge about the environment and it will be trained so that it can

learn about the environment as it explores it, in an online fashion.

The monitoring engine should be chosen considering the type of

invariants that need to be ensured as well as the desired effective-

ness and velocity in reacting to changes. It must be noticed that

machine learning and monitoring components cannot be chosen in

isolation, but their composed behaviour should be considered in

their selection and set-up.

Having an effective monitor may reduce performance. Indeed a

deeper analysis of invariants’ violations may cause a performance

overhead and at the end invalidate verification results. This may

occur when predictive monitoring is too slow and, before results

are obtained, the model of the environment already changed dras-

tically since other agents performed actions. For example, while

the monitoring verifies whether the action “crosses the intersection

within 2 seconds" can be performed (by also evaluating the effect

of other agents actions) the semaphore may turn red and invalidate

the obtained results. On the other hand, a less effective monitor

may return not accurate results. For example, a monitor that checks

whether a pedestrian is not crossing the road should also consider

the volumes of the objects carried by the pedestrian. This check

causes a performance overhead.

7 CONCLUSIONS

This paper envisions a new approach named WiseML. This paper

envisions a new approach named that aims at creating systems that,

on one hand are able to learn and adapt their behavior based on

changes that occur in the environment, on the other are able to

ensure that adaptation does not cause invariants violation. We dis-

cussed some challenges posed by reinforcement learning and how

combining it with runtime monitoring might solve some of these

challenges. We broadly discussed some possible solutions for the

proposed envisioned approach that may use reinforcement learning

as mechanisms to enable adaptation and predictive monitoring as

instrument to detect invariants violations.
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