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Channel Prediction with Location Uncertainty
for Ad-Hoc Networks

Markus Fröhle, Student Member, IEEE, Themistoklis Charalambous, Member, IEEE, Ido Nevat, and
Henk Wymeersch Member, IEEE

Abstract—Multi-agent systems (MAS) rely on positioning tech-
nologies to determine their physical location, and on wireless
communication technologies to exchange information. Both posi-
tioning and communication are affected by uncertainties, which
should be accounted for. This paper considers an agent placement
problem to optimize end-to-end communication quality in a MAS,
in the presence of uncertainties. Using Gaussian processes (GPs),
operating on the input space of location distributions, we are able
to model, learn, and predict the wireless channel. Predictions,
in the form of distributions, are fed into the communication
optimization problems. This approach inherently avoids regions
of the workspace with high position uncertainty and leads to
better average communication performance. We illustrate the
benefits of our approach via extensive simulations, based on
real wireless channel measurements. Finally, we demonstrate the
improved channel learning and prediction performance, as well
as the increased robustness in agent placement.

Index Terms—Ad-hoc networks, bit error rate, channel pre-
diction, Gaussian processes, multi-agent systems

I. INTRODUCTION

MOBILE autonomous multi-agent systems (MAS) need
to communicate and coordinate with each other, as well

as interact with the environment they operate in [1]. Such
systems employ the wireless medium for communication and
localization. For mission planning and its successful execution,
it is imperative to have accurate prediction models of the
wireless channel, thus allowing to determine the channel
quality and prediction accuracy of the future locations of
agents within the environment. MAS come in two forms:
infrastructure-based MAS, where the agents’ communication
is only via a fixed infrastructure, and cooperative MAS, where
agents communicate over the wireless channel in an ad-
hoc manner. Examples of infrastructure-based MAS include
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maintaining connectivity with a base station [2], proactive
caching of data for mobile users [3], [4], and autonomous
cars communicating with an intersection coordinator (vehicle-
to-infrastructure communication) [5]–[7]. In cooperative MAS,
the channel predictor needs to consider mobility of both link
endpoints. Examples of cooperative MAS include groups of
robots for monitoring [8], search-and-rescue scenarios [9],
and autonomous cars cooperating on sensor data from the
environment [10], as well as their throughput maximization
at an intersection (vehicle-to-vehicle communication) [11].
Furthermore, connectivity maintenance [12]–[18] and network
integrity maintenance [19]–[21] have been extensively studied,
based on simplified channel models. More realistic channel
models were considered in [22]–[24], where [22] develops
optimal routing algorithms for wireless multihop networks,
[23] uses a statistical model to control a group of agents
in unexploited areas, and [24] minimizes the end-to-end bit
error rate (BER) on a given communication path by relocating
relay agents. In addition, several control laws have been
developed to move agents to points of interest for, e.g., optimal
coverage [25], optimal sensor placement with respect to Fisher
information [26], and to maximize sensory information [8],
[27]–[29]. In [30], optimal sensor placement using Gaussian
processes (GPs) has been addressed.

From [23] and [24], it is clear that proper statistical mod-
eling of the wireless channel is important for connectivity
maintenance in both infrastructure-based MAS and cooper-
ative MAS. Moreover, since MAS rely on sensors (e.g., the
Global Positioning System (GPS) or ultra-wide band signals)
to determine their location, localization errors impact the true
channel quality experienced by the MAS. The incorporation
of the MAS’ location uncertainty in channel modeling and
prediction allows to give qualified statements not only on
the predicted channel, but also on its expected accuracy in
view of the MAS’ location accuracy. The wireless channel is
usually modeled as being composed by a deterministic part
due to path-loss and a stochastic part due to large- and small-
scale fading or simply to compensate any model mismatches.
Since fading is spatially correlated (e.g., due to obstacles along
the propagation path) it is beneficial to exploit the present
spatial correlation not only in infrastructure-based MAS, but
also in an ad-hoc scenario where cooperative MAS operate.
For infrastructure-based MAS, [31], [32] investigated spatial
correlation of large-scale fading for outdoor scenarios, and in
[31], [33], [34] for indoor scenarios. Many shadowing corre-
lation models have been proposed (see [35] for an overview),
among which the Gudmundson model, introduced in [36], is
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widely used. For cooperative MAS, [37] proposed an extension
of [36] for non-common endpoints, which was supported by
channel measurements. This was adapted by [33] in order to
address the non-isotropic spatial correlation present in indoor
scenarios. A different approach was taken by [38]–[40] where,
instead of modeling the shadow variation over space, the loss
due to shadowing was considered. When it comes to channel
gain prediction for infrastructure-based MAS with respect to
(w.r.t.) the present spatial correlation, [23] and [41] among
others proposed the usage of GPs. The kriged Kalman filter
allows to track spatio-temporal fields [42], [43], where [44]
makes use of this filter to track the evolution of the channel
gain map. In [45], a Kalman filter was developed to track the
temporal evolution of a GP. Note that, for all of these filter-
based methods the measurements of the spatio-temporal field
are assumed to be recorded at known locations and known
time.

The effect of location uncertainty on the prediction quality
was studied in [46] and [47]. In [48], a GP-based framework
considering location uncertainty of the receiver for robust
estimation of the model parameters as well as for channel
gain prediction was proposed. In order to incorporate location
uncertainty in the GP framework, a similar approach as in [49],
[50] was taken. In [51], the framework of [48] was adapted
to incorporate location uncertainty of both communication
endpoints, though it did not consider the presence of a mean
function.

In this paper, we build on [48], [51] and [24], to develop a
GP-based approach for learning and prediction of the wireless
channel in the presence of location uncertainty, in order to
optimize end-to-end communication performance. Our main
contributions are:

• A new model for the spatial correlation of transmitter
(TX) and receiver (RX) endpoints in large-scale fading
through a GP-based framework comprising novel closed-
form mean and kernel functions, accounting for uncertain
TX and RX locations;

• A novel learning procedure of the underlying channel
parameters from measurements collected at arbitrary un-
certain TX and RX locations; and

• The incorporation of the above models and procedures
in a class of connectivity maintenance problems for
cooperative MAS.

Our approach is supported by indoor ad-hoc channel measure-
ments using off-the-shelf technology and extensive numerical
simulations.

The remainder of this paper is organized as follows. Sec-
tion II introduces the model and Section III the problem
formulation. Section IV describes the channel and location
model, while Section V details our approach for predicting the
wireless channel in the presence of such uncertainties. Section
VI highlights the applications of channel gain prediction.
Simulation results are given in Section VII and conclusions
are drawn in Section VIII.

II. SYSTEM MODEL

We consider a MAS of L mobile agents in a workspace
W ⊂ R2. The position of agent i is denoted by qi. The
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Fig. 1. Communication topology of a cooperative MAS. The communication
quality along the route from agent 1 to agent 5 needs to be increased by
repositioning controllable agents. Each agent has some location uncertainty
due to its imperfect sensor measurements.

agents form a network with associated communication graph
G = (V,E) with vertex set V = {1, . . . , L} and edge set
E ⊆ V × V . The pairs of positions associated with edge
e ∈ E is denoted by xe = [qT

i ,q
T
i′ ]

T ∈ W2, where (i, i′)
corresponds to edge e. We will denote by X the set of all
valid configurations of the L mobile agents. To simplify the
exposition, we consider V and E to be fixed, i.e., the structure
of the communication graph G does not change. A scenario is
illustrated in Fig. 1. The communication performance of the
network is determined by the quality of a single link and the
end-to-end quality, described below.

A. Link Quality

The signal-to-noise ratio (SNR) of a certain link e depends
on the transmitting agent, denoted by TX, the receiving agent,
denoted by RX, and the wireless propagation channel. It is
defined as

γ(xe) =
P lin
RX (qi,qi′)

N0W
, (1)

where P lin
RX (qi,qi′) is the received power between the TX

located at qi and the RX located at qi′ (to be defined in Sec.
IV), N0 denotes the noise power spectral density, and W is
the bandwidth of the RX.

B. Network Quality

The end-to-end communication quality depends on the
location pairs X = [x1,x2, . . . ,xM ] of all edges e ∈ E, where
M is the cardinality of the set E, i.e., M = |E|. This can be
expressed as

J(X) =
∑
e∈E

f(γ(xe)), (2)

where f(·) can take on a number of forms, including the
following:

• f(·) depends linearly on the SNR, i.e., f(γ(xe)) =
aeγ(xe), for constants ae. Application scenarios include



3

the maximization of the transmission range for a fixed
TX power.

• f(·) depends on the logarithm of the SNR, i.e.,
f(γ(xe)) = ae log2(1 + beγ(xe)), for constants ae, be,
which corresponds to the instantaneous capacity of an
AWGN channel in nats/s/Hz [52], [53]. An application
scenario includes the maximization of data throughput.

• f(·) depends exponentially on the SNR, i.e., f(γ(xe)) =
ae+be exp(−ceγ(xe)), for constants ae, be, ce. An appli-
cation scenario includes the maximization of probability
of correct reception of a transmitted bit [54, Ch. 9], which
is useful for, e.g., minimizing the transmission latency.

We assume that the SNR has been measured at N specific
location pairs XN = [x1,x2, . . . ,xN ]. These measurements
are available to solve the optimization problem formulated
next.

III. PROBLEM FORMULATION

In order to optimize the end-to-end communication quality
when the SNR is available for all X and X is known precisely,
we can consider the following standard optimization problem:

maximize
X∈X

J(X). (3)

In other words, we would like to place the agents in a way such
that J(X) is maximized. In practical scenarios, this problem
is challenging because of two sources of uncertainty:

• SNR uncertainty: The SNR γ(xe) is generally not known
exactly for all xe ∈ W2. Instead, SNR measurements at
a finite set of location pairs XN are available, based on
which γ(xe) must be predicted for any xe ∈ W2.

• Location uncertainty: The location of an agent pair may
not be known exactly, either for the above-mentioned
measurements or when solving (3). We will denote by ue

the description of the location uncertainty1 of the location
pair xe, and correspondingly U for X, and U for X .

To deal with these different types of uncertainty, instead of
(3), we will consider the following optimization problem

maximize
U∈U

EX|U
{
Eγ|X {J(X)}

}
(4)

= maximize
U∈U

∑
e∈E

Exe|ue

{
Eγ|xe

{f(γ(xe))}
}

(5)

≈ maximize
U∈U

∑
e∈E

Eγ|ue
{f(γ(ue))} , (6)

where the transition from (5) to (6) avoids the expectation
w.r.t. the link endpoints location by directly considering the
SNR random variable γ(ue), as a function of the location
distribution ue.

The goal of this paper is to provide an approach to solve
problems of the form (6), based on a database of N SNR
measurements in the workspace, taken at uncertain locations.
Our approach will involve the following steps:

1) Based on the measurements with location uncertainty,
the channel model is determined.

1For instance, ue could be a mean and covariance matrix associated with
a Gaussian distribution over xe.

TABLE I
MEASUREMENT SETUP

Parameter Value
No. of RX positions 10, 900
No. of TX positions 11
∆RX spacing 0.02 m
∆TX spacing 1 m
min. TX-RX distance 1 m
PTX 20 dBm
Antenna height 0.85 m
TX frequency 2.422 GHz
Bandwidth 20 MHz

2) Based on the model and the measurements, for any
set of location distributions for all nodes, U ∈ U , we
determine predictions of the associated SNRs for each
link γ(ue) and evaluate the objective.

3) Based on the predicted SNRs, the objective is optimized.

Remark 1. We note that, even though U and X are convex sets,
and f(γ) is monotonic in the SNR γ, (4) is inherently a non-
convex optimization problem, due to the arbitrary relationship
between γ and xe, as well as γ and ue. For that reason, our
focus will be on steps 1–2 above.

Remark 2. For the case the structure of the communication
graph G is not fixed, e.g., one wants to determine the optimal
edge set E jointly with the optimal positions X using (2), then
E will become an optimization variable in (3).

IV. STATISTICAL CHANNEL AND LOCATION MODEL

In this section, we will motivate the use of statistical models
for both the wireless channel and the agents’ locations.

A. Channel Model

1) Motivation: We have collected ad-hoc indoor channel
measurements in a corridor at the Department of Electrical
Engineering at Chalmers University of Technology. The TX
was placed at different positions along the corridor. On a
corridor perpendicular to it, the RX was placed on different
positions along a line starting at TX position 6.5 m. For
every TX–RX location pair, the received power in dBm was
measured using commodity hardware radios of type Netgear
N150 Wireless adapter. A total of 10,900 measurements were
recorded, with additional measurement parameters stated in
Table I. To remove small-scale fading effects (detailed later),
the measurements were spatially averaged over a window of
0.4 meters. In Fig. 2, the received power in dBm is shown for
different TX–RX locations. We observe high received power
for any RX position when the TX position is around 6.5
m. Similarly, for RX positions close to the TX line, a high
received power can be observed. This is due to line-of-sight
(LOS) between TX and RX for both of these cases. For other
TX–RX locations (partly) non-line-of-sight (NLOS) situations
occur, where large-scale fading heavily affects the received
signal power. From Fig. 2, it is clear that the channel depends
in a complex way on the TX and RX location, as well as the
propagation environment. It is thus not appropriate to consider
γ(xe) as a simple function of the distance between TX and



4

5 10 15

2

4

6

8

TX location in m

R
X

lo
ca

tio
n

in
m

−80

−60

−40

−20

Fig. 2. Measured received signal power in dBm for different TX and RX
positions in a mixed LOS/NLOS scenario. The RX moved perpendicular to
the TX starting at TX position 6.5 m. Measurements have been spatially
averaged to remove small-scale fading.

RX. Instead, we consider γ(xe) as a realization of a random
process, with properly defined statistical properties.

2) Statistical Channel Model: We consider a TX located
at qTX ∈ W which emits a signal with power P lin

TX (in linear
scale), which is transmitted through the wireless channel and is
received at the RX located at qRX ∈ W . The transmitted signal
experiences distance-dependent path-loss, large-scale fading
due to obstacles in the propagation path, and small-scale fading
due to multi-path. Following [55, Ch. 2], the received signal
power is expressed as

P lin
RX(qTX,qRX) = P lin

TX g0 ||qTX − qRX||−η
2 (7)

× ψ(qTX,qRX) |h(qTX,qRX)|2,

where constant g0 captures antenna and other propagation
gains, η denotes the path-loss exponent, ψ(qTX,qRX) is the
TX and RX position dependent shadowing and h(qTX,qRX)
captures small-scale fading effects. Under the assumption
that measurements average out small-scale fading, either in
time (measurements taken over a time window), frequency
(measurements represent average power over a large frequency
band), or space (by using multiple antennas) the received
signal power in dBm is reduced to

PRX(qTX,qRX) = L0 − 10η log10 ||qTX − qRX||2 (8)
+Ψ(qTX,qRX),

where L0 = PTX + 10 log10(g0) + 10η log10(d0), and
Ψ(qTX,qRX) = 10 log10 ψ(qTX,qRX). We assume that the
large-scale fading (shadowing) follows a log-normal distribu-
tion, i.e., Ψ(qTX,qRX) ∼ N (0, σ2

Ψ), where σ2
Ψ is the shadow-

ing variance [54]. For a static environment and homogeneous
TX and RX units, the transmission channel can be considered
reciprocal and hence, Ψ(qTX,qRX) = Ψ(qRX,qTX) (c.f. [54],
[55]).

Remark 3. In general, shadowing is spatially correlated, i.e.,
RX locations which are spatially close experience similar
shadow fading [35], [36]. For a common TX endpoint qTX ∈
W , a well-known correlation model is the Gudmundson model

for different RX locations qRX,i,qRX,j ∈ W [36]. This model
can be extended to account for ad-hoc communication links
with non-common TX endpoints qTX,k,qTX,l ∈ W (see, for
example [33], [37]), under the assumption that the TX–RX
transmitter distance is large compared to the displacement
between TX endpoints and the RX endpoints.

Remark 4. The presence of multiple agents operating in the
workspace W will cause small scale propagation effects, but
do not affect the (average) received power PRX. For this
reason, we consider in this work the environment to be static
during the operation of the MAS. A possible extension of this
work could for instance address also the temporal evolution
of the shadowing field with the help of a kriged Kalman
filter [42], [43] for the case the shadowing field cannot be
assumed to be static such as, e.g., in a factory building
where large moving objects are present. In doing so, the
available measurements recorded at location pairs XN need
not be outdated. This can be achieved when agents periodically
measure the received signal power w.r.t. their neighbors and
only up to date measurements are used to solve (6).

B. Location Model

1) Motivation: Agents rely on sensors to determine their
location with the effect that their estimated position has
some residual uncertainty. For our problem, this has two
implications. First, when measuring the SNR at a specific
location pair x = [qT

TX,q
T
RX]

T, the true measurement locations
are not known. Secondly, in the workspace, the quality of the
positioning system may vary. As an example, when using GPS,
the number of available satellites and their geometry will be
location-dependent. Consequently, there may be parts of the
workspace where location accuracy is low, thus deteriorating
the accuracy of SNR predictions.

2) Statistical Location Model: We will model the location
uncertainty through Gaussian distributions, as this is compat-
ible with most localization/navigation approaches, including
the Kalman filter and extended Kalman filter [56]. Hence, the
statistical model for the uncertainty of a link location pair x
is given by

x ∼ N (µ,Σ), (9)

in which µ = [µT
TX,µ

T
RX]

T ∈ R4 and Σ =
diag (ΣTX,ΣRX). Note that the TX and RX location are
considered as independent random variables.

V. CHANNEL GAIN PREDICTION

In this section, we describe how to predict the SNR for a
target TX and RX location pair xe using GPs, based on a mea-
surement database. We first consider the case without location
uncertainty (Section V-A, where we detail conventional GP –
cGP) and then with location uncertainty (Section V-B, where
we detail uncertain GP – uGP). We assume the reader has a
working knowledge of GPs. For an introduction on GPs the
reader is referred to [57], [58, Ch. 6.4].
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Fig. 3. Illustration of TX and RX displacement between two TX-RX pairs
x and x′ in R2. The TX displacement is dTX = ‖qTX − q′

TX‖2 and the RX
displacement is dRX = ‖qRX − q′

RX‖2.

A. Perfect Location Information (cGP)

1) Model: Let x,x′ ∈ W2 and denote the corresponding
received power by PRX(x) , PRX(qTX,qRX). We model the
received signal power as the GP

PRX(x) ∼ GP(µcGP(x), ccGP(x,x
′)), (10)

where µcGP(x) : W2 → R denotes the mean function and
ccGP(x,x

′) : W2 × W2 → R+ the covariance function
(also referred to as kernel). The mean µcGP(x) is obtained by
computing the expectation of (8) w.r.t. the large-scale fading
Ψ(x), yielding

µcGP(x) = L0 − 10η log10 ||qTX − qRX||2. (11)

The covariance function ccGP(x,x
′) describes the spatial

correlation of large-scale fading between any two pairs of
communication links x,x′ ∈ W2. In Fig. 3, two commu-
nication links together with their TX and RX displacement
are illustrated. Following [33], [37], assuming the channel is
isotropic, the spatial channel correlation can be explained by
the Euclidean distance of the link endpoints, i.e., for two links
with locations x and x′, the correlation is characterized by
the distance between the two TXs dTX = ||qTX − q′

TX||2 and
between the two RXs dRX = ||qRX − q′

RX||2. Further, we
assume that dTX and dRX are small compared to distances
between TXs and RXs such that only those have a significant
spatial correlation. Otherwise, the resulting covariance matrix
(to be defined) may not be Positive Semi-Definite (PSD) any-
more [38]. Finally, in many ad-hoc networks, agents have an
identical configuration in terms of communication hardware,
and hence channel reciprocity holds (i.e., PRX(qTX,qRX) =
PRX(qRX,qTX)), implying that the covariance function should
be invariant to exchanges of TX and RX per link. Based on
these requirement, we propose to extend the kernel of [48]
by a kernel considering the correlation of the TX locations as
well:

ccGP(x,x
′) =

{
σ2

proc + σ2
Ψ, x = x′,

σ2
Ψ exp

(
−dκ

TX+dκ
RX

dκ
c

)
, else,

(12)

under the assumption that

dTX, dRX � (13)
min{‖qTX − qRX‖, ‖qTX − q′

RX‖, ‖q′
TX − qRX‖, ‖q′

TX − q′
RX‖}.

Note, from (12) the kernel of [48] is obtained when dTX = 0,
i.e., qTX = q′

TX. In (12), dc is referred to as the kernel width
or decorrelation distance, σ2

Ψ is the shadowing variance, and
σ2

proc models any residual perturbations. Setting the parameter
κ = 1, (12) yields the model of [37], while for qTX = q′

TX, the
commonly used model of [36] is obtained. Following [48] and
setting κ = 2, we obtain the squared exponential kernel, which
will be useful in the subsequent sections. For x = x′, the first
part of (12) models any white noise not due to measurement
noise (e.g., caused by kernel mismatch) with power σ2

proc. The
full hyper-parameter vector of the cGP-method is

θ = [L0, η, σproc, dc, σΨ]
T, (14)

assuming the receiver noise power σ2
n is known and κ is given.

2) Prediction: Let us assume we have a training database
D comprising N measurements yi = PRX(xi) + ni, recorded
for links xi, i = 1, . . . , N with ni ∼ N (0, σ2

n). We wish
to predict the received power for a test link x∗. The mean
and variance of the received power along the test link can be
expressed in closed form as [57]

E{PRX(x∗)|D,θ,x∗} = µcGP(x∗) + kT
∗K

−1(y − µ), (15)

V{PRX(x∗)|D,θ,x∗} = σ2
proc + σ2

Ψ − kT
∗K

−1k∗, (16)

in which

y = [y1, y2, . . . , yN ]T,

µ = [µcGP(x1), . . . , µcGP(xN )]T,

k∗ = [ccGP(x1,x∗), ccGP(x2,x∗), . . . , ccGP(xN ,x∗)]
T,

and PSD K ∈ RN×N , with

Kij = ccGP(xi,xj) + σ2
nδi,j , (17)

where δi,j = 1 when i = j and δi,j = 0 otherwise.
Remark 5. The channel gain prediction, as introduced above,
does not assume channel reciprocity per se. With the definition
of the input vector x = [qTX,qRX]

T, we introduced an implicit
ordering, where channel reciprocity in the prediction step of
cGP is not considered. The introduction of this property into
the cGP model can be done: (i) by applying an operator
on x [57], [58] to make it independent of the TX–RX link
direction, (ii) by modifying the kernel function as it has been
proposed in [23], or (iii) by extending the training database
D by its reciprocal counterpart, where for each measurement
yi the role of TX and RX in state xi is interchanged. Note
that, for methods (i) and (ii) the resulting covariance matrix
incorporating all N measurements needs to be PSD. This may
not be ensured in (ii). In this work, we implement method (iii)
over (i) due to its simplicity and because it increases the size
of the training database by a factor of two.

3) Learning model parameters: The cGP prediction above
assumes θ is known. In practice, θ is either set by an
expert or needs to be estimated from the database D. The
joint probability density function (pdf) of observations y and
location pairs XN has a Gaussian form with mean µ and
covariance matrix K. Since both µ and K depend on θ, we
write µθ and Kθ, i.e.,

y|XN ,θ ∼ N (µθ,Kθ). (18)
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Now, θ can be estimated by maximizing the log-likelihood
w.r.t. θ. To find a closed-form expression for θ can be
challenging [41].

Remark 6. In [41], [48] a sub-optimal but simpler approach to
estimate the channel parameters θ has been proposed. First, the
deterministic path-loss parameters α = [L0, η]

T are estimated
and subsequently the kernel parameters β = [σproc, dc, σΨ]

T,
based on the estimate of α. The least squares (LS) estimate
of α with cost function S(α) = ||y−Fα||22 has the solution

α̂ = (FTF)−1FTy, (19)

where F = [1N , −d] and d = 10[log10 ||qTX,1 −
qRX,1||2, . . . , log10 ||qTX,N − qRX,N ||2]T. With the estimation
of α, a maximum likelihood estimation of β on the zero-
mean measurements can be carried out. The zero-mean mea-
surements are obtained by

yc = y − Fα̂. (20)

Since yc is now a zero-mean Gaussian random variable
with covariance matrix Kθ, we obtain an estimate of β by
minimizing the negative log-likelihood according to

β̂ = argmin
β

(log |Kθ|+ yT
c K

−1
θ yc). (21)

Following [48], we first obtain the variance in yc by σ2
tot =

1
N yT

c yc, where σ2
tot = σ2

proc +σ
2
n+σ

2
Ψ holds. Since in general

the likelihood may be non-convex, we then find β̂ through a
global search over the domain of σΨ and dc (σproc is uniquely
defined through σtot).

Following this approach, we have estimated the channel
parameters for the ad-hoc channel measurements from Section
IV with κ = 1: from the raw measurement data, we found
L̂0 = −20.42 dBm, η̂ = 3.59, d̂c = 3.61 m, σ̂proc = 3.74,
and σ̂Ψ = 6.46. After spatial averaging over a 0.4 m window,
these values became L̂0 = −20.21 dBm, η̂ = 3.61, d̂c = 3.93
m, σ̂proc = 0, and σ̂Ψ = 6.35. Note, for this estimation we
used a random subset of only 6% of the measurement data,
which was found to be sufficient to produce robust estimates.

B. Uncertain Location Information (uGP)

So far we introduced cGP to predict the channel for arbitrary
(perfectly known) TX and RX locations. We now extend
cGP, to incorporate uncertain location information and call
it uGP. In doing so, we make use of the location distribution
of the TX and RX. This allows us to obtain a GP model
which incorporates location uncertainty into the channel pre-
diction and provides closed-form expressions for the mean
and variance of the prediction. Note that uGP was introduced
in [48] for a common TX endpoint, and extended in [51]
to non-common TX endpoints yet no closed-form expression
for the GP mean function was provided. Here, we provide a
general and unified closed-form channel prediction framework
to incorporate location uncertainty of training and test data.

1) Model: Assume the pdf of the TX and RX location
is Gaussian, i.e., p(qTX) = N (µTX,ΣTX) and p(qRX) =
N (µRX,ΣRX). Additionally, ΣTX is assumed to have equal
variance σ2

TX in each dimension, and so does ΣRX with vari-
ance σ2

RX. For readability, we collect the distribution param-
eters in a vector u = [uT

TX,u
T
RX]

T with uTX = [µT
TX, σTX]

T,
and similarly for uRX. Further, we model the received power
in dBm through a GP over the vector u by

PRX(u) ∼ GP(µuGP(u), cuGP(u,u
′)), (22)

with the mean function µuGP(u) : U → R and a PSD
covariance cuGP(u,u

′) : U × U → R+. Building on the cGP
mean function, the uGP mean function becomes

µuGP(u) = Ex|u,Ψ(x){PRX(x)}, (23)

where we now need to take the expectation not only over
the large-scale fading Ψ(x), but also on the location x. Since
EΨ(x){Ψ(x)} = 0 (c.f. (8)), we are left with the expectation
w.r.t. the location x in (8).

Theorem 1. The uGP mean function is available in closed-
form and is given by

µuGP(u) = L0 −
5η

ln 10
(24)

×
[
ln(|µ∗|2)− Ei(−|µ∗|2) + ln(2σ2)

]
,

where µ∗ = µ1+jµ2

σ
√
2
, [µ1, µ2]

T = µTX − µRX, σ
2 = σ2

TX +

σ2
RX, and the function Ei(·) denotes the exponential integral

function

Ei(−x) = −
∫ ∞

x

e−t

t
dt, x > 0. (25)

Proof: See Appendix A.
The evaluation of the covariance function is more involved.

Starting from cGP, the uGP covariance function becomes

cuGP(u,u
′) (26)

=

{∫∫
ccGP(x,x

′)p(x)p(x′)dxdx′, u 6= u′∫
ccGP(x,x)p(x)dx+ σ2

mean(u) u = u′,

where p(x) denotes the pdf w.r.t. random variable x, ccGP(·, ·)
is the covariance function under perfect location information
stated in (12), and σ2

mean(u) captures the contribution to the
output uncertainty due to the non-zero mean function.2

Since one of the advantages of using GPs is the availability
of closed form expressions for the prediction, we would like
to have a closed form expression for (26). In doing so, we
rely on the squared exponential kernel, i.e., where κ = 2 in
(12) and the restriction that the TX and RX locations in x
are independent and Gaussian. Then, (26) can be expressed in
closed form [50], [51], [58] as

cuGP(u,u
′) (27)

=

 σ2
Ψ√

|ΓTX||ΓRX|
e
−∆T

TXΓ
−1
TX ∆TX+∆T

RXΓ
−1
RX ∆RX

d2c u 6= u′

σ2
proc + σ2

Ψ + σ2
mean(u) u = u′,

2For instance, when there is no shadowing (i.e., σΨ = 0), it is readily
seen that σ2

mean(u) corresponds to the uncertainty in the path loss, due to
uncertainty in the location.
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where ΓTX = (I + d−2
c (ΣTX + Σ′

TX)), ∆TX = µTX − µ′
TX,

and similarly for the RX. Here, I denotes the identity matrix
of suitable size. In contrast to (12), uGP works on the
parameters of the distribution of x instead of the state itself.
This means that TX distance dTX and RX distance dRX are
now the distances between the means given by ∆TX and ∆RX,
respectively (c.f. Fig. 3). The role of ΣTX and ΣRX in (27) is
to increase the kernel width as location uncertainty increases.
In this way, the decorrelation distance dc, a channel parameter,
remains decoupled from the state (location) uncertainty. The
full hyper-parameter vector for uGP is the same as for cGP;
see (14).

To determine σ2
mean(u), we must consider the statistics of

emean(u) = µcGP(x)− µuGP(u), (28)

where x ∼ N (µ,Σ) is considered as a random variable. In
general, emean(u) is not Gaussian, due to the nonlinear nature
of µcGP(x). By linearizing µcGP(x) around the mean of x, we
can approximate

emean(u) ≈ µcGP(µ)− µuGP(u) (29)
+∇T

xµcGP(x)|x=µ(x− µ),

so that, due to the Gaussian nature of x,

emean(u) ∼ (30)

N (µcGP(µ)− µuGP(u), |∇T
xµcGP(x)|x=µΣ

1/2|2︸ ︷︷ ︸
=σ2

mean(u)

),

which can easily be computed for any u. Note that when there
is no position uncertainty, or when µcGP(x) is constant, we find
that emean(u) is identically equal to zero, as expected. Observe
also that when µcGP(x) is linear in x, the Gaussian model for
emean(u) in (30) is exact.

Remark 7. When the uncertainty regarding the locations
σ2

TX, σ
2
RX → 0, the expressions for mean and covariance in

uGP revert back to the corresponding expressions in cGP with
κ = 2.

2) Prediction: In contrast to cGP, we now need the pdfs
on the TX and RX position of the recorded measurements.
Then, the training database D comprises N measurements
with U = [u1,u2, . . . ,uN ] and y as defined previously. For
a test location pdf u∗, comprising a test TX and RX pdf, the
predicted mean and variance of PRX(u∗) are given by [50]

E{PRX(u∗)|D,θ,u∗} = µuGP(u∗) + kT
∗K

−1(y − µ),(31)
V{PRX(u∗)|D,θ,u∗} = σ2

mean(u∗) + σ2
proc + σ2

Ψ

−kT
∗K

−1k∗, (32)

where k∗ = [cuGP(u1,u∗), cuGP(u2,u∗), . . . , cuGP(uN ,u∗)]
T,

µ = [µuGP(u1), µuGP(u2), . . . , µuGP(uN )]T and K is as in
(17), replacing the cGP kernel with the uGP kernel (27).

Remark 8. It is clear that channel prediction for uGP is similar
to cGP, except for a different input space (distributions over
locations instead of locations themselves) and accordingly,
different mean and covariance functions. In particular, the
discussion regarding channel reciprocity from cGP still holds.

3) Learning model parameters: Similar to cGP, we would
like to decompose the learning procedure to first estimate α =
[L0, η]

T and then β = [σproc, dc, σΨ]
T. We can express each

measurement, which is taken at an unknown location, as

yi = µuGP(ui) + ni + wi(ui) + emean(ui), (33)

where µuGP(ui) = Ex {f(xi)}T α is defined in (24), f(xi) =
[1,−10 log10 ‖qTX,i−qRX,i‖]T, ni is the zero mean measure-
ment noise with variance σ2

n, wi(ui) is zero mean spatially
correlated noise originated from shadowing with covariance
function (27), and emean(ui) was introduced in (29).

Substituting (29) into (33) and introducing J(ui) =
∇T

xi
f(xi)|xi=µi ∈ R2×4, we can express the observation as

yi = f(µi)
Tα+ zi, (34)

where zi is modeled as a zero-mean GP consisting of three
components: (i) measurement noise ni with variance σ2

n,
(ii) white Gaussian mean-induced output noise with vari-
ance σ2

mean(ui) = αTJ(ui)ΣiJ
T(ui)α; (iii) spatially cor-

related noise wi(ui) with covariance function (27) (without
σ2

mean(ui)). To estimate α we can consider the following
weighted least squares (WLS) problem

α̂ = argmin
α

N∑
i=1

(yi − f(µi)
Tα)2

σ2
n + σ2

mean(ui) + σ2
Ψ + σ2

proc

. (35)

Note that the denominators in (35) depend on σΨ and σproc,
which are unknown, and on σ2

mean(ui), which in turn depends
on α. To get around these dependencies, we propose the
following procedure:

1) Given: initial estimate of σΨ, σproc and α
2) Substitute the estimates of σΨ, σproc,α in the denomina-

tors of (35). Solve (35) for α using standard closed-form
WLS.

3) Remove the mean from the observations to obtain
zi = yi − f(µi)

Tα. Now z = [z1, . . . , zN ]T has a
Gaussian distribution with mean zero and covariance
matrix Kβ, obtained from (27). Perform a maximum
likelihood (ML) estimate for β = [σproc, dc, σΨ]

T:

β̂ = argmin
β

(
log |Kβ|+ zTKβz

)
. (36)

4) Go back to step 2 until a predetermined number of
iterations is exceeded.

Step 2 can be executed multiple times to obtain a better
estimate of α and step 4 can be omitted if the procedure is to
occur once.
Remark 9. uGP can also be used for cases where (i) position
knowledge is perfect in the training database, but not during
prediction; (ii) position knowledge is perfect during prediction,
but not during building the training database. In the latter
case, (31)–(32) can still be used, though the covariance of
the prediction location should be set to zero.

VI. APPLICATIONS OF CHANNEL GAIN PREDICTION

In this section, we first elaborate on different kinds of
applications, allowing to incorporate the channel prediction
framework from Sec. V naturally. Then, we study in detail
the problem of maximizing network communication quality,
as introduced in Sec. III, with the help of cGP and uGP.
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A. Channel Gain Prediction for Network Processing

The availability of the channel gain prediction framework
presented in Sec. V has direct application in proactive resource
allocation for mobile users not only to improve the users’
quality of service, but also to increase the overall network
throughput [3], [59]. In 5G networks, channel gain prediction
can be used in resource allocation at different layers of the
protocol stack with the benefit of reducing latency and/or
overheads (see [60] for specific examples). Further applica-
tions involve cooperative spectrum sensing [61], where uGP
exploits location uncertainty of the recorded measurement and
the test locations, building of radio-maps in a distributed way
[62], and for optimal sensor placement [30] to collect channel
measurements (c.f. Sec. I).

B. Maximizing Network Communication Quality

We now revisit problem (6). The objective function of (6)
can be expanded as∑

e∈E

Eγ|ue
{f(γ(ue))} (37)

=
∑
e∈E

∫
f(γ(ue))p(γ(ue)|D,θ,ue)dγ(ue). (38)

From Section V, we know that given a measurement database
D, where the measurements correspond to either known
or uncertain locations, we can use uGP to (i) determine
an estimate of the channel parameters θ, and (ii) predict
the received power in a location x∗ as having a Gaus-
sian distribution with mean E{PRX(x∗)|D,θ,x∗} and vari-
ance V{PRX(x∗)|D,θ,x∗}. Moreover, even when the lo-
cation in which we want to predict the received power
is uncertain, we can determine E{PRX(u∗)|D,θ,u∗} and
V{PRX(u∗)|D,θ,u∗}. In the specific case where measure-
ments and prediction are related to known locations, uGP
reverts to cGP. Thus, we can focus on the case where all
locations are uncertain.

If uGP predicts that the received power in dBm PRX(ue) ∼
N (µe, σ

2
e), then the SNR in the linear domain γ(ue) can be

expressed as

γ(ue) = exp(−10κ log10(σ
2
n)) exp(κPRX(ue)), (39)

where σ2
n = N0W is the noise power, and κ = ln 10/10.

Hence, γ(ue) has a log-normal distribution:

γ(ue) ∼ lnN (κµe − 10κ log10(σ
2
n), κ

2σ2
e). (40)

This means that, by converting to the linear domain and
accounting for the noise power, we have a distribution of γ(ue)
in the form of a log-normal distribution. We consider again the
three examples of f(·) introduced in Section III:

• Case 1: f(·) depends linearly on the SNR. If PRX(ue) ∼
N (µe, σ

2
e), then

Eγ|ue
{γ(ue)} ∝ exp

(
κµe + κ2σ2

e/2
)
, (41)

• Case 2: f(·) depends on the logarithm of the
SNR. Following [53, Eq. (18)], introducing me =
κ
(
be[dB] + µe − 10 log10(σ

2
n)
)

and

Eγ|ue
{ln (1 + beγ(ue))} (42)

≈ ln
(
2 cosh

(me

2

))
+
me

2
+

1

2

κσeη0√
2

cosh−η1

(
me

2η2

)
,

in which η0, η1, and η2 are polynomials in σe. For high
SNR, Eγ|ue

{ln (1 + beγ(ue))} ≈ me.
• Case 3: f(·) depends on the exponential of the SNR.

Now, f(γ(ue)) = ae + be exp(−ceγ(ue)). Due the
linearity of expectation, we can focus on f(γ(ue)) =
exp(−ceγ(ue)). We note that

Eγ|ue
{exp(−ceγ(ue))} = LΓ (ce) , (43)

where LΓ (·) is the Laplace transform of the distribution
of the random variable γ(ue). Since γ(ue) is a log-
normal random variable, no closed-form expression of the
Laplace transform is available. Using the approximation
from [63], we find that

Eγ|ue
{exp(−ceγ(ue))} (44)

≈ 1√
1 + ω(ζ)

exp

(
− 1

2κ2σ2
e

(ω(ζ))2 − 1

κ2σ2
e

ω(ζ)

)
,

(45)

where ω(·) is the Lambert W-function, which is defined
as the solution of the equation ω(x)eω(x) = x, and

ζ = ceκ
2σ2

e exp(κµe − 10κ log10(σ
2
n)). (46)

In summary, for each choice of f(·) in (6), the solution
obtained by uGP can be used to evaluate the objective function,
either exactly or approximately.

VII. RESULTS

In this section, we present results for channel learning and
prediction, as well as communication quality optimization,
all in the presence of location uncertainty. To generate the
channels, we use the channel simulator presented in [37],
which uses a sum-of-sinusoids approach to establish the spa-
tial correlation of the underlying Gaussian process, fed with
parameters from the indoor measurements.

Parameters: Unless specified otherwise, the synthetic chan-
nel measurements were generated with path-gain L0 =
−10 dBm, path loss exponent η = 2, shadowing decorrelation
distance dc = 3 m and standard deviation σΨ = 7 dB. The
RX noise standard deviation is σn = 0.01. The covariance
function uses κ = 1 for the true field and for cGP, while uGP
uses κ = 2.

A. Learning Under Location Uncertainty

We make use of the synthetic ad-hoc channel simulator to
generate measurements within the workspace W ⊂ 30 m ×
30 m. The training database D consists of N = 700 mea-
surements collected at locations xi = [qT

TX,i,q
T
RX,i]

T, where
qTX,i = [15 m, 15 m]T and qRX,i is randomly distributed
within W for i = 1, . . . , N . Location uncertainty is introduced
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Fig. 4. Learning with location uncertainty: hyper-parameters of cGP and uGP method learned from synthetic measurement data for different fractions p
of measurement data with high location uncertainty. The errorbars indicate one standard deviation confidence interval. Channel parameters of true field:
dc = 3 m, σproc = 0, σΨ = 7 dB, L0 = −10 dBm, η = 2.

as follows: a fraction p ∈ [0, 0.8] of the locations has high
location uncertainty, corresponding to a location standard
deviation of 10 meters in all directions, whereas the remaining
locations have no location uncertainty. cGP has only access to
the estimated locations (i.e., µi), while uGP has access to the
distributions of the locations (i.e., ui). Note that for uGP, we
omit step 4 of the learning procedure used to solve (35). All
results are averaged over 50 Monte Carlo runs.

In Fig. 4, the learned hyper-parameters for cGP and uGP
are plotted together with one standard deviation confidence
interval for different fractions p of measurements with high
location uncertainty. When there is no location uncertainty in
the training database (p = 0), the estimate for L0 and η is
the same for cGP and uGP, since the weighted least squares
estimation in uGP falls back to the least squares estimation
of cGP. When p > 0, the estimates L̂0 and η̂ decrease
significantly with increasing p in the case of cGP. This means
the estimation of the deterministic path-loss parameters fails.
The learned mean function (11) basically becomes zero. In
contrast to this, uGP can easily cope with location uncertainty
of the training samples. The estimated parameters for L0 and
η remain constant. For larger values of p, the variance of the
estimates increases.

When we inspect the estimated kernel parameters, cGP
operates on a non-zero mean field, due to the incorrect
estimates of L0 and η. cGP explains this field by considering
it as slowly varying, leading to an increase in the estimate
of σΨ. In contrast, uGP, leads to a more desired behavior:
the estimates remain more or less constant, irrespective of p,
though the variance of the estimates tends to increase again
with p (since fewer good measurements are available).

In summary, cGP and uGP explain the measurement in
completely different ways: whereas uGP can account for both
the mean and covariance functions, cGP essentially ignores
the mean function, leading to a larger spread in the estimated
parameters.

B. Prediction Under Location Uncertainty

Next, we study how location uncertainty at the test location
x∗ = [qT

TX,q
T
RX]

T influences the predicted mean RX power.
We quantify the mean RX power by

P̄RX , Ex∗ {PRX(x∗)} =

∫
PRX(x∗)p(x∗)dx∗. (47)

For the sake of clarity, we will only consider uncertainty in
the receiver location qRX. We predict P̄RX using (15) in the
case of cGP and using (31) in the case of uGP. In the latter
case, we predict P̄RX w.r.t. its location pdf p(qRX). In the
workspace W ⊂ 50 m × 50 m we query the synthetic ad-
hoc channel simulator to obtain N = 700 measurements,
including reciprocal measurements, at RX locations placed on
a grid in W yielding the training database D. The training
measurements have no location uncertainty and the estimated
hyper-parameters correspond to the values in Fig. 4 for p = 0,
for both cGP and uGP. For the prediction, the TX is placed
at a fixed location qTX = [5 m, 30 m]T, while the receiver
moves over qRX = [30 m, y]T, y ∈ [0 m, 50 m]. The location
uncertainty standard deviation σRX during prediction is set to
0 m for y < 25 m and to 10 m for y ≥ 25 m.

In Fig. 5, the mean RX power P̄RX is plotted as a function of
y. Additionally, the predicted mean and one standard deviation
confidence interval of cGP using (15) and (16) is shown.
We observe that the predicted mean closely follows P̄RX for
y < 25 m. Furthermore, the true mean RX power is mostly
inside the one standard deviation confidence interval. The log-
likelihood of prediction (15) and true mean (47) with respect
to the predicted variance (16) is −97.46. For y ≥ 25 m,
cGP is still confident about its prediction (15), but tends to
be far off from the true mean (47) having a log-likelihood of
−128.04. This is in contrast to a desirable behavior of any
predictor, i.e., where the estimate follows the true value with
a low standard deviation. Hence, cGP fails to give a reliable
prediction for P̄RX in regimes with high location uncertainty.
In Fig. 6, the same mean RX power P̄RX for different values
of qRX is plot as in the previous case. Also shown are the
uGP predicted mean and one standard deviation confidence
interval using (31) and (32). We observe that uGP is able
to predict the mean RX power equally well in the regime
0 m ≤ y < 25 m. The log-likelihood of prediction (31)
and true mean (47) with respect to the predicted variance
(32) is −97.18. As soon as y ≥ 25 m, the predicted mean
RX power becomes much smoother and at the same time the
confidence interval is increased. This combination leads to a
robust prediction w.r.t. the predicted variance resulting in a
higher log-likelihood of −120.20 compared to cGP.
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Fig. 5. Prediction using cGP: mean RX power P̄RX for different locations
together with cGP prediction (mean and one standard deviation).
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Fig. 6. Prediction using uGP: mean RX power P̄RX for different locations
together with uGP prediction (mean and one standard deviation).

C. Application Example: Optimal Router Configuration Un-
der Location Uncertainty

As an application, we consider the setup from [24], but
with location uncertainty of the TX and RX agents in fading
environments. In doing so, we seek to minimize the BER
of data transmitted from a source agent until it reaches a
destination agent over a wireless network with L − 2 inter-
mediate agents, which act as relays (similar to the scenario
in Fig. 1, where L = 5). Since the BER depends on the
channel quality on each of the L− 1 links, we are interested
in finding the optimal locations of the relay agents taking into
account location uncertainty of the agents in the environment.
The objective function we adopt is the probability of correct
reception from agent 1 to agent L [24, eq. (23) and (25)]

J(X) =

L∏
i=2

(
1− 0.2Eγ|xi

{exp(−cγ(xi))}
)
, (48)

where c is a known constant and the BER is defined as BER =
1−J(X). Hence, in our context with location uncertainty, we
will solve

maximize
U∈U

L∑
i=2

ln
(
1− 0.2Eγ|ui

{exp(−cγ(ui)}
)
, (49)

which is in the form studied in Section VI-B, Case 3.
We consider a workspace of W ⊂ 50 m×50 m and place the

source agent, denoted agent 1, at location q1 = [5 m, 30 m]T

and the destination agent, denoted agent L, at location qL =

[45 m, 30 m]T. Data communication from agent 1 to agent L
is relayed via Nr relay agents. Such a communication network
is outlined in Fig. 1. The number of relay agents considered is
Nr = {1, 2}. We assume both, cGP and uGP, have access to an
associated measurement database D, where the measurement
locations are on a rectangular grid in W , i.e., between all
possible TX and RX location combinations, with spacing
of 2.58 m. Furthermore, we include the reciprocal channel
measurements. We assume the measurement locations in the
measurement database to have perfect location information.
The used channel parameters match with the results of Fig. 4
for the case of no location uncertainty in the measurement
database. We will investigate the effect of location uncertainty
on channel prediction. Therefore, let us assume that whenever
a relay agent qi is placed in the upper half of W , the agent
will experience location uncertainty with standard deviation of
10 m per dimension.

We solve (49) via an exhaustive grid search and via a greedy
search. The greedy search works as follows. First, we solve
(49) with the help of a grid search for the case only one relay is
used, i.e., Nr = 1 where the communication graph has edges
from agent 1 to agent 2 and from agent 2 to agent L (c.f.
Fig. 1). We then fix agent 2 to the computed optimal location
and introduce a new relay agent 3. Similarly as before, (49) is
solved, where in this case the communication graph has edges
between agent 1 and 2, 2 and 3, and 3 and L. Note that now all
locations except of relay agent 3 are known and hence, they are
not optimization variables in (49). With the optimal location
of agent 3, we can solve (49) again to find the new optimal
location for agent 2 since the location of its link endpoints has
changed. This process of iterating between the relays, while
keeping the link endpoints location fixed, is repeated Niter =
10 times. The greedy search algorithm proceeds by adding
more relays in this manner until Nr relay locations have been
determined. Although suboptimal, the greedy search has the
benefit that its computational complexity is linear w.r.t. the
number of relay agents Nr. Alternatively, a global solution
to (49) may be found using any global solver such as, for
instance, simulated annealing [64], a genetic algorithm [65],
or the cross-entropy method [66].

After solving (49), we aim to place the relays in the optimal
locations (means of the optimal location distribution in the
case of uGP), denoted by qi for relays i = 2, .., L − 1.
Due to the (possibly) present location uncertainty at the
optimal location qi, relay agent i aiming to traverse there
may not arrive exactly at qi. For this reason, the actual
location where the relay ends up becomes random and follows
zi ∼ N (qi, σ

2
i (qi)I2), where σi(qi) represents the uncer-

tainty in that location (i.e., either zero or 10 m). While the
BER itself is not random, the locations where we evaluate
the BER are random (due to present location uncertainty).
Hence, the achieved BER becomes a random variable for both
cGP and uGP. In Fig. 7, we plot the cumulative distribution
function (cdf) of the actual achieved BER, i.e., the BER
evaluated at relay locations zi, for cGP and uGP using both,
the exhaustive grid search and the greedy search method. For
cGP and Nr = 1, the optimal relay location is in the part of
the workspace with high location uncertainty, which leads to
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Fig. 7. The cdf of the achieved end-to-end BER is plot for multi-relay
communication. Solving (49) determined the optimal relay locations, which
involved the application of cGP and uGP.

large variations in the achieved BER over all realizations of the
relay position zi. The average achieved BER is 0.13. For the
case Nr = 2, the average achieved BER has reduced slightly
to 9.6 · 10−2, where the exhaustive grid search and the greedy
search determined the same optimal relay locations. In Fig.
7, we observe large variations of the achieved BER for this
case as well, since one of the optimal relay locations is in the
part of the workspace with high location uncertainty. Due to
the large variations of the achieved BER we can conclude that
the use of cGP leads to unpredictable performance if agents
need to operate in areas with high location uncertainty. In
contrast, when using uGP, we observe that for both, Nr = 1
and Nr = 2, solutions with low location uncertainty are
preferred, i.e., the cdf has a steep increase over the achieved
BER. Moving from case Nr = 1 to Nr = 2 and using the
greedy search yields no performance gain, whereas with an
exhaustive search the average achieved BER is reduced to
3.3 · 10−4 for all realizations of the relay positions of both
relay agents. If uGP is used for channel prediction, which
incorporates any present location uncertainty, we see a clear
gain in terms of BER by using more relay agents for the case
the exhaustive search is used to find the global minimum of
(49). Hence, we conclude that considering location uncertainty
of relay agents leads to a significantly lower achieved BER
compared to methods ignoring location uncertainty.

VIII. CONCLUSIONS

We considered a communication relay placement prob-
lem for end-to-end communication quality maximization in
a multi-agent system with location uncertainty. We developed
a Gaussian process (GP) channel prediction framework, ca-
pable to model, learn, and predict the wireless channel. The
developed GP framework works on the input space of location
distributions, rather than the transmitter (TX) and receiver
(RX) locations themselves, allowing to properly incorporate
channel measurements recorded at TX–RX locations with
heterogeneous location uncertainty. In doing so, we presented
a novel learning approach and closed form expressions for the
mean and variance of the predictive distribution of the received

power at any test TX–RX location pair. We observed that
taking location uncertainty in channel prediction into account
results in an end-to-end communication quality that is robust
with respect to the variations of the channel and the location
uncertainty of the involved agents.

APPENDIX A
PROOF OF THEOREM 1

Proof: Combining (8) with (23) yields

µuGP(u) = L0 − 10ηEqTX,qRX{log10 ||qTX − qRX||2} (50)

and we can now focus only on the part which depends on
the expectation w.r.t. qTX,qRX. Define w = qTX − qRX,
where w ∼ N (µ, σ2I) with µ = µTX − µRX with elements
µ = [µ1, µ2]

T and σ2 = σ2
TX + σ2

RX.3 This translates
Eu{log10 ‖qTX − qRX‖2} into the equivalent problem of
finding

Ew{log10 ‖w‖2} =
1

ln 10

1

2
Ew{ln ‖w‖22}. (51)

From [67, Appendix X, Lemma 10.1] we know

E{lnV } = gm(s2) (52)

is non-central chi-square distributed with 2m degrees of free-
dom for V =

∑m
j=1 |Uj + µj |2, where Uj ∼ CN (0, 1), and

µj are complex constants for j = 1, 2, . . . ,m. The parameter
s2 denotes the non-centrality parameter and s2 =

∑m
j=1 |µj |2.

The function gm(·) is defined as

gm(ξ) = ln ξ − Ei(−ξ) +
m−1∑
j=1

(−1)j
[
e−ξ(j − 1)!− (m− 1)!

j(m− 1− j)!

](
1

ξ

)j

for ξ > 0 and gm(ξ) = ψ(m) for ξ = 0. Here, the parameter
m ∈ Z+, the function Ei(·) is defined in (25), and ψ(m) is
the digamma function for integer m (sometimes also denoted
Euler’s psi function) given by

ψ(m) = −γ +

m−1∑
j=1

1

j
, (53)

where γ ≈ 0.577 denotes Euler’s constant. In the following,
we rewrite uTX and uRX by complex normal distributed
random variables with zero mean and unit variance to adapt
the result above appropriately. For X1 ∼ N (µ1, σ

2) and
X2 ∼ N (µ2, σ

2), we see

X2
1 +X2

2 = (σU1 + µ1)
2 + (σU2 + µ2)

2, (54)

where U1, U2 ∼ N (0, 1). Equivalently,

X2
1 +X2

2 = ‖σ(U1 + jU2) + µ1 + jµ2‖22, (55)

where j =
√
−1. Let us introduce U∗ ∼ CN (0, 1), where

U∗ = 1√
2
(U1 + jU2). Then

X2
1 +X2

2 = 2σ2‖U∗ + µ∗‖22, (56)

3Note, TX and RX locations are assumed to be independent of each other,
since there exists only a wireless communication link between different agents.
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where µ∗ = µ1+jµ2

σ
√
2

. Note above, a factor 2σ2 is present.
Define V∗ = 2σ2|U∗ + µ∗|2. Hence,

E{lnV∗} = ln 2σ2 + E{lnV } (57)

with V = |U∗+µ∗|2. Then, (52) from above can be used. For
the special case m = 1, the random variable V is said to have
a squared Rician distribution, where

E{lnV } = E{ln |U∗+µ∗|2} = ln(|µ∗|2)−Ei(−|µ∗|2). (58)

To obtain (24), we replace the expectation in (51) by the
closed-form expression (58) and plug it back into (50).
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