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Abstract
Accurate and efficient modeling of discontinuous, randomly distributed entities is a computationally challenging task,
especially in the presence of large and inhomogeneous electric near-fields of plasmons. Simultaneously, the anisotropy of
sensed entities and their overlap with inhomogeneous fields means that typical effective medium approaches may fail at
describing their optical properties. Here, we extend the Maxwell Garnett mixing formula to overcome this limitation by
introducing a gradient within the effective medium description of inhomogeneous nanoparticle layers. The effective medium
layer is divided into slices with a varying volume fraction of the inclusions and, consequently, a spatially varying effective
permittivity. This preserves the interplay between an anisotropic particle distribution and an inhomogeneous electric field and
enables more accurate predictions than with a single effective layer. We demonstrate the usefulness of the gradient effective
medium in FDTD modeling of indirect plasmonic sensing of nanoparticle sintering. First of all, it yields accurate results
significantly faster than with explicitly modeled nanoparticles. Moreover, by employing the gradient effective medium
approach, we prove that the detected signal is proportional to not only the nanoparticle size but also its size dispersion and
potentially shape. This implies that the simple volume fraction parameter is insufficient to properly homogenize these types
of nanoparticle layers and that in order to quantify optically the state of the layer more than one independent measurement
should be carried out. These findings extend beyond nanoparticle sintering and could be useful in analysis of average signals
in both plasmonic and dielectric systems to unveil dynamic changes in exosomes or polymer brushes, phase changes of
nanoparticles, or quantifying light absorption in plasmon assisted catalysis.

Keywords Effective media · Maxwell Garnett approximation · Plasmonics · Sensors · Sintering · Nanoparticle layers

Introduction

Plasmonic sensing is a versatile tool, which uses strongly
enhanced electric fields near the surface of metals to inter-
rogate minute refractive index changes[1]. Its development
has been made possible by breakthroughs in nanofabrication
and chemistry, as well as by significant progress in our ability
to calculate the optical properties of metallic nanostructures.
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These can, in principle, be divided into either single struc-
tures with various shapes, including dimers, trimers, or even
more complex geometries [2, 3], and arrays of such ele-
ments in periodic, amorphous, or random arrangements. The
complexity of modeling their optical properties, which is in
focus here, varies with the structure and, in general, both
single structures and their periodic lattices are relatively
simple to model. However, once disorder is present [4]—
and it is a common feature of many bottom up fabrication
techniques [5] as well as in sensors in which stochastic pro-
cesses take place [6, 7]—accurate and efficient modeling
becomes challenging. A good example of such a modeling
problem is an indirect nanoplasmonic sensing (INPS) exper-
iment [8] in which a metal nanoantenna, whose immediate
vicinity is filled with smaller nanoparticles [9], interrogates
their material and/or chemical changes of and reports them
via a peak shift [10, 11]. The challenge lies in the fact that
the nanoparticles, which constitute the sensed element, are

2018( )13:2423 2434–

Published online: 28 May 2018/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11468-018-0769-4&domain=pdf
http://orcid.org/0000-0003-2535-4174
mailto: tomasz.antosiewicz@fuw.edu.pl


random in both size, position, and shape [12] and in simula-
tions; it is all but impossible to model even a small fraction
of plasmonic sensors interrogated in an actual experiment.

Simultaneously, while exact quantification of the optical
properties of stochastically assembled materials is challeng-
ing, they have received significant attention in recent years.
Pulse-laser nanostructuring has been used to convert Au
films via heating and reshaping into stochastic surface enah-
nced Ramans scattering (SERS) substrates [13]. Random
structuring is quite efficient at inducing scattering and cou-
pling between nanoparticles and consequently may generate
a broad spectral response, which can enhance the efficiency
of solar harvesting via light trapping [14] or via antireflec-
tion coatings [15]. In addition to size, randomness may also
be expressed via the shape of nanoparticles and enable ultra-
broadband enhancement of nonlinear optical processes [16].
These examples highlight the need for accurate modeling of
random nanostructures in strong electric fields.

A simple approach to study the optical properties of
such complex systems [17] is to randomly generate an
adequate number of potential realizations and average the
computed quantity. While lacking finesse, this is, in fact,
what is done in experiments with averaging implied when
probing many elements simultaneously, and is indeed useful
when microscopic statistics are sought [18]. In simulations,
such approaches are, unfortunately, extremely resource-
consuming and alternative means could potentially be
useful. Moreover, when fine details are unimportant and the
global response is sufficient, averaging over many simula-
tion runs is wasteful and initial averaging is mandatory.

Such initial averaging of the optical response of ran-
domly distributed dielectric inclusions in a host medium
is known as an effective medium approach, in which the
averaged permittivity describes the bulk response of the
composite [19]. This solution is based on a more basic question
of what is the effective/average polarizability of the medium
[20]. In a quasistatic case of small particles compared to
the wavelength, the properties of the effective medium are
governed by the volume fraction of the inclusions. Nat-
urally, more complex properties like anisotropy, chirality,
and nonlinearities can also be included in effective descrip-
tions [19]. Metal nanoparticles can similarly be homoge-
nized/averaged into layers with effective properties [21–23];
however, due to comparatively larger polarizabilities than
dielectric objects of similar (subwavelength) size, interac-
tion between them may need to be taken into account [24].
Alternatively, when plasmonic particles become compara-
ble to the wavelength of incident light, effective permittivity
may no longer be well defined at a microscopic level. How-
ever, average properties of nanoparticles in layers [25, 26]
or bulk [27] media can still be computed [28] or measured
[29, 30].

Regardless of the physical complexity of a homoge-
nized medium, one property should remain constant—the
particles need to be isotropically (in a stochastic manner)
arranged in the medium and, unless explicit retarded calcu-
lations are involved, the incident field should be uniform.
These uniformities are, however, not a given. Specifically, in
cases when the field exhibits strong gradients and nanopar-
ticles, within it exhibit a nonuniform arrangement, homog-
enization into a uniform layer described by an effective
permittivity, and may change the coupling conditions sig-
nificantly. That is, potentially, the case in plasmonic sensing
devices, since the surface wave supported by a metal inter-
face exhibits fast spatial decay. For propagating plasmons,
this decaying field may extend over hundreds of nanome-
ters in the optical regime [31], while for the localized ones
or tightly bound modes, the decay may only extend a few
tens of nanometers [32, 33]. The localized surface plas-
mon resonance (LSPR) is only sensitive to events occurring
or material present in the immediate vicinity of the metal-
lic antenna, while changes even 20 nm away may hardly
be registered. Under these conditions, homogenization of
nanoparticles in the vicinity of the sensor into a single layer
will tend to decrease the interaction efficiency between the
plasmon and the object in its field, leading to an error in
the estimation of signal changes in simulations. A question
may be asked if homogenization is in fact necessary in the
specific cases mentioned above. For very limited parameter
studies, it may not. In general, however, use of an effec-
tive medium is beneficial, as it enables rapid analysis of
a large parameter space without tedious averaging of opti-
cal cross-sections. Hence, to accurately model structures,
such as noble metal nanodisks randomly decorated with
nanoparticles [8, 10, 34], we propose the gradient effective
medium (GEM), in which the effective permittivity incor-
porates a gradient with a spatial dependence derived from
the inhomogeneous distribution of nanoparticles.

A typical example where such an approach is useful, is
nanoplasmonic sensors, which interrogate spatial changes
of permittivity with a strongly inhomogenous field [35]. The
active sensor elements, i.e., optical nanoantennas are on the
order of up to a few hundred nanometers in size and made
of a noble metal. Depending on the application area and
operation environment of the sensor, it may also be coated
by a dielectric spacer layer, which then supports smaller
nanoobjects, such as catalyst nanoparticles, which are
probed by the nanoantenna [8, 36]. In such, an INPS sensor,
the nanoparticles are supported by a surface (as illustrated
in Fig. 1), causes a non-negligible variation in mass (optical
density) in the direction normal to the support layer.
Consequently, the classical Maxwell Garnett (MG) mixing
formula is not valid, especially since the nanopaticles are
located in a strongly inhomogeneous plasmonic near-field.
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Fig. 1 By converting the real mass distribution of particles into its
distribution in layers, we can extend the effective medium theory
to incorporate effects of a strongly varying electromagnetic field. a
A layer of nanoparticles is deposited on a substrate resulting in an
inhomogeneous distribution of mass in the direction normal to the sub-
strate. When such a layer is in an electromagnetic field with a large
gradient a single effective permittivity does not adequately describe the
optical properties of the layer, as each particle interacts with a different
field. b To preserve the mass distribution in a strongly varying field the

nanoparticle layer is discretized into a number of sublayers beginning
at the substrate and ending at the top of the largest nanoparticle. In each
sublayer, the volume fraction occupied by the nanoparticles varies and
is determined by their distribution. Here, we use the mean and stan-
dard deviation. c Each sublayer is homogenized with a unique volume
fraction yielding a graded permittivity function in the direction normal
to the substrate and what ensures that the probing field feels a mass
distribution equivalent to that of a layer with discrete nanoparticles

Such conditions occur for example in detection of exosomes
[34], indirect nanoplasmonic sensing of hydrogen sorption
by palladium [8], as well as sintering [37] of metal catalyst
nanoparticles monitored in situ with LSPR [38] or plasmon
assisted catalysis [2, 39–41]. With such a wide variety
of sensing applications in need of accurate modeling, we
expect that the gradient effective medium will be beneficial
for rapid and accurate computational analysis.

This work is structured as follows. We begin by
describing the gradient model—an extension of the classical
MG effective medium approximation to account for spatial
inhomogeneities in the inclusion (nanoparticle) distribution.
Then, we perform initial validation of the model by studying
the optical properties of inhomogeneous nanoparticle
distributions supported by dielectric and metallic substrates.
After this validation in simple planar systems, we employ
the model to study LSPR measurements of sintering of
Pd nanoparticles. We show the equivalence of averaging
finite-difference time-domain (FDTD) simulation results
for discrete nanoparticles and the gradient model, both
of which reproduce the measured experimental evolution
[10]. Finally, we apply the model to study the influence of
microscopic variations in the size distributions of sintered
nanoparticles and prove that the peak shift measured during
this process is equally sensitive to not only the mean

particle size, as demonstrated previously [10], but also to
the particle dispersion and what complicates an unequivocal
determination of state of the nanoparticles from a single
measured value, i.e., the peak shift.

Methods—Gradient Effective Permittivity
Model

The properties of any material depend on its constituents and
their spatial arrangement. In the case of a random structure, it
is impractical to explicitly account for all interactions within
its volume due to the complexity of the resulting equa-
tions as well as, and in practice more importantly, a lack of
transference of the properties to other realizations of such a
material with different microscopic internals. Hence, what
is needed is a description of macroscopic properties which,
at this higher level, skip over the exact internal nanostruc-
turing and focus on global characteristics, such as material
properties and fractional amounts of constituent materials,
stochastic description of their distributions, etc. These few
parameters, which characterize the heterogeneous material
on a macroscopic level, are then used derive a homoge-
nized, simpler macroscopic description of the properties of
the ensemble [19].
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Maxwell Garnett Background

A macroscopic description of the effective electromagnetic
properties of a heterogeneous medium involves creation of
a permittivity function, which correctly accounts for how
individual elements of the conglomerate interact with the
external field. This implies that what is averaged is not
the permittivities, but the fields and this requires careful
accounting of the polarizabilities (α) of inclusions in the
host medium. Assuming no interactions between inclusions,
the effective permittivity εeff is given as [20]

εeff − εh

εeff + 2εh

= 4π

3

∑

i

niαi, (1)

where αi is the polarizability of inclusion i and ni is the
particle density of species i. If we assume only one type
of spherical inclusions, we then have in the quasistatic
approximation that the polarizability α is expressed by
the permittivity of host εh and inclusion εi media and its
radius r (Fig. 1). For simplicity, one typically introduces
the corresponding volume fraction of the inclusions as δ ≡
4πnr3/3 [20],

4π

3
nα = εi − εh

εi + 2εh

4π

3
nr3 = εi − εh

εi + 2εh

δ. (2)

Combining the above with Eq. 1, yields the closed form of
the Maxwell Garnett mixing formula

εMG
eff = εh + 3δεh

εi − εh

εi + 2εh − f (εi − εh)
. (3)

The MG formula utilizes only three parameters—the two
permittivities and the volume fraction—to describe the
macroscopic properties. While neither multiple scattering
nor retardation are taken into account, these dependencies
may be incorporated if needed. Hence, several extensions
to the MG mixing formula have been proposed to
account for various discrepancies introduced by using the
effective medium approach [24, 42]. In these formulations,
it is typically assumed that inclusions are distributed
isotropically (on average) throughout the host medium and
that they are exposed to a uniform field. However, this is
not always the case, and the simple MG approach may fail
when these conditions are not met, the problem we address
in our work.

Gradient effective permittivity (GEM)model

Here, we consider situations outside the limits of applicabil-
ity of the classical MG formula, that is when anisotropically
distributed inclusions within a host medium are illuminated
by an inhomogeneous electric field. A typical example,
where such conditions occur are thin nanoparticle layers
supported by interfaces [12, 15, 43], where the presence of
the interface breaks symmetry and introduces electric field

gradients (see Fig. 1a). These can be generated by, e.g.,
reflection and interference on a dielectric substrate or the
excitation of a surface plasmon polariton if the supporting
material is metal.

In our proposed gradient effective medium approach (the
GEM model), instead of homogenizing a nanoparticle layer
into a single effective one like in an MG approximation,
the nanoparticle layer is divided into several segments
(thin sublayers) of equal thickness and each segment is
homogenized separately (see Fig. 1b,c) using the classical
MG mixing formula. The motivation behind such treatment
is the fact that a supported nanoparticle layer consists,
in principle, of objects of various size, Fig. 1a. By
itself, this would not constitute a problem; however, the
nanoparticles are not distributed equally in the direction
normal (e.g., z-axis) to the substrate. Instead, they are
placed at the interface. Hence, the average mass distribution
is given by a particular function of z with parameters
dependent on the particle distribution, c.f. an exemplary
volume fraction dependence in Fig. 2a. When coupled with
an inhomogeneous near-field of an LSPR, this function
becomes important and needs to be taken into account in
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Layers composed of particles
with distributions μr ± σr

Fig. 2 Exemplary results of homogenizing nanoparticle layers
deposited on a substrate with its surface at z = 0 nm (cf. Fig. 1). The
nanoparticles comprising a layer are defined by their mean radius and
standard deviation (μr ± σr ). a Volume fraction of the nanoparticles
(inclusions in effective medium wording) as function of the distance
z from the interface and the b real and c imaginary parts of the
graded effective permittivity for those layers. The volume fraction
is maximized at the position of the mean nanosphere radius and,
consequently, this determines the position of the maximum value of
the permittivity. As the mean particle size increases, the center of
mass moves away from the interface, resulting in a weaker interaction
for bigger particles. The total graded medium thickness is equal to
the diameter of the larges possible particle, which we assume is
2(μr + 3σr )
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an effective treatment, which is what we do presently. We
assume that the nanoparticles are sufficiently small to be
described by the quasistatic polarizability, and we omit
radiative coupling. For further simplification, no explicit
interactions between layers are assumed within the model.

The key parameter in the GEM model, like in the MG
approach, is the volume fraction δ—the ratio between the
volume of inclusions, nanoparticles on the substrate, and
the total volume of the layer. The distinction between the
models is that the volume fraction is different in each
sublayer and depends on the distance from the substrate
as well as the distribution of particles in the layer. We
base our initial analysis of nanoparticle layers on previously
reported Pd particle distributions [10, 11], which are
therein characterized by a mean and standard deviation.
For convenience in calculations, we assume a Gaussian
distribution of Pd nanospheres around a given mean radius
μr with corresponding standard deviations σr , although in
reality a spherical shape may not be adequate. However, the
general procedure is the same for any MG homogenized
layer composed of individual nanoobjects, as in the GEM
method the permittivity of each sublayer is based on the
volume fraction of inclusions in that sublayer (and on the
permittivities of the inclusions and the host medium).

The total thickness of the graded medium, which is equal
to the largest assumed diameter given by H = 2(μr + 3σr),
is divided into Np sublayers of thickness h = H/Np,
see Fig. 1b. Each lth-sublayer contains a different amount
of material Vl (of inclusions), which is given by a sum
(integral) of all sphere segments (volume V l

seg,i) contained
within this sublayer-l (Fig. 1b) over the radius distribution.
The volume fraction of a sublayer δl can then be written as

δl = Vl

Vsub
=

∑
i V l

seg,iN
l
i

sh
= Np

H

∑

i

V l
seg,i

Nl
i

s
, (4)

where i runs over all sphere segments in a given sublayer of
volume Vsub and Ni is the number of particles per layer area
s. This allows us to write the expression for the effective
permittivity of the lth-sublayer, see Fig. 1c,

εeff,l = εh

2Np

H

∑
i V l

seg,i

Nl
i

s
(εi − εh) + εi + 2εh

εi + 2εm + Np

H

∑
i V l

seg,i

Nl
i

s
(εi − εh)

, (5)

which is simply the MG formula applied independently
to each slice of the homogenized graded medium. At this
point and, indeed, throughout this work, we only consider a
single material comprising the nanoparticles; however, the
above equation can easily be expanded to include additional
materials with different permittivities as is commonly
reported in literature for the MG approximation [19]. This
can be directly done by expanding the sums in Eq. 4 over
index i to consider materials with different permittivities.

The volume fraction distribution, Fig. 2a, in each layer
of nanoparticles, manifests itself in the effective dielectric
function of the effective medium layer (see Fig. 2b, c).
Both parts of the effective dielectric function increase with
an increasing volume fraction, as plotted in Fig. 2. The
sublayer with the largest volume fraction is the one which
contains the middle segment of those spheres whose radii
are close to the mean size μr . The permittivity decreases
with increasing distance from that sublayer, although in an
asymmetric manner because sublayers close to the substrate
contain contributions from both small and large particles,
while sublayers beyond μr contain contributions only from
larger ones.

A large particle size dispersion leads to a more uniform
effective permittivity distribution across the gradient layer
(e.g., 8 ± 3 nm), whereas nanoparticle layers with narrow
radius distributions (1.5 ± 0.3 nm) are homogenized into
gradient media with pronounced permittivity variation—
the effect of different size distributions on εeff is shown
in Fig. 2b, c. As the response of any electromagnetic
system depends on the overlap of material and field, the
manner in which the homogenization procedure is carried
out affects the end result. As electromagnetic fields are
rarely homogeneous, we expect that the gradient effective
medium model will improve the accuracy of simulations
over the MG approach, especially when considering
strongly inhomogeneous electric fields. This improvement
will be especially apparent for various types of surface
plasmon sensors, which offer greatly enhanced, but quickly
decaying, fields near the metal-dielectric interface.

Numerical Calculations

In order to test the gradient model, we use interchangeably
the transfer matrix method (TMM) and the FDTD method.
The former are used in initial evaluation of discontinuous
nanoparticle layers supported by flat substrates, in cases in
which the nanoparticles are homogenized and the structure
is planar. The latter are used in every case in which discrete
nanoparticles are simulated as well as when computing the
optical response of an LSPR sensor decorated with discrete
or homogenized nanoparticles.

Modeled structures are placed on a substrate with a
refractive index of 1.45. The parameters of discontinuous Pd
nanoparticle layers are initially based on those fabricated for
the work of Adibi et al. [10], but subsequently tested mean
radii and their standard deviations are probed in a broad
range, as can be observed in other experiments [12]. The
initial equivalent mass thickness is assumed to be 0.5 nm
[10]. In calculations, the permittivity of Pd, as well as
of Ag when needed for the LSPR sensor, is taken from
Palik [44], while for Au from Johnson and Christy [45].
FDTD calculations are carried out using FDTD Solutions
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from Lumerical, Inc., Canada. Due to the presence of
nanoparticles with sizes down to 2 nm in diameter, a mesh
resolution of 0.5 nm is used. As the plasmon resonance of
such small Pd nanoparticles is far outside the considered
wavelength range, the accuracy, which is enhanced by the
use of subpixel averaging, is adequate.

In the case of nanoparticles supported by flat substrates,
we use periodic boundary conditions in the transverse
directions, while in simulations of nanoplasmonic sensing
perfectly matched layer absorbing boundary conditions
are used. The simulation area is 200 × 200 nm2. In
simulations with discrete nanoparticles, the support surface
is uniformly decorated with non-overlapping nanoparticles
with randomly drawn positions. For FDTD, we generate a
set of positions with radii being drawn from an appropriate
Gaussian distribution with mean radius μr and its standard
deviation σr . In TMM, we generate a vector of discrete
radius values ranging from zero to three standard deviations.
Then, the number of particles per area is calculated for each
radius value based on the Gaussian distribution normalized
so that the total particle volume corresponds to an equivalent
mass thickness of 0.5 nm.

Results and Discussion

Nanoparticle Arrays on Flat Dieletric Substrates

We begin by investigating the behavior of a Pd nanoparticle
layer on a flat dielectric substrate with the TMM to assess
the influence of the size distribution of nanoparticles in
layer on its optical properties and quantify the accuracy of
the gradient effective medium approximation in comparison
to rigorous calculations with FDTD. As the electric fields
under such conditions do not have very strong field
gradients, we expect moderate differences between using
the proposed GEM averaging method and a classical
MG approach. However, recent investigations of thermal
dewetting of thin Au films into a nanoparticle layer [12]
or the feasibility of antireflection coatings based on silver
nanoparticle films [15] motivate our choice and showcase
the realm of applicability of the GEM method.

The extinction spectrum of an examplary nanoparticle
layer (r = 8±3 nm) on a dielectric substrate is presented in
Fig. 3a. As the total amount of metal is small, extinction is
mainly determined by the substrate (dotted line in Fig. 3 at
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Fig. 3 Comparison of optical properties of layers of nanoparticles cal-
culated using three methods: the introduced gradient effective medium
(GEM), classical MG, and FDTD with explicit nanoparticles. a Extinc-
tion of a Pd nanoparticles with r = 8 ± 3 nm on a substrate with n =
1.45 obtained with (blue) the MG approximation, (orange) the gradient
model, and (purple) FDTD with discrete nanoparticles. b Extinction
of nanoparticle layers with selected radius distributions. Solid lines:
GEM, dashed: FDTD. c Extinction of sintered Pd nanoparticles with

increasing mean size. d Extinction spectra for Pd nanoparticles with
varying standard deviation of particle radius with μr = 5 nm. Solid
lines—GEM, dashed— FDTD, black dashed line—MG. In all plots,
the black dotted line marks extinction of a bare n = 1.45 substrate. The
GMG approximation gives results closer to the FDTD-derived ones
than the MG approach. Layers with large and sparse particles are better
described by the gradient homogenized model as a result of a smaller
impact of interparticle coupling
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3.36%); however, the contribution from the Pd nanoparticles
is visible in all approaches. The full FDTD calculation
with discrete nanospheres shows an extinction increase of
up to 0.5%, Fig. 3a. The effective medium approaches
underestimate it, although the GEM model offers a more
accurate description than the MG one.

Next, in Fig. 3b, we look into how the optical properties
evolve with a change of the radius distribution of the Pd
nanoparticles. The initial distribution, which corresponds to
an as-deposited Pd layer with an equivalent thickness of
0.5 nm and contains nanoparticles with a size distribution of
r = 1.5±0.3 nm, undergoes a hypothetical sintering process
based on Adibi et al. [10], thereby increasing its mean radius
and standard deviation. This causes the homogenized layer’s
thickness to grow and effectively decreases the volume
fraction, making the Pd layer increasingly more transparent,
as evident in Fig. 3b from the FDTD simulations with
explicit nanoparticles. This result shows that while the
amount of matter is the same, the size distribution cannot
be neglected, and that, as a whole, a dense layer of small
nanoparticles interacts with light most efficiently [46]. This
evolution is also captured by the gradient model, although
the degree of change is smaller than in FDTD with explicit
nanospheres. Extinction is underestimated by both effective
medium approaches (GEM and MG), because in the present,
formulation radiative coupling between the particles is
neglected. This effect is most prominent with dense layers
of small particles. During sintering, the mean nanoparticle
size increases during coalescence and the number density
decreases. This causes a decrease of interparticle scattering
and leads to increased accuracy, as evident in Fig. 3c. We
expect that including multiple scattering in the effective
permittivity will increase the accuracy.

The improved validity of the GEM model for simulating
the optical response of nanoparticle layers stems from
accounting for particle size distribution by accurately
capturing the spatial dependence of the volume fraction.
This is because the effective permittivity profile in the
gradient model depends on both the mean and standard
deviation of the nanoparticle radius. The influence of the
latter (σr ) is presented in Fig. 3d. Gradient layers become
effectively less dense with increasing size dispersion and
leads to decreased extinction by lowering the maximal
refractive index value. A similar effect is also observed
when the μr increases when the total nanoparticle mass is
kept constant (Fig 3c).

Nanoparticle Arrays on Flat Metal Substrates (SPR)

Pure dielectric planar structures do not offer strong electric
fields nor large gradients. These appear at the surface
plasmon resonance (SPR), which we study for a 60-nm

Au layer deposited on a glass substrate with a constant
refractive index of 1.45 (the Au is capped by a 10 nm
1.45 dielectric; see inset in Fig. 4a). In the Kretschmann
configuration at 46◦ angle of incidence, the resonance
position is at 732.2 nm without any Pd, while upon
depositing a nanoparticle layer (μR = 1.5 nm), the
reflection dip shifts by ca. 20 nm, see Fig. 4a. As FDTD
calculations with discrete nanoparticles are not feasible
for the required accuracy, we only compare the MG and
gradient models. While in both cases, in general, a red-shift
of the peak position is observed with an increase of μR , a
discrepancy between the MG and gradient model is clearly
visible in Fig. 4b. The MG effective medium approach
predicts a maximum peak shift of ca. 5 nm for μR ≈ 4.5 nm,
followed by a blue-shift of 1 nm when the mean particle
size increases further. When we calculate the same evolution
with the gradient model, the SPR-vs-μR dependence is
different. Already with two sublayers, the maximum peak
shift occurs at a larger μR , and the reversal of the initial red-
shift is much smaller. With increasing discretization, similar
behavior is observed, although the influence of the number
of sublayers converges. The main origin of this behavior
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of a nanoparticle layer. a The SPP shifts to the red due to the
presence of nanoparticles, but b due to a large field enhancement and
gradient of the SPP the simulation is sensitive to the homogenization
method. The classical MG model is off by more than 1 nm for
certain nanoparticle distributions and already a two-layer GEM yields
significant improvement. The GEM model converges quickly with an
increasing number of layers
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is that a single MG layer effectively moves an amount of
material away from the metal interface by averaging it out
over an increasingly thicker layer. In the gradient model,
the contribution from small nanoparticles to the SPR shift
is preserved as their optical density is closer to the metal
surface, where the plasmon intensity is the strongest and
most sensitive to any variations.

Nanoparticle Arrays Probed by a Nanoplasmonic
Sensor (LSPR)

The general investigations reported above demonstrate that
the gradient model is more accurate than the classical MG.
Hence, we now use the gradient model to simulate localized
plasmonic sensing of nanoparticle layers undergoing
sintering [10]. The electric field and its gradient of the
LSPR are larger than for the dielectric substrate or the SPR
sensor described above, being also the reason for the high
sensitivity of the INPS sensor. The additional justification
of using the GEM approach, in this case, is the fact that one
simulation with a gradient layer corresponds to an averaged
response of many experimentally measured or simulated
sensors with explicitly simulated nanoparticles. Hence, it
significantly simplifies and quickens numerical analysis.

Figure 5a shows how a discrete Pd nanoparticle
distribution is transformed into a gradient layer. In a typical
INPS sensor arrangement [8], the plasmonic antenna (here

25-nm thick, 30-nm radius) is isolated from the environment
by a dielectric spacer (10 nm, n = 1.48), which supports
the probed nanoobjects. Here, we discretize the gradient
layer into 1-nm thick sublayers and, as after averaging they
have (qualitatively), a permittivity reminiscent of a lossy
dielectric, 0.5-nm meshing is adequate (cf. Fig. 2b, c).

In FDTD calculations, we compare the predicted LSPR
peak evolution under hypothetical sintering based on
experimental observations [10] employing the traditional
MG approach of a single layer, our GEM model, and explicit
Pd nanoparticles (averaged spectra over 100 realizations in
each case). In every case, the calculations yield a blue-
shift of the resonance wavelength for increasing particle
radius as a consequence of decreased nanoparticle volume
fraction, as shown in Fig. 5b (i.e., material moves away from
the sensor). This behavior is consistent with experimental
measurements [10]. However, the MG approach with a
single effective permittivity, overestimates the progression
of the peak shift by as much as 0.5 nm. While in absolute
numbers, this is not a significant difference, the whole
sintering process is characterized by peak shifts on the order
of 1 nm; hence, the relative discrepancy of the MG approach
is significant. In contrast, the gradient effective permittivity
is within 0.1 nm of the peak shift evolution for explicitly
defined nanospheres, offering very good accuracy and
justifying its use in predictive studies with a computational
(time) burden decreased by an order of magnitude.
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Fig. 5 Indirect nanoplasmonic sensing of nanoparticle sintering. a
FDTD simulation structure with discrete Pd nanospheres probed by
an Ag sensor and a corresponding model with a GEM description of
the nanoparticle layer used to calculate subsequent results. b LSPR
peak positions of an Ag sensor probing a hypothetical sintering process
(i.e., surface-energy driven coalescence and growth of small nanopar-
ticles into larger ones) of Pd nanoparticles. The Pd nanoparticles are

treated as either discrete nanospheres (squares), a GEM layer (circles),
or a classical MG medium (triangles). The GEM yields much better
accuracy than the MG model when compared to explicitly modeled
nanospheres with FDTD. c Convergence of the LSPR peak position
computed for a gradient effective medium with a variable number of
layers for r = 5 ± 2 nm. To obtain sub-0.1 nm accuracy, 22 effective
medium sublayeres 1-nm thick are required
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Before employing the new approach to investigate
sintering in detail, we present a convergence test in Fig. 6a
for a nanoparticle layer with r = 5 ± 2 nm. The LSPR peak
position clearly depends on the number of homogenization
layers. For a single layer (MG approach), we have a 0.6-
nm mismatch, which decreases more than sixfold when
using 22 effective layers each 1-nm thick. Any further
improvement in accuracy can probably be obtained by
including interaction within the MG mixing formulas, but
for the present work sub-0.1 nm accuracy is adequate.
Consequently, it is possible to study the correlation between
nanoparticle size distribution and LSPR peak position using
the mean and standard deviation as parameters describing
the distribution and what was not feasible with rigorous
FDTD calculations in a realistic time frame (a single vs.
hundreds of simulations, each a few hours long).

We now move beyond the study of Adibi et al. [10] and
extend the analysis of plasmonic sensing of nanoparticle
sintering to a broad range of μR and σR parameters
and calculate the resonance position of an Ag sensor
when decorated by a given distribution. We assume in the
calculation that the parameters μr and σr are independent
of each other and μr ∈ [1.5, 8] nm and σr ∈ [0.3, 3] nm.
The results, plotted in Fig. 6a using the colormap, clearly
demonstrate, that the resonance wavelength is determined
by both the average particle size and its dispersion.
Hence, without knowledge of how the size dispersion is
correlated with the mean radius during sintering, it may be
impossible to accurately determine the state of the layer
of nanoparticles from a single peak position readout. This
highlights the importance of accurate calibration studies and
a potential lack of transferal of peak shift vs. mean particle
size for various devices/conditions.

To highlight the importance of the standard deviation
in addition to the mean particle size, we devise four
hypothetical sintering experiments, which follow different
size/dispersion relations from a common initial state of r =
1.5 ± 0.3 nm and terminate at different states described by
the same relative peak shift �λ = 0.9 nm vs. that of the
initial state. These evolution pathways, marked in Fig. 6a
with the four thick lines, exhibit different rates of increasing
mean radius and its standard deviation, favoring rapid
increase of the former (black), the letter (pink), or relatively
balanced (remaining two). If these evolution pathways are
plotted as �λ vs. μr and σR , the relative differences
are clear. However, in an experiment the readily available
quantity is the peak shift and if only that quantity is used—
as in Fig. 6b—then an ambiguity in the interpretation of the
data is very clear. This result clearly underlines the fact, that
a given resonance position does not uniquely identify the
state of the nanoparticle layer, and additional data must be
gathered. It can come from prior knowledge of the sintering
process (μR(t) and σR(t), t—time) or from additional,

(b)

(a)

Fig. 6 Application of GEM method to study plasmonic sensing of Pd
nanoparticle sintering. a The colormap shows the peak position λ0
of an Ag sensor (see Fig. 5a) coated by a layer Pd nanoparticles of
varying distributions (μR , σR) for a constant mass per unit area (0.5 nm
equivalent thickness). Observe, that any one value of λ0 corresponds
to a set of mean radii and their deviations. During sintering both μR

and σR evolve and, as just shown using the GEM, a given resonance
position does not uniquely identify the state of the nanoparticle layer.
To highlight this, we designate hypothetical nanoparticle evolutions
with different (μr , σr ) dependencies, which begin from the same
distribution but terminate at different states, which are characterized
by approximately the same peak shift of ca. 0.9 nm. b We plot the
simulated peak shifts on the x-axis and mark their corresponding mean
radii on the y-axis. The measured peak shifts are the same in each case
(544.4 → 543.5 nm), and one can see the ambiguity in elucidating the
state of the nanoparticle layer without access to the standard deviation.
Hence, an experiment measuring only one quantity cannot differentiate
among the possible final mean particle distributions. Such an analysis
was feasible only with the GEM approach and not with averaging
many simulation results with explicitly defined nanoparticles

simultaneous measurements. This conclusion is, of course,
applicable to any sensing study of supported nanoparticle
layers with a certain size distribution and will be in fact
even more relevant if the shape of the nanoparticles is not
uniform.
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Summary and Conclusions

Electromagnetic mixing formulas provide a simple route to
describe the effective properties of inhomogenous materials.
Here, we have introduced a gradient effective medium,
GEM, approximation to provide a more accurate description
of thin layers composed of supported nanoparticles in
inhomogeneous electric fields than possible with a standard
Maxwell Garnett approximation. The usefulness GEM
stems from the fact that nanoparticles in supported layers
are not placed isotropically throughout the volume in
question, but have a defined distribution in the direction
normal to the substrate interface. The model captures this
distribution and combines it with the effects of strong
electromagnetic field gradients present in such a layer, as is
typical for (nano)plasmonic sensors. In this work, we place
emphasis on quantifying the response of LSPR sensors
to changes in nanoparticle layers with the ultimate goal
of being capable of determining the evolution of the size
distribution of nanoparticles in the layer during a sintering
process [10, 11, 47]. However, the GEM approach is general
enough that it can also be used efficiently for dielectric
substrates, as recently employed for antireflection coatings
based on silver nanoparticle films [15] or when using
nanoparticle films for sensing [12].

One of the most important conclusions of our work is
that the detected signal coming from nanoparticle layers
depends strongly on both the mean and standard deviation of
the particle distribution. This means that predictive numeri-
cal and/or analytical studies of corresponding experimental
systems will yield ambiguous results. Hence, quantifying
the state of a nanoparticle array (e.g., average size) may not
be possible using a single readout like the peak shift. This
complication indicates that in-depth studies of sensor sys-
tems or expanded analysis methods are probably necessary.
These can be realized quickly and reliably with numeri-
cal methods incorporating the GEM to model the average
properties of nanoparticle layers at significantly reduced
computational cost compared to rigorous simulations with
explicitly defined nanoparticles.

We also would like to mention that aside from the particle
size and distribution influence on the measured signal,
the nanoparticle shape should also be considered. In this
work, we used only spherical nanoparticles throughout the
entirety of the sintering evolution; however, this may not
be the case. In fact, the slower saturation of the LSPR with
mean size in modeling when compared with experiment
[10] may likely be attributed to mostly horizontal growth
rather than vertical[48–50]. While this aspect was not
considered in our analysis of sintering, the gradient model
is general enough to homogenize an layer composed of
arbitrarily shaped nanoparticles. The GEM is also able
to incorporate effects related to different permittivities of

homogenized nanoparticles, i.e., simultaneous presence of
two species of sensed nanoobjects. At a more general
level, we have also demonstrated that the accuracy of the
gradient layer approach increases with an increasing finesse
of the graded effective medium, and we suggest that a
possible route to further improve the accuracy of the graded
model is the incorporation of the effects of direct scattering
between nanoparticles or mediated by nearby interfaces for
inclusions in thin layers [43].

Finally, it is worthwhile mentioning that the applicability
of the gradient model extends beyond nanoparticle sintering
studies with plasmonic sensors, considered here as a case to
benchmark our modeling approach, or general evolution of
the shape and size of nanoparticles comprising a thin film
[12]. In principle, whenever an average signal over many
sensors with strongly inhomogeneous fields is collected—
and when the detected objects do not exhibit perfect
homogeneity—the presented model is a likely candidate to
be used. This can include detection of dynamic changes in
exosomes [34], indirect nanoplasmonic sensing of hydrogen
sorption by palladium [8], probing of polymer blushes [51],
studying plasmoelectric effects in nanoparticles [30], or
in modeling light absorption effects in plasmon-assisted
catalysis [2, 39–41].
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