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Applying the concept of Digital Twin in production processes supports the manufacturing of products of optimal geome-
try quality. This concept can be further supported by a strategy of finding the optimal combination of individual parts to
maximise the geometrical quality of the final product, known as selective assembly technique. However, application of this
technique has been limited to assemblies where the final dimensions are just function of the mating parts’ dimensions and
this is not applicable in sheet metal assemblies. This paper develops a selective assembly technique for sheet metal assem-
blies and investigates the effect of batch size on the improvements. The presented method utilises a variation simulation
tool (Computer-Aided Tolerancing tool) and an optimisation algorithm to find the optimal combination of the mating parts.
The approach presented is applied to three industrial cases of sheet metal assemblies. The results show that using this tech-
nique leads to a considerable reduction of the final geometrical variation and mean deviation for these kinds of assemblies.
Moreover, increasing the batch size reduces the amount of achievable improvement in variation but increases the amount of
achievable improvement in the mean deviation.

Keywords: selective assembly; digital twin; sheet metal assembly; computer-aided tolerancing

1. Introduction

Implementing new technologies can leverage the simulation of production processes towards optimal products using
real-time control. This idea is known as implementing a Digital Twin. The Digital Twin concept was first utilised and
implemented by NASA (Tuegel et al. 2011; Glaessgen and Stargel 2012) and can be applied to all production phases from
concept design to final production processes. When it comes to the full production phase, one objective of Digital Twin
is to minimise the geometrical variation and deviation from nominal values (Söderberg et al. 2017). This is a part of the
work labelled Geometry Assurance, which aims at reducing the effects of geometrical variation and improving geometrical
quality.

A new Digital Twin concept for the full production phase has been proposed by Söderberg et al. (2017). The procedure
for this concept is shown in Figure 1.Based on that, the scanned data of individual parts A and B will be provided in the first
step. Then, parts will be sorted and matched so that the variation of final assemblies becomes minimal. This technique is
known as selective assembly. Afterward, the adjustment of locating schemes and welding sequences will be performed with
the same goal in mind (Wärmefjord, Söderberg, and Lindkvist 2010). The concept of using selective assembly in Digital
Twins and Cyber Factories are also suggested and discussed by Colledani et al. (2014) as a technique that improves the
quality and cost of the production.

Although selective assembly technique is getting more attention in new production systems, application of this technique
has been limited to small groups of assemblies and there is a gap in applying this technique to sheet metal assemblies.
Section 1.1 provides a brief introduction to selective assembly and reviews the studies that has focused on this technique.
Section 1.2, then, presents the existing gap and clarifies why this gap should be filled and how this study is going to fill it.

1.1. Selective assembly

Selective assembly is a means of obtaining higher quality product assemblies by using relatively low-quality components
(Rezaei Aderiani, Wärmefjord, and Söderberg 2018). Therefore, quality improvement is the main advantage of implement-
ing this technique. On the other hand, the drawback of using this technique is the added work for measuring the dimensions
of all produced parts with high accuracy and sorting and matching parts before performing assembly. Nevertheless, these
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Figure 1. The proposed concept of Digital Twin for Geometry Assurance by Söderberg et al. (2017).

Figure 2. Sample of a linear assembly.

drawbacks can be compensated to a certain level by implementing the Digital Twin in the assembly line. Nowadays, it easier
and cheaper to scan a sheet metal part compared to a decade ago. Moreover, automation is taking more place in production
lines (Söderberg et al. 2017). The main assumption in a smart assembly line is that this trend will continue and in a near
future, scanning all produced parts can be done even faster and cheaper than now (Söderberg et al. 2017). For instance,
Bergström, Sjödahl, and Fergusson (2018) has developed an online shape inspection method that deviations of all produced
parts from their nominal can be obtained just by taking some pictures from each part and analysing those pictures in a short
time. Another assumption is that the assembly line will be robotised enough that the amount of time and workforce that will
be added due to implementing selective assembly is reasonable. Considering these availabilities in near future, studying
selective assembly technique for sheet metal makes a worthwhile contribution to the field.

Figure 2 demonstrates an assembly of three components (in this paper, the word ‘components’ refers to the elements of
an assembly and ‘parts’ refers to produced parts of that element for mass production). Suppose that the target of production
is to produce 1000 of these assemblies and therefore, 1000 individual parts from each component are manufactured. After
production, the longitudinal dimensions of the parts of component A, B and C will be measured. Hence, individual parts
of each component will be divided into some groups (for instance six groups) based on their dimensions. Finally, the
combination of groups that results in the minimal variation of the target dimensions in total assemblies can be obtained
using different methods based on the circumstances of the problem. In other words, the optimal combination of Ai, Bj and
Ck where i, j, k ∈ {1, 2, 3, . . . , 6} should be found, so that variation of the longitudinal dimension among all assemblies is
minimal. For instance, (A4B1C2), (A2B5C1), (A1B2C3), (A3B4C6), (A6B6C5) and (A5B4C4) can be an answer to this problem.

Dividing parts to groups and matching them was the primary method of applying selective assembly and has been used in
bearing and engine production processes (Desmond and Setty 1961; Mansor 1961; Pugh 1992). In these types of assemblies,
assembly tolerances are so tight that it becomes too expensive to obtain them by tightening part tolerances. However, since
the groups selected to be assembled together may not contain the same number of parts, some parts in groups with a higher
number of parts would be superfluous. These parts are known as surplus parts and this problem is called mismatching. Early
studies in the area of selective assembly are mostly concerned with methods for making the groups so that mismatching
becomes minimal (Fang and Zhang 1996, 1995; Chan and Linn 1998; Mease, Nair, and Sudjianto 2004).

Through the advent of evolutionary algorithms, including Genetic Algorithm (GA) and Simulated Annealing (SA),
certain studies utilised these algorithms for selective assembly applications. Kannan, Jayabalan, and Jeevanantham (2003)
utilised an integer coding GA to find the optimal combination of groups of parts aiming at minimising the variation in final
assemblies. A chromosome is representative of a specific combination from all groups in this kind of coding. Then, each
component has a substring in the chromosome and can embrace a sequence of integers. Each number is then allocated to
a group number. This kind of coding is common in almost all studies that have used GA for selective assembly (Kannan,
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Asha, and Jayabalan 2005; Kumar and Kannan 2007; Asha, Kannan, and Jayabalan 2008; Kannan, Sivasubramanian, and
Jayabalan 2009; Forslund et al. 2017; Rezaei Aderiani, Wärmefjord, and Söderberg 2018).

Most studies that deal with selective assembly by an evolutionary algorithm also present methodologies to solve the
mismatching problem. Kannan, Asha, and Jayabalan (2005) presented a methodology to apply selective assembly in three
stages to minimise the surplus parts. Rezaei Aderiani, Wärmefjord, and Söderberg (2018) developed a multistage approach
to selective assembly that minimises the variation while the mismatching problem is solved and there are no surplus parts.
Lanza, Haefner, and Kraemer (2015) investigated selective assembly by means of cyber-physical-based matching. Their
study compares different strategies of selective assembly in term of total production costs in a cyber-physical factory. It
shows that doing optimisation individually for all parts and not to divide them into different groups results in a lower cost
of production.

1.2. Scope of paper

Implementing Digital Twins and cyber-physical factories are experiencing an upward trend in new production systems.
These concepts can leverage selective assembly technique to minimise the production cost and improve the quality of the
assembled product. The main type of assemblies in automotive industries are sheet metal assemblies which are assembled
by spot welds. However, to the best of our knowledge, applying the concept of selective assembly in sheet metal assemblies
has not been studied yet.

Studies of selective assembly have been limited to assemblies in which the target dimensions are just a function of some
dimensions from mating parts. This paper refers to these types of assemblies as linear assemblies. The target dimensions
in linear assemblies can be controlled by controlling dimensions of the mating parts by selecting them. In sheet metal
assemblies, however, the final dimensions are not just function of dimensions of the mating parts. There is a large variety
of other parameters including stiffness of sheets, welding properties and locating schemes of fixtures that affect the final
geometry of the assembly. Hence, in a complex sheet metal assembly, the target dimensions cannot be defined as a function
of sheets’ dimensions. Consequently, the geometry cannot be controlled by some dimensions from mating parts, which is
the base of common selective assembly techniques. Therefore, this question will raise that: is it possible to improve the final
geometrical quality of sheet metal assemblies also by selecting the mating sheet metals instead of picking them randomly
and assemble them? This is the primary question that this study tries to answer. In order to answer this question, a method
for applying the selective assembly technique to sheet metal assemblies is required.

The differences between the essence of sheet metal assemblies and the linear assemblies necessitate some modifications
on the existing methods of applying selective assembly technique. Therefore, another question that the paper answers is:
What are those differences and the required modifications because of them? The answer of this question is covered in
Sections 2 and 3.

The last question is then: If this technique can be applied to sheet metal assemblies, what would be the scale of the
improvement and what are the effective parameters on the amount of improvement? The paper answers this question by
applying the modified methodology in different batch sizes of three industrial cases. The results of this are presented in
Section 4 and the effect of the batch size and future studies are discussed in Section 5.

2. Differences between linear and sheet metal assemblies and required modifications

A sheet metal assembly is usually made by putting two or more sheets of metal together that are joined by some spot welds,
fasteners or seam welds. Spot weld joints are more common in automotive and aerospace industries and this paper deals
with these types of joints.

Selective assembly of sheet metal shares the same concept as a conventional selective assembly. In both procedures,
the parts that are going to be assembled together are selected instead of being randomly picked. However, the conventional
selective assembly technique cannot be applied to the sheet metal assemblies as it is because of the differences that these
types of assembly have with the linear assemblies. These differences and the required modifications that they imply are
described here.

2.1. Lack of a single criterion for classifying parts into different groups

As it was mentioned in Section 1.1, in conventional selective assembly techniques, the parts are divided to some groups
based on their measured dimension. However, it is not possible to apply this grouping to sheet metal parts. The geometrical
outcome of a sheet metal assemblies is not only the function of some dimensions of their mating parts. As an example, an
assembly from a car structure is shown in Figure 3.In this assembly, location of a point or variation of it cannot be attributed
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Figure 3. A sample sheet metal assembly.

to dimensions of a specific point in the mating sheets. Each part is in contact with other parts in a contact area, and a
couple of spot welds keep the parts together. Moreover, the locating scheme of fixtures, welding guns and other production
parameters affect the geometry of the assembly. Therefore, there is not a single criterion to divide the parts based on that
to different groups. As a result, the grouping procedure cannot be applied to these types of assemblies because there are
not a single or a limited number of criteria on which to base the groups. For instance, suppose that the criteria for dividing
sheets into groups is the deviation of a welding point of each individual part from its nominal position. Then, matching these
groups to obtain less variation may not be possible because all parts in the same group would not have the same deviations
in other areas of the part. Therefore, they would not have the same effect on the deviation of final assemblies. Consequently,
the only alternative is to do the matching for each individual part instead of groups.

2.2. Objective of selective assembly

In selective assembly for linear assemblies, the goal is to minimise the dimensional variation of all final assemblies. This is
because variation is the only parameter in these kinds of assemblies that changes by changing the combination of the mating
parts and the mean value of deviations is fixed. Consider a linear assembly that consists of two component x and y as an
example. The dimension of the assembly that is going to be controlled by selective assembly is z which is summation or
subtraction of x and y. This is shown in Equation (1) (Subtraction is applicable when the goal is to calculate the fit in a shaft
and hole assembly).

zi = xi ± yi (1)

Therefore, the mean value of z for all assemblies can be calculated from Equation (2).

Z = 1

N

N∑
i=1

zi (2)

By substituting Equation (1) into Equation (2), the mean value can be determined based on the dimensions of the mating
parts which is shown in Equation (3).

Z = 1

N

N∑
i=1

(xi ± yi) (3)
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Based on Equation (3), for linear assemblies the mean value of the assembly dimensions is not dependent on the combination
of the mating parts. For example, if N is 2, Z would be the same for combination of (x1, y1)(x2, y2) compared to combination
of (x1, y2) and (x2, y1).

However, in sheet metal assemblies, the mean value of final assemblies’ dimensions can vary when the combination
of individual parts change. In other words, Equations (1)–(3) are not valid for sheet metal assemblies. For instance, if the
assembly is a sheet metal assembly in the previous example, Z for combination of (x1, y1)(x2, y2) may not be equal as Z
for combination of (x1, y2) and (x2, y1). That is because in these types of assemblies there are more parameters rather than
mating parts dimensions that affect the final dimensions and the relation of those factors with the final dimensions are not
linear.

As a result, in selective assembly of sheet metals the mean value of deviation of a point or points can be considered as
an objective of optimisation to be minimal in addition to the variation of these deviations. Hence, the problem changes from
a single-objective optimisation to a multi-objective optimisation.

2.3. Relation between geometrical quality and mating parts

The other main difference is that the calculation of the final variation in sheet metal assemblies is not as easy as in linear
assemblies. For the latter, the final dimensions can be calculated by some simple summations or subtractions of the dimen-
sion of these parts. Nevertheless, in order to predict the final deviations and variation of sheet metal assemblies, variation
simulation analysis using Computer-Aided Tolerancing (CAT) tools is needed.

3. Method

Selective assembly is a combinatorial optimisation problem in which the objective is to minimise the final variation of
manufactured assemblies.

As shown in Section 2.2, for sheet metal assemblies in addition to dimensional variation, the mean value of the deviation
can be considered as the second objective to be minimal. To clarify the objectives, the definitions of geometrical variation
and mean deviation in sheet metal assemblies are defined in Section 3.1. Thereafter, the formulation of the problem based
on these objectives and the employed optimisation method to solve the problem are presented in Section 3.2. Afterward,
two strategies of function evaluation are discussed in Section 3.3.

3.1. Objective function

The objective of optimisation in selective assembly of sheet metals is to minimise the geometrical variation and mean value
of deviations. There are different ways of defining the variation for a parameter. One common definition in sheet metal
assemblies in automotive industries is to measure the variation as six times the standard deviation. The definition of this
parameter is shown in Equation (4).

6σ = 6

√√√√ 1

N − 1

N∑
i=1

(di − μ)2 (4)

where

μ = 1

N

N∑
i=1

di

In this definition, N is the number of total assemblies, and di is the magnitude of the deviation of a specific point from its
nominal position after welding parts together and releasing the assembly from fixtures. To have a better view of the variation
of the whole assembly, the continues surface of the sheets can be meshed to some elements. Then, the Root Mean Square
(RMS) of variations and mean deviations in all elements can be considered as the objectives to be minimal. This is shown
in Equations (5) and (6).

RMSv =
√√√√1

n

n∑
i=1

(6σi)2 (5)
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RMSm =
√√√√1

n

n∑
i=1

(μi)2 (6)

where n is the number of elements in the assembly.
Deviation of a point in a sheet metal assembly can be predicted using variation simulation techniques or CAT (Wärme-

fjord et al. 2017). These techniques utilise Finite Element Method (FEM) to predict the deformation and spring back in the
whole nodes of the model of the assembly. Moreover, implementing the Method of Influence Coefficient (MIC) reduces
the calculation cost of the simulations (Liu and Hu 1997). This technique is also combined with contact modelling to
improve accuracy (Wärmefjord et al. 2016). There are some commercial programs for this purpose such as RD&T (2018)
and 3DCS (2018).

Deviation of all nodes, and therefore RMS of variation and the mean deviation for a specific number of assemblies,
can be predicted by simulation using inspection data on the part level, joining process information, locating schemes and
combination of parts as inputs.

This study utilises RD&T program as the variation simulation tool. This program does both rigid and non-rigid variation
simulations; however, non-rigid simulation is utilised in this study. In non-rigid simulation, parts are allowed to deform
when they are positioned. Hence, the stiffness of parts and clamping forces are considered in the simulation. Thus, the
results are more reliable and accurate in non-rigid simulations (Wärmefjord et al. 2016).

Some assumptions are made in this tool for variation simulation including deformation is in the linear elastic range,
fixtures and welding tools are rigid, the thermal deformations are negligible, materials are isotropic and stiffness matrix
remains constant for deformed part shapes. The detailed procedure of the method of variation simulation that is utilised in
RD&T is illustrated by Söderberg and Lindkvist (1999) and Lindkvist and Söderberg (2003).

3.2. Optimisation algorithm

Considering the objectives of optimisation as RMSm and RMSv from Equations (6) and (5), the optimisation problem for
selective assembly of sheet metals for two components can be formulated as Equation (7).

min

⎛
⎜⎜⎝

√√√√√1

n

n∑
k=1

⎛
⎝ 1

N

N∑
i=1

N∑
j=1

(dijkxij)

⎞
⎠

2

,

√√√√√1

n

n∑
k=1

⎛
⎝ 36

N − 1

N∑
i=1

N∑
j=1

⎛
⎝xij

⎛
⎝dijk − 1

N

N∑
i=1

N∑
j=1

(dijkxij)

⎞
⎠

2⎞
⎠

⎞
⎠

⎞
⎟⎟⎠

Subject to :
N∑
j

xij = 1; i = 1, 2, 3 . . . N

N∑
i

xij = 1; j = 1, 2, 3 . . . N

xij ∈ {0, 1}

(7)

In this equation, dijk is the deviation of the assembly in node k from its nominal, when part i from the first component and
part j from the second component are mating parts of the assembly. Index n shows the number of all nodes and N represents
the batch size (the number of parts). xij is the optimisation variable and should be found by optimisation algorithm for all is
and js. This variable represents the parts that are going to be assembled together from each component. For example, if x54

is one, it means that part number 5 from the first component will be assembled to part number 4 from the second component.
The constraints are applied to this variable so that it can only take zero or one and each row and each column can only have
one one. These constraints make the optimisation combinatorial.

Selective assembly problem has been solved by a variety of optimisation algorithms. If the objective is to minimise the
mean deviation, only in one point of the assembly, the problem will be a Linear Assignment Problem. In this situation, parts
of one component can be considered as tasks and parts of the other component are the workers. The goal is to find the best
match between tasks and workers so that the total cost is minimal and each worker takes only one task. The exact solution
of this problem can be found using Hungarian or Auction Algorithm (Burkard, Dell’Amico, and Martello 2009). When
the objective is to minimise the range of deviations of a point from its normal position, the problem will be a Bottleneck
Assignment Problem (BAP) which can be solved in polynomial time using Threshold Algorithm (Burkard, Dell’Amico, and
Martello 2009). However, considering RMSm and RMSv as objectives, selective assembly of sheet metals cannot be solved
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as an Assignment Problem. Because in this problem each node has a deviation that is different from other nodes and the
goal is to minimise RMS of variation or mean deviation of all nodes.

Since the objective functions are non-linear and xij is binary, selective assembly of sheet metals is a Mixed Integer Non-
linear Programming (MINLP) problem. This optimisation problem can be solved using either metaheuristic optimisation
algorithms or non-metaheuristic ones. Metaheuristic algorithms such as GA and SA are commonly used to solve this type
of problems (Kannan, Asha, and Jayabalan 2005; Kumar, Kannan, and Jayabalan 2007; Asha, Kannan, and Jayabalan 2008;
Rezaei Aderiani, Wärmefjord, and Söderberg 2018). Since the problem is multi-objective optimisation, Non-dominated
Sorting Genetic Algorithm II (NSGA II) (Deb et al. 2002) can be utilised to find the optimal combination of parts.

An advantage of using non-metaheuristic methods is that exact solutions can be found while using metaheuristics there
can not be a guarantee that the result is the global optimum. Moreover, metaheuristics suffer from the repeatability and
reliability issues. On the other hand, a disadvantage of non-metaheuristics for solving combinatorial problems is that by
increasing the size of the problem, the number of optimisation variables increases exponentially. Nevertheless, there is no
such a problem when metaheuristics utilised to solve combinatorial problems (Blum and Roli 2003). Hence, if the size of the
problem is too large to be solved by non-metaheuristics, the guarantee for finding the optimal solutions can be sacrificed for
the sake of finding results that are good enough within a practical time (Blum and Roli 2003). For instance, for an assembly
of 3 components with the batch size of 1000, the number of optimisation variables (size of xij) using non-metaheuristics will
be one billion while this number is only 3000 using GA for combinatorial optimisations.

In this study, the sample cases are not too large to be solved using non-metaheuristics. In addition, the results are used
to assess the effect of the batch size on the improvements. Therefore, this paper uses non-metaheuristics to solve the sample
cases. There are some commercial solvers and toolboxes that can solve these types of problem. General Algebraic Modeling
System (GAMS) program (Bussieck and Meeraus 2004) is utilised in this paper. This program encompasses some linear
and non-linear solvers. To solve the optimisation problem in this paper DICOPT, CPLEX and CONOPT solvers are used in
GAMS.

3.2.1. Multi-objective optimisation

This paper considers the optimisation problem as a multi-objective optimisation problem. The main reason is that depend-
ing on the quality requirements of the assembly and quality of produced parts, the quality engineers may give different
priorities to RMSm and RMSv. Therefore, having a Pareto-Front with different options to select among, gives more freedom
to engineers to select based on the situation. However, if the priority of RMSm and RMSv over each other is known from
the beginning, the problem can be converted to a single-objective optimisation, using a weighted sum of objectives as the
objective function. A common combination of RMSm and RMSv that can also be used for single-objective optimisation is
MSE and its definition is shown in Equation (8).

MSE = (RMSm)2 + (RMSv)
2

62
(8)

There are different methods of performing multi-objective optimizations with different advantages and disadvantages that
are reviewed by Andersson (2000). This paper uses the ε-constraint method because of some advantages of it compared to
other methods, especially in mixed integer problems that are discussed by Mavrotas (2009). In this method, the extremes of
the Pareto-front can be obtained by solving a single-objective optimisation problem for each objective. Then, one objective
will be considered to be minimal while the other objective is reformulated to a constraint as it is shown in Equation (9).
Therefore, the other solutions in the Pareto-front can be obtained by changing εj progressively.

min {fi}
Subject to fj < εj i �= j

(9)

The range of εj is also defined according to the calculated extremes. In this paper, four solutions are calculated for each
Pareto-front. The number of solutions can be different based on the user preference. Using this method, the extremes of
RMSm and RMSv are calculated firstly, by solving one single-objective optimisation for each. Then, the range of RMSm is
divided into three equal distances to have two εs. Afterward, two more single-objective optimisations are solved to minimise
the RMSv while the constraint of RMSm < ε is added to the problem.

3.3. Strategies of function evaluation

The formulated optimisation problem of the selective assembly of sheet metals is presented in Equation (7). In this equation,
parameter dijk is the deviation of nodes and will be calculated using the CAT program. No matter whether metaheuristic
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Figure 4. Optimisation process using the first strategy.

Figure 5. Optimisation process using the second strategy.

optimisation algorithms or non-metaheuristic are used to solve the problem, there are two strategies that can be followed to
calculate the required dijks in each function evaluation.

The first strategy is that the optimisation algorithm interacts with the simulation program. For each function evaluation,
the optimisation algorithm calls the simulation program for calculating the required dijks and gets back the fitnesses of that
combination of parts from the simulation program. The process of optimisation using this strategy is shown in Figure 4.
Using this method, each function evaluation during the optimisation process requires one variation simulation.

The second strategy is to calculate the entire matrix of d firstly. Then, taking the required dijks for each function
evaluation from that matrix. This procedure is shown in Figure 5.

Depending on the size d, one strategy can be selected for solving the problem. An advantage of using the first strategy
is that it does not need to calculate the deviation of all nodes for every possible assembly. This is important when either the
number of all possible assemblies or the number of nodes is too high so that it takes more time to calculate the deviation of
all nodes for all possible assemblies compared to running a simulation for each function evaluation. On the other hand, the
advantage of the second strategy is that it does not need to do simulation for each function evaluation. This leads to saving
a considerable calculation time when calculating deviations of all possible assemblies in all nodes is plausible.

For instance, consider an assembly with two components and 10 parts for each component. The optimisation problem
is to find the optimal combination of parts out of all possible combinations which are 10! combinations. The number of all
possible assemblies in this example is 102 = 100. Since the batch size (number of parts) is 10, dijks of 10 assemblies will be
called by the optimisation algorithm for each function evaluation. Therefore, if the number of function evaluations exceeds
10, using the first strategy of function evaluation leads to running more simulations than simulating all possible assemblies
which are 100. Accordingly, in this case, the second strategy is superior compared to the first strategy. However, as an
example of a large model, consider a model with 5 components and batch size of 1000. Then, the number of all possible
assemblies is 10005. Running this amount of simulations and then finding the optimal combination from those data is more
time consuming than running 1000 simulation for each function evaluation since the number of function evaluations would
be less than 10004. Consequently, for this example, the first strategy is more reasonable. Since the presented sample cases
in this paper are closer to the first example, the second strategy is implemented in this study.

4. Results

The method presented for selective assembly of sheet metals is applied to three different cases from the automotive industry
and the results are evaluated. To implement the procedure using the second strategy of function evaluation, the matrix d is
calculated for each problem using the RD&T program.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Models of sample cases in RD&T program. (a) Locating scheme of the first sample case before welding, (b) locating scheme
of the first sample case for measurements, (c) locating scheme of the second sample case before welding, (d) locating scheme of the
second sample case for measurements, (e) locating scheme of the third sample case before welding and (f) locating scheme of the third
sample case for measurements.

Different batch sizes of individual parts are considered for selective assembly to evaluate the effect of batch size on the
improvement of each objective. These batch sizes for sample cases are considered to be 25, 50 and 100.

To be able to evaluate the amount of improvement in variation and mean deviation when selective assembly is applied,
an average variation and mean deviation of a random assembly is needed. Hence, for each batch size, an average variation
of 1000 random combinations of parts is calculated and considered. Replicating the calculation of average variation and
mean deviation for 1000 random combinations shows that the difference between the calculated averages is less than 0.001.
Therefore, 1000 random combination is enough for calculating the averages.
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Figure 7. Pareto-Front and averages for different batch sizes of case 1.

The first sample case is an assembly of three components from a car structure. This assembly is one of the most chal-
lenging assemblies in that car in terms of variation. The second sample case is an assembly of a door ring and door panel
from a car and the third sample case is also an assembly of two sheet metal parts with spot welds.

Each sheet metal part is modelled by shell elements. Contact elements between nodes in overlap areas are created
to avoid penetration of parts. Figure 6 shows the models of these assemblies in RD&T. The white spheres in joint
areas represent the spot welds between parts. The locating scheme of the assembly is applied to the models accord-
ing to the locating scheme used in industry during assembly of these parts. The locators and support points that are
applied to each part to position it before welding are shown in Figure 6(a,c,e) for sample cases 1, 2 and 3, respec-
tively. After applying the welds, these locators are released and a new locating scheme is used to position the assembly
during the inspection. In this locating scheme, the number of supports is reduced to a 3-2-1 locating scheme, which
allows for spring-back. Figure 6(b,d,f) demonstrate the locating scheme of the assembly when the variation is mea-
sured for sample cases 1, 2 and 3, respectively. These locating schemes are based on the same locating scheme as in
industry.

The deformed individual parts of each component are imported into the simulation program in different batch sizes.
Deformations of all deformed parts are in the range of the allowed tolerances. Having all deformed individual parts of
components, deviation of nodes and the final variation can be calculated for different combinations of the parts using
variation simulation. Then, the optimisation process is carried out and the combinations that result in minimal variations
and mean deviations for all assemblies are obtained.

The Pareto-front and the average variations and mean deviations for different batch sizes sample case one are shown in
Figure 7. The same results for sample case 2 and 3 are shown in Figures 8 and 9, respectively.

The elapsed time for the entire procedure is divided into two parts. The first part is to calculate the matrix d using
the simulation program. The second part is to solve the optimisation problem using GAMS. For all these cases, the
elapsed time of the first part was less than 5 min using a PC with a Core i7 2.7 GHz CPU and 16 GB of RAM. The
maximum elapsed time for the second part was 15 min using the same computation power to find one solution in the
Pareto-front.
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Figure 8. Pareto-Front and averages for different batch sizes of case 2.

5. Discussion

The final variation of a sheet metal assembly is affected by a big variety of parameters that makes it complicated to sort
and match parts based on them and apply selective assembly technique to their production. However, the results show that
implementing the presented method is promising to reduce the variation and mean deviation of these assemblies.

Based on the results in Figures 7– 9, it seems like larger batch sizes have better Pareto-fronts. Nevertheless, each batch
size has a different average of RMSv and RMSm. Therefore, it is the percentage of improvement compared to average that
should be evaluated to have a better judgment. Moreover, for the third sample case, the average and some solutions in
the Pareto-front of the batch size 50 are better than for the batch size of 100. The reason for that is that the deformed parts
considered for different batch sizes are different and there are no common deformed parts in different batches. Consequently,
if some parts with larger deformation exist in a larger batch size that does not exist in smaller batch size, the smaller one
can have a better average and Pareto-front.

5.1. Effect of batch size

To evaluate the effect of batch size, percentage of improvement of the variation and the mean deviation are presented in
Figures 10 and 11, respectively. Each percentage in these charts is calculated by considering the difference between the
minimal variation or deviation among all Pareto-Fronts and the average variation or the mean deviation.

For all three sample cases, the percentage of improvement fell by increasing the batch size. It shows that the smaller the
size of the batch, the higher the amount of improvement in average variation of that batch. On the other hand, Figure 11
shows that the percentage of improvement of the mean deviation improves for all cases by increasing the batch size.

These trends are due to the fact that the dimensional distributions are closer to the real-dimensional distribution for
bigger batch sizes and smaller batch sizes represent a smaller area of the normal dimensional distributions. When the batch
size is smaller, the variety of dimensions is less. This means that the final dimensions can be pushed to be in a smaller range.
However, the mean value of that range is more deviated from the real mean value compare to the bigger batch sizes.
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Figure 9. Pareto-Front and averages for different batch sizes of case 3.

Figure 10. Percentage of variation improvement compare to the average for different batch sizes of each case.

On the other hand, having additional parts imply a larger variety of deformed shapes. As a result, the range of dimensions
that all assemblies can fit in them is confined by more parts. This is why the percentage of improvement of variation
decreased for larger batch sizes. However, the mean values of bigger batch sizes can converge to values that are closer to
the goal which results in higher improvements of the mean value for bigger batch sizes.
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Figure 11. Percentage of mean value improvement compare to the average for different batch sizes of each case.

5.2. Future research

Selective assembly of sheet metals is a new area of research that needs to be improved upon in future research. Using a
surrogate model in the second strategy of function evaluation for large models to reduce the time can be studied in future
studies. Another area of future research is implementing deep learning algorithms in the process to see the results of applying
the optimal combinations and modify the calculated combinations based on the production errors. The scope of this study
is limited to the technical aspects of applying selective assembly to sheet metals. Therefore, further studies on logistic
challenges would be extremely useful.

6. Conclusion

This paper presented selective assembly of sheet metals as a novel approach to selective assembly. The results show that
geometrical variation and the mean deviation of sheet metal assemblies can be considerably improved by selecting the
mating parts based on the scanned data of them. The differences between sheet metal assemblies and linear assemblies
imply the following modifications on the existing approach of the selective assembly.

• The mean deviation of assemblies can be improved, in addition to variation of assemblies, by selective assembly
in sheet metals. Therefore, the optimisation problem should change to multi-objective optimisation problem.

• Because of the complexity of sheet metal assemblies compare to linear assemblies, it is not practical to divide parts
into groups and the matching should be done for individual parts.

• Variation simulation tools should be utilised to calculate the objectives of the optimisation process.

The amount of improvement and effect of batch size on that are also investigated. Based on the results, the amount of
improvement is subjective and depends on the case. However, the applied cases show that the improvement in variation and
the mean deviation can be up to 53 %. It can be concluded that increasing the batch size results in a higher percentage of
improvement in the mean deviation and lower percentage of improvement in variation.
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