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Abstract. This paper provides convex modeling steps for the problem of optimal battery sizing and energy
management of a plug-in hybrid electric vehicle with an electric variable transmission. Optimal energy manage-
ment is achieved by a switched model control, with driving modes identified by the engine on/off state. In pure
electric mode, convex optimization is used to find the optimal torque split between two electric machines, in
order to maximize powertrain efficiency. In hybrid mode, optimization is performed in a bilevel program.
One level optimizes speed of a compound unit that includes the engine and electric machines. Another level
optimizes the power split between the compound unit and the battery. The proposed method is used to min-
imize the total cost of ownership of a passenger vehicle for a daily commuter, including costs for battery, fossil
fuel and electricity.

1 Introduction

Hybrid Electric Vehicles (HEVs) are being considered a
convenient intermediate product in the conversion
process from conventional to pure electric vehicles, due to
their compromise on cost, fuel consumption and driving
range. With the improved performance and reduced cost
of battery pack, Plug-in HEV (PHEV), which is HEV
but equipped with a larger battery and a charging
connector, are also becoming popular solutions. Different
from HEV, PHEV can get recharged from the electricity
grid and thus have longer driving range in pure electric
mode and can achieve lower fuel consumption and
emissions. PHEV is especially suitable for daily commut-
ing. For instance, a household PHEV could be recharged
during the night and deplete the charge in the daily driving
routes.

HEV and PHEV powertrains possess an Internal
Combustion Engine (ICE), one or several Electric Machines
(EMs) and a battery. Depending on how the ICE and EMs
propel the vehicle, HEV and PHEV powertrains could be
classified into series, parallel and series-parallel architec-
tures. Series-parallel powertrains currently dominate the
hybrid vehicle sector due to their remarkable fuel economy
improvement [1]. Recently, series-parallel powertrains
equipped with an Electric Variable Transmission (EVT)
have been widely studied [2–5]. These powertrains function

similarly as the well known THS II HEV powertrain used in
Prius [6], i.e. they involve an ICE and two EMs. However,
instead of planetary gear sets, the EVT powertrain uses a
double rotor machine (typically considered as two EMs in
one package) to mechanically decouple the engine from
the wheels. The engine is still able to deliver part of its
power to the final drive to propel the vehicle, by the use
of magnetic coupling.

When designing PHEV powertrains, typical optimiza-
tion problems involve battery sizing and design of Energy
Management Strategy (EMS). Usually, these two problems
are coupled to each other and should thus be optimized
simultaneously. Such optimization could be performed in
different ways, but among the most common methods is
the nested optimization approach, where battery capacity
is gridded into several sizes and then for each size the
EMS is optimized.

EMS could be designed in two major ways; heuristic
rule-based formulation or optimization approaches [7–14].
For component sizing problems, optimization approaches
are the preferred choice, since the optimal results provide
objective benchmark for comparing different powertrains.
From the proposed EMS optimization approaches,
Dynamic Programming (DP) is the most commonly used.
However, DP is highly demanding on computation
power, especially if high accuracy is required. Further-
more, the computation complexity of DP increases expo-
nentially with the number of state variables [15].
Regardless of these deficiencies, DP is still widely used
due to its capability of handling mix-integer problems,* Corresponding author: cuism@hit.edu.cn
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which in the HEV context typically includes engine on/off
and gearshift control [16].

Another EMS optimization approach that has been
shown to require less computational power, relies on
Pontryagin’s Minimum Principle (PMP) [12, 17–19].
However, when applying PMP in the HEV problems, it is
assumed that the battery size is large enough to guarantee
a constant Lagrange multiplier, while searching for the opti-
mal control that does not activate battery energy limits [12].
Another limitation of PMP is the inability of handling
integer state variables. The latter deficiency is typically
addressed by combining PMP and DP (DP-PMP) to itera-
tively solve the mixed-integer control problems [19].

Convex optimization has also been proposed to solve the
optimization problems in HEVs [20–29]. By exploiting con-
vexity of the powertrain models, the powertrain sizing and
EMS problems could be efficiently solved using publicly
available solvers for convex programs. Most importantly,
different from DP or PMP, convex optimization allows
battery sizing to be solved simultaneously with the EMS
optimization [23–25]. Convex optimization, however, can-
not solve integer problems. Approaches that overcome this
limitation rely on a synergy between convex optimization
and DP [21, 29], or convex optimization and PMP [22].
Another difficulty is that convex optimization often
requires convex modeling steps that are specifically tailored
to different powertrain configurations. Convex modeling
steps have currently been shown for powertrains in series
configuration [21, 24], parallel configuration [24, 25], config-
urations that involve a planetary gear [30] or continuous
variable transmission [23]. To the best of the author’s
knowledge, convex optimization has not yet been applied
to EVT powertrains.

This paper extends previous studies by providing con-
vex modeling steps for the problem of optimal battery sizing
and control of a series-parallel PHEV powertrain equipped
with an EVT. The optimization cost is formulated as the
total cost of ownership, which includes operational cost
for fuel and electricity consumption, and component cost
for the battery pack. Similarly to the optimal EMS of a
planetary gear powertrain [30], we show that the EVT pow-
ertrain can be optimally controlled by a bilevel optimiza-
tion, where one level optimizes the speed of a compound
unit including the ICE and EMs, and another layer opti-
mizes power split between the compound unit and the
battery. Different from the approach in [30], we show that
the optimal EMS of the EVT powertrain involves a
switched model control. In a hybrid mode of operating,
when the engine is on, power split is decided between the
compound unit and the battery. In pure electric mode,
when the engine is off, torque split is decided between the
two EMs, which further improves performance, compared
to the typical case when only a single EM drives the vehicle
[5]. Moreover, we show that for a given driving cycle and
engine on/off control, convex optimization can be used to
simultaneously optimize both the EMS and the battery size.
Several case studies are provided that show the dependence
of the optimal battery size on the battery discharge strategy
and the validity of the proposed approach compared to a
benchmark solution obtained by DP.

The remainder of this paper is organized as follows.
Section 2 provides the modeling details of the powertrain
and formulates the studied optimization problem. Section 3
presents the convex modeling steps, which is the main
contribution of this paper. Case studies are provided
in Section 4. Conclusion and future work are discussed in
Section 5.

2 EVT powertrain and problem statement

This section introduces a mathematical model of the EVT
powertrain. It introduces the daily driving cycle on which
the powertrain is evaluated and formulates the studied opti-
mization problem.

2.1 EVT powertrain

EVT is a compact double rotor machine which can be
divided into an ordinary Electric Machine (EM2) and a
dual rotor Electric Machine (EM1). In the EVT HEV pow-
ertrain, the ICE crank shaft is connected to the EVT inner
rotor, while the input side of final drive is connected to the
outer rotor. Between the crank shaft and the inner rotor, a
brake is placed that can be used to immobilize the inner
rotor. Due to the double rotor design, the EVT can function
as an energy converter in the HEV powertrain and realize
power split, like the Prius Toyota Hybrid System [6], but
without planetary gear sets. The studied EVT plug-in
HEV powertrain is illustrated in Figure 1.

The EVT powertrain can operate in three different
modes, detailed in Table 1. In pure electric mode, the brake
is engaged and EM1 together with EM2 can propel the driv-
eline through the outer rotor. In starter mode, the brake is
disengaged and EM1 cranks the ICE until reaching idling
speed, before the engine is turned on. The brake can be dis-
engaged even in hybrid electric mode, to allow the engine to
be decoupled from the wheels and thus be operated at its
optimum efficiency. The EVT powertrain does not provide
a mechanical connection between the ICE and the final
drive, so the powertrain cannot be operated in a pure com-
bustion mode. Instead, the ICE torque has to be delivered
through the interaction with EM1. Typically, under low
vehicle speed the ICE drives EM1 as a generator, while
EM2 works as a prime motor. Under high vehicle speed,
EM2 is operated as a generator, while EM1 functions as
the prime motor.

Since the motion dynamics of the EVT are much faster
than the battery dynamics, they have been excluded from
the battery sizing problem discussed below. Similarly, the
starter mode of the powertrain is not discussed further in
this paper.

2.2 Longitudinal dynamics of the powertrain

In the EVT powertrain, EM1 and EM2 directly drive the
vehicle in both electric and hybrid mode. Then the power-
train should satisfy the motion relation

T d tð Þ þ T brk tð Þ ¼ T 1 tð Þ þ T 2 tð Þ; ð1Þ
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x2 tð Þ ¼ if
r
v tð Þ; ð2Þ

where T1 and T2 are the EM1 and EM2 torques,
respectively, Tbrk is the braking torque from the mechan-
ical brakes and x2 is the EM2 speed. The demanded
torque at the input side of the final drive, Td, can be
described as

T dðtÞ ¼ rg
�sgnðTdÞ
f
if

�
qCdv2ðtÞ

2 þ mgf cos hðtÞ

þmg sin hðtÞ þ m _vðtÞ
�
; ð3Þ

where r is the wheel radius, if is the ratio of the final drive,
gf is the transmission efficiency of the final drive, q is the
air density, g is the acceleration of gravity, f is the friction
coefficient, h represents the road slope, v is the vehicle
speed, and m is the total vehicle mass. The vehicle mass
can be expressed as

m ¼ mv þ mb; ð4Þ
where mb is the mass of the battery pack and mv is the
remaining vehicle mass.

The sgn function in (3) returns the sign of Td, which is a
time dependent signal. In order of improving readability by
reducing the number of nested parentheses, the explicit
dependence on time will not be shown for signals that are
input arguments to functions.

2.2.1 Pure electric mode

In pure electric mode, the inner rotor of the EVT is
immobilized. The powertrain could either be driven by
the dual motors EM1 and EM2, or only by EM2 when
T1 = 0. When the EM1 is on, the speed relation of EM1
and EM2 should satisfy

x1 tð Þ ¼ x2 tð Þ; ð5Þ
where x1 is the EM1 speed.

2.2.2 Hybrid electric mode

In hybrid electric mode, part of the ICE power propels the
driveline through the torque balance with EM1, while
the remaining part is turned into electric energy due to
the speed difference of the two rotors. That is to say, the
ICE torque Te should balance the EM1 torque, while the
EM1 speed is expressed at the speed difference between
the two rotors:

T e tð Þ ¼ T 1 tð Þ; ð6Þ

x1ðtÞ ¼ x2ðtÞ � xeðtÞ: ð7Þ

2.3 Power balance

The powertrain should always satisfy the electric power
balance among the battery pack, EM1 and EM2,

P b tð Þ ¼ T 1 tð Þx1 tð Þ þ B1 tð Þ þ T 2 tð Þx2 tð Þ þ B2 tð Þ
þ Bb tð Þ þ P aux; ð8Þ

where Pb is the total power output of the battery pack, Bb
is the battery power loss, B1 is the EM1 power loss, B2 is
the EM2 power loss and Paux is the auxiliary power which
is considered as a constant.

By substituting (1), (6) and (7) into (8), the power
balance can also be written as

P bðtÞ ¼ �T e tð Þxe tð Þ þ B1 tð Þ þ B2 tð Þ
þ T d tð Þ þ T brk tð Þð Þx2 tð Þ þ Bb tð Þ þ P aux: ð9Þ

In pure electric mode, the engine is turned off and the
brake at the crank shaft is engaged, enforcing Te = 0 and
xe = 0 in (9).

2.4 Daily driving routes

In this study the main usage of the plug-in vehicle is
considered to be routine commuting. Since it is difficult to
predict and model the traffic conditions over the vehicle’s
lifespan, we adopt a representative daily route as the driv-
ing cycle. The commuter route is driven over 50 times and
then the logged data is trained to a typical representative
daily cycle. This route goes from the suburb of Kungsbacka
to an industrial facility on the outskirts of Gothenburg in
Sweden, along a motorway. It is assumed that the vehicle
could only get charged at home during nighttime. The
driving cycle, including the typical speed and altitude pro-
file from home to work and vice versa, is shown in Figure 2.

EM1

ConverterBattery

Fuel
tank

ICE

EM2

Brake

Final
drive

Tire

Electric Power
Fuel Power

Fig. 1. Architecture of the EVT plug-in HEV powertrain. The
powertrain includes an Internal Combustion Engine (ICE) and a
double rotor machine which can be regarded as an ordinary
Electric Machine (EM2) and a dual rotor Electric Machine
(EM1). The brake between the crank shaft and the inner rotor
can be used to immobilize the inner rotor.

Table 1. Operational modes of the powertrain.

Modes ICE Brake EM1 EM2

Pure electric mode Off Engaged On On
Starter mode Off Disengaged On On
Hybrid electric mode On Disengaged On On
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2.5 ICE model

Willans line are used to depict the engine model, as shown
in Figure 3. The ICE fuel power is fitted into quadratic
functions of its torque, as

P f tð Þ ¼ eon tð Þa0 xeð Þ þ a1 xeð ÞT e tð Þ þ a2 xeð ÞT 2
e tð Þ; ð10Þ

where a0, a1 and a2 depend on the engine speed, with a0,
a1, a2 � 0, "xe. Alternatively, it is possible to express fuel
power as

P f tð Þ ¼ xe tð ÞT e tð Þ þ Be tð Þ; ð11Þ
where

Be tð Þ ¼ eon tð Þa0 xeð Þ þ a1 xeð Þ � xeð ÞT e tð Þ
þ a2 xeð ÞT 2

e tð Þ; ð12Þ

is the ICE power loss.
The engine on/off signal eon is

eon tð Þ ¼ 1; if ICE on;

0; otherwise:

�
ð13Þ

Since in the EVT powertrain the ICE can be started by
the EM1, the ICE is only allowed to work at the region
above the idling speed.

2.6 EM models

Depending on the sign of speed and torque, electric
machines may operate in four different quadrants. The
quadrants, from one to four, are enumerated here as follows:
(1) positive speed and positive torque, (2) negative speed
and positive torque, (3) negative speed and negative torque
and (4) positive speed and negative torque. In pure electric
mode, the EM1 works in the first quadrant for driving or in
the forth quadrant for regenerative braking. In hybrid
mode, the EM1 works in the first or second quadrant to bal-
ance the ICE torque. EM2 operates in the first or forth
quadrant.

Similar to the ICE, the electric machines are also mod-
eled withWillans lines. Their power loss within the different
modes can be expressed as

B1 tð Þ ¼ b0 x1ð Þ þ b1 x1ð ÞT 1 tð Þ þ b2 x1ð ÞT 2
1 tð Þ; ð14Þ

B2 tð Þ ¼ c0 x2ð Þ þ c1 x2ð ÞT 2 tð Þ þ c2 x2ð ÞT 2
2 tð Þ; ð15Þ

where B1, B2 are the EM1 and EM2 power losses, respec-
tively, and b0, b1, b2, with b0, b1, b2 � 0, "x1 and c0, c1, c2,
with c0, c1, c2 � 0, "x2, are speed depended coefficients.
The EM1 and EM2 models are depicted in Figures 4
and 5, respectively.

2.7 Battery model

A simplified open-circuit model is used to approximate the
lithium-ion battery pack. It comprises nb identical cells
whose open-circuit voltage Vb and cell’s internal resistance
Rb are considered as constant. It is reasonable and accurate
enough to model the battery cell in this way if the cell is
only operated in a limited state of charge region, as illus-
trated in Figure 6. Assuming that the battery cells’ dynam-
ics do not change, the battery pack can be modeled as

P b tð Þ ¼ nbV bib tð Þ; ð16Þ

_Eb tð Þ ¼ �P b tð Þ; ð17Þ
where ib is the cell current and Eb is the total pack energy
described by

Eb tð Þ ¼ nbQcV bsoc tð Þ; ð18Þ
where Qc is the cell capacity and soc is the state of charge.

The loss of the battery pack can be expressed as quad-
ratic function of the internal power,

Bb tð Þ ¼ nbi2b tð ÞRb ¼ Rb

nbV 2
b

P 2
bðtÞ: ð19Þ

The incremental mass of the pack scales linearly with
the number of cells, i.e.

mb ¼ mb0nb:

f
[k

W
]

P

970rpm
20 40 60 80 100 120

e [Nm]T
0

4970rpmOriginal
Fitting

150

100

50

0

f
[k

W
]

P

Fig. 3. Original data and fitted model of the ICE fuel power, as
a function of torque and speed. Each line represents a constant
engine speed. Detailed specification of the engine is listed in
Table A1.
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Fig. 2. Profile of the daily driving cycle, depicted as speed and
altitude as a function of time. The daily cycle is divided into two
segments, one is the route to work and the other is the route
from work. The battery is charged only at nighttime.
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The relations (16)–(19) are valid regardless of how
battery cells are connected. Thus, after optimizing the pack
size nb, the cells can be configured in suitable series and
j parallel branches.

2.8 Optimization problem statement

The aim of this paper is to minimize the total cost of vehicle
ownership, including operational and component costs. The
operational cost includes the electricity and gasoline cost.
The components cost includes only the cost of the battery
pack, since the other parts of the vehicle remain the same
and are thus excluded from the optimization. The battery
pack is assumed to have good durability and no replace-
ments are required during the vehicle lifespan.

The battery cost is daily averaged during the vehicle’s
lifespan. Considering a yearly interest rate, the battery cost
can be calculated by

Cbat nbð Þ ¼ dr

dyyv
1þ rint

1þ yv
2

� �
pbatnb; ð20Þ

where pbat is the price of one single battery cell, Cbat is the
battery cost in a monetary currency. The division with
the average driving distance in one year dy and the vehicle
lifetime in years yv, provides a battery price per km, which

after multiplying with the length of the driving cycle dr
provides the battery price in a monetary currency for
the specific daily driving cycle. The part in parentheses
depicts depreciation of value, where rint is a yearly interest
rate.

Assuming that the battery is charged at night, as often
as possible, the electricity cost can be expressed as

Cel Ebð Þ ¼ pel Eb t0ð Þ � Eb tfð Þð Þ; ð21Þ
where pel is the electricity price expressed as a monetary
currency per energy. The difference between initial and
final battery energy Eb(0) � Eb(tf) describes the con-
sumed electric energy over the driving cycle, which after
multiplying with pel provides the electricity consumption
in a monetary currency. Both the initial and final energy
values are considered as optimization variables and the
optimization program, described below, is let to find their
best values.

Similarly, the gasoline cost can be computed as

Cfuel xe; T e; eonð Þ ¼ pf
qh

Z tf

t0

P f xe; T e; eonð Þdt; ð22Þ

where pf is the gasoline price expressed as a monetary
currency per liter, and qh is the heating value of gasoline
in energy per liter.

Using the above mathematical models, along with the
physical limits of the components, the optimization problem
can be summarized as

min CbatðnbÞ þ CelðEbÞ þ Cfuelðxe; T e; eonÞ
subject to : ð1Þ�ð19Þ

nb � 0 ð23aÞ

T brkðtÞ � 0 ð23bÞ

P bðtÞ 2 V bnb½Ibmin; Ibmax� ð23cÞ

EbðtÞ 2 ½socmin; socmax�nbQcV b ð23dÞ

x1ðtÞ 2 ½x1min;x1max� ð23eÞ

x2ðtÞ 2 ½x2min;x2max� ð23fÞ
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Fig. 4. Original data and fitted model of the EM1 power loss.
The EM1 operates in the first and forth quadrants (positive
speed) for engine starting/driving and generative braking in
pure electric mode. In hybrid mode, EM1 works in first and
second quadrants (positive torque) to balance the engine torque.
Detailed EM1 specification is listed in Table A1.
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Fig. 6. Original and approximated battery cell open circuit
voltage. The battery state of charge is allowed to vary within
0.3–0.7, in which the open circuit voltage can be considered as
constant. Detailed battery parameters are listed in Table A1.
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Fig. 5. Original data and fitted model of the EM2 power loss.
The EM2 operates in the first and forth quadrants (positive
speed) for driving and generative braking. Detailed EM2
specification is listed in Table A1.
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xeðtÞ 2 ½xemin;xemax� ð23gÞ

T 1ðtÞ 2 ½T 1minðx1Þ; T 1maxðx1Þ� ð23hÞ

T 2ðtÞ 2 ½T 2minðx2Þ; T 2maxðx2Þ� ð23iÞ

T eðtÞ 2 eonðtÞ½T eminðxeÞ; T emaxðxeÞ�: ð23jÞ
In (23), the battery energy Eb is chosen as the dynamic

state and the battery power Pb, engine on/off signal eon,
engine torque Te and the engine speed xe as the control
signals. The optimization objective is to find the optimal
control signals and the optimum parameter nb that mini-
mize the total cost of vehicle ownership, while satisfying
the constraints.

3 Convex modeling

This section introduces the convex modeling of the EVT
powertrain. To formulate the above optimization problem
into a convex form, the engine on/off control is depopulated
to a separate subproblem to avoid mix-integer program-
ming, which will be discussed later, in Section 3.3. For a
given engine on/off sequence, the convex formulation is
separated into pure electric and hybrid mode of operation.
To ensure convexity of the battery pack model, (16)–(19),
the integer cells number nb is relaxed to a real value, which
can be rounded to the nearest integer after the optimization
is finished. In addition, it is initially assumed that the total
vehicle mass does not visibly change with battery sizing.
The sensitivity on battery mass will be discussed later, in
Section 4.

3.1 Pure electric driving mode

Consider the situation when the engine is turned off. In pure
electric mode, electric machine torques are the only control
signals to propel the vehicle, while their speed is entirely
determined by the driving cycle. To minimize the energy
dissipation of the powertrain in this mode, the two machi-
nes can be fully utilized to obtain optimal powertrain
efficiency. In this case, due to the convex models of the elec-
tric machines in (14) and (15), convex optimization can be
used to find the optimal torque distributions between these
two machines, by relaxing (9) into inequality

T 1 tð Þ þ T 2 tð Þ ¼ T d tð Þ þ T brk tð Þ; ð24aÞ

P b tð Þ � T d tð Þ þ T brk tð Þð Þx2 tð Þ þ B1 x1; T 1ð Þ
þ B2 x2; T 2ð Þ þ Bb P b;Eb; nbð Þ þ P aux; ð24bÞ

where Td and x1 = x2 are fully described by the driving
cycle. The engine power term �Texe in (9) is, in this case,
set to zero, since the engine is turned off.

By relaxing (9) to the inequality (24b), outer approxi-
mation is performed which allows the convex optimization
to choose solutions that are not only on the function, but
also in its epigraph, thus allowing additional power losses

than those necessary to deliver the required electrical
power. It can be logically reasoned that the optimal solution
will satisfy (9) with equality, since otherwise energy is
wasted unnecessarily. Then, the solution of the relaxed
problem is identical to the solution of the non-relaxed prob-
lem. A rigorous proof that this relaxation does not change
the optimal solution can be found in [31].

To compare the results later in simulations, the situa-
tion is also formulated in which the powertrain is only
driven by EM2 in pure electric mode,

T 2 tð Þ ¼ T d tð Þ þ T brk tð Þ; ð25aÞ

P b tð Þ � T d tð Þ þ T brk tð Þð Þx2 tð Þ þ B2 x2; T 2ð Þ
þ b

0
0 x1ð Þ þ Bb P b;Eb; nbð Þ þ P aux; ð25bÞ

where b00 is the sum of mechanical loss caused by EM1
bearings and eddy current loss caused by relative move-
ment between the inner and outer rotors, depending on
the relative speed of the two rotors.

3.2 Hybrid driving mode

In hybrid mode of operation, the engine is considered to be
on. Since in this case eon = 1 and eon occurs only in product
with other variables, further occurrences of eon are removed
in the rest of this section, for the convenience of readability.

From the problem formulation in (23a), it can be seen
that the product of two variables Te and xe in (9) and
the cost function Cfuel are generally not convex and the
problem cannot directly be solved by convex optimization.
Here, the powertrain model and the optimization problem
are reformulated into a convex program.

To begin with, the powertrain model in (9) is simplified
by eliminating the signals T2, x1 and T1. This can be
achieved by back-substituting the equalities (1), (6) and
(7) into (23g) and (23j). Considering that Td and x2 are
fully determined by the driving cycle, the optimization
problem can be reformulated as

min CbatðnbÞ þ CelðEbÞ þ Cfuelðxe; T eÞ
subject to :

_EbðtÞ ¼ �PbðtÞ ð26aÞ
PbðtÞ ¼ �T eðtÞxeðtÞ þ T dðtÞ þ T brkðtÞð Þx2ðtÞ þ P aux

þB1ðxe; T 2Þ þ B2ðx2; T 2Þ þ BbðP b;Eb; nbÞ
ð26bÞ

EbðtÞ 2 nbQcV b½socmin; socmax� ð26cÞ

P bðtÞ 2 nbV b½Ibmin; Ibmax� ð26dÞ

nb � 0 ð26eÞ

T brkðtÞ � 0 ð26fÞ

xeðtÞ � minfxemax;x2 þ x1maxg ð26gÞ
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xeðtÞ � maxfxemin;x2 þ x1ming ð26hÞ

T eðtÞ � minfT emaxðxeÞ; T 1maxðxe � x2Þ; T dðtÞ
þ T brkðtÞ � T 2minðx2Þg ð26iÞ

T eðtÞ � maxfT eminðxeÞ; T dðtÞ þ T brkðtÞ
� T 2maxðx2Þg: ð26jÞ

The next step is to eliminate the variable T e, by replac-
ing it with a new variable

P cðtÞ ¼ T eðtÞxeðtÞ � B1ð�Þ � B2ð�Þ: ð27Þ
By applying the power loss models of the electric machi-

nes and replacing T2, T1 and x1 with (1), (6) and (7), the
expression of Te can be obtained as

T e tð Þ ¼
�A1 �ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 �ð Þ � 4A0 �ð ÞA2 �ð Þ

q
2A2 �ð Þ ; ð28Þ

where A0(�), A1(�) and A2(�) are functions of xe, Pc, x2
and Td, i.e.

A0ð�Þ ¼ b0ðxe;x2Þ þ c0ðx2Þ þ c1ðx2ÞT dðtÞ
þc2ðx2ÞT 2

dðtÞ þ P cðtÞ
A1ð�Þ ¼ b1ðxe;x2Þ � c1ðx2Þ � 2c2ðx2ÞT dðtÞ � xeðtÞ
A2ð�Þ ¼ b2ðxe;x2Þ þ c2ðx2Þ: ð29Þ
In terms of the recent variable change, the engine torque

constraints in (26i) and (26j) implicitly transform to

P c 2 ½P cminðxe; T d;x2Þ; P cmaxðxe; T d;x2Þ�: ð30Þ
Similarly, the engine fuel power can be expressed as

P fðxe; P c;x2; T dÞ, or in terms of the alternative expression
(11), it can also be written as

P fðxe; P c;x2; T dÞ ¼ P c þ Bcðxe; P c;x2; T dÞ
Bcðxe; P c;x2; T dÞ ¼ B1ð�Þ þ B2ð�Þ þ Beð�Þ:

ð31Þ

It is clear from (31) that the ICE, EM1 and EM2 can
now be considered as a compound unit whose input power,
output power and power loss are P fð�Þ, P cð�Þ and Bcð�Þ,
respectively. In connection with the electrical power balance
(9), it is now evident that the meaning of the compound
unit is to generate net power Pc that propels the vehicle
together with the battery power P b. The optimal energy
management would thus correspond to finding the optimal
power split ratio between P c and P b.

The next convexification step is to eliminate xe from
problem (26a). This can be achieved by first rewriting
(26a) as a bilevel program

min CbatðnbÞ þ CelðEbÞ þ Cfuelðx�
e ; P c;x2; T dÞ

subject to :

_EbðtÞ ¼ �P bðtÞ ð32aÞ
P bðtÞ þ P cðtÞ ¼ T dðtÞ þ T brkðtÞð Þx2ðtÞ þ P aux

þ BbðP b;Eb; nbÞ ð32bÞ

EbðtÞ 2 nbQcV b½socmin; socmax� ð32cÞ

P bðtÞ 2 nbV b½Ibmin; Ibmax� ð32dÞ

nb � 0 ð32eÞ

T brkðtÞ � 0 ð32fÞ

P cðtÞ 2 ½P cminðx�
e ; T d;x2Þ; P cmaxðx�

e ; T d;x2Þ� ð32gÞ

x�
eðtÞ ¼ argmin

xe
P fðxe; P c;x2; T dÞ ð32hÞ

subject to :

xeðtÞ � minfxemax;x2 þ x1maxg
ð32iÞ

xeðtÞ � maxfxemin;x2 þ x1ming ð32jÞ

P cðtÞ 2 ½P cminðxe; T d;x2Þ; P cmaxðxe; T d;x2Þ�: ð32kÞ
Although formulation (32) gives identical solution as

(26), it does reveal some important properties that were
not explicitly visible in (26). For example, the low level
problem in (32a) is a completely static program, since the
only state in the problem is present in the upper level.
Moreover, the low level problem can be solved indepen-
dently from the top level, since the optimal choice of engine
speed does not depend on how the battery is operated in the
upper level.

One way to independently solve the low level problem in
(32), is by optimizing engine speed for all feasible combina-
tions of the input arguments Pc, x2, Td. Let Pc,W2 and T d
denote the feasible sets for these arguments, respectively.
Then, the optimal engine speed, as a function of the three
arguments, can be obtained by solving

x�
e P c;x2; T dð Þ ¼ argmin

xe

P fðxe; P c;x2; T dÞ
subject to :

xeðtÞ � minfxemax;x2 þ x1maxg
xeðtÞ � maxfxemin;x2 þ x1ming

P cðtÞ 2 Pc; xeðtÞ 2 W2; T dðtÞ 2 T d:

ð33Þ

To approximately solve problem (33), the sets Pc, W2
and T d and the effective engine speed region can be gridded
into finite number of points. The accuracy of the solution
would then depend on the grid resolution. For example,
consider the case where engine speed range is gridded into
N points, xe = [xe1, xe2, . . ., xeN]

T. Applying the engine
torque expression (28), the minimum fuel power can be
found as

~P fðP c;x2; T dÞ ¼ min
xe2 xe1;:::;xeNf g

P fðxe; P c;x2; T dÞ; ð34Þ

for each feasible grid point in Pc, W2 and T d. In (34),
engine speed is removed and the minimum engine power
~P f now only depends on ðPc;x2;TdÞ, reflecting that for
any ðPc;x2;TdÞ the compound unit operates at its opti-
mum engine speed. Similarly, the optimal engine speed
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can be replaced in the compound power limits (30), to
obtain reduced dimensional limits

~P cminðT d;x2Þ ¼ P cminðx�
e ; T d;x2Þ

~P cmaxðT d;x2Þ ¼ P cmaxðx�
e ; T d;x2Þ:

ð35Þ

After replacing the fuel consumption term P f with ~P f in
the objective function, the upper level problem in (32) can
be reformulated in a reduced form

min CbatðnbÞ þ CelðEbÞ þ CfuelðP c;x2; T dÞ;
subject to :

_EbðtÞ ¼ �P bðtÞ; ð36aÞ
P bðtÞ þ P cðtÞ ¼ T dðtÞ þ T brkðtÞð Þx2ðtÞ þ P aux

þ BbðP b;Eb; nbÞ; ð36bÞ

EbðtÞ 2 nbQcV b½socmin; socmax�; ð36cÞ

P bðtÞ 2 nbV b½Ibmin; Ibmax�; ð36dÞ

nb � 0; ð36eÞ

T brkðtÞ � 0; ð36fÞ

P c tð Þ 2 ~P cmin T d;x2ð Þ; ~P cmax T d;x2ð Þ� 	
: ð36gÞ

The minimum fuel power ~P f map acquired from (33) is
shown in Figure 7 for several choices of x2 and T d. The net
power limits ~P cmin, ~P cmax maps are shown in Figure 8. For
the given combinations of x2 and T d, it can be observed
that the fuel power appears convex in the net output power
P c. Furthermore, the fuel power is only slightly curved with
respect to the compound power P c. Thus, using a least
square method the fuel power is fitted by a second order
polynomial

~P fðx2; T dÞ ¼ k0ðx2; T dÞ þ k1ðx2; T dÞP cðtÞ
þk2ðx2; T dÞP 2

cðtÞ;
ð37Þ

where k0, k1 and k2, with k2 � 0; 8x2 2 W2;Td 2 T d, are
coefficients depending on ðx2;TdÞ. The approximation
of ~P f is also shown in Figure 7, where it can be observed
that (37) fits well the gridded fuel data. For demanded
torque/speed inputs not on the grid points of x2;Td,
the coefficients’ values could be calculated by linear
interpolation.

Finally, after relaxing the power balance equation to the
inequality

P bðtÞ þ P cðtÞ � T dðtÞ þ T brkðtÞð Þx2ðtÞ þ P aux

þ BbðP b;Eb; nbÞ; ð38Þ
problem (36) can be solved efficiently, as a convex second
order cone program.

With the known engine on/off signals, the entire convex
optimization problem is fully summarized in Table 2.

When solving problem (33) it was here considered that
the maps ~P f ; ~P cmin; ~P cmax are obtained for all combinations of

x2; T d that could represent any realistic driving cycle.
However, if the powertrain is to be evaluated only on a
specific driving cycle, it is sufficient to only calculate the
maps at those ðx2; T dÞ that are requested by the driving
cycle. This could significantly speed up the process of maps
generation.

3.3 Heuristic engine on/off control and varying
vehicle mass

Since convex optimization is not able to solve mixed-integer
problem, optimization of eon has not been directly included
in the optimization problem. Instead, the findings in [21] are
used to iteratively optimize the engine on/off. It has been
shown in [21] that for an HEV powertrain in a series archi-
tecture, there exists a constant power threshold P th, for
which the optimal engine on/off sequence satisfies

eonðtÞ� ¼
1; x2ðtÞT dðtÞ � P th

0; otherwise

�
ð39Þ

when battery open circuit voltage is constant and battery
energy limits are not activated along the horizon. In gen-
eral, battery energy limits may get activated, in which
case the engine on/off sequence obtained by (39) may give
a suboptimal solution. However, it has been observed in
[22, 24] that the optimization error is typically small,
below 1%.

In a hybrid mode, the EVT powertrain operates
similarly to a series powertrain, with the compound unit
resembling the engine-generator unit in a series powertrain.

Fig. 7. Fuel power of the compound unit when operated at the
optimal engine speed. The fuel power is a function of EM2 speed,
compound power and demanded torque. The top and bottom
plot show the fuel power for two different values of demanded
torque. The circles represent the grid points at which the fuel
power map is calculated, while the lines show the fitted model.
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Therefore, the engine on/off sequence in the EVT power-
train is found from (39), by obtaining an appropriate power
threshold. The optimal value of P th is tuned by iteratively
solving the convex optimization problem, and using,
e.g. bisection, to adjust the next value of Pth [24, 26].
Another presumption of the convex optimization in Table 2
is that the vehicle mass will not change with the battery
size. Indeed, if vehicle mass was allowed to change with
battery size according to (4), then the fuel power (34) and
the power limits (35) of the compound unit, would depend
not only on the deterministic disturbances x2; T d, but
also on the battery size nb. This would require convexity
analyses in a four dimensional space and may complicate
the derivation of a convex expression as in (37). Instead,
to account for changes in battery mass we adopt an iterative
method.

First, battery mass is set to an initial value, the required
coefficients ki in (37) are obtained and convex optimization
is run to get the optimum battery size. If the mass of the
optimal battery size is not the same as the initial value,
the procedure is then repeated by iteratively updating the
initial battery mass with the latest obtained battery size.

The iterative search for the optimum engine on/off
threshold P th, together with the iterative updating of the
battery mass is depicted in Figure 9.

4 Numerical results

In this section, simulation results are discussed of the stud-
ied optimization problem. To investigate the optimality of
the solution, the results are compared with those obtained
with DP. The optimization results as well as the algorithm
sensitivity to battery mass are discussed. Different battery
discharge strategies are compared for the EVT plug-in pow-
ertrain. Finally, the advantage is discussed of using a dual
EM instead of a single EM when driving in pure electric
mode.

The optimization problem is solved by SDPT3 solver
and with the CVX toolbox [32].

4.1 Validation with dynamic programming

To verify the accuracy of the proposed Convex Program-
ming (CP), the optimality of the results is compared to
those obtained from DP. In order to reduce the computa-
tional effort that DP would need to solve the benchmark
problem, only the optimal energy management of the
powertrain over the same driving cycle is compared. The
battery size is fixed to 3 kW and the initial and final battery
“soc” values are not free, but fixed to a certain value.
Furthermore, to investigate the possible error caused by
discretization and second order approximation involved in
the compound unit generation, the same heuristic engine
on/off control strategy is applied both in DP and in CP.

As shown in Figure 10, the optimal soc trajectory
acquired from CP is almost the same as that acquired from
DP, suggesting that the energy management optimized by
the CP achieves good accuracy. Also, the fuel consumption
calculated by the CP and the DP over the driving cycle is
3.145 L/100 km (74.806 mpg) and 3.157 L/100 km
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Fig. 8. Limits of the compound unit output Pc when operating
at the optimal engine speed. The limits are a function of
demanded torque and EM2 speed. (a) Low limit of compound
power. (b) High limit of compound power.

Table 2. Convex optimization problem of the EVT
powertrain.

Minimize CbatðnbÞ þ CelðEbÞ þ CfuelðPc;x2; T dÞeonðtÞ
Subject to:
_EbðtÞ ¼ �PbðtÞ
PbðtÞ 2 nbV b½Ibmin; Ibmax�
EbðtÞ 2 nbQcV b½socmin; socmax�
TbrkðtÞ � 0
nb � 0
If eonðtÞ ¼ 0,

T1ðtÞ þT2ðtÞ ¼ T dðtÞ þTbrkðtÞ
PbðtÞ � ðT dðtÞ þTbrkðtÞÞx2ðtÞ þB1ðx2;T1Þ

þB2ðx2;T2Þ þ RbP2
bðtÞ

V 2
bnb

þ P aux

T1ðtÞ 2 ½T 1minðx2Þ; T 1maxðx2Þ�
T2ðtÞ 2 ½T 2minðx2Þ; T 2maxðx2Þ�

If eonðtÞ ¼ 1,
PbðtÞ � PcðtÞ þ T dðtÞ þTbrkðtÞð Þx2ðtÞ þ RbPb

2ðtÞ
V 2

bnb
þ P aux

EbðtÞ 2 nbQcV b½socmin; socmax�
PcðtÞ 2 ½~P cminðx2; T dÞ; ~P cmaxðx2; T dÞ�
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(74.522 mpg), respectively, showing that the optimization
error is within 0.38%.

4.2 Varying vehicle mass with battery size

In the CP, the control strategy is optimized simultaneously
with the battery sizing, on the assumption that vehicle mass
will not change with the battery size. However, the vehicle
mass varies with the battery size. To eliminate the error
caused by the fixed vehicle mass, we adopt the iterative
procedure in Figure 9. The results are shown in Figure 11.

It could be seen that the battery mass converges very
quickly during the iterative procedure, regardless of the ini-
tially selected value. In fact, the CP needs only 2–3 itera-
tions to converge to the optimum. This is mainly due to
the fact that the battery mass accounts for a relatively
small portion of the total vehicle mass.

4.3 Comparison between different battery discharge
strategies

Aside from the optimization methods, EMS for PHEVs
are typically classified into Charge-Depleting-Charge-
Sustaining (CDCS) and blended control, depending on

the way the battery is discharged [14]. Implementing the
different plug-in HEV control strategies may result in differ-
ent control schemes and different battery sizes. The CP
described in this paper aims for a globally optimal battery
discharge strategy, which in this case corresponds to the
blended strategy. However, it is of interest to investigate
how the CDCS discharge strategy affects the optimal
battery sizing. In this part, the optimal results of the
blended control strategy are compared with those of the
CDCS control strategy.

To calculate the optimal results of the CDCS strategy,
the CP previously described can still be used, only with
slight modifications. CDCS requires the time instance to
be known beforehand, when the algorithm switches from
Charge Depleting (CD) to Charge Sustaining (CS) opera-
tion. This could be achieved in two different ways. Either
the CP could be iteratively solved for different CD dura-
tions, or for different battery sizes. Here, the later approach
is adopted, by gridding the battery size and running CP to
optimize the EMS for each fixed battery size. To find out
the switching point from CD to CS, the torque distribution
between EM1 and EM2 is optimized along the driving cycle
until the battery soc reaches the lower boundary. Then, the
optimal split between the battery and ICE power is
calculated from the switching point to the end of the cycle,
with the limit soc � socmin. The initial and final soc values
in both discharge strategies are fixed to socmax and socmin,
respectively. The optimal control trajectories of CDCS
and blended strategies are shown in Figure 12.
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Fig. 11. Convergence of the optimal battery capacity in kW
with different initial battery mass. The battery size is initial-
ized to 1 kW, or 8 kW, respectively. After 2–3 iterations the
battery size converges to the optimal value, depicted by a square
marker.

Fig. 9. Iterative procedure for solving the problem of optimal
battery sizing and control of an EVT PHEV powertrain. For a
given power threshold Pth the engine on/off sequence is decided.
Then, for a given on/off sequence, the problem in Table 2 is
solved assuming a constant vehicle mass. After optimal battery
size nb is obtained, the vehicle mass is updated and the problem
is solved repeatedly until vehicle mass stops changing. The
search for the optimal threshold Pth then continues by repeating
the entire process.
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Fig. 10. Comparison of the optimal battery soc trajectory over
the driving cycle, between Dynamic Programming (DP) and
Convex Programming (CP). The trajectories completely over-
lap, showing that both algorithms point to the same optimal
solution.
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As shown in Figure 13a, with blended strategy the
powertrain would achieve minimum optimization cost at
battery size of 4.544 kW, for both single machine drive
and double machines drive in pure electric mode. It also
suggests that the cost improvement by utilizing double
machines drive in blended strategy is minor, only 0.45%.
This could be explained by investigating the total driving
energy circulated in pure electric mode. In our case, the
optimal threshold to turn the engine on is relatively small,
around 10 kW, implying that the vehicle is mainly driven in
hybrid mode. Moreover, the average speed of the daily driv-
ing cycle is relatively high and thus the average power
demanded by the driving cycle is well above the optimal
on/off threshold. Therefore, since the total driving energy
spent in pure electric mode is small, the efficiency improve-
ment from using the double machine is also small.

Optimization results of the CDCS strategy are shown in
Figure 13b. The optimal battery size, when only EM2 is
used in pure electric mode, is 4.554 kW, while for a double
machine drive is 4.858 kW. In this case, the optimal cost

from using double machine drive in pure electric mode is
reduced by 1.7%, compared to the case when only EM2 pro-
pels the vehicle. The reason for the significant improvement
is that the total driving time in pure electric mode in CDCS
over the driving cycle is longer than that of the blended
strategy. With CDCS strategy, the powertrain would
deplete the battery energy in the CD phase (namely, the
all electric range), so the advantage of double machines
drive is more significant.

In Figure 14, the All Electric Range (AER) is depicted
in CD operation. The plots show that by using two EMs for
electric propulsion, an extra electric range can be obtained,
compared to a single machine drive. The improvement of
AER performance with different battery sizes is presented
in Figure 14b.

5 Conclusion and future work

In this paper, convex modeling steps are introduced to
simultaneously optimize battery sizing and energy manage-
ment of plug-in HEV EVT powertrains. For a given engine
on/off control sequence, it is shown that both pure electric
mode, when engine is off, and hybrid mode, when engine is
on, can be modeled as convex programs. In order to convex-
ify the problem in hybrid mode, it is shown that the ICE,
EM1 and EM2 can be regarded as a compound unit, whose
optimal operating speed can be found independently of the
battery discharge and sizing problem. The resulting convex
problem is a second order cone program that can be solved
efficiently with publicly available solvers.

An investigation is provided where optimization results
from convex optimization are compared to those obtained
with DP. The results show that for a given engine on/off
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Fig. 13. Optimal cost for different battery sizes and discharge
strategies. The plots depict two optimal results, for the cases
where only EM2, or both EM1 and EM2 propel the vehicle in
pure electric mode. In the plots, the optimum battery size is
denoted by a square marker. (a) Blended battery discharge
strategy. (b) CDCS battery discharge strategy.
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sequence and battery size, the proposed method provides
the globally optimal power split control. Then, the convex
optimization method is used to compare the optimal cost
when using the CDCS and blended battery discharge strat-
egy. The advantage of using double machines drive over a
single machine drive in pure electric mode, is presented
and discussed.

Due to the efficient computation ability of the convex
optimization, future research may focus on configuring
the optimization method for real-time control onboard the
vehicle. Future studies may also focus on building a synergy
between convex optimization and DP, such that optimal
engine on/off and power split control can be co-optimized
by the two different algorithms.
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Appendix

The vehicle powertrain parameters are listed in Table A1.

Table A1. Parameters of the powertrain.

Parameter Value

Rolling resistance f = 0.005
Aerodynamic drag coefficient Cd = 0.3
Vehicle mass mg = 1350 kg
Frontal area Af = 1.76 m2

Air density q = 1.30 kg/m3

Wheel radius r = 0.237 m
Battery cell’s capacity Qb = 2.3 Ah
Battery cell’s open-circuit voltage Vb = 3.3 V
Battery cell’s internal resistance Rb = 0.001
Maximum charge current Ibmax = 120 A
Maximum discharge current Ibmin = �70 A
Maximum soc socmax = 0.7
Minimum soc socmin = 0.3
ICE idling speed xemin = 970 rpm
ICE specification (Temax, xemax) 110 Nm, 4790 rpm
EM1 specification (T1max, x1max) 120 Nm, 6400 rpm
EM2 specification (T2max, x2max) 300 Nm, 7000 rpm
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