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Carl Toft
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Visual localization is a fundamental problem in computer vision, with a
multitude of applications in robotics, augmented reality and structure-from-
motion. The basic problem is to, based on one or more images, figure out the
position and orientation of the camera which captured these images relative
to some model of the environment. Current visual localization approaches
typically work well when the images to be localized are captured under
similar conditions compared to those captured during mapping. However,
when the environment exhibits large changes in visual appearance, due to
e.g. variations in weather, seasons, day-night or viewpoint, the traditional
pipelines break down. The reason is that the local image features used
are based on low-level pixel-intensity information, which is not invariant
to these transformations: when the environment changes, this will cause
a different set of keypoints to be detected, and their descriptors will be
different, making the long-term visual localization problem a challenging
one.

In this thesis, four papers are included, which present work towards
solving the problem of long-term visual localization. Three of the articles
present ideas for how semantic information may be included to aid in the
localization process: one approach relies only on the semantic information
for visual localization, another shows how the semantics can be used to de-
tect outlier feature correspondences, while the third presents a sequential
localization algorithm which relies on the consistency of the reprojection
of a semantic model, instead of traditional features. The final article is a
benchmark paper, where we present three new benchmark datasets aimed at
evaluating localization algorithms in the context of long-term visual local-
ization.

Keywords: Visual localization, camera pose estimation, long-term
localization, self-driving cars, autonomous vehicles, benchmark
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Introductory Chapters





Chapter 1

Introduction

At the most fundamental level, the field of visual localization aims to answer
the question ”Where am I?” based on one or more images. This is a problem
which humans seem to solve almost effortlessly as we go about our daily
tasks: we track our position in the world with little effort, sometimes in
previously unseen environments, and successfully use this information to
navigate and plan the path to our destination. Getting lost is the exception
rather than the norm.

However, as often seems to be the case, tasks which humans find easy
and intuitive turn out to be very challenging to find a general algorithmic
solution to. The problem of visual localization is no exception.

In order to provide a satisfactory answer this problem, the system needs
some internal representation of the world, relative to which the answer can
be provided, and it is possible to imagine many different forms in which an
answer may be given. For some applications, an answer such as ”in the living
room” may be sufficient, whereas other applications, such as navigation
of autonomous vehicles, may require considerably more precision in the
answer. For these applications, the absolute position in terms of x-, y- and
z − coordinates, as well as orientation, relative to some coordinate system
may be desired.

Providing such a six degree-of-freedom position would require a 3D
model of the environment to be constructed beforehand, and the localization
would occur with respect to this map. Map construction and representation
are thus closely linked to the localization problem. In fact, camera-pose esti-
mation forms a core building block of many 3D reconstruction (often called
Structure-from-Motion, or SfM for short) pipelines, where the 3D model is
incrementally extended by triangulating the position of cameras, one at a
time [1, 2].

Figure 1.1 illustrates the basic goal of the visual localization problem.
While the single-image localization problem is important in its own right,
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Chapter 1. Introduction

Figure 1.1: The camera pose estimation problem. Given one or more input
images, we wish to compute the position of the camera which captured the
image, relative to some map representation of the external world. A very
common type of map is the three-dimensional point-cloud.

a common scenario in robotics is that of sequential localization where we
wish to compute the most likely position of a robot, based on all measure-
ments which have been collected up until the current time. These mea-
surements may contain, for example, a video feed, or a sequence of images
from one or more cameras, as well as measurements from inertial measure-
ment units (IMUs) and wheel-speed sensors. The goal is then to combine
these measurements to obtain a reliable estimate of the current pose of the
vehicle.

The problem of visual localization has received a substantial amount of
attention in both the research community and industry the past few years,
much due to the surge in interest in autonomous vehicles such as drones and
self-driving cars. The camera is often seen as an affordable but information-
rich sensor, which might be used instead of, or as a complement to, more
expensive sensor setups with Lidars and radars. Automotive grade GPS re-
ceivers may be used to aid in positioning, but is often not accurate enough:
the positioning error in these kinds of GPS receivers is often on the order
of meters [3], much too high for the application. The camera may then be
a viable alternative to (or complement to), these GPS receivers. Of course,
there exist more accurate (but also considerably more expensive) survey-
grade GPS receivers, but these may still be subject to signal acquisition
failure in tunnels or indoors. They may also be unreliable in densely popu-
lated cities, where there may be no line-of-sight to the GPS satellites in the
”urban canyons”, deteriorating the localization performance as the signal
reflects off of the tall buildings on the way down to street-level.

The camera, if its challenges can be overcome, is thus seen as an attrac-
tive potential sensor for vehicle localization.

Today, one of the most common pipelines for camera pose estimation
utilizes a 3D model in the form of a point cloud, where each point, in ad-
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Figure 1.2: Before pose estimation, matches between the query image and
the 3D model are established. Some of the matches will typically be in-
correct (shown in red). These 2D-3D correspondences are then inputted
to a triangulation method which yields the pose of the camera where as
many of the 3D matches in the map as possible are projected down onto
the corresponding 2D points in the image.

dition to its Cartesian coordinates, also has an associated descriptor vector
(often 128 bytes, such as for SIFT-descriptors [4]), which encodes the local
appearance of the point as it was seen in the cameras during map building.

In order to localize an image taken somewhere in the map, local image
features are extracted from the query image, and 2D-3D correspondences
are established between the features in the query image, and the 3D map
points. This is typically done by, for each keypoint in the image, finding its
approximate nearest neighbour in the map in terms of descriptor distance
using a kd-tree search [5]. Using these matches, the pose can then be
estimated using a perspective-three-point solver [6, 7], in combination with
a robust estimation technique such as RANSAC [8]. Fig. 1.2 illustrates how
query features are matched to 3D points in the map.

This purely geometrical approach based on local image appearance typ-
ically works well when the query image is taken under similar conditions as
the map. However, if the appearance variation is too large, the local image
appearance may not be discriminative enough to correctly match the 2D
features to the 3D map. This may then yield too few correct matches to
accurately estimate the camera pose.

Fig. 1.3 illustrates how the same scene can change in appearance across
seasons. If an autonomous vehicle is to employ camera-based navigation
over a long period of time, then it should ideally be able to handle these
kinds of visual changes. Creation of accurate maps is a time-consuming and
expensive process, and creating maps for every single conceivable visual
condition is unfeasible. Rather, we desire our localization systems to be
robust to these kinds of changes.

3



Chapter 1. Introduction

Figure 1.3: Two images from the CMU Visual Localization dataset[9], taken
from approximately the same position, but during different seasons. While
clearly the same spot, matching features based only on local appearance
information would yield very few correct matches.

Today, most systems are not able to reliably handle these sorts of visual
changes, and developing robust localization methods is a field of active
research. It is also the topic of this thesis.

1 Thesis aim and scope

In this thesis we address the problem of long-term visual localization, i.e.,
localizing images which are taken under conditions very dissimilar to the
condition under which the mapping images were captured. Specifically,
we address the problem of single-image localization, as well as sequential
localization. We try to make the localization pipeline more robust by in-
corporating higher-level information in the form of semantic segmentations.
By also employing a semantically labelled 3D model, we show how this
information can be used directly for pose estimation as a replacement for
SIFT, and how it can be used as a complement to a SIFT based pipeline by
using semantics to correctly identify mismatched correspondences (the red
correspondences in Fig. 1.2). We also introduce three new datasets aimed
at evaluating long-term visual localization algorithms. We hope these will
be of value to the community.

2 Thesis outline

This thesis consists of two parts. In this first part, background material is
presented in Chapter 2. This is intended as a ”warm up” containing the nec-
essary background material to comfortably tackle the appended papers at

4



2. Thesis outline

the end. Readers already familiar with the camera-pose-estimation problem
can likely skip this chapter without any loss of comprehension when read-
ing the remainder of the thesis. Chapter 3 summarizes the contents of the
four papers, and clarifies the author’s contribution to each of them. Lastly,
Chapter 4 concludes the first part of the thesis and presents a final outlook
on possible future directions for research.

The second part consists of four appended papers, and represents the
main content and novel research work of the thesis.
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Chapter 2

Background

The main part of this thesis consists of the papers appended in Part II.
However, research articles are often quite terse and do not elaborate signifi-
cantly on the background material since the reader is assumed to already be
more or less familiar with it. This can make reading papers in a new area
very challenging, since the overall setting in which the paper takes place
may not be fully explained.

The purpose of this chapter is to serve as such a warm-up and summa-
rize the relevant background material necessary to understand the contents
of the papers included in Part II, and elaborates some more on the gen-
eral context that may be lacking in the individual papers themselves. The
structure of the chapter is as follows: Sec. 1 gives an coarse taxonomy of
the visual localization problem, and some common approaches that may
be used to solve it. Section 2 introduces what local image features are,
how they can be used to establish matches between images, and how they
break down in the long-term localization scenario. Section 3 discusses the
geometry of camera projection, and how correspondences may be used to
calculate camera pose relative to a map. Section 4 explains how image-
retrieval based visual localization works. Lastly, Section 5 brings up the
topic of semantic segmentations, and suggests how they may potentially
aid in visual localization tasks.

1 Visual localization

As mentioned in the introduction, the problem of visual localization is to
determine the position of the camera which captured one or more images
with respect to a map. There exist many different variations of this problem,
with accompanying solutions, depending on what input data is available to
aid in the localization (such as the number of images, any prior information
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Chapter 2. Background

on location, data from additional sensors such as IMU, Lidar, etc) as well
as what representation is used for the map.

One may roughly categorize the most common localization methods into
two categories [10]: metric and topological. This is not a strict classification,
and any given method may fall somewhere in between.

In topological localization, the map is represented as a discrete set of
places, often encoded as nodes in a graph. The nodes may then repre-
sent places, and adjoining edges correspond to possible paths between these
places. The visual localization problem is the to select, from this finite set
of nodes, the one which corresponds to the position where the image was
captured. Depending on what the graph represents, this may correspond
to an answer such as ”in the kitchen”, or a specific street intersection. This
thus corresponds to a discrete classification problem. Finer-grained local-
ization could be obtained by placing nodes densely, and attaching metric
coordinates to each node, as done in e.g. [10–12]. Assigning the query image
to a node thus also yields approximate metric coordinates for the position
of the camera.

This discrete form of visual localization is sometimes referred to as visual
place recognition, and is often solved using image retrieval methods, which
will be discussed briefly in Sec. 4.

The other class of localization methods are the metric methods. Here,
the goal is to output the camera position in metric coordinates, such as
latitude, longitude and altitude, or more generally the coordinates with
respect to some pre-defined coordinate system. In full six degree-of-freedom
camera pose estimation, the goal is to also estimate the three rotational
degrees of freedom, in addition to the three translational degrees of freedom,
for a total of six real numbers.

Metric localization methods often employ a pre-constructed 3D map of
the environment. By associating landmarks detected by the vehicle’s sensors
to landmarks with known position in the map, it is possible to reason about
the position of the vehicle in the map. However, it should be noted that not
all metric localization methods need to rely on an explicit 3D map of the
environment. Other approaches, such using a neural network to directly
regress the six degree-of-freedom pose directly from the image have been
explored [13].

For cameras, the landmarks typically consist of point-features detected
in the image by an image feature detector. These image features form the
backbone of modern 3D reconstruction and visual localization pipelines, and
understanding them is central to understanding the shortcomings of current
visual localization systems in the long-term localization scenario. We will
thus describe these local features more in depth in the following section.

8



2. Local image features

2 Local image features

Image feature (or keypoint) detection and description is one of the most
fundamental problems in computer vision, and forms the foundation on
which a large body of other methods rest [14]. The purpose of the feature
detector is to extract from an image a set of interest points we believe we
will be able to redetect in a different image of the same scene, and the
purpose of the descriptor is to encode the appearance of the keypoints into
a descriptor vector, such that keypoints in the first image can be associated
to keypoints in the second image (or map).

If the same set of points can be detected in a different image, we can
establish point-correspondences between images, or between an image and
a 3D model. Image-to-image correspondences can be used for calculating
relative camera poses, which enable subsequent 3D reconstruction of the
scene [15]. Image-to-model correspondences allow us to compute the camera
pose relative to the model.

In this section we will first briefly discuss keypoint detectors and de-
scriptors, and then have a look at them in the context of long-term visual
localization.

2.1 Feature detectors

Feature detectors have been studied since the early days of computer vision,
and as such there exist a large number of feature detectors (see e.g. [16] for
a survey). Common among most of them is that they try to find corner-like
features in the images; flat areas with uniform brightness are not distinctive
enough to match unambiguously across images, and the same is true for
edges, see Fig. 2.1.

Corner detectors work by computing some statistics of the extracted
image patch. For example, they might examine the Hessian, the Laplacian-
of-Gaussian [17], or the Difference-of-Gaussian (DoG) [18] of the image.
Other detectors examine the auto-correlation function of the image [19, 20]:
imagine extracting a rectangular patch centered around the point. If the
contents of the patch changes considerably as we slide the window in any
direction (with differences measured in, perhaps, sum-of-squared difference
in pixel intensity between the original patch and the translated one), then
the point corresponds to a corner. On the other hand, if the patch contents
only change in one direction, but are more or less constant in the other
direction, the point likely lies on an edge, and it seems unlikely we would
be able to accurately identify it in a different image of the same scene.

9



Chapter 2. Background

Figure 2.1: Three example image patches from an image. A feature detector
should trigger on corner-like points we believe we could re-identify in a
different image. Do you think you could find and correctly match the three
extracted patches in a different image of the same scene?

2.2 Feature descriptors

After having identified the keypoints in an image by running a feature de-
tector on it, we need some way to encode the appearance of the keypoint,
so that we can match it across images, or match it to a corresponding 3D
point in a point cloud. While it is certainly possible in some cases to use
a very simple similarity metric between image patches such as correlation
or sum-of-squared-differences (SSD), the perhaps most widely used way of
encoding image patch appearance is the gradient histogram [21]. The very
popular SIFT and SURF features [22, 23] are examples of features which
utilize a gradient histogram for describing the keypoints.

To compute the gradient histogram of a patch, the gradient (horizontal
and vertical derivatives of the pixel intensity) are first computed for each
pixel. The gradients are then binned into eight different bins, depending
on their direction. I.e., the sum of the lengths of all gradients pointing in a
direction between 0◦ and 45◦ are put in the first bin, the sum of lengths of
all gradients pointing in a direction between 45◦ and 90◦ are put in the next
bin, etc. This yields a total of eight numbers. An image patch can thus
be compressed into eight numbers, representing, in some sense, in which
directions any edges are oriented, and how strong these are.

However, when condensing a patch centered on a keypoint, the patch
is first subdivided into 4 × 4 sub-patches, and each of these sub-patches is
compressed into a vector of eight numbers using the above method. All

10



2. Local image features

Figure 2.2: Illustration of gradient-histogram computation. The image is di-
vided into 4×4 sub-patches. For each sub-patch, gradients are computed at
each pixel and their magnitudes are added into one of eight bins depending
on their orientation. The total values in these bins yield a descriptor-vector
with eight entries.

these 16 vectors are then stacked into a single vector of 128 numbers. This
vector is then the SIFT-descriptor of the patch. This process is illustrated
in Fig. 2.2 for one of the image patches from Fig. 1.2.

Now, in order to find point correspondences between two images, or
an image and a map, these local features (consisting of both the set of
detections returned by the feature detector, as well as the corresponding
feature descriptors) can be matched by, for each feature in the image, finding
the nearest neighbour in the descriptor space in the other image (or map).

The SIFT descriptor, while simple, is remarkably effective at matching
features across images, even under moderate changes of illumination and
perspective distortions. While more involved descriptors have been pro-
posed, such as descriptors learned from data using deep neural networks,
the SIFT feature has turned out to be surprisingly difficult to consistently
beat: it performs well on images from a broad range of categories, while
learned descriptors typically performs well in a narrow range of images which
resemble images or scenarios it has seen during training. SIFT currently
remains one of the most popular baselines for comparison when developing
new image features.

2.3 Feature matching across large appearance changes

While very powerful, the SIFT feature is not without its limitations. It
struggles to find correct matches between images taken from very different
viewpoints, such as between two images showing the same street intersection
but taken from perpendicular streets, or between two images of the same
scene taken during dissimilar environmental conditions. For example, reli-
ably establishing feature matches between daytime and nighttime images,
or between images taken during different seasons (see Fig. 2.3), remains
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Chapter 2. Background

Figure 2.3: An example of SIFT-feature matching between two images taken
from approximately the same viewpoint, but during different seasons. A
Lowe ratio of 0.9 was used in the matching process. Not all feature matches
are shown, but only those consistent with the estimated epipolar geometry.

very challenging and is still an open problem, and this is also why long-
term visual localization is difficult. This should come as no surprise, since
the SIFT descriptor is based only on low-level photometric intensity and
gradient information: no high-level understanding or reasoning is involved
during the matching process.

Fig. 2.3 shows an example of SIFT-feature matching between two images
taken from approximately the same viewpoint, but far apart in time (during
different seasons). Keypoints are extracted using the DoG detector, and
then each feature in the left image is matched using approximate nearest
neighbour matching (in descriptor space) to the features in the image to the
right. A relative camera geometry which is consistent with as many matches
as possible is calculated, and the figure shows the surviving, geometrically
verified matches. None of them are correct.

The reason for this failure is two-fold: firstly the detector does not trigger
on the same set of points in the two images (i.e., the detector is not repeatable
over these appearance variations), and secondly the descriptor for a given
point changes too much between the images to be reliably matched. The
low-level pixel intensity in a local neighbourhood around any given patch
looks completely different in the two images, even though they correspond
to the same point. In the article [24], several extensive experiments are per-
formed showing (and quantifying) the non-repeatability of the most popular
feature detectors for varying degrees of viewpoint and lighting changes.

If a map is constructed from images captured during the same condi-
tion as in the left image, and we then revisit the same area at a later time,
when the environment looks as in the figure to the right, how do we per-
form robust visual localization if traditional local-feature matching yields
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3. Structure-based localization

mostly incorrect matches? This is the core problem which is discussed in
the appended papers in this thesis.

At this stage, we can make one key observation regarding this simple
experiment. If I asked you to manually provide a set of, say, ten point
correspondences between the two images, would you be able to? Ideally,
if they are to be used for camera pose estimation, the error when ”clicking
out” the correspondences should not be more than a few pixels.

Most likely you would. Though the low-level content of the image may
have changed drastically in any given image patch due to changes in lighting,
added snow, removed leaves and so on, we can (perhaps with some slight
effort) match points based on a higher-level, semantic reasoning. We could
match the corners of the building roof, the corners of the street sign, the tips
of the poles in the picket fence, and so on. None of this would be possible
by simply comparing the low-level image content between pairs of patches;
we must reason using considerably more high-level information about the
image contents to find the correct matches.

Machine learning based methods which extract this kind of high-level
understanding from images have seen a very rapid increase in performance
the past few years due to the advent of techniques for training deep neu-
ral networks (see [25] for a deep-learning review). Employing deep-learning
techniques to extract semantic meaning from images for localization pur-
poses, or to robustly identify and match semantic keypoints between images
even under these challenging conditions thus seems like a promising avenue
for research. Though there are many works in the literature attempting
to learn local features (e.g. [26–28]), no learned method has yet emerged
which seems to consistently outperform SIFT for general images.

3 Structure-based localization

Now that we have understood how to identify local features in images, and
how these can be matched between images, we will now have a look at
how these features can be used for the task of visual localization. We will
first have a look at structure-based methods, i.e., methods which employ
a 3D representation of the environment (such as a point cloud) to aid in
the localization process. In order to understand how this is used, we must
first have a quick look at the image formation process for cameras, i.e., the
mechanism by which the 3D world is projected down into a two-dimensional
image.
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Chapter 2. Background

Figure 2.4: Projection of a 3D point X onto the image plane of a pinhole
camera.

3.1 The camera model

The standard pinhole camera model is a subject which has been written
extensively about before, and every course on optics, computer vision and
computer graphics covers this, so it seems somewhat redundant to write
yet another introduction. We will here only write down the very basics of
camera projection. For more information, see e.g. Chapter 6 in [29].

The simplest and perhaps most popular camera model is the pinhole
camera model. A pinhole camera, or a camera obscura, is simply a box
with a tiny hole (a pinhole) in one of its sides. When light is emitted from,
or scatters off of, an object in the scene, some of that light might pass
through the hole, which we will call the center of projection O, and will fall
onto a point on the opposite side of the box. An image of the scene will
thus form on the inside of the box. If we were to place a photographic plate
on the side opposite from O, an image would form on the plate. We have
thus created a simple camera.

Fig. 2.4 shows the projection process for a point X, with one slight
modification: the image plane where the image forms is now imagined to be
in front of the center of projection. This is of course not what happens in
practice; the image is formed on a plane a distance f behind the center of
projection. However, the image which forms on the physical imaging plane
will be a mirror image of what an observer would see when ”looking out”
from O. When displaying the captured image, it will have to be mirrored
in order to display what was actually seen by the camera. To simplify the
calculations, it is more convenient to imagine the image being formed on
the image plane placed a distance f in front of the center of projection.
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3. Structure-based localization

The relationship between the world point X and the imaged point xi
can now be deduced from similar triangles. Let X = (Xw, Yw, Zw) and
xi = (x, y, f), then clearly x = Xw · f/Zw, y = Yw · f/Zw.

The equations for camera projections are most conveniently expressed
in the framework of projective geometry. In this framework, it is customary
to express points in 2D and 3D in terms of their homogeneous coordinates:
the point (x, y) in IR2 is now represented as (x, y, 1). Furthermore, we iden-
tify all points along the same ray through the origin, i.e., the point (x, y) in
Euclidean coordinates is identified with all points ~x = λ(x, y, 1) in homoge-
neous coordinates, with λ 6= 0. Similarly, the point ~X = (Xw, Yw, Zw) in IR3

is identified with all points with homogeneous coordinates λ(Xw, Yw, Zw, 1).
Using this formalism, the camera projection equations derived above can

be written as

λ~x =

f 0 0
0 f 0
0 0 1

 [I3×3| ~0
]
~X, (2.1)

where ~x and ~X are the homogeneous representations of the points x and X,
f is the focal length, I3×3 is the 3 × 3 identity matrix, and ~0 is the vector
of all zeroes in IR3.

To obtain the final projection equations for the pinhole camera, two
additional things need to be modified. First, the vector ~x is measured in
meters (or whichever unit of length is used to express ~X). These coordinates
are often called the normalized image coordinates. However, when working
with images, one initially obtains the image features in terms of their pixel
coordinates in the image, counting rows from up to down, and columns left
to right, with the pixel (1, 1) being in the top left corner. To transition from
normalized coordinates to pixel coordinates, one multiplies the normalized
coordinates by the camera calibration matrix K given by

K =

αx s cx
0 αy cy
0 0 1

 , (2.2)

where αx and αy is the focal length in terms of pixels (these are identical if
the pixels are square), s is called the skew and is zero for rectangular pixels,
and the point (cx, cy) is the principal point in pixel coordinates, i.e., the
point where the optical axis intersects the image plane.

Lastly, the camera may not actually be located at the origin in coordinat
system of the 3D world, and it need not be oriented as shown in Fig. 2.4.
Suppose instead that the center of projection is located at some arbitrary
position ~C, and that the camera has some orientation described by the
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Chapter 2. Background

rotation matrix R, which brings the camera coordinate axes to the world
coordinate axes, then the final projection equation may be written

λ~x = P ~X, (2.3)

where
P = KR[I3×3| − ~C] (2.4)

is called the camera matrix, which fully determines the projection of world
points into image coordinates.

Note that the camera matrix contains five intrinsic parameters, related
to the camera’s internal workings (sensor size, focal length, skew, etc.), and
six external parameters (related to the position of the camera in the external
world), for a total of eleven parameters.

In the visual localization problems discussed in the papers in this thesis,
the internal parameters have all been determined beforehand in a calibration
procedure. This is typically done by taking several pictures of a calibration
object whose physical dimensions are known very precisely [30].

One final thing worth bringing up before moving on to structure-based
camera pose estimation, is that the pinhole camera model is an idealized,
mathematical model for the image formation process. In practice, since the
pinhole camera only lets in a very small amount of light, a larger aperture is
needed (the exposure time for the world’s first pinhole camera was around
eight hours [31]). However, increasing the aperture size leads to blurry
images in a pinhole camera, so a lens is placed in the aperture to focus
the light. Real optical systems can be quite sophisticated, and the lenses
introduce several different kinds of aberrations in the optical system, one of
which is that of non-linear distortion.

An ideal pinhole camera maps lines in 3D to lines in the image, but non-
linear distortion causes these lines to map onto curved arcs in the image,
often with increasing distortion as one moves away from the principal point.
However, this type of distortion has been studied for a long time, with its
roots in the photogrammetric community [32, 33], and simple and accurate
models for the non-linear distortion have been created. These distortion
parameters are typically estimated during the camera calibration procedure
[30], and distorted images can then be rectified into corresponding pinhole
camera images with sub-pixel accuracy.

3.2 Correspondence-based camera pose estimation

Now that we understand the camera model, we are in a position to look at
how structure-based pose estimation works. The problem of estimating the
camera pose from a set of point or line correspondences is perhaps one of
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3. Structure-based localization

the oldest problems of computer vision, and there exists a vast literature on
the subject. In this section we will summarize the most important points
needed to understand the papers in Part II.

Minimal solvers

Assume that we have identified as set of points {xi}ni=1 in the image, and
have matched these to a set of 3D points {Xi}ni=1 in a 3D point cloud.
We can then write down the projection equation 2.3 for each 2D-3D cor-
respondence. Note that the projection equations yield three equations per
correspondence, but each correspondence also introduces an extra unknown
λ. Each correspondence thus fixes a net two degrees of freedom in the cam-
era matrix. If the camera intrinsics are known, e.g., if we have calibrated
the camera beforehand, there are a total of six unknown degrees-of-freedom
in the camera matrix, corresponding to the position of the camera center,
and the camera orientation.

It thus seems a total of three correspondences should in general suffice to
compute the camera pose. This is indeed the case. This problem is known
as the perspective-three-point problem (P3P), and many different methods
for solving this problem have been presented over the years [6, 7, 34], with
the first known solution dating back to 1841 [35].

A classical way of solving the problem is to, for each pair of points,
use the law of cosines to formulate a quadratic equation in the unknown
depths of the 3D points [8, 36, 37]. The three possible pairs thus yield
three quadratic equations in the three unknown depths. One may solve this
system in a variety of ways. One way is to use the Sylvester resultant to
successively reduce the system into a single fourth degree equation, which
will yield up to four possible solutions to the problem [34]. In general,
a fourth correspondence is needed to disambiguate the solution. For four
or more point correspondences, there exists linear methods for calibrated
camera pose estimation [38, 39].

In computer vision, methods which solve a problem using only the mini-
mum number of correspondences required theoretically are often called min-
imal solvers. They play a central role in robust estimation, which we will
see below.

The P3P solvers mentioned above is one kind of minimal solver, but
there exists other kinds of minimal solvers for camera pose depending on
what kind of information is available. For example, if the gravity direction
is known in the camera reference frame (perhaps supplied by an IMU, or
estimated from vanishing lines in the image [40]), the camera pose only has
four extrinsic degrees of freedom left, enabling pose estimation from only
two point correspondences [41].
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Chapter 2. Background

Robust estimation

Once correspondences between the image and a map have been established,
inputting all correspondences in an n-point pose solver to estimate the cam-
era pose is a very bad idea. The reason is the presence of outliers, in the
data, i.e., mismatched correspondences which are completely wrong. In-
cluding these in a pose estimation routine which minimizes an algebraic
error or the geometric reprojection error of the correspondences will intro-
duce gross errors in the estimated pose. A way to remove outliers, or to
downweight their contribution to the error function must be devised.

The undoubtedly most popular technique for outlier detection and re-
moval in computer vision is the random sample consensus maximization
(RANSAC) procedure [8]. This method is not limited to only camera pose
estimation, but works in a wide variety of robust estimation problems, such
as line and plane fitting, 2D and 3D homography estimation, and so on.

The main idea is to randomly sample a minimal subset of the correspon-
dences, i.e., extract a subset which is just large enough to apply a minimal
solver on it. For calibrated camera pose estimation, a subset of three corre-
spondences would be extracted. Once the camera pose (or homography, or
whichever type of model it is we are estimating) has been computed from
the minimal subset, we check how many of the remaining correspondences
agree with this model, within some pre-specified error tolerance. For cam-
era pose estimation, we may project down the 3D points of the remaining
correspondences, and measure the reprojection error. We count the number
of inliers (the size of the consensus set) for the estimated model. We repeat
this procedure a pre-specified number of times, and simply return the model
with the largest consensus set.

Typically, the final pose is then refined using the whole consensus set,
using an iterative local optimization procedure to minimize the reprojection
error of the correspondences in the consensus set.

RANSAC is not the only possible approach to handling outliers, and
there exists a large body of work concerned with developing other kinds of
robust estimation techniques, such as globally optimal model fitting under
the L2 norm [42], and methods based on branch-and-bound [43, 44], how-
ever, these methods tend to suffer from an exponential worst-case runtime.

Due to its simplicity and generality, RANSAC remains the most popu-
lar robust estimation method. However, it has several shortcomings worth
mentioning. First, RANSAC is not clearly not guaranteed to return the op-
timal solution. Secondly, the algorithm may be sensitive to the selected error
threshold: the model calculated from a set of correct correspondences may
not actually have a large consensus set due to noisy observations. Lastly,
the runtime of RANSAC is exponential in the ratio of outliers. This is es-
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4. Image-retrieval based localization

pecially a problem in long-term visual localization, where a large fraction of
the correspondences are expected to be incorrect due to the large appear-
ance variations of the scene, as well as in large-scale localization, where the
number of correct matches typically decreases with model size due to visual
ambiguity resulting from repetitive structures in the environment [45] (i.e.,
the corners of a window in the observed image may look very similar to
windows on a building on the other side of the city).

Due to the exponential dependence on the outlier ratio, it is sometimes
desired to prune outliers if possible before feeding the correspondences into
the RANSAC procedure. This leads us to a class of methods often called
outlier filters, or outlier rejection schemes.

Outlier rejection

If a large amount of outliers are expected, it may be beneficial to utilize an
outlier rejection scheme. Typically, these use prior information about the
camera pose to reason about which correspondences may be outliers. For
example, [46] presents an outlier rejection scheme where the camera rotation
is fully known; in this scenario it is possible to, for each correspondence,
calculate an upper bound on the number of inliers possible for a camera
pose which also has that particular correspondence is an inlier. If this score
is low, it can then be discarded. The article [47] presents an outlier rejection
scheme which utilizes prior information about camera height and vertical
direction. One of the included papers in this thesis presents an outlier
rejection scheme based on exploiting the semantics of the observed image.

4 Image-retrieval based localization

In the beginning of the chapter, we discussed that visual localization meth-
ods can be roughly categorized into metric and topological. The metric
methods are typically 3D structure based, i.e., they employ a 3D model
of the environment and use this to calculate the pose of the camera which
captured the query image, as discussed in the previous section.

The topological localization methods, also called visual place recognition
methods, work in a different manner. Here, the localization problem is
instead formulated as an image search problem: given a set of database
images and a query image, find the database image which most closely
resembles the query image, see Fig. 2.5.

If metric information is included in the map, for example if the images
are geotagged and have associated GPS metadata, then the position of the
query image could be approximated by the position of the database image
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Chapter 2. Background

Figure 2.5: Visual place recognition formulates the localization problem as
an image retrieval problem. Given a query image and a set of database
images, find the database image most similar to the query image (according
to some metric).

[48].
One of the advantages of image retrieval based approaches is that image

retrieval is a well-studied problem in computer vision, and efficient search
strategies using vocabulary trees [49] and inverted file indices have been
developed for this problem.

A common implementation of image retrieval is to compute a whole-
image descriptor for all database image. The whole-image descriptor could
be based on a bag-of-visual-words (BoW) approach [50–53], or use a vector-
of-aggregated-descriptors (VLAD) [54, 55]. The basic idea behind these
methods is to extract local features from the image, such as SIFT descrip-
tors. If the descriptor space has been quantized beforehand, for example
by clustering all descriptors from a different set of training images using
a k-nearest-neighbour approach, each descriptor extracted from the query
image can be assigned to the nearest cluster. The corresponding whole-
image descriptor would then be the histogram over the number of features
assigned to the different clusters (visual words).

To localize an image, this whole-image descriptor is computed for all
database images, and for the query image, and the nearest-neighbour (or
k-nearest neighbours), are extracted from the database. The pose of the
query image can then be approximated using the pose of the top-ranked
database image.

Computing a global descriptor from extracted local descriptors yields a

20



5. Semantic segmentation

more compact representation of the image, but spatial information is lost.
To compensate for this, spatial verification and re-ranking [56] can improve
the results. This means that the top-ranked images after image retrieval
are then re-ranked based on how well it is possible to fit some geometric
transformation that maps correspondences from the query image to the
database images in questions. In other word, this approach tries to take
the spatial layout of the features into account to reconsider the ordering of
the suggested best matches. For a survey of the visual place recognition
problem, see [57].

Image retrieval methods have on significant advantage over structure-
based methods: a database of geotagged images is significantly easier to
construct, maintain and extend than a metric 3D reconstruction. It was
believed that structure-based approaches yielded more accurate pose es-
timates than image retrieval based methods, but there is recent evidence
that estimating the camera pose using a local 3D model created ”on-the-fly”
from the top-ranked database images can yield just as accurate, if not more
accurate, poses than pure structure-based methods [58].

5 Semantic segmentation

When discussing local image features in Section 2, we discussed the problem
of non-invariance of local features. That is, under viewpoint and illumina-
tion changes, the feature detector may trigger on a different set of points,
and the feature descriptor may change to such an extent that feature match-
ing based on descriptor distances fails completely.

The problem is that the descriptors only contain very low-level intensity-
gradient information in a patch around the feature points. They contain
no higher-level understanding of the scene. Even in a fairly challenging
scenario, a human would likely be able to provide matches between two
images by utilizing this high-level information.

In the computer vision community, much progress has been made in
recent years on the problem of semantic segmentation. This problem con-
sists of assigning, to each pixel in an image, a label from a pre-defined set
of classes. Which classes are used depends on the problem at hand. Fig.
2.6 shows an example of an image together with its semantic segmentation.
The image comes from the CMU Visual Localization dataset [10] and the
segmentation is performed using the network [59] trained on the Cityscapes
classes [60, 61]. Cityscapes is a dataset and public benchmark for seman-
tic segmentation of street-view images into semantic classes such as road,
sidewalk, car, pedestrian, pole, building, sky and so on. These aim towards
a high-level understanding of images taken in street scenes, which may be
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Figure 2.6: An image from the CMU Visual Localization dataset and its
corresponding semantic segmentation.

relevant for the task of visual navigation for autonomous cars.

Today, semantic segmentation is most commonly performed using some
variants of convolutional neural networks (CNNs) [62–64]. Sometimes, a
conditional random field (CRF) model is added on top of the network output
to encourage a structured segmentation [64–66].

Even though the local image features may not be invariant to illumina-
tion, seasons, day-night changes and so on, a good semantic segmentation
algorithm should ideally be robust to these kinds of variations. If semantic
information can be reliably extracted under these conditions, it may be pos-
sible to utilize this during the localization process. For example, it may be
used for identifying incorrect matches (a feature detected on a street sign
should be matched to a 3D point with the corresponding label), as done in
e.g. [67] in the context of object retrieval.

As observed in [67], the idea of integrating semantic information into
the classical computer vision pipelines is something of an emerging theme
in the computer vision literature, since this has been shown to improve the
performance across several different tasks. For example, in [68], the authors
show that for the problem of dense stereo reconstruction in road scenes,
jointly reasoning about depth and semantic classes improves the perfor-
mance of the reconstruction dramatically. The article [69] reaches similar
conclusions, where they instead jointly infer semantic labels and depths for
”stixels”. Similarly, in [70] a voxelized multi-view-stereo reconstruction is
performed by joint geometric and semantic reasoning. It is found that the
geometry helps enforce the semantics across images, and the semantics help
the depth reconstruction e.g. in areas (such as the ground) for which depth
values are sampled more sparsely.
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5. Semantic segmentation

5.1 Semantics for visual localization

Lastly, to wrap up this chapter, we arrive at semantics for visual localization,
which is one of the key topics of this thesis. As mentioned above, integrating
semantics into the classical, geometrical pipelines has been shown to improve
the performance. The question is then whether this is also the case for visual
localization. There exists evidence this is indeed the case (see for example
[71–73] for examples where higher-level features such as lane-markings and
pole-structures are used for localization), and it is also the topic of three of
the articles appended in Part II.
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Chapter 3

Thesis Contributions

The topic of this thesis is that of long-term visual localization. Current
visual localization approaches typically work well when the mapping images
are similar in appearance and view-point to the images to be localized,
but under change of viewpoint, illumination or seasons, the localization
performance typically degrades rapidly. The non-repeatability of the feature
detector, and the non-invariance of the feature descriptor are the two main
culprits.

We have mentioned in the last chapter that the reason behind the failure
of the local feature approach in this scenario is that they rely only on low-
level pixel-intensity information, and that incorporating a higher-level scene
understanding via the semantic segmentation may potentially alleviate some
of these problems. This is precisely the topic of three of the included papers
(Paper II, III, and IV).

While working on the first two articles (i.e., articles III and IV), we
noticed the lack of suitable long-term visual localization datasets to eval-
uate our methods on. There were a variety of localization datasets avail-
able, but they either did not have sufficient variation in weather, seasons
or illumination to evaluate the performance of the methods in the long-
term localization scenario, or, if they did include this variation, they did
not come with accurate six degree-of-freedom camera poses. Motivated by
this, we joined forces with a quite large group of researchers and put to-
gether three datasets (where we at Chalmers were responsible mainly for
one) specifically aimed at evaluating six degree-of-freedom long-term visual
localization. This work resulted in the most recent article, Paper I.

In the remainder of this chapter we present a high-level overview of each
of the included papers in turn. In Part II, the papers are presented in
reverse-chronological order starting with the newest and ending with the
oldest. Here, we instead present the work in the original order in which it
was produced, starting with the earliest and ending with the most recent.
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Figure 3.1: Illustration of the method in Paper IV. Any given pose may
be evaluated by how well the semantically labelled structure projects down
into the given pose. Only the semantic 3D curves are shown (poles, road
edge, vegetation-sky contour). 3D points (not shown) were used as well.

1 Paper IV

C. Toft, C. Olsson, F. Kahl. ”Long-term 3D Localization and Pose from
Semantic Labellings”. 3D Reconstruction Meets Semantics Workshop at the
International Conference on Computer Vision 2017.

This paper was something of a pilot-study where we examined how well
it is possible to perform single-image visual localization, using only the se-
mantic segmentation of the query image. In other words, is the semantics
alone sufficient for visual localization? The method was evaluated on two
small subsets of the Oxford RobotCar dataset, each of the size of a few
city blocks. The method uses an image-retrieval method (based only on
the semantic segmentation), and then refines the 6 DoF camera pose by
minimizing a cost function based on how well the reprojection of a semanti-
cally labelled 3D model consisting of semantically labelled points and curves
of the environment matches the observed segmentation in the image. The
results suggest that semantics is sufficient for localization in small environ-
ments when the query image is sufficiently ”semantically interesting”, and
that the proposed 6 DoF semantic pose refinement does indeed improve the
pose.

Author contribution. I did most of the implementation work of the
method and the evaluation on the datasets. The third author created the
datasets used and contributed the original ideas. The second author con-
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tributed to the discussions and assisted greatly in writing the article.

2 Paper III

E. Stenborg, C. Toft, L. Hammarstrand. ”Long-term Visual Localization us-
ing Semantically Segmented Images”. International Conference on Robotics
and Automation 2018.

This article is something of an improvement or extension of the methods
and ideas presented in Paper IV, but applied to the problem of sequential
localization using recursive Bayesian estimation methods. That is, the in-
put to the method is a whole sequence of images and inertial measurement
data, and the goal is to calculate the most likely position of the vehicle at
the current time, given all the previous measurements up to the present.
The basic idea is very similar to that in paper IV, where a tentative pose
can be evaluated by how well the reprojected 3D structure agrees with the
observed semantic labellings of the image. However, in this article, this
idea is developed in a probabilistic particle filtering framework, where the
measurement likelihood function is defined by this semantic consistency be-
tween the observed semantic labellings, and the reprojected semantic 3D
structure. The advantage of this approach is that it allows inertial mea-
surement data to be naturally incorporated into the localization pipeline.

Author contribution. The main ideas of how to formulate the problem
in a Bayesian estimation framework were developed by the first and third
authors. Implementation of the semantic localization was done by the first
author. I was mainly responsible for implementing the reference solution
and assisted in the writing process.
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Figure 3.2: The general pipeline of the method presented in paper II. The
method is based on a traditional feature-based pipeline, but each feature
is scored depending on how well it agrees with the overall semantics of the
scene and image. This score is then used to weight the sampling probabilities
in the RANSAC loop.

3 Paper II

C. Toft, E. Stenborg, L. Hammarstrand, L. Brynte, M. Pollefeys, T. Sattler,
F. Kahl. ”Semantic Match Consistency for Long-Term Visual Localization”.
European Conference on Computer Vision 2018.

This paper presents another semantics-based single-image localization
method. Unlike papers III and IV, which were based on semantics alone,
this article aims to increase localization performance by incorporating se-
mantic information in a classical geometrical pose-estimation pipeline based
on image features.

Specifically, we address the problem of the high-outlier ratios which are
encountered in feature-based methods in the long-term localization scenario.
Inspired by the geometric outlier-filtering methods, we devise a semantic
outlier filter, which, like the geometric outlier filters, use prior knowledge
about camera height above ground plane as well as vertical direction, to
reason about the likelihood of each correspondence being an inlier. The
method is evaluated on two self-driving car datasets, and we show that,
under the conditions mentioned, the method can significantly increase the
performance of a classical P3P RANSAC based pipeline.

One of the main advantages of the proposed method is that it is fully par-
allel in the number of correspondences: each correspondence can be scored
independently of the others, and the method of scoring correspondences de-
pends only on projections and angle calculations. As such, it would be very
suitable for an efficient GPU implementation, though in the paper only a
sequential MATLAB implementation was performed.
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Figure 3.3: Maps of the three new datasets we present in Paper I: the
Aachen Day-Night dataset (left), the RobotCar Seasons dataset (middle)
and the CMU Seasons dataset (right).

Author contribution. The last author supplied the original idea, and
I implemented the method and all evaluation scripts. The other authors
helped very much with discussions, writing, figures and segmentations.

4 Paper I

C. Toft, T. Sattler, W. Maddern, A. Torii, L. Hammarstrand, E. Sten-
borg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, T. Pajdla and F.
Kahl. ”Benchmarking 6DOF Outdoor Visual Localization in Changing Con-
ditions”. To be Submitted to IEEE Transactions on Pattern Analysis and
Machine Intelligence 2019.

This is a dataset paper, where we present three challenging new datasets
for visual localization. In this article, we address our observation that there
were no public datasets suitable for evaluation of six degree-of-freedom vi-
sual localization in the long-term scenario. There were several datasets
containing images taken under a variety of different conditions (such as sev-
eral traversals of the same road in winter, summer, spring, day, night etc.),
however these did not come with known reference poses, making them un-
suitable for evaluation of long-term localization algorithms.

In this article, we augmented three of these publicly available datasets
with reference poses by reconstructing each condition individually, and then
registering the different models into the same coordinate system. The
dataset we augmented were the CMU Visual localization dataset [9], the
Aachen dataset [74] and the Oxford RobotCar dataset [75].

The article also presents an evaluation of the current state-of-the-art
methods on these datasets, such that other researchers will not have to
spend time evaluating baseline methods.
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Author contribution. This work was a large collaboration between
many researchers and research groups. At Chalmers, we were mainly re-
sponsible for the CMU Seasons dataset. Fredrik did most of the bundle ad-
justment and establishing ground truth poses. I triangulated the reference
models, ran some of the baseline methods, and formatted and organized
the raw dataset into its current, published form, and was responsible for
putting together the journal article and setting up the benchmarking server
and website. Torsten did most of the writing in the original CVPR article.
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Chapter 4

Conclusion and Future Outlook

In this thesis, we have presented work on the problem of robust long-term
visual localization mainly by adressing two points:

• Several possible ways to incorporate semantic information to aid in
the visual localization process.

• Develop new datasets to enable accurate and fair evaluation of the
performance of long-term localization methods.

In terms of incorporating semantic information into the localization pro-
cess, the appended papers show some encouraging results: it seems that se-
mantic information does indeed contain very valuable information for pose
estimation, and it seems this can be used to complement the traditional
geometrical pipelines to improve the results, or obtain results on par with
the geometric pipelines. But the story is far from over.

There are many shortcomings in the papers which should be addressed
in order for them to approach something of more practical utility. At the
moment, one of them is speed: the presented methods (or at least, the
current implementations of them) are too slow to be used in a real-time
system for visual navigation of a real vehicle, or to be used in a real-time
virtual reality application. While there are of course more applications to
camera pose estimation than autonomous navigation and virtual reality,
this is the scenario the datasets used (and created) have been aimed at.

A related issue is that of a lack of accuracy requirements. A question
which has recurred continually throughout the work has been that of: What
localization error is acceptable? How do we know when the localization
problem has been solved? What framerate do we need to be able to handle?
At the moment, I am not aware of any work which provides general answers
to these questions. The localization performance of the state-of-the-art
algorithms on our new benchmark datasets suggest that current methods
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Chapter 4. Conclusion and Future Outlook

are unable to handle drastic visual changes satisfactorily, but it is not clear
what accuracy is desired, or realistic to expect.

Another question is what formulation to use for the visual localization
problem. Since the used datasets are aimed towards an autonomous driv-
ing scenario, it seems artificial to focus only on the single-image localization
scenario when an entire history of image and IMU data is readily available.
This would also somewhat lessen the requirements on the single-image local-
ization performance: it would not necessarily be catastrophical if the visual
localization fails if we already have a good idea of where we are and where
we are going. Indeed, requiring all images to be localized is unrealistic. In
a real street scenario, it is unavoidable that some images will be impossible
to localize on their own. They might be overexposed due to the sun hitting
the camera straight on, the entire image might be covered by a large truck
driving by, or we might just see uninformative vegetation, such as a bush
covering the entire image. As such, I believe the sequential localization for-
mulation is more natural in the context of visual navigation of autonomous
cars.

1 Future work

I believe there are several interesting directions for future work in terms of
long-term visual localization, and I will outline some of them below.

1.1 Learned features

One approach, which has been gaining in popularity, is to try to learn a
feature detector and descriptor. In other words, train a detector which
tends to trigger on points which are long-term stable, i.e., points which
reoccur (and can be re-identified) even after a significant period of time has
passed. This might be corners of windows, rooftop corners, street signs, and
so on (or any other kind of point which the system can reliably re-identify).
One of the problems which may arise when training this form of feature, is
that ground-truth correspondences will be needed, i.e., the system needs to
know which features actually are stable such that it can learn from these.
We hope our new datasets will be useful to other researchers in this regard.

1.2 Incorporate 3D information during feature match-
ing

Another approach is to use features based on 3D information, or to incor-
porate 3D information in the feature matching process. There has been
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1. Future work

some recent work which obtains promising result by utilizing semantic 3D
descriptors [76]. That paper constructed a voxel model of the environment.
Perhaps something similar could be done for point clouds. One might then
extract depth information from the query image, using e.g. multi-view-
stereo or monocular depth-estimation, perhaps together with estimated sur-
face normals and semantics, to obtain a more discriminative descriptor of
the feature point. The feature descriptor would then not only encode the
2D appearance of the point in the image, but also information about the
point and its surroundings in the 3D world.

1.3 Better semantic segmentations

Lastly, one problem we encountered when trying to exploit the semantic
segmentations for long-term visual localization, was that the semantic seg-
menters themselves were not particularly robust to these kinds of appear-
ance and viewpoint changes. It turns out that most segmenters are trained
on street images taken during daytime in fairly nice weather conditions,
with a camera mounted on the car such that it faces the road ”straight on”.
If the camera is mounted on the side of the car such that it is facing left
or right, or if the weather is different (during nighttime, with snow, with
golden sunlight from the autumn sun and so on), the segmentations turned
out less than ideal.

If we wish to use semantics for long-term visual localization, then the
semantic segmenter itself must also be robust to these kinds of changes.
Improving semantic segmentations over challenging conditions is thus a de-
sirable goal with an immediate synergy with visual localization.
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D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, T. Pajdla and F. Kahl

Abstract

Visual localization enables autonomous vehicles to navigate in
their surroundings and augmented reality applications to link
virtual to real worlds. Practical visual localization approaches
need to be robust to a wide variety of viewing condition, includ-
ing day-night changes, as well as weather and seasonal varia-
tions, while providing highly accurate 6 degree-of-freedom (6DOF)
camera pose estimates. In this paper, we extend three publicly
available datasets containing images captured under a wide va-
riety of viewing conditions, but lacking camera pose informa-
tion, with ground truth pose information, making evaluation
of the impact of various factors on 6DOF camera pose estima-
tion accuracy possible. We also perform extensive experiments
where we evaluate state-of-the-art localization approaches on
these datasets. Additionally, we release around half of the poses
for all conditions, and keep the remaining half private as a test
set, in the hopes that this will stimulate research on long-term
visual localization, learned local image features, and related ar-
eas. Our datasets are available at visuallocalization.net,
where we are also hosting a benchmarking server for automatic
evaluation of results on the test set.

Estimating the 6DOF camera pose of an image with respect to a 3D
scene model is key for visual navigation of autonomous vehicles and aug-
mented/mixed reality devices. Solutions to this visual localization problem
can also be used to “close loops” in the context of SLAM or to register
images to Structure-from-Motion (SfM) reconstructions.

Work on 3D structure-based visual localization has focused on increasing
efficiency [1–5], improving scalability and robustness to ambiguous struc-
tures [6–9], reducing memory requirements [1, 8, 10], and more flexible
scene representations [11]. All these methods utilize local features to estab-
lish 2D-3D matches. These correspondences are in turn used to estimate the
camera pose. This data association stage is critical as pose estimation fails
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Figure 1: Visual localization in changing urban conditions. We present
three new datasets, Aachen Day-Night, RobotCar Seasons (shown) and the
Extended CMU Seasons for evaluating 6DOF localization against a prior
3D map (top) using registered query images taken from a wide variety of
conditions (bottom), including day-night variation, weather, and seasonal
changes over long periods of time.

without sufficiently many correct matches. There is a well-known trade-off
between discriminative power and invariance for local descriptors. Thus,
existing localization approaches will only find enough matches if both the
query images and the images used to construct the 3D scene model are
taken under similar viewing conditions.

Capturing a scene under all viewing conditions is prohibitive. Thus,
the assumption that all relevant conditions are covered is too restrictive in
practice. It is more realistic to expect that images of a scene are taken under
a single or a few conditions. To be practically relevant, e.g ., for life-long
localization for self-driving cars, visual localization algorithms need to be
robust under varying conditions (c.f .Fig. 1). Yet, no work in the literature
actually measures the impact of varying conditions on 6DOF pose accuracy.

One reason for this lack of work on visual localization under varying
conditions was a lack of suitable benchmark datasets. The standard ap-
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proach for obtaining ground truth 6DOF poses for query images is to use
SfM. An SfM model containing both the database and query images is built
and the resulting poses of the query images are used as ground truth [1, 11,
12]. Yet, this approach again relies on local feature matches and can only
succeed if the query and database images are sufficiently similar [13]. The
benchmark datasets constructed this way thus tend to only include images
that are relatively easy to localize in the first place.

In this paper, we present heavily extended versions of the datasets pre-
sented in [14], for benchmarking visual localization under changing con-
ditions. To create these datasets, we heavily rely on human work: We
manually annotate matches between images captured under different condi-
tions and verify the resulting ground truth poses. The three complimentary
benchmark datasets are based on existing data [15–17]. All consist of a 3D
model constructed under one condition and offer query images taken under
different conditions: The Aachen Day-Night dataset focuses on localizing
high-quality night-time images against a day-time 3D model. The RobotCar
Seasons and the Extended CMU Seasons dataset both consider automotive
scenarios and depict the same scene under varying seasonal and weather
conditions. One challenge of the RobotCar Seasons dataset is to localize
low-quality night-time images. The CMU Seasons dataset focuses on the
impact of seasons on vegetation and thus the impact of scene geometry
changes on localization.

In this paper we make the following contributions: (i) We create a new
outdoor benchmark complete with ground truth and metrics for evaluating
6DOF visual localization under changing conditions such as illumination
(day/night), weather (sunny/rain/snow), and seasons (summer/winter). Our
benchmark covers multiple scenarios, such as pedestrian and vehicle local-
ization, and localization from single and multiple images as well as se-
quences. (ii) We provide an extensive experimental evaluation of state-
of-the-art algorithms from both the computer vision and robotics commu-
nities on our datasets. We showed that existing algorithms, including SfM,
have severe problems dealing with both day-night changes and seasonal
changes in vegetated environments. (iii) We showe the value of querying
with multiple images, rather than with individual photos, especially un-
der challenging conditions. (iv) We have made our benchmarks publicly
available at visuallocalization.net, where we are also now hosting a
benchmarking server for evaluation of localization results on a hidden test
set for each dataset. We hope this will stimulate research on long-term
visual localization, local image feature learning, and related topics.

A preliminary version of this paper appeared at [14]. Since then, we have
extended the datasets and are releasing around half of the ground truth
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Image 3D SfM Model # Images Condition Changes 6DOF query
Dataset Setting Capture (# Sub-Models) Database Query Weather Seasons Day-Night poses
Alderley Day/Night [18] Suburban Trajectory 14,607 16,960 X X
Nordland [19] Outdoors Trajectory 143k X
Pittsburgh [20] Urban Trajectory 254k 24k
SPED [21] Outdoors Static Webcams 1.27M 120k X X X
Tokyo 24/7 [22] Urban Free Viewpoint 75,984 315 X
7 Scenes [23] Indoor Free Viewpoint 26,000 17,000 X
Aachen [15] Historic City Free Viewpoint 1.54M / 7.28M (1) 3,047 369
Cambridge [24] Historic City Free Viewpoint 1.89M / 17.68M (5) 6,848 4,081 X(SfM)
Dubrovnik [1] Historic City Free Viewpoint 1.89M / 9.61M (1) 6,044 800 X(SfM)
Landmarks [9] Landmarks Free Viewpoint 38.19M / 177.82M (1k) 204,626 10,000
Mall [12] Indoor Free Viewpoint 682 2296 X
NCLT [25] Outdoors & Indoors Trajectory about 3.8M X X
Rome [1] Landmarks Free Viewpoint 4.07M / 21.52M (69) 15,179 1000
San Francisco [9, 11, 26] Urban Free Viewpoint 30M / 149M (1) 610,773 442 X(SfM)
Vienna [27] Landmarks Free Viewpoint 1.12M / 4.85M (3) 1,324 266
Aachen Day-Night [14] Historic City Free Viewpoint 1.65M / 10.55M (1) 4,328 922 X X
RobotCar Seasons (updated) Urban Trajectory 6.77M / 36.15M (49) 27,180 5,616 X X X X
Extended CMU Seasons (new) Suburban Trajectory 3.37M / 17.17M (24) 60,937 56,613 X X X

Table 1: Comparison with existing benchmarks for place recognition and
visual localization. "Condition Changes" indicates that the viewing condi-
tions of the query images and database images differ. For some datasets,
images were captured from similar camera trajectories. If SfM 3D models
are available, we report the number of sparse 3D points and the number
of associated features. Only our datasets provide a diverse set of changing
conditions, reference 3D models, and most importantly ground truth 6DOF
poses for the query images.

poses for all environmental conditions for the CMU Seasons and RobotCar
Seasons datasets. Particularly, the CMU Seasons dataset has been extended
with around 40% more images. These new images are primarily from areas
with heavy vegetation, and are thus very challenging since this is the type
of scenery that all evaluated localization methods struggle with. We hope
these new datasets will stimulate research on long-term visual localization,
local image feature learning, and related topics.

1 Related Work
Localization benchmarks. Tab. 1 compares our benchmark datasets
with existing datasets for both visual localization and place recognition.
Datasets for place recognition [18, 19, 21, 22, 28] often provide query im-
ages captured under different conditions compared to the database images.
However, they neither provide 3D models nor 6DOF ground truth poses.
Thus, they cannot be used to analyze the impact of changing conditions on
pose estimation accuracy. In contrast, datasets for visual localization [1, 9,
11, 12, 15, 23, 24, 26, 27] often provide ground truth poses. However, they
do not exhibit strong changes between query and database images due to re-
lying on feature matching for ground truth generation. A notable exception
is the Michigan North Campus Long-Term (NCLT) dataset [25], providing
images captured over long period of time and ground truth obtained via
GPS and LIDAR-based SLAM. Yet, it does not cover all viewing condi-
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tions captured in our datasets, e.g ., it does not contain any images taken
at night or during rain. To the best of our knowledge, ours are the first
datasets providing both a wide range of changing conditions and accurate
6DOF ground truth. Thus, ours is the first benchmark that measures the
impact of changing conditions on pose estimation accuracy.

Datasets such as KITTI [29], TorontoCity [30], or the Málaga Urban
dataset [31] also provide street-level image sequences. Yet, they are less
suitable for visual localization as only few places are visited multiple times.

3D structure-based localization methods [1, 2, 8, 9, 32–34] establish
correspondences between 2D features in a query image and 3D points in
an SfM point cloud via descriptor matching. These 2D-3D matches are
then used to estimate the query’s camera pose. Descriptor matching can
be accelerated by prioritization [1, 2, 35] and efficient search algorithms [4,
36]. In large or complex scenes, descriptor matches become ambiguous
due to locally similar structures found in different parts of the scene [9].
This results in high outlier ratios of up to 99%, which can be handled
by exploiting co-visibility information [8, 9, 34] or via geometric outlier
filtering [32, 33, 37].

We evaluate Active Search [2] and the City-Scale Localization approach [32],
a deterministic geometric outlier filter based on a known gravity direction,
as representatives for efficient respectively scalable localization methods.

2D image-based localization methods approximate the pose of a query
image using the pose of the most similar photo retrieved from an image
database. They are often used for place recognition [21, 22, 38–41] and loop-
closure detection [42–44]. They remain effective at scale [11, 28, 39, 45] and
can be robust to changing conditions [11, 21, 22, 38, 40, 46]. We evaluate two
compact VLAD-based [47] image-level representations: DenseVLAD [22]
aggregates densely extracted SIFT descriptors [48, 49] while NetVLAD [38]
uses learned features. Both are robust against day-night changes [22, 38]
and work well at large-scale [11].

We also evaluate the de-facto standard approach for loop-closure detec-
tion in robotics [50, 51], where robustness to changing conditions is crit-
ical for long-term autonomous navigation [18, 21, 22, 40, 46, 52]: FAB-
MAP [42] is an image retrieval approach based on the Bag-of-Words (BoW)
paradigm [53] that explicitly models the co-occurrence probability of differ-
ent visual words.

Sequence-based approaches for image retrieval are used for loop-closure
detection in robotics [18, 54, 55]. Requiring a matched sequence of images in
the correct order significantly reduces false positive rates compared to single-
image retrieval approaches, producing impressive results including direct
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day-night matches with SeqSLAM [18]. We evaluate OpenSeqSLAM [19]
on our benchmark.

Multiple cameras with known relative poses can be modelled as a gener-
alized camera [56], i.e., a camera with multiple centers of projections. Ap-
proaches for absolute pose estimation for both multi-camera systems [57]
and camera trajectories [58] from 2D-3D matches exist. Yet, they have
never been applied for localization in changing conditions. In this paper,
we show that using multiple images can significantly improve performance
in challenging scenarios.

Learning-based localization methods have been proposed to solve both
loop-closure detection [21, 40, 59, 60] and pose estimation [24, 61–63]. They
learn features with stable appearance over time [21, 46, 64], train classi-
fiers for place recognition [52, 65–67], and train CNNs to regress 2D-3D
matches [23, 68, 69] or camera poses [24, 61, 62].

2 Benchmark Datasets for 6DOF Localization

This section describes the creation of our three new benchmark datasets.
Each dataset is constructed from publicly available data, allowing our bench-
marks to cover multiple geographic locations. We add ground truth poses
for all query images and build reference 3D models (c.f . Fig. 3) from images
captured under a single condition.

All three datasets present different challenges. The Aachen Day-Night
dataset focuses on localizing night-time photos against a 3D model built
from day-time imagery. The night-time images, taken with a mobile phone
using software HDR post-processing, are of high quality. The dataset rep-
resents a scenario where images are taken with hand-held cameras, e.g ., an
augmented reality application.

Both the RobotCar Seasons and the Extended CMU Seasons datasets
represent automotive scenarios, with images captured from a car. In con-
trast to the Aachen Day dataset, both datasets exhibit less variability in
viewpoints but a larger variance in viewing conditions. The night-time
images from the RobotCar dataset were taken from a driving car with a
consumer camera with auto-exposure. This results in significantly less well-
lit images exhibiting motion blur, i.e., images that are significantly harder
to localize (c.f .Fig. 2).

The RobotCar dataset depicts a mostly urban scene with rather static
scene geometry. In contrast, the CMU dataset contains a significant amount
of vegetation. The changing appearance and geometry of the vegetation,
due to seasonal changes, is the main challenge of this dataset.
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reference model query images
# images # 3D points # features condition conditions (# images)

Aachen Day-Night 4,328 1.65M 10.55M day day (824), night (98)
RobotCar Seasons 20,862 6.77M 36.15M overcast dawn (681), dusk (591), night (678), night+rain (609), rain (615),

(November) overcast summer / winter (633 / 492), snow (645), sun (672)
Extended CMU Seasons 10,338 3.37M 17.17M sun / no foliage sun (16,300), low sun (21,629), overcast (8,179), clouds (10,270),

(April) foliage (24,876), mixed foliage (20,848), no foliage (10,654)
urban (18,307), suburban (21,512), park (16,559)

Table 2: Detailed statistics for the three benchmark datasets proposed in
this paper. For each dataset, a reference 3D model was constructed using
images taken under the same reference condition, e.g ., "overcast" for the
RobotCar Seasons dataset.

2.1 The Aachen Day-Night Dataset
Our Aachen Day-Night dataset is based on the Aachen localization dataset
from [15]. The original dataset contains 4,479 reference and 369 query im-
ages taken in the old inner city of Aachen, Germany. It provides a 3D SfM
model but does not have ground truth poses for the queries. We augmented
the original dataset with day- and night-time queries captured using stan-
dard consumer phone cameras.

To obtain ground truth poses for the day-time queries, we used COLMAP [70]
to create an intermediate 3D model from the reference and day-time query
images. The scale of the reconstruction is recovered by aligning it with the
geo-registered original Aachen model. As in [1], we obtain the reference
model for the Aachen Day-Night dataset by removing the day-time query
images. 3D points visible in only a single remaining camera were removed
as well [1]. The resulting 3D model has 4,328 reference images and 1.65M
3D points triangulated from 10.55M features.

Ground truth for night-time queries. We captured 98 night-time
query images using a Google Nexus5X phone with software HDR enabled.
Attempts to include them in the intermediate model resulted in highly in-
accurate camera poses due to a lack of sufficient feature matches. To obtain
ground truth poses for the night-time queries, we thus hand-labelled 2D-3D
matches. We manually selected a day-time query image taken from a similar
viewpoint for each night-time query. For each selected day-time query, we
projected its visible 3D points from the intermediate model into it. Given
these projections as reference, we manually labelled 10 to 30 corresponding
pixel positions in the night-time query. Using the resulting 2D-3D matches
and the known intrinsics of the camera, we estimate the camera poses using
a 3-point solver [71, 72] and non-linear pose refinement.

To estimate the accuracy for these poses, we measure the mean repro-
jection error of our hand-labelled 2D-3D correspondences (4.33 pixels for
1600x1200 pixel images) and the pose uncertainty. For the latter, we com-
pute multiple poses from a subset of the matches for each image and measure
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Figure 2: Example query images for Aachen Day-Night (top), RobotCar
Seasons (middle) and CMU Seasons datasets (bottom).

the difference in these poses to our ground truth poses. The mean median
position and orientation errors are 36cm and 1◦. The absolute pose accu-
racy that can be achieved by minimizing a reprojection error depends on the
distance of the camera to the scene. Given that the images were typically
taken 15 or more meters from the scene, we consider the ground truth poses
to be reasonably accurate.

2.2 The RobotCar Seasons Dataset
Our RobotCar Seasons dataset is based on a subset of the publicly available
Oxford RobotCar Dataset [16]. The original dataset contains over 20M
images recorded from an autonomous vehicle platform over 12 months in
Oxford, UK. Out of the 100 available traversals of the 10km route, we select
one reference traversal in overcast conditions and nine query traversals that
cover a wide range of conditions (c.f .Tab. 1). All selected images were
taken with the three synchronized global shutter Point Grey Grasshopper2
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Figure 3: 3D models of the Aachen Day-Night (left, showing database (red),
day-time query (green), and night-time query images (blue)), RobotCar Sea-
sons (middle), and Extended CMU Seasons (right) datasets. For RobotCar
and CMU, the colors encode the individual submaps.

cameras mounted to the left, rear, and right of the car. Both the intrinsics
of the cameras and their relative poses are known.

The reference traversal contains 26,121 images taken at 8,707 positions,
with 1m between successive positions. Building a single consistent 3D model
from this data is very challenging, both due to sheer size and the lack of
visual overlap between the three cameras. We thus built 49 non-overlapping
local submaps, each covering a 100m trajectory. For each submap, we ini-
tialized the database camera poses using vehicle positions reported by the
inertial navigation system (INS) mounted on the RobotCar. We then iter-
atively triangulated 3D points, merged tracks, and refined both structure
and poses using bundle adjustment. The scale of the reconstructions was
recovered by registering them against the INS poses. The reference model
contains all submaps and consists of 20,862 reference images and 6.77M 3D
points triangulated from 36.15M features.

We obtained images from the other traversals by selecting reference po-
sitions inside the 49 submaps and gathering all images from the nine other
traversals with INS poses within 10m of one of these positions. This resulted
in 11,934 images in total, where triplets of images were captured at 3,978
distinct locations. These images were grouped into 460 temporal sequences
based on the timestamps of the images.

We have also, in addition to the poses of the images from the reference
traversal, also publicly released around half of the camera poses for the
images from the other traversals (and thus captured during different con-
ditions), for a total of 27,180 images. The camera poses of the remaining
5,616 images are used as a hidden test set in the long-term visual localization
benchmark for the RobotCar Seasons dataset.

Ground truth poses for the queries. Due to GPS drift, the INS poses
for these other traversals cannot be directly used as ground truth. Again,
there are not enough feature matches between day- and night-time images
for SfM. We thus used the LIDAR scanners mounted to the vehicle to build
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local 3D point clouds for each of the 49 submaps under each condition.
These models were then aligned to the LIDAR point clouds of the refer-
ence trajectory using ICP [73]. Many alignments needed to be manually
adjusted to account for changes in scene structure over time (often due to
building construction and road layout changes). The final median RMS er-
rors between aligned point clouds was under 0.10m in translation and 0.5◦

in rotation across all locations. The alignments provided ground truth poses
for these images.

2.3 The CMU Seasons Dataset

The Extended CMU Seasons Dataset is based on a subset of the CMU Visual
Localization Dataset [17], which contains more than 100K images recorded
by the Computer Vision Group at Carnegie Mellon University over a period
of 12 months in Pittsburgh, PA, USA. The images were collected using a
rig of two cameras mounted at approximately 45 degrees forward/left and
forward/right angles on the roof of an SUV. The vehicle traversed an 8.5 km
long route through central and suburban Pittsburgh 16 times with a spacing
in time of between 2 weeks up to 2 months. Out of the 16 traversals, we
selected the one from April 4 as the reference, and then 11 query traversals
were selected such that they cover the range of variations in seasons and
weather that the data set contains.

As with the RobotCar Seasons dataset, we publicly release all images
and corresponding ground truth poses for reference traversal, in addition
to around half of the ground truth poses from the other traversals, for a
total of 60,937 images. The remaining half remain private as a test set for
benchmarking purposes.

Ground truth poses for the queries. As with the RobotCar dataset,
the GPS is not accurate enough and the CMU dataset is also too large to
build one 3D model from all the images. The full sequences were split up into
24 shorter sequences, each containing about 250 consecutive vehicle poses.
For each short sequence, a 3D model was built using bundle adjustment
of SIFT points tracked over several image frames. The resulting submaps
of the reference route were merged with the corresponding submaps from
the other traversals by using global bundle adjustment and manually an-
notating image correspondences across sequences collected during different
dates. Reprojection errors are within a few pixels for all 3D points and the
distances between estimated camera positions and expected ones (based
on neighbouring cameras) are under 0.10m. The resulting reference model
consists of 3.37M 3D points triangulated from 17.17M features in 10,338
database images.
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3 Benchmark Setup
We evaluate state-of-the-art localization approaches on our new benchmark
datasets to measure the impact of changing conditions on camera pose esti-
mation accuracy and to understand how hard robust long-term localization
is.

Evaluation measures. We measure the pose accuracy of a method by
the deviation between the estimated and the ground truth pose. The posi-
tion error is measured as the Euclidean distance ‖cest − cgt‖2 between the
estimated cest and the ground truth position cgt. The absolute orientation
error |α|, measured as an angle in degrees, is computed from the estimated
and ground truth camera rotation matrices Rest and Rgt. We follow stan-
dard practice [74] and compute |α| as 2 cos(|α|) = trace(R−1

gt Rest)−1, i.e., we
measure the minimum rotation angle required to align both rotations [74].

We measure the percentage of query images localized within Xm and
Y ◦ of their ground truth pose. We define three pose accuracy intervals
by varying the thresholds: High-precision (0.25m, 2◦), medium-precision
(0.5m, 5◦), and coarse-precision (5m, 10◦). These thresholds were chosen
to reflect the high accuracy required for autonomous driving. We use the
intervals (0.5m, 2◦), (1m, 5◦), (5m, 10◦) for the Aachen night-time queries
to account for the higher uncertainty in our ground truth poses. Still, all
regimes are more accurate than consumer-grade GPS systems.

Evaluated algorithms. As discussed in Sec. 2, we evaluate a set of
state-of-the-art algorithms covering the most common types of localization
approaches: From the class of 3D structure-based methods, we use Ac-
tive Search (AS) [11] and City-Scale Localization (CSL) [32]. From the
class of 2D image retrieval-based approaches, we use DenseVLAD [22],
NetVLAD [38], and FAB-MAP [42].

In order to measure the benefit of using multiple images for pose esti-
mation, we evaluate two approaches: OpenSeqSLAM [19] is based on image
retrieval and enforces that the images in the sequence are matched in correct
order. Knowing the relative poses between the query images, we can model
them as a generalized camera [56]. Given 2D-3D matches per individual
image (estimated via Active Search), we estimate the pose via a generalized
absolute camera pose solver [57] inside a RANSAC loop. We denote this ap-
proach as Active Search+GC (AS+GC). We mostly use ground truth query
poses to compute the relative poses that define the generalized cameras1.
Thus, AS+GC provides an upper bound on the number of images that can

1Note that Active Search+GC only uses the relative poses between the query images
to define the geometry of a generalized camera. It does not use any information about
the absolute poses of the query images.
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be localized when querying with generalized cameras.
The methods discussed above all perform localization from scratch with-

out any prior knowledge about the pose of the query. In order to measure
how hard our datasets are, we also implemented two optimistic baselines.
Both assume that a set of relevant database images is known for each query.
Both perform pairwise image matching and use the known ground truth
poses for the reference images to triangulate the scene structure. The fea-
ture matches between the query and reference images and the known in-
trinsic calibration are then be used to estimate the query pose. The first
optimistic baseline, LocalSfM, uses upright RootSIFT features [48, 49]. The
second uses upright CNN features densely extracted on a regular grid. We
use the same VGG-16 network [75] as NetVLAD. The DenseSfM method
uses coarse-to-fine matching with conv4 and conv3 features.

We select the relevant reference images for the two baselines as follows:
For Aachen, we use the manually selected day-time image (c.f .Sec. 2.1) to
select up to 20 reference images sharing the most 3D points with the selected
day-time photo. For RobotCar and CMU, we use all reference images within
5m and 135◦ of the ground truth query pose.

We evaluated PoseNet [24] but were not able to obtain competitive
results. We also attempted to train DSAC [69] on KITTI but were not
able to train it. Both PoseNet and DSAC were thus excluded from further
evaluations.

4 Experimental Evaluation
This section presents the second main contribution of this paper, a detailed
experimental evaluation on the effect of changing conditions on the pose
estimation accuracy of visual localization techniques. In the following, we
focus on pose accuracy. For more details on the algorithms and their specific
settings, see Sec. 5. In Fig. 5, cumulative distribution functions of the
translational error of the methods are shown for different conditions in the
three datasets.

Aachen Extended CMU
day night foliage mixed foliage no foliage urban suburban park

m
deg

.25/.50/5.0
2/5/10

0.5/1.0/5.0
2/5/10

.25/.50/5.0
2/5/10

.25/.50/5.0
2/5/10

.25/.50/5.0
2/5/10

.25/.50/5.0
2/5/10

.25/.50/5.0
2/5/10

.25/.50/5.0
2/5/10

Active Search 57.3 /83.7 /96.6 19.4 /30.6 /43.9 / / / / / / / / / / / /
CSL 52.3 /80.0 /94.3 24.5 /33.7 /49.0 47.0 / 50.2 / 55.3 52.4 / 56.1 / 62.0 80.3 / 83.2 / 86.5 71.2 / 74.6 / 78.7 57.8 / 61.6 / 67.5 34.4 / 37.0 / 42.2
DenseVLAD 0.0 /0.1 /22.8 0.0 /2.0 /14.3 7.4 /21.1 /68.0 8.5 /24.5 /73.0 10.0 / 32.7 /88.0 14.7 /36.3 /83.9 5.3 /18.7 /73.9 5.2 /19.2 / 62.0
NetVLAD 0.0 /0.2 /18.9 0.0 /2.0 /12.2 6.2 / 18.5 / 74.3 5.8 / 17.6 / 71.1 6.7 / 20.9 / 79.4 12.2 / 31.5 / 89.8 3.7 / 13.9 / 74.7 2.6 / 10.4 / 55.9
FABMAP 0.0 /0.0 /4.6 0.0 /0.0 /0.0 / / / / / / / / / / / /
LocalSfM 36.7 /54.1 /72.4 / / / / / / / / / / / /
DenseSfM 39.8 /60.2 /84.7
AS+GC(seq) / / / / / / / / / / / /

Table 3: Evaluation on the Aachen Day-Night dataset and a subset of the
conditions of the Extended CMU Seasons dataset.
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Figure 4: Cumulative distribution of position errors for the night-time
queries of the Aachen (left) and RobotCar (right) datasets.

4.1 Evaluation on the Aachen Day-Night Dataset
The focus of the Aachen Day-Night dataset is on benchmarking the pose
accuracy obtained by state-of-the-art methods when localizing night-time
queries against a 3D model constructed from day-time imagery. In order
to put the results obtained for the night-time queries into context, we first
evaluate a subset of the methods on the 824 day-time queries. As shown in
Tab. 3, the two structure-based methods are able to estimate accurate cam-
era poses and localize nearly all images within the coarse-precision regime.
We conclude that the Aachen dataset is not particularly challenging for the
day-time query images.

Night-time queries. Tab. 3 also reports the results obtained for the
night-time queries. We observe a significant drop in pose accuracy for both
Active Search and CSL, down from above 50% in the high-precision regime
to less than 50% in the coarse-precision regime. Given that the night-time
queries were taken from similar viewpoints as the day-time queries, this
drop is solely caused by the day-night change.

CSL localizes more images compared to Active Search (AS). This is not
surprising since CSL also uses matches that were rejected by AS as too
ambiguous. Still, there is a significant difference to LocalSfM. CSL and AS
both match features against the full 3D model while LocalSfM only considers
a small part of the model for each query. This shows that global matching
sufficiently often fails to find the correct nearest neighbors, likely caused by
significant differences between day-time and night-time descriptors.

Fig. 4(left) shows the cumulative distribution of position errors for the
night-time queries and provides interesting insights: LocalSfM, despite know-
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day conditions night conditions
dawn dusk OC-summer OC-winter rain snow sun night night-rain

m
deg

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

.25 / .50 / 5.0
2 / 5 / 10

ActiveSearch 42.7 / 87.7 / 98.7 57.9 / 86.8 / 100 28.9 / 73.9 / 94.3 39 / 90.2 / 100 66.3 / 91.7 / 99.5 42.3 / 84.7 / 98.6 33 / 53.1 / 71.9 0.9 / 2.2 / 3.5 1 / 3.9 / 6.4
CSL 54.2 / 89.4 / 96.9 75.1 / 95.4 / 100 37.4 / 82.9 / 91.5 48.2 / 96.3 / 100 73.2 / 94.6 / 100 61.4 / 94.9 / 97.2 33.9 / 52.7 / 71 0.4 / 1.3 / 6.2 1 / 5.4 / 12.8
DenseVLAD 15.4 / 45.8 / 97.4 7.6 / 35.5 / 98.5 9 / 30.3 / 88.2 2.4 / 28.7 / 97.6 13.7 / 50.7 / 100 10.2 / 38.1 / 93.5 8 / 22.3 / 78.1 0.9 / 4.4 / 24.3 2.5 / 5.9 / 25.1
NetVLAD 10.1 / 28.2 / 87.7 4.6 / 25.4 / 97.5 10 / 35.1 / 97.6 2.4 / 28.7 / 100 12.2 / 46.8 / 100 8.8 / 32.6 / 95.3 8.5 / 22.8 / 88.8 0 / 0.9 / 18.1 0.5 / 2 / 13.3
FABMAP 2.2 / 5.3 / 10.6 2.5 / 18.3 / 57.4 0.9 / 9.5 / 30.8 0.6 / 14 / 46.3 12.2 / 40.5 / 92.2 3.3 / 8.8 / 28.4 0 / 0 / 0.9 0 / 0 / 0 0 / 0 / 0

Table 4: Evaluation on the RobotCar Seasons dataset. We report the per-
centage of queries localized within the three thresholds.

ing relevant reference images for each query, completely fails to localize
about 20% of all queries. This is caused by a lack of correct feature matches
for these queries, either due to failures of the feature detector or descriptor.
DenseSfM skips feature detection and directly matches densely extracted
CNN descriptors (which encode higher-level information compared to the
gradient histograms used by RootSIFT). This enables DenseSfM to local-
ize more images at a higher accuracy, resulting in the best performance on
this dataset. Still, there is significant room for improvement, even in the
coarse-precision regime (c.f .Tab. 3). Also, extracting and matching dense
descriptors is a time-consuming task.

4.2 Evaluation on the RobotCar Seasons Dataset
The focus of the RobotCar Seasons dataset is to measure the impact of
different seasons and illumination conditions on pose estimation accuracy
in an urban environment.

Tab. 4 shows that changing day-time conditions have only a small impact
on pose estimation accuracy for all methods. The reason is that seasonal
changes have little impact on the building facades that are dominant in most
query images. The exception is the “sun” condition, where we observed
overexposed images caused by direct sunlight (c.f .Fig. 1). Thus, fewer
features can be found for Active Search and CSL and the global image
descriptors used by the image retrieval approaches are affected as well.

On the Aachen Day-Night dataset, we observed that image retrieval-
based methods (DenseVLAD and NetVLAD) consistently performed worse
than structure-based methods (Active Search, CSL, LocalSfM, and Dens-
eSfM). For the RobotCar dataset, NetVLAD and DenseVLAD essentially
achieve the same coarse-precision performance as Active Search and CSL.
This is caused by the lower variation in viewpoints as the car follows the
same road.

Compared to Aachen, there is an even stronger drop in pose accuracy
between day and night for the RobotCar dataset. All methods fail to local-
ize a significant number of queries for both the high- and medium-precision
regimes. Interestingly, DenseVLAD and NetVLAD outperform all other
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all day all night
m

deg
.25 / .50 / 5.0

2 / 5 / 10
.25 / .50 / 5.0

2 / 5 / 10
ActiveSearch 44.1 / 80.6 / 94.3 0.9 / 3 / 4.9
CSL 54.5 / 85.9 / 93.3 0.7 / 3.3 / 9.3
ActiveSearch+GC (triplet) 54.4 / 90.9 / 98.7 1.6 / 7.9 / 12.1
ActiveSearch+GC (sequence, GT) 53.2 / 93.3 / 100 5.4 / 25.6 / 47.1
seqSLAM 1 / 6 / 15.9 0.5 / 1.4 / 3

Table 5: Using multiple images for pose estimation (ActiveSeach+GC) on
the RobotCar Seasons dataset.

methods in the coarse-precision regime (c.f . Fig. 4(right)). This shows
that their global descriptors still encode distinctive information even if lo-
cal feature matching fails. The better performance of all methods under
"night+rain" compared to "night" comes from the autoexposure of the
RobotCar’s cameras. A longer exposure is used for the "night", leading
to significant motion blur.

Additionally, compared to the original test set of the RobotCar Seasons
from [14], the new test set seems to be somewhat easier: the performance
of all methods increase by a several percent compared to the results in [14].

Multi-image queries. The RobotCar is equipped with three synchro-
nized cameras and captures sequences of images for each camera. Rather
than querying with only a single image, we can thus also query with mul-
tiple photos. Tab. 5 shows the results obtained with seqSLAM (which uses
temporal sequences of all images captured by the three cameras) and Active
Search+GC. For the latter, we query with triplets of images taken at the
same time as well as with temporal sequences of triplets. For the triplets,
we use the known extrinsic calibration between the three cameras mounted
on the car. For the temporal sequences, we use relative poses obtained from
the ground truth (GT) absolute poses. For readability, we only show the
results summarized for day- and night-conditions.

Tab. 5 shows that Active Search+GC consistently outperforms single
image methods in terms of pose accuracy. Active Search+GC is able to
accumulate correct matches over multiple images. This enables Active
Search+GC to succeed even if only a few matches are found for each in-
dividual image. Naturally, the largest gain can be observed when using
multiple images in a sequence.

Location priors. In all previous experiments, we considered the full
RobotCar 3D model for localization. However, it is not uncommon in out-
door settings to have a rough prior on the location at which the query
image was taken. We simulate such a prior by only considering the sub-
model relevant to a query rather than the full model. While we observe only
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RobotCar - all night
m

deg
.25 / .50 / 5.0

2 / 5 / 10
2*ActiveSearch full model 0.9 / 3 / 4.9

sub-model 4.4 / 11.7 / 16.6
2*CSL full model 0.7 / 3.3 / 9.3

sub-model 0.5 / 4.7 / 18.4
2*ActiveSearch+GC (triplet) full model 1.6 / 7.9 / 12.1

sub-model 9.3 / 21.2 / 29.4
2*ActiveSearch+GC (sequence, GT) full model 5.4 / 25.6 / 47.1

sub-model 17.7 / 42.7 / 64.1
2*ActiveSearch+GC (sequence, VO) full model 1.4 / 11.2 / 24.2

sub-model 3.7 / 16.1 / 48
LocalSfM sub-model 20 / 35.9 / 49.9

Table 6: Using location priors to query only submodels rather than the full
RobotCar Seasons dataset for night-time queries.

a small improvement for day-time queries, localizing night-time queries sig-
nificantly benefits from solving an easier matching problem (c.f .Tab. 6).
For completeness, we also report results for LocalSfM, which also consid-
ers only a small part of the model relevant to a query. Active Search+GC
outperforms LocalSfM on this easier matching task when querying with se-
quences in the coarse regime. This is due to not relying on one single image
to provide enough matches.

One drawback of sequence-based localization is that the relative poses
between the images in a sequence need to be known quite accurately. Tab. 6
also reports results obtained when using our own multi-camera visual odom-
etry (VO) system to compute the relative poses. While performing worse
compared to ground truth relative poses, this more realistic baseline still
outperforms methods using individual images. The reasons for the perfor-
mance drop are drift and collapsing trajectories due to degenerate configu-
rations.

4.3 Evaluation on the Extended CMU Seasons Dataset
Compared to the urban scenes shown in the other datasets, significant parts
of the Extended CMU Seasons dataset show suburban or park regions. Sea-
sonal changes can drastically affect the appearance of such regions. In the
following, we thus focus on these conditions. For each query image, we only
consider its relevant sub-model.

Tab. 3 evaluates the impact of changes in foliage and of different regions
on pose accuracy. The reference condition for the Extended CMU Seasons
dataset does not contain foliage. Thus, other conditions for which foliage is
also absent lead to the most accurate poses. Interestingly, DenseVLAD and
NetVLAD achieve a better performance than Active Search and CSL for
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Figure 5: Cumulative distribution of position and orientation errors for the
three datasets.

the medium- and coarse-precision regimes under the "Foliage" and "Mixed
Foliage" conditions. This again shows that global image-level descriptors
can capture information lost by local features.

We observe a significant drop in pose accuracy in both suburban and
park regions. This is caused by the dominant presence of vegetation, leading
to many locally similar (and thus globally confusing) features. Again, we
notice that DenseVLAD and NetVLAD are able to coarsely localize more
queries compared to the feature-based methods.

5 Details on the Evaluated Algorithms

This section provides a detailed description, including parameter settings,
of the state-.

5.1 3D Structure-based Localization

Active Search (AS). Active Search [2] accelerates 2D-3D descriptor
matching via a prioritization scheme. It uses a visual vocabulary to quan-
tize the descriptor space. For each query feature, it determines how many
3D point descriptors are assigned to the feature’s closest visual word. This
determines the number of descriptor comparisons needed for matching this
feature. Active Search then matches the features in ascending order of the
number of required descriptor comparisons. If a 2D-to-3D match is found,
Active Search attempts to find additional 3D-to-2D correspondences for the
3D points surrounding the matching point. Correspondence search termi-
nates once 100 matches have been found.
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For the Aachen Day-Night dataset, we trained a visual vocabulary con-
taining 100k words using approximate k-means clustering [76] on all upright
RootSIFT [48, 49] descriptors found in 1,000 randomly selected database im-
ages contained in the 3D model. Similarly, we trained a vocabulary contain-
ing 10k words for the RobotCar Seasons dataset from the descriptors found
in 1,000 randomly selected images contained in the reference 3D model.

We use calibrated cameras rather than simultaneously estimating each
camera’s extrinsic and intrinsic parameters. We thereby exploit the known
intrinsic calibrations provided by the intermediate model of the Aachen
Day-Night dataset2 and the known intrinsics of the RobotCar Seasons.

Besides training new vocabularies and using calibrated cameras, we only
changed the threshold on the re-projection error used by RANSAC to dis-
tinguish between inliers and outliers. For the Aachen Day-Night dataset, we
used a threshold of 10 pixels while we used 5 pixels for both the RobotCat
Seasons.Otherwise, we used the standard parameters of Active Search.

City-Scale Localization (CSL). The City-Scale Localization algorithm [32]
is an outlier rejection algorithm, i.e., it is a robust localization algorithm
that can prune guaranteed outlier correspondences from a given set of 2D-
3D correspondences. CSL is based on the following central insight: If the
gravity direction and an approximate height of the camera above the ground
plane are known, it is possible to calculate an upper bound for the maximum
number of inliers that any solution containing a given 2D-3D correspondence
as an inlier can have. At the same time, CSL also computes a lower bound
on the number of inliers for a given correspondence by computing a pose for
which this correspondence is an inlier. CSL thus computes this upper bound
for each 2D-3D match and, similar to RANSAC, continuously updates the
best pose found so far (which provides a lower bound on the number of
inliers that can be found). All correspondences with an upper bound on the
maximum number of inliers that is below the number of inliers in the cur-
rent best solution can be permanently discarded from further consideration.
When outliers have been discarded, three-point RANSAC [71, 72] is per-
formed on the remaining correspondences. Notice that, unlike RANSAC,
the outlier filter used by CSL is deterministic. The computational complex-
ity of the filter is O(N2 logN), where N is the number of available 2D-3D
correspondences.

In order to obtain an estimate for the gravity direction, we follow [32]
and add noise to the gravity direction obtained from the ground truth poses.

2Some of the day-time queries were taken with the same camera as the night-time
queries and we enforced that the images taken with the same camera have consistent
intrinsics. Thus, the intermediate model provides the intrinsic calibration of the night-
time queries.
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Parameter Value
Feature Type Dense RootSIFT

Vocabulary Size 128
(trained on SF)

Descriptor Dimension 4,096
(after PCA & whitening)

Table 7: DenseVLAD parameters.

Parameter Value
Network model VGG-16 + NetVLAD

(trained on Pitts30k) + whitening
Descriptor Dimension 4,096

Table 8: NetVLAD parameters.

CSL iterates over a range of plausible height values, similar to [33]. In these
experiments, the height values cover an interval five meters high. This
interval is centered on the camera height of the ground truth pose, with
added noise. In the Aachen experiments, the height interval is divided into
nine sections, and for the Oxford and CMU experiments, the height interval
is divided into three sections.

The 2D-3D correspondences are generated by matching the descriptors
of all detected features in the query image to the descriptors of the 3D
points using approximate nearest neighbour search. To account for the fact
that each 3D point is associated with multiple descriptor, the 3D points
are each assigned a single descriptor vector equal to the mean of all its
corresponding descriptors. This matching strategy yields the same number
of correspondences as the number of detected features.

As with Active Search, we use a re-projection error threshold of 10 pix-
els for the Aachen Day-Night dataset and 5 pixels for both the RobotCat
Seasons and the Extended CMU Seasons datasets.

5.2 2D Image-based Localization

DenseVLAD and NetVLAD. We use the original implementations of
DenseVLAD [77] and NetVLAD [38] provided by the authors. Images were
processed at their original resolution unless any dimension exceeded 1920
pixels. For DenseVLAD, we used the Dense SIFT implementation, followed
by RootSIFT normalization [48], available in VLFeat [78]. The visual vo-
cabulary used consisted of 128 visual words (centroids) pre-computed on the
San-Francisco (SF) dataset [79], i.e., we used a general vocabulary trained
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Parameter Value
Feature Type UprightSURF128

Aachen Vocabulary Size 3585
RobotCar Vocabulary Size 5031

p (zi | ēi) 0
p (z̄i | ei) 0.61

p
(
Lnew | Zk−1

)
0.9

Table 9: FAB-MAP parameters.

on a different yet similiar dataset. For NetVLAD we used the pre-computed
network “Pitts30k” trained on the Pittsburgh time-machine street-view im-
age dataset [38]. The network is therefore not fine-tuned on our datasets,
i.e., we again used a general network trained on a different city.

Given a DenseVLAD or NetVLAD descriptor, we find the most similar
reference image by exhaustive nearest neighbor search. While this stage
could be accelerated by approximate search, we found this to be unnecessary
as the search for a single query descriptor typically takes less than 20ms.

Tables 7 and 8 summarize the parameters used for DenseVLAD and
NetVLAD in our experiments.

FAB-MAP. For FAB-MAP [42], we trained a separate vocabulary for
each location using Modified Sequential Clustering [80] on evenly spaced
database images, resulting in 3,585 visual words for Aachen Day-Night,
5,031 for RobotCar Seasons. A Chow-Liu tree was built for each dataset
using the Bag-of-Words generated for each database image using the vocab-
ulary. We used the mean field approximation for the new place likelihood
(as additional training images were not available for the sampled approach
used in [81]) and the fast lookup-table implementation in [82] to perform
image retrieval for each of the query locations. Tab. 9 summarizes the
parameters used for the experiments.

5.3 Optimistic Baselines

As explained in Sec. 5 of the paper, we implemented two optimistic baselines.
Whereas all other localization algorithms evaluated in the paper use no
prior information on a query image’s pose, both optimistic baselines are
given additional knowledge. For each query image, we provide a small set
of reference images depicting the same part of the model. The remaining
problem is to establish sufficiently many correspondences between the query
and the selected reference images to facilitate camera pose estimation. Thus,
both approaches measure an upper bound on the pose quality that can be
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achieved with a given type of local feature.

LocalSfM. Given a query image and its relevant set of reference images,
LocalSfM first extracts upright RootSIFT [48, 49] features. Next, LocalSfM
performs exhaustive feature matching between the relevant reference images
as well as between the query and the relevant reference images. While Ac-
tive Search uses Lowe’s ratio test3, DenseSfM neither uses the ratio test
nor a threshold on the maximum descriptor distance. Instead, it only re-
quires matching features to be mutual nearest neighbors. Given the known
poses and intrinsics for the reference images, LocalSfM triangulates the 3D
structure of the scene using the previously established 2D-2D matches. No-
tice that the resulting 3D model is automatically constructed in the global
coordinate system of the reference 3D model. Finally, we use the known
intrinsics of the query image and the feature matches between the query
and the reference images to estimate the camera pose of the query.

For each query image, the relevant set of reference images is selected as
follows: For the RobotCar Seasons dataset, we use the ground truth pose
of each query image to identify a relevant set of reference images. More
precisely, we select all reference images whose camera centers are within 5m
of the ground truth position of the query and whose orientations are within
135◦ of the orientation of the query image.

As explained in Sec. 3.2 of the paper, we manually select a day-time
query image taken from a similar viewpoint for each nigh-time query photo
in the Aachen Day-Night dataset. The day-time queries were included when
constructing the intermediate model. Thus, their ground truth poses as well
as a set of 3D points visible in each of them are obtain from the intermediate
Structure-from-Motion model. For each day-time query, we select up to 20
reference images that observe the largest number of the 3D points visible
in the day-time query. These reference images then form the set of relevant
images for the corresponding night-time query photo.

LocalSfM is implemented using COLMAP [70]. It is rather straight-
forward to replace upright RootSIFT features with other types of local
features. In order to encourage the use of our benchmark for the evaluation
of local features, we will make our implementation publicly available.

DenseSfM. DenseSfM modifies the LocalSfM approach by replacing Root-
SIFT [48] features extracted at DoG extrema [49] with features densely ex-
tracted from a regular grid [83, 84]. The goal of this approach is to increase
the robustness of feature matching between day- and night-time images [77,
85]. We used convolutional layers (conv4 and conv3) from a VGG-16 net-

3Active Search uses a ratio test threshold of 0.7 for 2D-to-3D and a threshold of 0.6
for 3D-to-2D matching.
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Parameter Value
Image Size 48× 48 (144× 48)
Patch Size 8× 8

Sequence Length ds 10

Table 10: SeqSLAM parameters.

work [75], which was pre-trained as part of the NetVLAD model (Pitts30k),
as features. We generated tentative correspondences by matching the ex-
tracted features in a coarse-to-fine manner: We first match conv4 features
and use the resulting matches to restrict the correspondence search for conv3
features. As for LocalSfM, we performed exhaustive pairwise image match-
ing. The matches are verified by estimating up to two homographies be-
tween each image pair via RANSAC [71]. The resulting verified feature
matches are then used as input for COLMAP [70]. The reconstruction pro-
cess is the same as for LocalSfM, i.e., we first triangulate the 3D points and
then use them to estimate the pose of the night-time query. DenseSfM uses
the same set of reference images for each query photo as LocalSfM.

SeqSLAM. We used the OpenSeqSLAM implementation from [19] with
default parameters for template learning and trajectory uniqueness. For
each set of synchronized Grasshopper2 images, we downscale the original
1024×1024 resolution to 48×48, then concatenate all three images to form
a 144× 48 pixel composite. The trajectory length parameter ds was set to
10 images; as both the query and database images are evenly spaced this
corresponds to a trajectory length of 10 meters. Tab. 10 summarizes the
parameters used for the RobotCar experiments.

6 Conclusion & Lessons Learned
In this paper, we have introduced three challenging new benchmark datasets
for visual localization, allowing us, for the first time, to analyze the impact
of changing conditions on the accuracy of 6DOF camera pose estimation.
Our experiments clearly show that the long-term visual localization problem
is far from solved.

The extensive experiments performed in this paper lead to multiple inter-
esting conclusions: (i) Structure-based methods such as Active Search and
CSL are robust to most viewing conditions in urban environments. Yet,
performance in the high-precision regime still needs to be improved sig-
nificantly. (ii) Localizing night-time images against a database built from
day-time photos is a very challenging problem, even when a location prior
is given. (iii) Scenes with a significant amount of vegetation are challeng-
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ing, even when a location prior is given. (iv) SfM, typically used to obtain
ground truth for localization benchmarks, does not fully handle problems
(ii) and (iii) due to limitations of existing local features. Dense CNN fea-
ture matching inside SfM improves pose estimation performance at high
computational costs, but does not fully solve the problem. Novel (dense)
features, e.g ., based on scene semantics [63], seems to be required to solve
these problems. Our datasets readily provide a benchmark for such features
through the LocalSfM and DenseSfM pipelines. (v) Image-level descriptors
such as DenseVLAD can succeed in scenarios where local feature match-
ing fails. They can even provide coarse-level pose estimates in autonomous
driving scenarios. Aiming to improve pose accuracy, e.g ., by denser view
sampling via synthetic images [22] or image-level approaches for relative
pose estimation, is an interesting research direction. (vi) There is a clear
benefit in using multiple images for pose estimation. Yet, there is little ex-
isting work on multi-image localization. Fully exploiting the availability of
multiple images (rather than continuing the focus on single images) is thus
another promising avenue for future research.
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Abstract

Robust and accurate visual localization across large appearance
variations due to changes in time of day, seasons, or changes of
the environment is a challenging problem which is of importance
to application areas such as navigation of autonomous robots.
Traditional feature-based methods often struggle in these con-
ditions due to the significant number of erroneous matches be-
tween the image and the 3D model. In this paper, we present a
method for scoring the individual correspondences by exploiting
semantic information about the query image and the scene. In
this way, erroneous correspondences tend to get a low semantic
consistency score, whereas correct correspondences tend to get
a high score. By incorporating this information in a standard
localization pipeline, we show that the localization performance
can be significantly improved compared to the state-of-the-art,
as evaluated on two challenging long-term localization bench-
marks.

1 Introduction

Visual localization, i.e., estimating the camera pose of a query image with
respect to a scene model, is one of the core problems in computer vision.
It plays a central role in a wide range of practical applications, such as
Structure-from-Motion (SfM) [1], augmented reality [2], and robotics [3],
where visual navigation for autonomous vehicles has recently been receiving
considerable attention.

Traditional approaches to the visual localization problem [4–10] rely on
local feature descriptors to establish correspondences between 2D features
found in a query image and 3D points in an SfM model of the scene. These
2D-3D matches are then used to estimate the camera pose of the query image
by applying an n-point-pose solver, e.g., [11], inside a RANSAC loop [12].
While learning-based alternatives exist [13–17], they are either significantly
less accurate than feature-based approaches [7, 17] or struggle to handle
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Figure 1: Illustration of the visual localization approach proposed in this
paper. We extend the standard localization pipeline (blue boxes) to include
a semantic consistency score (red boxes). Our approach rates the consis-
tency of each 2D-3D match and uses the score to prioritize more consistent
matches during RANSAC-based pose estimation.

larger scenes [14, 16, 18]. Feature-based approaches thus still represent the
current state-of-the-art [7, 17, 18].

Existing feature-based methods for visual localization tend to work very
well when the query image is taken under similar conditions as the database
images used for creating the 3D model. However, feature matching perfor-
mance suffers if the localization and mapping stages occur far apart in
time [18], e.g., in different weather conditions, between day and night, or
across different seasons. As feature detectors become less repeatable and
feature descriptors less similar, localization pipelines struggle to find enough
correct 2D-3D matches to facilitate successful pose estimation. One possible
solution is to map the scene in as wide a range of different conditions as pos-
sible. Yet, 3D model construction and extensive data collection are costly,
time-consuming, and tedious processes. At the same time, the resulting
models consume a significant amount of memory. Developing localization
algorithms that work well across a wide range of conditions, even if the 3D
model is constructed using only a single condition, is thus desirable.

This paper presents a step towards robust algorithms for long-term vi-
sual localization through a novel strategy for robust inlier / outlier detection.
The main insight is that semantic information can be used as a weak super-
visory signal to distinguish between correct and incorrect correspondences:
Given a semantic segmentation for each database image, we can assign a
semantic label to each 3D point in the SfM model. Given a pose estimate for
a query image, we can project the 3D points into a semantic segmentation
of the query image. An estimate close to the correct pose should lead to a
semantically consistent projection, where each point is projected to an im-
age region with the same semantic label. Based on this idea, we assign each
2D-3D match a semantic consistency score, where high scores are assigned
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Figure 2: For each ground truth camera pose, we have counted how many
true inlier 2D-3D matches have been obtained at the matching stage (shown
in the left figure). Note that in around 70% of the cases, there are less than
7 true inliers. For structure-based methods, typically 12 or more consistent
2D-3D matches are required to compute and verify a camera pose, cf. [4, 5,
19]. The right figure shows a histogram over the number of matches for the
same submap from the CMU Seasons dataset [18, 20].

to matches more likely to be correct. We later use these scores to bias sam-
pling during RANSAC-based pose estimation. See Fig. 1 for an overview.
While conceptually simple, this strategy leads to dramatic improvements in
terms of localization rate and pose accuracy in the long-term localization
scenario. The reason is that, unlike existing methods, our approach takes
advantage of unmatched 3D points, and consequently copes much better
with situations in which only few correct matches can be found.

While the idea of using semantics for localization is not new, cf. [21,
22], the challenge is to develop a computationally tractable framework that
takes advantage of the available information. In detail, this paper makes
the following contributions: 1) We present a new localization method that
incorporates both standard feature matching and semantic information in
a robust and efficient manner. At the center of our method is a novel
semantic consistency check that allows us to rate the quality of individual
2D-3D matches. 2) We extensively evaluate and compare our method to the
current state-of-the-art on two benchmarks for long-term visual localization.
Our experimental results show significant improvements by incorporating
semantics, particularly for challenging scenarios due to change of weather,
seasonal, and lighting conditions.

The remainder of this paper is structured as follows: Sec. 2 reviews
related work. Sec. 3 derives our semantic consistency score and shows how
it can be incorporated into a state-of-the-art localization pipeline. Sec. 5
extensively evaluates our approach in the context of long-term localization.
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2 Related Work

Traditionally, there are two approaches to solving the visual localization
problem: The first one uses image retrieval techniques to find the most
relevant database images for each query image [23–30]. The pose of the
query image is then either approximated by the pose of the top-ranked
retrieved image [24] or computed from the top-k ranking database images [7,
29, 31]. Instead of explicitly representing a scene by a database of images,
another approach is to implicitly model a scene by a CNN trained for pose
regression [13, 14, 17] or place classification [32].

The second approach is based on 3D scene models, typically recon-
structed using SfM. Such structure-based methods assign one or more feature
descriptors, e.g., SIFT [33] or LIFT [34], to each 3D point. For a given query
image, 2D-3D correspondences are established using descriptor matching.
These matches are then used to estimate the camera pose. Compared to
image-retrieval approaches, structure-based methods tend to provide more
accurate camera poses [7]. Yet, it is necessary that enough correct matches
are found to not only estimate a pose, but also to verify that the pose is
indeed correct, e.g., through inlier counting. As shown in Fig. 2 and [18],
these conditions are often not satisfied when the query images are taken
under significantly different conditions compared to the database images.
Our approach extends structure-based methods by incorporating semantic
scene understanding into the pose estimation stage.

Structure-based approaches for visual localization can be classified based
on their efficiency and ability to handle more complex scenes. Approaches
based on prioritized matching [4, 19, 35] focus on efficiency by terminat-
ing correspondence search once a fixed number of matches has been found.
In order to handle more complex environments, robust structure-based ap-
proaches either relax the matching criteria [5, 8–10, 36] or restrict the search
space [5, 6, 10, 37]. The latter type of methods use image retrieval [10, 37]
or co-visibility information [5, 6] to determine which parts of the scene are
visible in a query image, potentially allowing them to disambiguate matches.
The former type handles the larger amount of outliers resulting from a more
relaxed matching stage through deterministic outlier filtering. To this end,
they use geometric reasoning to determine how consistent each match is
with all other matches [8, 9, 36]. Especially when the gravity direction is
known, which is typically the case in practice (e.g., via sensors or vanish-
ing points), such approaches can handle outlier ratios of 99% or more [8,
9]. Our approach combines techniques from geometric outlier filtering [8,
9] with reasoning based on scene semantics. This enables our method to
better handle scenarios where it is hard to find correct 2D-3D matches.
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An alternative to obtaining 2D-3D correspondences via explicit feature
matching is to directly learn the matching function [15, 16, 38–41]. Such
methods implicitly represent the 3D scene structure via a random forest
or CNN that predicts a 3D scene coordinate for a given image patch [39].
While these methods can achieve a higher pose accuracy than feature-based
approaches [16], they also have problems handling larger outdoor scenes to
the extent that training might fail completely [16, 18, 22].

The idea of using semantic scene understanding as part of the visual
localization process has gained popularity over the last few years. A com-
mon strategy is to include semantics in the matching stage of visual local-
ization pipelines, either by detecting and matching objects [42–47] or by en-
hancing classical feature descriptors [48–50]. The latter type of approaches
still mainly relies on the strength of the original descriptor as semantics
only provide a weak additional signal. Thus, these approaches do not solve
the problem of finding enough correct correspondences, which motivates our
work. Recent work shows that directly learning a descriptor that encodes
both 3D scene geometry and semantic information significantly improves
matching performance [22]. Yet, this approach requires depth maps for
each query image, e.g., from stereo, which are not necessarily available in
the scenario we are considering.

In contrast to the previously discussed approaches, which aim at im-
proving the matching stage in visual localization, our method focuses on
the subsequent pose estimation stage. As such, most similar to ours is
existing work on semantic hypothesis verification [51] and semantic pose
refinement [21]. Given a hypothesis for the alignment of two SfM mod-
els, Cohen et al. [51] project the 3D points of one model into semantic
segmentations of the images used to reconstruct the other model. They
count the number of 3D points projecting into regions labelled as “sky" and
select the alignment hypotheses with lowest number of such free-space vio-
lations. While Cohen et al. make hard decisions, our approach avoids them
by converting our semantic consistency score into sampling probabilities
for RANSAC. Our approach aims at improving pose hypothesis generation
while Cohen et al. only rate given hypotheses. Given an initial camera pose
hypothesis, Toft et al. [21] use semantics to obtain a refined pose estimate
by improving the semantic consistency of projected 3D points and curve
segments. Their approach could be used as a post-processing step for the
poses estimated by our method.
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3 Semantic Match Consistency for Visual Local-
ization

As outlined above, long-term localization is a hard problem due to the
difficulty of establishing reliable correspondences. Our approach follows a
standard feature-based pipeline and is illustrated in Fig. 1. Our central
contribution is a novel semantic consistency score that is used to determine
which matches are likely to be correct. Building on top of existing work
on geometric outlier filtering [8, 9], we generate a set of pose hypotheses
for each 2D-3D correspondence established during the descriptor matching
stage. These poses are then used to measure the semantic consistency of
each match. We then use the consistency scores to bias sampling inside
RANSAC towards semantically consistent matches, allowing RANSAC to
focus more on matches more likely to be correct.

Specifically, for each pose hypothesis generated by a given 2D-3D match,
we project the visible 3D structure into the corresponding camera. Since
each 3D point is endowed with a semantic label, it is possible to compare the
observed semantic label in the query image with the label assigned to the
3D point. The semantic inlier count for that pose is given by the number of
3D points that project into pixels whose semantic class agrees with that of
the point. The semantic consistency for the 2D-3D correspondence is then
defined as the maximum semantic inlier count over all hypotheses generated
by that correspondence.

Our approach offers a clear advantage over existing outlier filtering
strategies [8, 9, 36]: Rather than being restricted to the 2D-3D correspon-
dences found during the matching stage, the semantic consistency score
allows us to also use unmatched 3D points when rating the 2D-3D matches.
As a result, our approach is better able to handle scenarios in which it is
hard to find many correct matches.

In this section, we present our proposed localization method based on se-
mantic consistency in detail. We first introduce necessary notation. Sec. 3.1
explains the pose hypothesis generation stage. Our semantic consistency
score is then described in Sec. 3.2. Finally, Sec. 3.3 summarizes the com-
plete pipeline.

Notation. We compute the camera pose of a query image relative to a
3D point cloud that has been pre-computed using a regular Structure-from-
Motion pipeline. The 3D map is defined as a set of 3D points

M = {( ~Xi, ci, ~fi, ~vi, θi, d
lower
i , dupper

i )}Ni=1 , (1)

where N is the number of 3D points in the model. Each 3D point is defined
by its 3D coordinates ~Xi, its class label ci (e.g., vegetation, road, etc),
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Figure 3: Example triangulation of a point during the 3D reconstruction
of the point cloud. The example shows a 3D point triangulated from three
observations. The quantities θi, dlower

i and dupper
i as defined in the text are

shown. The vector ~vi for this point is the unit vector in the middle between
~vlower and ~vupper.

visibility information, and its corresponding (mean) feature descriptor ~fi.
We encode the visibility information of a point as follows (cf. Fig. 3): ~vi
is a unit vector pointing from the 3D point towards the mean direction
from which the 3D point was seen during reconstruction. It is computed
by determining the two most extreme viewpoints from which the point was
triangulated (~vlower and ~vupper in the figure) and choosing the direction half-
way between them. The angle θi is the angle between the two vectors. The
quantities dlower

i and dupper
i denote the minimum and maximum distances,

respectively, from which the 3D point was observed during SfM. Note that
all this information is readily provided by SfM.

The semantic class labels are found by performing a pixelwise semantic
labelling of all database images. For a 3D point in the SfM model, we assign
its label ci to the semantic class it was most frequently observed in.

3.1 Generating Camera Pose Hypotheses

In order to determine the semantic consistency of a single 2D-3D match
~xj ↔ ~Xj, we compute a set of plausible camera poses for this match. We
thereby follow the setup used by geometric outlier filters [8, 9] and assume
that the gravity direction ~g in the local camera coordinates of the query
image is known. This assumption is not restrictive as the gravity direction
can typically be estimated very reliably from sensors or from vanishing
points. In the experiments, the gravity direction in local camera coordinates
was extracted from the ground truth camera pose.

Knowing the intrinsic camera calibration and the point position ~Xj, the
correspondence can be used to restrict the set of plausible camera poses
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Figure 4: If the gravity direction is known in the camera’s coordinate sys-
tem, a single 2D-3D match ~xj ↔ ~Xj constrains the camera center to lie
on a cone with ~Xj at the vertex, and whose axis is parallel to the gravity
direction. If the camera height is also known, the camera center must lie
on a circle (shown in red).

under which ~Xj exactly projects to ~xj [8, 9]: The camera center must lie
on a circular cone with ~Xj at its vertex (cf. Fig. 4). To see this, let the
position of the camera center be ~C and the coordinates of ~Xj be (xj, yj, zj)

T .
In a slight abuse of notation, let ~xj be the normalized viewing direction
corresponding to the matching 2D feature. Since the gravity vector ~g in
local camera coordinates is known, we can measure the angle β between
the gravity direction and the line that joins ~C and ~Xj as β = arccos(~gT~xj).
Assuming that the gravity direction in the 3D model coincides with the
z-axis, the angle between the line joining C and ~Xj and the xy−plane then
is

α = arccos(~gT~xj)− π/2 . (2)

The set of points ~C such that the angle between the xy − plane and the
line joining ~C and ~Xj equals α is a cone with ~Xj as the vertex. Note
that the cone’s position and opening angle are fully determined by ~g and
the correspondence ~xj ↔ ~Xj. Also note that the camera rotation is fully
determined at each point of the cone [9]: two of the rotational degrees of
freedom are fixed by the known gravity direction and the last degree is fixed
by requiring that the viewing direction of ~xj points to ~Xj. As a result, two
degrees-of-freedom remain for the camera pose, corresponding to a position
on the cone’s surface.

Often, the camera height z0 can be roughly estimated from the typical
depth of the 3D point in the SfM model1. Knowing the camera height
removes one degree of freedom. As a result, the camera must lie on the
circle with radius R given by R = |zj − z0|/| tanα|, which lies in the plane
z = z0, and whose center point is the point (xj, yj, z0) [9]. For a single

1This strategy is used in the experiments to estimate the camera heights.
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Algorithm 1 Semantic consistency score calculation for single correspon-
dence
1: procedure CalculateScore(~xj , ~Xj , ~g, z0,M)
2: maxScore← 0
3: α← arccos(~gT ~xj)− π/2 . Angle of cone
4: R← |zj − z0|/| tanα| . Radius of circle of possible camera poses
5: for φ ∈ {0◦, 1◦, . . . , 359◦} do
6: score← 0
7: Calculate camera center ~C(φ) using φ
8: Calculate projection matrix P (φ) using R, ~C(φ)

9: for ~Xk ∈M do
10: ~u← P (φ) ~Xk . Project 3D point into query image
11: if ~C(φ) ∈ Vk and Isemantic(~u) = ck then
12: score← score + 1 . Point is visible and semantically consistent
13: if score > maxScore then
14: maxScore← score
15: ~Cbest ← ~C(φ)

16: return (maxScore, ~Cbest)

correspondence ~xj ↔ ~Xj, we thus generate a set of plausible camera poses
by varying an angle φ that defines positions on this circle (cf. Fig. 4).

3.2 Measuring Semantic Match Consistency

Given a 2D-3D match ~xj ↔ ~Xj and its corresponding set of camera pose
hypotheses (obtained by discretizing the circle into evenly spaced points),
we next compute a semantic consistency score as described in Alg. 1.

For a camera pose hypothesis corresponding to an angle φ, we project
the semantically labelled 3D points from the SfM model into a semantic
segmentation of the query image. We then count the number of 3D points
that project to a pixel whose semantic class matches that of the 3D point.
For each pose on the circle, we thus find the number of 3D points that agree
with the semantic labelling of the query image. The semantic consistency
score for a match ~xj ↔ ~Xj is then defined as the maximum number of
semantic inliers while sweeping the angle φ. Note that we project all 3D
points in the model, not only the correspondences found via descriptor
matching. This means that the calculation of the consistency score is not
dependent of the quality of the correspondences.

Since we are using all 3D points in a model, we need to explicitly handle
occlusions: a 3D point is not necessarily visible in the image even though it
projects inside the image area for a given camera pose. We do so by defin-
ing a visibility volume for each 3D point from the corresponding visibility
information ~vi, θi, dlower

i and dupper
i . The volume for the ith point is defined

as

Vi =
{
~X ∈ R3 : dlower

i < || ~X − ~Xi|| < dupper
i ||,∠( ~X − ~Xi, ~vi) < θi

}
. (3)
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Figure 5: An example for sweeping over the angle φ for a single correct
2D-3D match. The upper left figure shows the number of semantic inliers
as a function of φ. The five images with projected points correspond to
the red lines in the top left and are shown in order from left to right. The
upper right image corresponds to the angle that yielded the largest number
of semantic inliers

A 3D point is only considered visible from a camera pose with with its
center at ~C if ~C ∈ Vi. The intuition is that a 3D point only contributes
to the semantic score if it is viewed from approximately the same distance
and direction as the 3D point was seen from when it was triangulated dur-
ing SfM. This is not too much of a restriction since local features are not
completely invariant to changes in viewpoint, i.e., features naturally do not
match anymore if a query image is taken too far away from the closest
database image.

To further speed up the semantic scoring, we limit the set of labelled
points that are projected into the image. For a 2D-3D match, only those
3D points inside a cylinder with radius R whose axis aligns with the gravity
direction and goes through the 3D point ~Xj are considered.

Discussion. Intuitively, if a match ~xj ↔ ~Xj is correct, we expect the
number of semantic inliers to be large for values of φ that correspond to
camera poses close to the ground truth pose, and small for values of φ that
yield poses distant to the ground truth pose. An example of this behavior
is shown in Fig. 5. On the other hand, if a match is an outlier, we would
expect only a small number of semantic inliers for all values of φ (cf. Fig. 1).

Naturally, the distribution of the number of semantic inliers over the
angle φ and the absolute value of the semantic consistency score depend on
how “semantically interesting" a scene is. As shown in Fig. 2, the case where
many different classes are observed leads to a clear and high peak in the
distribution. If only a single class is visible, e.g., “building", we can expect
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a more uniform distribution, both for correct and incorrect matches. As
shown later, our approach degenerates to the standard localization pipeline
in this scenario.

3.3 Full Localization Pipeline

Fig. 1 shows our full localization pipeline: Given a query image, we extract
local (SIFT [33]) features and compute its semantic segmentation. Using
approximate nearest neighbor search, we compute 2D-3D matches between
the query features and the 3D model points. We follow common practice and
use Lowe’s ratio test to filter out ambiguous matches [33]. Similar to work
on geometric outlier filtering [8, 9, 36], we use a rather relaxed threshold
of 0.9 for the ratio test to avoid rejecting correct matches. Next, we apply
our proposed approach to compute a semantic consistency score per 2D-3D
match (cf. Alg. 1). For each correspondence, an estimate of the camera
height z0 is obtained by checking where the database trajectory (whose
poses and camera heights are available) intersects the cone of possible poses.
Lastly, we apply an n-point-pose solver inside a RANSAC loop for pose
estimation, using 10’000 iterations.

We use the consistency scores to adapt RANSAC’s sampling scheme.
More precisely, we normalize each score by the sum of the scores of all
matches. We interpret this normalized score as a probability pj and use it
to bias RANSAC’s sampling, i.e., RANSAC selects a match ~xj ↔ ~Xj with
probability pj. This can thus be seen as a “soft” version of outlier rejection:
instead of explicitly removing correspondences that seem to be outliers, it
just becomes unlikely that they are sampled inside RANSAC. This strategy
guarantees that our approach gracefully degenerates to a standard pipeline
in semantically ambiguous scenes.

4 Experimental Evaluation

In this section we present experimental evaluations of the proposed algo-
rithm on two challenging benchmark datasets for long-term visual local-
ization. The datasets used are the CMU Seasons and RobotCar Seasons
datasets from [18].

CMU Seasons. The dataset is based on the CMU Visual Localization
dataset [20]. It consists of 7,159 database images that can be used for
map building, and 75,335 query images for evaluation. The images are
collected from two sideways facing cameras mounted on a car while travers-
ing the same route in Pittsburgh on 12 different occasions over the course
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of a year. It captures many different environmental conditions, includ-
ing overcast weather, direct sunlight, snow, and trees with and without
foliage. The route contains urban and suburban areas, as well as parks
mostly dominated by vegetation. All images are accompanied by accurate
six degrees-of-freedom ground truth poses [18].

CMU Seasons is a very challenging dataset due to the large variations
in appearance of the environment over time. Especially challenging are the
areas dominated by vegetation, since these regions change drastically in
appearance under different lighting conditions and in different seasons.

We used the Dilation10 network [52] trained on the Cityscapes dataset
[53] to obtain the semantic segmentations. The classes used to label the
3D points were: sky, building, vegetation, road, sidewalk, pole and ter-
rain/grass.

RobotCar Seasons. The dataset is based on a subset of the Oxford
RobotCar dataset [54]. It was collected using a car-mounted camera rig
consisting of 3 cameras facing to the left, right and rear of the car. The
dataset consists of 26,121 database images taken at 8,707 positions, and
11,934 query images captured at 3,978 positions. All images are from a
mostly urban setting in Oxford, UK, but they cover a wide variety of envi-
ronmental conditions, including varying light conditions at day and night,
seasonal changes from summer to winter, and various weather conditions
such as sun, rain, and snow. All images have a reference pose associated
with them. The average reference pose error is estimated to be below 0.10m
in position and 0.5◦ in orientation [18].

The most challenging images of this dataset are the night images. They
both exhibit a big change in lighting, but also, due to longer exposure times,
contain significant motion blur.

For the RobotCar dataset, semantic segmentations were obtained using
the PSPNet network [55], trained jointly on the Cityscapes [53] and Mapil-
lary Vistas [56] datasets2. Additionally, 69 daytime and 13 nighttime images
from the RobotCar dataset [54] were manually annotated by us, and incor-
porated into the training, in order to alleviate generalization issues. The
classes used to label the 3D points were: sky, building, vegetation, road,
sidewalk, pole and terrain/grass.

Evaluation protocol. We follow the evaluation protocol from [18], i.e., we
report the percentage of query images for which the estimated pose differs
by at most Xm and Y ◦ from their ground truth pose. As in [18], we use
three different threshold combinations, namely (0.25m, 2◦), (0.5m, 5◦), and

2Starting from a network pretrained on Cityscapes, joint training was carried out by
regarding 4 Cityscapes samples, 4 Mapillary Vistas samples and 1 RobotCar sample in
each iteration. Mapillary Vistas labels were mapped to Cityscapes labels by us.
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Table 1: Ablation study of our approach on the CMU Seasons dataset.
Method / Setting Urban Suburban Park

m 0.25 / 0.5 / 5 0.25 / 0.5 / 5 0.25 / 0.5 / 5
deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

Weighted, P3P 75.2 / 82.1 / 87.7 44.6 / 53.9 / 63.5 30.4 / 37.8 / 48.0
Unweighted, P3P 42.5 / 50.0 / 64.5 11.5 / 16.8 / 30.1 9.3 / 13.1 / 24.2
Weighted, P2P 81.7 / 88.0 / 92.3 55.4 / 65.5 / 73.1 39.5 / 47.5 / 58.2

Unweighted, P2P 72.9 / 80.0 / 87.0 41.3 / 50.8 / 61.8 29.7 / 37.0 / 49.1

Table 2: Ablation study of our approach on the RobotCar Seasons dataset.
Method / Setting all day all night

m 0.25 / 0.5 / 5 0.25 / 0.5 / 5
deg 2 / 5 / 10 2 / 5 / 10

Weighted, P3P 50.6 / 79.8 / 95.1 7.6 / 21.5 / 45.4
Unweighted, P3P 47.0 / 74.8 / 91.9 0.5 / 4.2 / 16.0
Weighted, P2P 35.4 / 73.2 / 93.4 13.0 / 34.1 / 63.1

Unweighted, P2P 34.1 / 71.3 / 93.3 5.1 / 20.8 / 46.8

(5m, 10◦).

4.1 Ablation Study

In this section we present an ablation study of our approach on both datasets.
The baseline is a standard, unweighted RANSAC procedure that samples

each 2D-3D match with the same probability. We combine this RANSAC
variant, denoted as unweighted, with two pose solvers: the first is a standard
3-point solver [57] (P3P) since the intrinsic calibration is known for all
query images. The second solver is a 2-point solver [58] (P2P) that uses the
known gravity direction. We compare both baselines against our proposed
weighted RANSAC variant that uses our semantic consistency scores to
estimate a sampling probability for each 2D-3D match. Again, we combine
our approach with both pose solvers.

Tables 1 and 2 show the results of our ablation study. As can be seen,
using our proposed semantic consistency scores (weighted) leads to clear
and significant improvements in localization performance for all scenes and
solvers on the CMU dataset. On the RobotCar dataset, we similar observe
a significant improvement when measuring semantic consistency, with the
exception of using the P2P solver during daytime. Interestingly, the P2P
solver outperforms the P3P solver on both datasets using both RANSAC
variants, with the exception of the daytime query images of the Oxford
RobotCar dataset. The reason for this is likely due to sensitivity of the
P2P solver to small noise in the ground truth vertical direction.
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Table 3: Comparison of our approach, using semantic consistency scoring
and the P3P pose solver, with state-of-the-art approaches on the CMU
Seasons dataset.

Method / Setting Urban Suburban Park
m 0.25 / 0.5 / 5 0.25 / 0.5 / 5 0.25 / 0.5 / 5

deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

ActiveSearch [19] 55.2 / 60.3 / 65.1 20.7 / 25.9 / 29.9 12.7 / 16.3 / 20.8
CSL [8] 36.7 / 42.0 / 53.1 8.6 / 11.7 / 21.1 7.0 / 9.6 / 17.0

DenseVLAD [28] 22.2 / 48.7 / 92.8 9.6 / 26.6 / 85.2 10.3 / 27.0 / 77.0
NetVLAD [23] 17.4 / 40.3 / 93.2 7.7 / 20.1 / 80.5 5.6 / 15.7 / 65.8

PROSAC P3P [59] 56.7 / 64.0 / 74.2 30.6 / 38.3 / 49.1 20.0 / 25.4 / 35.1
Single-match P3P 59.3 / 66.8 / 76.2 24.6 / 32.4 / 44.6 16.8 / 22.2 / 32.6
Sem. rank. (ours) 75.2 / 82.1 / 87.7 44.6 / 53.9 / 63.5 30.4 / 37.8 / 48.0

Table 4: Comparison of our approach, using semantic consistency scoring
and the P3P pose solver, with state-of-the-art approaches on the Robot-
Car Seasons dataset. See the supplementary materials for a more detailed
breakdown.

Method / Setting all day all night
m 0.25 / 0.5 / 5 0.25 / 0.5 / 5

deg 2 / 5 / 10 2 / 5 / 10

ActiveSearch [19] 35.6 / 67.9 / 90.4 0.9 / 2.1 / 4.3
CSL [8] 45.3 / 73.5 / 90.1 0.6 / 2.6 / 7.2

PROSAC P3P [59] 50.4 / 79.1 / 96.4 3.9 / 14.1 / 34.4
Single-match P3P 50.7 / 79.3 / 97.2 2.5 / 6.4 / 16.7
Sem. rank. (ours) 50.6 / 79.8 / 95.1 7.6 / 21.5 / 45.4

4.2 Comparison with State-of-the-Art

After demonstrating the benefit of our proposed semantic consistency scor-
ing, we compare our localization pipeline against state-of-the-art approaches
on both datasets, using the results reported in [18]. More concretely, we
compare against ActiveSearch (AS) [19] and the City-Scale Localization
(CSL) [8] methods, which represent the state-of-the-art in efficient and scal-
able localization, respectively. In addition, we compare against two image
retrieval-based baselines, namely DenseVLAD [28] and NetVLAD [23], when
their results are available in [18]. We omitted results for the methods Lo-
calSfM, DenseSfM, ActiveSearch+Generalized Camera, and FABMAP [60]
present in [18], since these use either a sequence of images (the latter two),
costly SfM approaches coupled with a strong location prior (the former
two), or use ground truth information (the former three), and are thus not
directly comparable. For a fair comparison with AS and CSL, we use the
variant of our localization pipeline that uses semantic consistency scoring
and the P3P solver.

Tables 3 and 4 show the results of our comparison. As can be seen,
our approach significantly outperforms both AS and CSL, especially in the
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high-precision regime. Especially the comparison with CSL is interesting as
our pose generation stage is based on its geometric outlier filtering strategy.
The clear improvements over CSL validate our idea of incorporating scene
semantics into the pose estimation stage in general and the idea of using
non-matching 3D points to score matches in particular.

On the CMU dataset, both DenseVLAD and NetVLAD can localize more
query images in the coarse-precision regime (5 m, 10◦). Both approaches
represent images using a compact image-level descriptor and approximate
the pose of the query image using the pose of the top-retrieved database
image. Both methods do not use any feature matching between images. As
shown in Fig. 6, this allows DenseVLAD and NetVLAD to handle scenarios
with very strong appearance changes in which feature matching completely
fails. Note that both DenseVLAD or NetVLAD could be used as a fallback
option for our approach.

Interestingly, the P3P RANSAC baseline outperforms AS and CSL in
several instances. This is likely due to differing feature matching strategies
and different numbers of RANSAC iterations. Active Search uses a very
strict ratio test, which causes problems in challenging scenes. CSL was
evaluated on CMU Seasons by keeping all detected features (no ratio test),
resulting in several thousand matches per image. CSL may have yielded
better results with a ratio test.

In addition, we also compare our approach to two methods based on
P3P RANSAC. The first is PROSAC [59], a RANSAC variant that uses a
deterministic sampling strategy, where correspondences deemed more likely
to be correct are given higher priority during sampling. In our experiments,
the quality measure used was the Euclidean distance between the descriptors
of the observed 2D point and the corresponding matched 3D point.

The second RANSAC variant employs a very simple single-match se-
mantic outlier rejection strategy: all 2D-3D matches for which the semantic
labels of the 2D feature and 3D point do not match are discarded before
pose estimation.

As can be seen in Tables 3 and 4, all three methods perform similarly
well on the relatively easy daytime queries of the RobotCar Seasons dataset.
However, our approach significantly outperforms the other two methods un-
der all other conditions. This clearly validates our idea of semantic consis-
tency scoring.

5 Conclusion

In this paper, we have presented a method for soft outlier filtering by us-
ing the semantic content of a query image. Our method ranks the 2D-3D
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Figure 6: Illustrations of the result of our method on the CMU Seasons
dataset. Rows 1 and 3 show query images that our method successfully
localizes (error < .25 m) while DenseVLAD and AS fail (error > 10 m) and
rows 2 and 4 the vice versa. Green boxes indicate true correspondences,
while gray circles indicate false correspondences. White/red crosses indicate
correctly/incorrectly detected inliers, respectively.

matches found by feature-based localization pipelines depending on how
well they agree with the scene semantics. Provided that the gravity di-
rection and camera height are (roughly) known, the camera is constrained
to lie on a circle for a given match. Traversing this circle and projecting
the semantically labelled scene geometry into the query image, we calculate
a semantic consistency score for this match based on the fit between the
projected and observed semantic labels. The scores are then used to bias
sampling during RANSAC-based pose estimation.

Experiments on two challenging benchmarks for long-term visual local-
ization show that our approach outperforms state-of-the-art methods. This
validates our idea of using scene semantics to distinguish correct and wrong
matches and shows the usefulness of semantic information in the context of
visual localization.
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Supplementary Material

Supplementary Materials

This supplementary material presents additional material not included in
the main paper: Sec. 6 shows more detailed results for the RobotCar
Seasons dataset. Sec. 7 shows example images for the RobotCar Seasons
dataset. Finally, Sec. 8 provides information about the run time of the
method.

6 Detailed Results for the RobotCar Seasons
Dataset

In the main article, we provided localization results for the day-all and
night-all conditions of the RobotCar Seasons dataset [18, 54]. Here, we
present a more detailed breakdown of the day and night conditions into the
different sub-conditions defined in [18]. Due to the large size of the table, we
have divided it into two tables, Tab. 5 and 6. The different conditions are:
Dawn, Dusk, Overcast-summer, Overcast-winter, Rain, Snow, Sun, Dawn,
Night and Night-rain. The last two make up the night-all category in the
main article, and the rest make up the day-all category.

Note that for most day conditions (when good correspondences are gen-
erally present), performing the semantic consistency ranking gives no signif-
icant increase in performance. For the more challenging conditions (such as
Sun, Night and Night-rain), ranking the correspondences based on their se-
mantic consistency allows the RANSAC procedure to find a better inlier set
by making it more unlikely to pick outlier correspondences. For these con-
ditions, we observe a significant improvement in localization performance
for our approach.

Table 5: Additional localization results on the Oxford Seasons dataset,
showing results for conditions Dawn, Dusk, Overcast-summer, Overcast-
winter and Rain. Results from the reference methods are taken from the
benchmark article [18].

Method Dawn Dusk OC-summer OC-winter Rain
m 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0

deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

ActiveSearch [19] 36.2 / 68.7 / 89.4 44.7 / 74.6 / 95.9 24.8 / 63.9 / 95.5 33.1 / 71.5 / 93.8 51.3 / 79.8 / 96.9
CSL [8] 47.2 / 73.3 / 90.1 56.6 / 82.7 / 95.9 34.1 / 71.1 / 93.5 39.5 / 75.9 / 92.3 59.6 / 83.1 / 97.6

DenseVLAD [28] 8.9 / 36.9 / 92.5 10.2 / 38.8 / 94.2 6.0 / 29.8 / 92.0 4.4 / 26.7 / 93.3 10.2 / 40.6 / 96.9
NetVLAD [23] 6.2 / 22.8 / 82.6 7.4 / 29.7 / 92.9 6.5 / 29.6 / 95.2 3.1 / 25.9 / 92.6 9.0 / 35.9 / 96.0
PROSAC [59] 53.6 / 79.9 / 94.4 55.3 / 83.2 / 95.9 40.6 / 76.5 / 99.1 43.1 / 78.7 / 97.4 61.2 / 82.1 / 98.1
Single-match 53.8 / 80.5 / 95.5 57.1 / 82.5 / 97.5 37.6 / 75.4 / 98.3 43.3 / 78.7 / 97.4 62.5 / 82.7 / 98.8

Weighted, P3P 53.4 / 81.0 / 97.1 53.8 / 83.0 / 97.7 39.5 / 75.6 / 92.4 39.5 / 72.3 / 85.1 62.0 / 82.4 / 99.0
Unweighted, P3P 52.4 / 77.4 / 95.4 58.9 / 83.8 / 97.7 36.7 / 69.3 / 89.2 36.2 / 70.3 / 81.3 61.8 / 82.9 / 98.8
Weighted, P2P 47.4 / 79.5 / 94.8 47.5 / 81 / 95.9 21.6 / 66.1 / 91.6 32.3 / 66.9 / 85.1 31.1 / 74.8 / 95.2

Unweighted, P2P 48.2 / 79.1 / 94.2 44.7 / 82.2 / 95.4 18.6 / 60.5 / 91.8 30.8 / 65.1 / 85.1 30.4 / 75.0 / 94.8
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Table 6: Additional localization results on the Oxford Seasons dataset,
showing results for conditions Snow, Sun, Night, and Night-rain. Results
from the reference methods are taken from the benchmark article [18].

Method Snow Sun Night Night-rain
m 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0 0.25 / 0.5 / 5.0

deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

ActiveSearch [19] 36.4 / 72.2 / 93.7 25.0 / 46.5 / 69.1 0.5 / 1.1 / 3.4 1.4 / 3.0 / 5.2
CSL [8] 53.2 / 83.6 / 92.4 28.0 / 47.0 / 70.4 0.2 / 0.9 / 5.3 0.9 / 4.3 / 9.1

DenseVLAD [28] 8.6 / 30.1 / 90.2 5.7 / 16.3 / 80.2 0.9 / 3.4 / 19.9 1.1 / 5.5 / 25.5
NetVLAD [23] 7.0 / 25.2 / 91.8 5.7 / 16.5 / 86.7 0.2 / 1.8 / 15.5 0.5 / 2.7 / 16.4
PROSAC [59] 56.6 / 85.9 / 96.7 41.2 / 68.0 / 93.3 3.2 / 8.9 / 29.2 4.5 / 19.3 / 39.5
Single-match 58.1 / 86.1 / 97.1 42.6 / 69.6 / 95.2 2.7 / 6.8 / 18.5 2.2 / 6.0 / 15

Weighted, P3P 56.4 / 85.5 / 98 46.5 / 74.6 / 95.9 6.2 / 18.5 / 44.3 8.0 / 26.4 / 46.4
Unweighted, P3P 54.8 / 85.5 / 96.9 29.6 / 54.8 / 83.5 0.2 / 4.1 / 15.8 0.7 / 4.3 / 16.4
Weighted, P2P 46 / 81.4 / 96.3 21.7 / 62.6 / 94.1 10 / 25.8 / 61 15.9 / 42.3 / 65.2

Unweighted, P2P 44.8 / 80.8 / 96.3 20.7 / 56.1 / 94.3 4.1 / 16.0 / 44.7 6.1 / 25.7 / 48.9

7 RobotCar Seasons examples

Most of the daytime images from the Oxford seasons data set are fairly
easy to localize correctly due to an abundance of buildings in the images.
The visual appearance of these buildings stays fairly constant, and these
buildings thus provide good, stable interest points to localize with. Most
failure cases can be found in the nighttime images. Fig. 7 shows examples
for these failure cases. We can see that the semantic classification fails for
large parts of the nighttime images, as buildings and even sky are misla-
belled. However, this is not particularly surprising given the limited amount
of nighttime training examples that the semantic segmentation algorithm
has seen during training.

8 Timing

In this section we present some information about the runtime of the pre-
sented algorithm. Fig. 8 shows histograms over the time required to cal-
culate the semantic consistency score per correspondence for all images in
the CMU Seasons dataset as well as the RobotCar Seasons dataset. Note
that the semantic scoring is perfectly parallel: the scores can be calculated
completely independently of one another. The algorithm is thus very well
suited for a parallel implementation. The histograms shows the time taken
for an unoptimized MATLAB implementation of the algorithm to calculate
the semantic consistency score for one correspondence.

Since the calculation of the consistency score mostly requires matrix-
vector multiplications (projections and angle calculations), the algorithm
could, due to its parallel nature, be implemented on a GPU for a significant
speedup if desired.

The time taken to score RobotCar Seasons correspondences is in gen-
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eral higher than for CMU Seasons correspondences since more points are
generally visible at each camera position.

In our implementation, the most time-consuming part is to check which
points are visible from each camera position, i.e., to check whether ~C ∈ Vi,
for each i. This part of our approach could be accelerated by pre-computing
a covisibility graph for the 3D points in the map.

101



Paper II. Semantic Match Consistency for Long-Term Visual...
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Figure 7: Illustrations of the result of our method on the RobotCar Sea-
sons dataset. Row 1 shows an example where Active Search fails, but our
method succeeds. Row 2 shows an example of the opposite case. Here
we can notice that all four correct correspondences are on the buildings,
but we also see that buildings have been misclassified in the segmenta-
tion (they should be gray). The two bottom rows show examples where
both algorithms perform similarly. Left: Example images used to construct
the database model. Middle: Query images with feature correspondences.
Green boxes indicate true correspondences, while gray circles indicate false
correspondences. White/red crosses indicate correctly/incorrectly detected
inliers, respectively. Right: Semantic segmentations of the query images.102
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Figure 8: Histogram over the time required to calculate the semantic con-
sistency score per correspondence for all images in the CMU Seasons and
the RobotCar Seasons datasets.
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Long-term Visual Localization Using
Semantically Segmented Images

E. Stenborg, C. Toft and L. Hammarstrand

Abstract

Robust cross-seasonal localization is one of the major challenges
in long-term visual navigation of autonomous vehicles. In this
paper, we exploit recent advances in semantic segmentation of
images, i.e., where each pixel is assigned a label related to the
type of object it represents, to solve the problem of long-term
visual localization. We show that semantically labeled 3D point
maps of the environment, together with semantically segmented
images, can be efficiently used for vehicle localization without
the need for detailed feature descriptors (SIFT, SURF, etc.).
Thus, instead of depending on hand-crafted feature descriptors,
we rely on the training of an image segmenter. The resulting
map takes up much less storage space compared to a traditional
descriptor based map. A particle filter based semantic local-
ization solution is compared to one based on SIFT-features, and
even with large seasonal variations over the year we perform on
par with the larger and more descriptive SIFT-features, and are
able to localize with an error below 1 m most of the time.

1 Introduction

Although autonomous vehicle navigation can be done in uncharted envi-
ronments, most efforts aiming at self-driving vehicles usable for every day
activities, such as commuting, rely on pre-constructed maps to provide in-
formation about drivable road ahead. A central task for the self-driving
vehicle is then to find its current location in these maps using observations
from its on-board sensors, such as camera, lidar, radar etc. For this, in
addition to navigational information, the maps typically describe the po-
sition of landmarks, i.e., points or structures in the environment, that can
easily be detected by the on-board sensors. When it comes to cameras, it
is common to use point features in the images as landmarks. The associ-
ated map is then constructed from these point features, where each feature
is described by its 3D position in the world and a condensed description
of the visual appearance of the local neighborhood around the feature. In
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the localization phase, these descriptors are used to find correspondences
between point features in the current image and the features in the map [1,
2]. A variety of methods for establishing these 2D-3D correspondences have
been investigated, and once found, they can be used for calculating the full
six-degrees-of-freedom camera pose [3–5].

The visual information captured by a camera is well suited for most
tasks related to driving. If interpreted correctly, it can be used, e.g., to de-
tect other road users or drivable road surface, and also to localize ourselves.
However, the abundance of information also provides several difficult chal-
lenges. For example, the appearance of our feature points may change due
to changes in light, weather, and seasonal variations. The traditional point
descriptors used, e.g., SIFT, SURF, BRIEF, have been carefully designed
to be robust towards uniform intensity changes and slight variation of view-
point, but most were not designed to be invariant against large changes
in lighting (day/night) or the fact that a tree looks completely different
in summer compared to in winter. Additionally, it has been shown that
the most commonly used feature detectors are very sensitive to changes in
lighting conditions[6], implying that even if the feature descriptor is robust
to these environmental changes, the resulting feature matches would still
be incorrect since the detector does not trigger at the same points during
localization as during mapping. Thus, when mapping and localization oc-
cur in sufficiently dissimilar conditions, it is very difficult to reliably match
features between the image and the map, resulting in poor positioning accu-
racy or even complete failure of the localization algorithm. This long-term
localization problem typically gets harder as the map gets older [7], and is
one of the major challenges in long-term autonomy.

The problem can be boiled down to finding a description of the environ-
ment that is both usable for localization, invariant over time, and compact.
If this can not be achieved, one has to cope with changing conditions by
continuously updating the map [7]. An attempt at having more robust fea-
ture points and descriptors is presented in [8], where they, instead of using
handcrafted feature descriptors, train neural networks to produce more ro-
bust feature descriptors. Although they show promising results compared
to SIFT they are not designed to handle the type of variations described
above.

In this paper we propose to use recent advances in semantic segmen-
tation of images [9], and design a localization algorithm based on these
semantically segmented images and a semantic point feature map, where,
instead of using the traditional descriptors to describe our features, each
point is only described by the semantic class of the object on which it re-
sides. By semantic class, we mean a classification into a a few classes that
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are meaningful for a human, e.g. "road", "building", "vegetation", etc.
The seasonal invariance is thus off-loaded from the feature descriptors to
the semantic segmentation algorithm. The aim is to show that localization
works well when the semantic classification is reasonably correct despite
the more space efficient representation of the environment. The positioning
performance of the proposed algorithm is compared to a localization algo-
rithm based on a traditional SIFT point feature map, using data collected
throughout a year.

2 Problem statement

This paper concerns the problem of sequentially finding the current position
of a vehicle in a point feature map using on-board cameras. The dataset
considered here comes from Carnegie Mellon University [10], and contains
both video, GPS measurements and odometry. In this section we present
the available observations in more detail and introduce notation for the
map. We conclude by defining the problem at hand mathematically.

2.1 Observations

The observations are taken with irregular, but known time intervals. We
denote the time instance for which one such measurement was taken as
t. Below follows a description of the information coming from the sensors
at one of these time instances. Relevant coordinate frames and mounting
positions are depicted in Fig. 1.

Odometry

The odometry provides a 3-D velocity and 3-D rotational velocity, denoted
vt = [vxt , v

y
t , v

z
t ]
T and ωt = [ωzt , ω

y
t , ω

x
t ]T , respectively. The velocities are

given relative the vehicle frame, and the superscripts indicate along or
around which axis the component acts.

Images

The vehicle is equipped with a pair of calibrated cameras, mounted as in-
dicated in Fig. 1. At a frequency of about 15 Hz each camera takes an
RGB image with resolution 1024×768. Although it is possible to use this
raw image data directly [11], it is somewhat complicated. A more common
approach is to condense the image into a set of feature points with asso-
ciated descriptor vector, and view this as the measurement. As such, the
image is pre-processed to produce a set of nt feature points and descriptor
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Figure 1: Coordinate frames used are "world" in local ENU (w), vehicle (v),
and camera (c). The origin of the vehicle frame is taken to be the mid point
between the cameras, which gives us a horizontal lever arm, perpendicular to
the direction of travel, to each camera. Also, the visibility wedge (γai , γbi , ri)
of a map point, Ui, is illustrated.

pairs, ft = {〈uit,dit〉}nti=1, where uit is a normalized image coordinate and dit
the associated descriptor vector.

In this paper, ft will have different properties depending on which map
we are using. In our proposed method (semantic point feature map) ft will
be dense and contain an element for each pixel in the image, see Fig. 2. In
the case of a SIFT based map on the other hand, ft is sparse and contains
only the pixels for which the SIFT-algorithm has generated a detection and
their associated SIFT-descriptors (a 128x1 vector).

2.2 Maps

We assume that we have a pre-constructed point feature map consisting of
M point features. Let us denote the map M = {〈Ui, Di, Vi〉}Mi=1. Each
point feature is described by its global position Ui = [U e

i , U
n
i , U

u
i ]T (east,

north and up, respectively), its associated descriptor vector, Di and visibil-
ity Vi = [ρi, γ

a
i , γ

b
i , ri]

T . The visibility of a feature point is parameterized
by a probability of detection ρi and a visibility volume defined by γai , γ

b
i ,

and ri. The ith point is modeled to have a detection probability of ρi in the
wedge shaped volume defined by the two angles γai , and γbi , in the horizontal
plane, out to a range, ri, from the point, and 0 elsewhere, see Fig. 1.
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Figure 2: Example of how visual appearance changes with time for a scene
(top half), and that semantic segmentation of the same images (bottom
half) show less variation over time, although there are still large areas,
especially around the tree and on the sidewalk which are misclassified.
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2.3 Problem definition

The problem at hand is to recursively calculate the posterior density of
the pose of the host vehicle relative to a map, M, given all observations.
That is, assuming that the pose of the host vehicle at time t is described
by the state xt, we want to sequentially calculate the density p(xt|f1:t,M).
Further, in this paper we assume that the vehicle state is given as xt =
[et, nt, ut, γt, βt, αt]

T , where (et, nt, ut) is the position in the global coordinate
frame and (γt, βt, αt) are the yaw, pitch and roll angles, respectively, of the
vehicle in the same coordinate frame.

3 Models

For a filtering solution to the problem defined above, we need both a process
model, describing how the state evolves over time, and measurement models
that describe the relation between the state and our observations.

3.1 Process model

We model the vehicle using a simple point mass model. As we deem that the
measurements from the gyroscope and wheel speed sensors are sufficiently
accurate for our purposes we have chosen to include them directly in our
process model. This model can be expressed in a difference equation,

P(xt) = ∆tP(xt−1) (1)

∆ =

[
e[∆tωt+qωt ]× ∆tvt + qvt

0 1

]
(2)

where P(·) ∈ SE(3) is the 4x4 matrix representation of a pose, [a]× is the
3×3 matrix such that [a]×b = a × b for all b, ∆t is the time between the
samples enumerated by t− 1 and t, and qt = [qωt ,q

v
t ]
T = N (qt; 0,∆tQ).

3.2 Measurement model

We will present a measurement likelihood given the set of feature points in
the current image ft, for both types of maps used in this paper, semantic
and SIFT.

To arrive at a concise description of the likelihood we here assume that
we know the correspondence between the points in the map and the points
in the current image. As such, we have a data association vector λt =
[λ1
t , . . . , λ

nt
t ]T , where λit = j indicates that image feature i corresponds to

map feature j if j > 0, otherwise the feature is not present in the map. Using
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this data association and assuming conditional independence between the
pairs of uit and dit, we get an expression for the likelihood as

p(ft|λt,xt,M) = p({〈uit,dit〉}nti=1|λt,xt,M)

=
∏
i

p(uit,d
i
t|λt,xt,M)

=
∏
i

p(uit,d
i
t|xt,Mλit

). (3)

whereMλit
denotes the 3-D point with associated descriptor and visibility

parameters in the mapM which corresponds to feature i according to the
data association λt. So to be able to express (3), we need to define the
model p(uit,dit|xt,Mλit

) for our two types of maps. How we handle the fact
that λt is not available from the measurements, is given in Section 4.

SIFT map

We start with a brief description of traditional localization in a point map
with SIFT descriptors. With a given data association, the descriptor part
of the feature will not contribute to the likelihood. We assume that the
location of the SIFT detection in the image is subject to some noise, and a
popular model for this is that the projection error of the 3-D points is zero
mean and normally distributed,

p(uit,d
i
t|xt,Mλit

) ∝ p(uit|xt,Uλit
)

= N (uit;π(xt,Uλit
), σ2

π), (4)

where π(·) is a standard pinhole camera projection model with lens distor-
tion[12], and σ2

π is the variance of the detector error. Both the mounting of
the camera relative the vehicle coordinate frame and its intrinsic parameters
are implicit in the π(·) function.

Semantic map

In the case of the semantic maps, both the descriptor of each map point, Dj,
and image feature descriptor dit is a scalar class label from the Cityscapes
classes [9], i.e., Dj ∈ {Building,Road, . . . }. Further, as the semantic seg-
mentation gives a class label for each pixel in the image, ft is dense in the
sense that it contains all the pixels in the image.

Even though the descriptor for nearby pixels in the image clearly are
correlated from the neural net classifier, we again make the simplifying
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assumption that the pixel class and pixel coordinates are independent and
can thus partition the likelihood for a single feature point as

p(uit, d
i
t|xt,Mλit

)

= p(uit|xt,Uλit
) Pr{dit|xt,Mλit

}. (5)

This factorization would lead to overconfidence in the observations, if not
adjusted for, and this will be addressed in Section 4.2. The first factor,
p(uit|xt,Uλit

), denotes the probability of detecting a feature in pixel i. How-
ever, since all pixels in the input image are classified by the segmenter, and
all pixels are used in the semantic model, pixel i will always detect a feature
and hence p(uit|xt,Uλit

) is constant for all i. We thus obtain

p(uit, d
i
t|xt,Mλit

) ∝ Pr{dit|xt,Mλit
}. (6)

Turning to the expression in the right hand side of (6), we have two
cases: either there is no map point projected to this pixel, λit = 0, or there
is one, λit > 0. In the first case, we have no information from the map about
its class, and we assume a distribution for all such pixels which is simply
the marginal distribution over all classes,

Pr{dit|λit = 0,xt,Mλit
} = Pr{dit}. (7)

In the second case, the pixel coordinates corresponds to a point in the
map but we are still uncertain if we detect the point or if it is occluded
by something, e.g., a vehicle or pedestrian. To handle this uncertainty we
introduce a detection variable δ which is 1 if the map point is detected in
the image and 0 otherwise. Using this detection variable we can express the
likelihood for the pixels with corresponding map points as

Pr{dit|xt,Mλit
} =

=
∑

δ∈{0,1}

Pr{dit
∣∣δ,Di

λ}Pr{δ
∣∣xt,Mλit

}, (8)

where Pr dit
∣∣δ = 0, Dλik

and Pr dit
∣∣δ = 1, Dλik

are design PMF:s for the pixel
class probability given that specific map point is occluded or visible, respec-
tively. These are sensor specific models that also depend on the properties of
the semantic segmentation algorithm used. The remaining model describes
the probability that a given map point is visible and can be structured as

Pr{δ = 1
∣∣xt,Uλik

,Vλik} = v(xt,Uλik
,Vλik)ρλik(1− Po), (9)

where v(·) is a function that is one if xt is in the visibility wedge of the map
point and Po is a design parameter specifying the probability that a visible
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map point is occluded. The probability for δ = 0 is found as the reciprocal
of (9).

To conclude, the likelihood is factored into one part for the pixel co-
ordinates uik and one for the descriptor dik. The first of the two factors is
1 for all pixels, and the second factor contributes to the product over all
features in (3) in two ways depending on whether or not there is a map
point projected in the i:th pixel, according to

p(ft|λt,xt,M) =
∏
i

p(uit,d
i
t|xt,Mλit

)

=
∏

i∈{i:λit>0}

p(dit|xt,Mλit
)
∏

i∈{i:λit=0}

Pr{dit}. (10)

4 Algorithmic details

Now we have tractable models for both the motion and the two different
classes of measurements based on SIFT descriptors and the semantic class
descriptor. The measurement models are conditioned on a specific data
association, and in the semantic class case, the model provides a simple
way to make the correct data association, but for SIFT descriptor case we
will describe the process further.

4.1 SIFT filter

Algorithm 1 SIFT based localization
1: initialize x0

2: for each time instance t do
3: acquire image yt
4: motion update (1)
5: extract SIFT points (ut,dt) from yt
6: select local mapMt fromM using V and x̂t
7: match nearest neighbor dt toMt

8: RANSAC on ut and U fromMt to find λt
9: measurement update (4)

Our reference localization algorithm is similar to [7], but instead of an
iterative optimization we have implemented a UKF filter, and instead of
iterative reweighting, we use RANSAC to select inliers from the proposal
correspondences. The UKF filter makes use of the process model (1) and
measurement model for SIFT features (4), and is described in pseudo code
in Algorithm 1.
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Before the SIFT detections can be used in (4), we must know the data
associations, λt. Recall that λt represents how point features are matched
between the observed image and the map M. We select one λt by first
selecting a subset of possibly visible points, Mt, from the full map, M,
based on the current pose estimate and the visibility of the map points
V . Then the observed SIFT descriptors are matched in the image to their
nearest neighbors (L2-distance in the descriptor space) in this local map,
Mt, using Lowe’s ratio criterion [13] to select candidate matches. Then, to
further cull false correspondences we employ a 3-point RANSAC approach
in which three correspondence pairs are selected, and the four camera views
that are consistent with these correspondences are calculated. Finally, we
select the configuration giving the most inliers according to the reprojection
error being less than a certain threshold, in our case 6 pixels.

4.2 Semantic filter

Algorithm 2 Sematic class based localization
initialize particles x0 and weights w0

2: for each time instance t do
acquire image yt

4: motion update (1)
assign class dit to each pixel of yt

6: select local mapMt fromM using V and xt
measurement update (12)

8: normalize weights wt, and resample if needed

For the localization using semantic data, we have chosen a bootstrap
particle filter [14] to recursively estimate the posterior distribution as a
sum of weighted Dirac delta functions. A particle filter is in this case more
suitable than, for example, a UKF as the likelihood is a probability mass
function.

To be able to evaluate the likelihood for a particle, we first need to
determine which points in the map are potentially visible. This is similar to
what is done for the SIFT case, and only needs to be done approximately and
can thus be calculated for several nearby particles simultaneously, e.g. using
their mean position together with the visibility parameters, V , from the
map. The potentially visible points are then projected to the image plane,
creating a unique assignment, λt, from map to pixels for each particle. An
illustration of map points projected into the segmented image is provided
in Fig. 3.
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Figure 3: Cropped area from a segmented image with map points projected
into it using the mean pose provided by the semantic localization filter.
Mapping and localization are in this case separated in time by only 2 weeks.
Black dots are map points which are classified mainly as building, green
represents vegetation, and yellow is from the pole class.

Dividing (10) by the constant
∏

i Pr dit will simplify the weight update
since we then only have to consider the pixels with a point projected into
them,

p(ft|λt,xt,M) ∝
∏

i∈{i:λit>0} p(d
i
t|xt,Mλit

)∏
i∈{i:λit>0} Pr{dit}

. (11)

Because we chose to model the measurements as conditionally indepen-
dent when they are in fact not, the update we would get from this would
be overly confident in the measurement, and to reduce this effect we raise
the measurement likelihood to a positive number smaller than 1, so that
the weight update for particle j becomes

w
(j)
t ← w

(j)
t−1 × p(ft|λt,x

(j)
t ,M)s/max{nλt ,Nc} (12)

where w(j)
t is the weight associated with the j:th particle with state x

(j)
t , s

is a scaling parameter, nλt is the number of map points that are projected
in the image, and Nc is a cutoff where more projected map points in the
image do not contribute with more information, with the rationale that
more points means their spacing in the image is smaller and thus their
corresponding measurements are more correlated to each other.

117



Paper III. Long-term Visual Localization Using Semantically...

The top level algorithm is summarized in pseudo code in Algorithm 2.

5 Evaluation

The localization framework is evaluated on the Carnegie Mellon University
(CMU) visual localization dataset [10, 15], where a test vehicle equipped
with two cameras traversed a route of approximately nine kilometers in
Pittsburgh sixteen times throughout the period September 1, 2010 - Septem-
ber 2, 2011. The route consists of a mix of urban and suburban areas, as
well as green parks where mostly vegetation is visible in the cameras. We
have used 12 of these 16 sequences in our evaluation. The selected runs
capture the changes of the environment throughout the seasons, as well as
a variety of weather and lighting conditions. The SIFT-features were ex-
tracted using VLFeat [16], and the semantic segmentation was done using
Dilation 10 [17].

5.1 Map creation

For camera localization to work, we need a map to localize in. The focus
of this paper is on the localization models, but we will give a small note
on how we have chosen to handle the map, since there is no map included
in the dataset. We have picked the first sequence of measurements from
1 September 2010 and created a map from that sequence of images. The
remaining sequences are not used in the map creation, but only used to
evaluate localization with respect to this map from Sep. 1. We used a
structure-from-motion pipeline based on [18], with the GPS and odometry
constraints used to create an initial trajectory, after which a bundle adjust-
ment procedure gave the final solution to landmarks and poses. Images at
standstill and very low speeds were culled in order to avoid unnecessary
computations. Because of limited computer resources, the whole sequence
was split into 38 smaller parts that were mapped separately.

After calculating the 3-D points and camera poses, the descriptors for
each point are determined. For the SIFT map, the arithmetic mean of the
descriptors corresponding to each view of the 3-D point is taken as the de-
scriptor of the 3-D point. For the semantic map, a small neighborhood of
7×7 pixels around the detected point in each image is taken and then a
normalized histogram over the classes of those pixels is used as the PMF
Pr{dit

∣∣δ = 1, Dλik
} directly. The marginal PMF from (7) is also calculated

from data, as the normalized histogram for all pixels in all images in the
mapping sequence. The last design PMF, Pr{dit

∣∣δ = 1, Dλik
}, is a manual

adjustment of the marginal PMF. The dynamic objects, such as cars and
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Figure 4: Storage space required for each point in the map. 3-D point
and visibility cone are needed regardless of descriptor. The descriptors are
quantized to 8 bit resolution.

Figure 5: One part of the map, as viewed in Google Maps 3-D view (top),
and the point cloud result of the structure from motion solution (bottom)
colored by most likely category where blue is "construction", green is "na-
ture", black is "flat" and red is "stationary object".
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Figure 6: Root mean square error of the eleven runs for both the semantic
class based localization and SIFT based localization.

pedestrians get increased probability while the stationary objects get de-
creased. We can see in fig. 4 that the size of SIFT descriptors is more than
6 times larger than even the most naive way of storing the semantic class
descriptor. We have observed that normally each point only has probability
mass in three or fewer classes, so if we encode only the top three most prob-
able classes for each point, the descriptor size can be reduced to 39 bits.
In fig. 5, we show an example of the resulting point cloud from the map
creation with semantic categories indicated by color.

5.2 Ground truth

The dataset provides GPS measurements and some form of ground truth
data which includes pose, but the ground truth trajectories were not com-
pletely accurate. In order to obtain a more reliable ground truth, the se-
quences were aligned by the same structure from motion pipeline as in the
map creation using the SIFT descriptors already available in each map.
Typically, matches between sequences are much less frequent than within
a sequence, and in 147 out of a total of 418 (11×38) pieces, not enough
matches to the map from Sep. 1 were found to produce a ground truth with
confidence. These sequences were then excluded from the evaluation. The
excluded portions seemed contain much vegetation, where SIFT is known
to not be very reliable, and thus we would expect the reference algorithm
to also perform badly in these areas compared to where we were able to
construct a reliable ground truth.
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Figure 7: Image and its segmentation for the place where semantic local-
ization fails. Localization image to the left and mapping image to the right.

6 Results

Overall semantic localization performed on par with the reference in our
evaluation. In one of the 271 parts with available ground truth, the seman-
tic localization algorithm suffered a failure from which it was not able to
recover. For the results below, only the non failing localization runs are
included. Fig. 6 shows the root mean square (RMS) error in meters for the
two approaches for the different test runs.

When looking into what causes bad localization for the SIFT based al-
gorithm, we notice faulty data association and extended time periods of not
enough inliers after the RANSAC as the main causes of failure. When look-
ing into the failure cases for the semantic localization we see mainly large
areas misclassified by the segmentation algorithm, or only very few classes
covering most of the image in such a way that the pose is not sufficiently
constrained in all dimensions, see example in Fig. 7.

7 Discussion

The results are promising in the sense that we can perform localization
with results comparable to the reference algorithm, despite using much less
informative point descriptors in the map. The results seem to contradict
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the goal of increased robustness, but from the typical failure cases we have
observed we believe that with improved segmentation algorithms trained
on data obtained during a larger range of environmental conditions (for
example during winter, in more extreme lighting conditions and so on),
and also possibly including more classes by, e.g., adding road markings,
splitting the vegetation into trunk/large branch and foliage, we would see
an improvement in failure cases of the semantic localization.
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Long-term 3D Localization and Pose from
Semantic Labellings

C. Toft, C. Olsson and F. Kahl

Abstract

One of the major challenges in camera pose estimation and
3D localization is identifying features that are approximately
invariant across seasons and in different weather and lighting
conditions. In this paper, we present a method for performing
accurate and robust six degrees-of-freedom camera pose estima-
tion based only on the pixelwise semantic labelling of a single
query image. Localization is performed using a sparse 3D model
consisting of semantically labelled points and curves, and an er-
ror function based on how well these project onto corresponding
curves in the query image is developed. The method is evalu-
ated on the recently released Oxford Robotcar dataset, showing
that by minimizing this error function, the pose can be recovered
with decimeter accuracy in many cases.

1 Introduction

In 1982 Marr’s unified theory of vision [1] was published and it has been a
major source of inspiration to the vision community. The theory resembles
human perception and works on multiple levels; starting with local visual
primitives and ending with a global understanding of the scene. Interest-
ingly, when examining today’s best performing visual mapping [2–4] and
localization [5, 6] systems, the overall understanding of the scene is largely
lacking. Instead they rely on the geometry of point projections and the
availability of local features that are descriptive enough to be uniquely and
reliably matched across images, without any semantic understanding.

The reliance on local texture descriptors makes the system sensitive
to viewpoint changes, weather conditions, lighting and seasonal variations
etc. that all affect local scene appearance. Additionally, without any high
level understanding it is hard to determine which parts of the scene may
be unreliable for localization such as cars or other moving objects. As
a consequence traditional geometric localization systems are insufficiently
constrained under weak local appearance information.
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Figure 1: Two examples of successfully localized pictures. In the left col-
umn, the query images are shown together with the reprojection of the 3D
curves corresponding to road edges and poles. The images on the right show
approximately the same location as seen in the mapping sequences. Note
that our baseline method based on LIFT features failed to obtain consistent
2D-3D matches.

This paper addresses the fundamental question "Is it possible to per-
form image localization from high level information, such as a semantic
understanding of the image content?" Such information is in contrast to lo-
cal texture largely invariant to weather, lighting and seasonal changes. We
leverage the recent progress in pixelwise semantic image labelling to obtain
robust scene descriptions suitable for long-term localization. The basic idea
is that the distribution of semantic classes in the query image should alone
be sufficient to provide strong constraints on the camera pose.

To solve the problem we create a scene model consisting of simple ge-
ometric primitives, such as 3D points and curves, but with a meaningful
semantic label. These are projected into the query image and compared
to its semantic content. Our results show that this simple approach can
be used for reliable long-term localization from a single query image, see
Figure 1 for two examples. As we are only using semantically labelled infor-
mation in the query image, the added invariance allows us to localize images
captured under completely different conditions than the model. One may
argue that we are not using all the information present in the query image,
as we only rely on the semantic labels. This is of course correct, and in a
practical system one should use all the available information in the query.
In this work, we are pushing the limits and investigating if it is possible to
achieve reliable camera pose estimation at all under these conditions. Our
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experimental results on long-term 3D localization in urban street scenes are
quite encouraging. We show that one can in many cases achieve global,
metric localization from a single image despite variations in seasons and
challenging lighting conditions where localization approaches based on lo-
cal features fail completely.

2 Related work

Traditionally, camera pose estimation (sometimes called ”camera resection-
ing”, or simply ”localization”) is performed by matching point features be-
tween the query image and the 3D model. In this case, the model simply
consists of a set of points in three-dimensional space. Associated to each
point is one or more descriptor vectors, describing the local appearance of
the point as it was seen when the 3D model was constructed. When a
picture is to be localized, feature points are extracted from the image, and
each image point is matched to the most similar point in the 3D model.
In this way, a set of 2D-3D correspondences are obtained, from which the
full six degrees-of-freedom pose can be calculated [7]. This is in contrast
to approaches working in the image domain only, solving the problem of
”visual place recognition”, see [8] for a survey. We will only be concerned
with the 3D localization problem.

The main problem that makes long-term localization difficult is the fact
that the feature descriptors used to describe the image and the 3D scene
are not invariant to the changes in environment seen during different sea-
sons, weather and time of day (such as SIFT [9], ORB [10] and SURF [11]).
Valgren and Lilienthal [12] examined the suitability of SIFT and SURF
for long-term localization from a single image and found that the upright
U-SURF performed best for their scenario. Another way to approach the
long-term localization problem is to find a new descriptor that better copes
with changes of the environment. For example, Yi et al [13] created a new
feature descriptor, called LIFT, by training a convolutional neural network
on image patches corresponding to the same feature but viewed under differ-
ent ambient conditions, and found that this descriptor generated more cor-
rect matches between pictures taken under very different lighting conditions
compared to SIFT. We use the LIFT descriptor for baseline comparisons to
our approach as LIFT outperforms many competing feature descriptors by
a large margin including SIFT.

Badino et al [14, 15] performed cross-seasonal visual localization on a
nine kilometer stretch of road in Pittsburgh. The road was traversed more
than a dozen times throughout the span of a year, capturing seasonal vari-
ations and a variety of weather conditions. A map was created using one of

129



Paper IV. Long-term 3D Localization and Pose from Semantic...

the traversals, storing the GPS location and the SURF features visible in the
camera at more or less equally spaced locations on the road. Localization
could then be performed on the remainder of the datasets using a Bayesian
filtering approach. The approach is hence dependent on the invariance of
the SURF descriptor. To compensate for feature matches being unreliable,
a sequence of consecutive images was used to perform localization. The
idea of using multiple images for localization (or rather place recognition)
was also pursued in [16] where up to 300 consecutive images were used to
perform localization based on a image intensity correlation measure. Self-
localization using only visual odometry information was investigated in [17].

There are a number of elaborate 3D localization algorithms from a sin-
gle image that have been developed for handling large rates of incorrect
matches, see [5, 6, 18–25]. Still, if local feature matching is not working
properly, such approaches are doomed to fail. In [26], a mining approach
is applied to find stable local features over time. Deep learning approaches
are presented in [27, 28]. In [29] an information-theoretic metric is derived
to compare the query image and a rendered image without relying on in-
dividual pixels for the purpose of long-term visual localization. Though it
requires a complete geometrical 3D model of the environment. We explore
an alternative route to obtain cues that are reliable in the long run by using
semantic information.

In [30], object recognition in indoor scenes is applied to obtain more
stable matches for robot localization in a 2D map. The approach is based
on particle filtering, which means that multiple observations over time are
needed. Another source of inspiration for our work is on semantic 3D re-
construction [31]. Here it is shown that 3D reconstruction and multi-view
stereo can be supported by using semantic labellings in the image.

3 A motivating example

The input to the localization algorithm is the pixelwise semantic labelling
of the query image. If the camera pose can be computed accurately using
only this information, then 3D localization can be performed robustly un-
der varying environmental conditions, provided that the method used for
semantic segmentation outputs accurate labels under these conditions. The
localization problem is thus moved over to the segmentation itself, mak-
ing accurate long-term localization a natural consequence of the progress in
semantic labelling.

Figure 2 shows a typical semantic labelling of an image from the Oxford
Robotcar dataset [32], where the labelling has been obtained by applying
the method described in [33] trained on the Cityscapes dataset [34]. The
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Figure 2: A typical example of a pixelwise semantic labelling of a picture
from the Oxford Robotcar dataset.

labelling consists of a single integer for each pixel, denoting the semantic
class assigned to it. The classes commonly include road, pavement, build-
ings, vegetation, poles and sky, among others. Note also that the different
connected components in the image are completely featureless and fully
characterized by their contours.

Through inspection of the image, one might expect to be able to extract
two kinds of pose information from the image. The course spatial distri-
bution of semantic classes in the image should be able to provide rough
information about where in the map the image is taken; pictures taken in
parks would be dominated by vegetation, whereas pictures taken in the city
center would likely contain considerably more buildings.

However, it also seems reasonable to expect to be able to extract more
precise metric information as well. The road and the contour where the
sky meets the distant vegetation provide information about the camera
rotation, the two edges of the road provide information about the lateral
position of the car on the road, and the poles on the side of the road should
provide accurate information about the longitudinal position along the road.
Taking all the evidence into account, it should thus be possible to calculate
the full six degrees-of-freedom pose from a single labelled image. In the
following section, we present a framework that handles this information in
a unified manner and allows efficient pose calculation by minimization of a
loss function.
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4 Framework for semantic localization

4.1 Model

Our model consists of two types of primitives; 3D points and space curves.
The 3D points {Xi}Mi=1 are each assumed to belong to a single semantic
category and therefore have an associated label. Given a candidate 3 × 4
camera matrix P (which encodes both orientation and position) we com-
pute the projection PXi and penalize dLi(PXi), where dLi(x) measures the
distance between x and the closest pixel in the image labelled Li. Note
that for a pixel labelled Li the absence of a correctly labelled projection
does not incur any penalty. It is only when a 3D point is projected into a
semantically different segment that a penalty occurs. This is essential since
our 3D models are built using standard SfM systems and are therefore far
from complete. Additionally, this allows us to handle occlusion in a very
simple but effective way by recording at what distances a 3D point should
be seen and adding a depth threshold to the dLi(PXi) term.

Since much of the information in a semantically labelled image is stored
in the curves separating different classes, our 3D model also includes a set
of space curves {Ci}Ni=1 endowed with two semantic labels L1

i and L2
i . For

the 3D curves we use a penalty
∫
PCi ηL1

i ,L
2
i
(x(s))ds, where ηL1

i ,L
2
i
(x) is a

function that computes the smallest truncated distance between the point
x and an image curve separating regions labelled L1

i and L2
i . Note that

our space curves may not correspond to actual physical curves. While the
curve separating road and sidewalk is real the skyline is not. We still found
that using these and treating them as curves far away helps to constrain
the localization. In particular they are useful for determining orientation.

Similar to the 3D points the curves in the 3D model do not need to
explain the entire observed image. For example, if we wish to use the
skyline where the distant vegetation meets the sky as a curve type (as we
do in the experimental section), we are not penalized if the skyline curve
in the 3D model is not reprojected onto the entire observed skyline in the
image. Instead, we are only penalized for every point where the projection
of the 3D curve representing the skyline does not coincide with the observed
skyline in the query image.

Our complete loss function is of the following form:

E(P ) =
N∑
i=1

λL1
i ,L

2
i

1

li

∫
PCi

ηL1
i ,L

2
i
(x(s))ds + (1)

+
M∑
i=1

γLi
1

MLi

dLi(PXi),
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Figure 3: Error map η for the class "poles” in the image in Figure 2.

where the integral is computed with arc-length parametrization in s. The
numbers λL1

i ,L
2
i
and γLi are weights for the different semantic classes, giving

us the choice to give some evidence more weight than other, if desired. In
the experiments performed in Sec. 5, these constants were all set to one.
li is the length of the reprojected curve i. The value MLi is the number
of points seen in the image with label Li. The loss function (1) can be
evaluated very efficiently by storing the distance functions ηL1

i ,L
2
i
and dLi

in a look-up table, as shown in Figure 3. When we wish to evaluate E for
a given pose P , the curves and points are projected into P , and then the
corresponding values for η and d are retrieved from the pre-computed table.
This makes iterative minimization of (1) very fast.

In the framework presented above, we have not specified what types of
curves to use for localization. In the localization experiments in Section 5,
the curves Ci were piecewise linear curves, since these are very simple to
project into the cameras and integrate over. We have also not specified any
specific semantic labels for the curves yet. The only requirement for them
to be useful is that it should be possible to reliably extract these curves
from a semantically labelled picture.

4.2 Optimization of loss function

The loss function is a complicated, non-convex function with many local
minima. In order to find a good minimum of (1), some prior knowledge
about the problem structure must be utilized. Otherwise, if gradient descent
is performed on an initially estimated camera pose, we run a high risk of
ending up in a local minimum unless the initial pose happens to be very close
to the global minimum. In the experiments presented in the next section,
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we used curves representing the two edges of the road and poles along the
street, as well as curves representing the contours of distant trees across the
sky. Exploiting this knowledge, the following procedure was performed to
minimize E(P ).

Given an initial estimate of the pose, gradient descent is performed on
(1) using only points and the road edges, the terms for the other lines set
to zero. This will likely yield good estimates for the camera rotation. This
is followed by gradient descent where only the terms corresponding to road
edges and poles are included.

At this stage, the rotation and lateral position of the car are likely close
to their optimal values. It is thus reasonable to assume that five of the six
degrees-of-freedom have been fixed: three for rotation, one for the lateral di-
rection, and one for the vertical direction. Since only one degree of freedom
remains, a line search is performed along this dimension, corresponding to
the longitudinal position of the car on the road. This direction is assumed
to be along the principal axis of the current camera. Figure 5 shows an
example of the loss function along this direction. Finally, a last round of
gradient descent is performed from the minimum obtained during the line
search, keeping all terms of the loss function. All the derivatives for the
gradient descent method are computed numerically.

The final question that must be addressed is where to obtain the initial
estimate P0 of the camera matrix. In a practical application, such as in a
real autonomous driving scenario, there is probably a quite good estimate
of the car position available from GPS (and other sensors) and internal
odometry that could be used as a starting point for the local optimization.
However, in this paper we perform global localization from a single labelled
image with no other information, and use a simple initialization method
based on the spatial statistics of the semantic labels in the query image.

Specifically, the top half of the segmented image is divided into six iden-
tically sized regions (two rows and three columns). Each region is then
assigned a descriptor vector by making a histogram over all pixel classes in
the region (excluding cars and pedestrians), and then normalizing the vec-
tor. To this vector, the two gradient histograms are then appended which
are obtained from the binary images corresponding to the building and veg-
etation classes seen in the region, after being normalized and scaled by a
factor 1/2. Finally, the six vectors obtained from all regions are stacked
into a final descriptor vector.

During construction of the 3D map, this descriptor vector was calculated
for all images in the mapping sequence. When later presented with an image
to localize, the descriptor was calculated for the query image, and then
matched to the closest descriptor from the mapping sequence. The found

134



5. Experiments

Dataset Date of collection Purpose Weather Number of images

1 2014-05-06 Map building Cloudy, diffuse lighting, few shadows 160
2 2014-05-06 Localization Similar to above 188
3 2014-05-06 Localization Mostly cloudy, but some sun and shadows 179
4 2014-11-28 Map building Overcast, diffuse lighting, few shadows 46
5 2015-02-03 Localization Winter, snow, some sun 71

Table 1: The five datasets used for evaluating the semantic localization
algorithm. The top three datasets represent the same physical road, tra-
versed three times during the same day, and the last two datasets represent
a different road, traversed during two different seasons.

camera was then used as the initial camera matrix P0 for local optimization.

5 Experiments

The presented framework for localization from semantically labelled images
was evaluated on the Oxford Robotcar dataset [32]. Two different locations
were used for the experiments. The first was a stretch of road approxi-
mately one hundred meters long and was traversed three times in slightly
different weather conditions during May 6, 2014. The second sequence was
approximately 70 m long and used to evaluate cross-seasonal localization.
The data collected on November 28, 2014 was used to build the 3D map,
and the data collected on the February 3, 2015 was used for 3D localization.
Table 1 contains some more information about the individual datasets.

To generate a gold-standard localization reference, all the sequences were
reconstructed using the publicly available structure from motion pipeline de-
scribed in [35]. By manually adding 2D correspondences between pairs of
sequences where necessary, all trajectories were reconstructed in the same
coordinate system. Note that adding manual correspondences was a neces-
sity as there were very few correspondences across the sequences. Bundle
adjustment was then applied to all points and cameras simultaneously.

The first sequence of each location (i.e., datasets 1 and 4 in Table 1)
was used as a reference - so called mapping sequence - from which semantic
3D maps were created, as will be explained below, and then the remaining
sequences were used to evaluate the localization algorithm. Since no ground
truth camera matrices are available in the dataset, the camera matrices
obtained for the test sequences after bundle adjustment were used as a
gold standard reference that the semantic localization could be compared
against.

Piecewise linear three-dimensional curves of three different types were
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Figure 4: An image from the mapping sequence, together with the repro-
jections of the 3D curves in the model.

reconstructed from the two mapping datasets. The different curve types
used were road edges, poles and distant vegetation-sky intersections. Fig-
ure 4 shows an image from the mapping datasets, where the 3D model has
been projected down into the camera. Note that the semantic 3D model is
sparse in the sense that it contains few elements and does not cover all the
imaged semantic content. As all space curves are piecewise linear, they are
represented as a discrete set of points. The poles are thus represented by
their start and end points, the road edges consist of around 100 3D points
each.

The vegetation-sky curve might at first seem like a strange choice to
include as a space curve, but it was found that the distant skyline was
extracted from the semantic segmenter with remarkable consistency. Note
also that if we can successfully match it to a curve in the observed image, we
have fully determined the camera rotation. The only drawback compared
with the other curves used is that the curve is not valid when the camera
gets close to the curve. This turned out to not be a big problem in practice,
since by the time it is no longer accurate, it has vanished from the top of
the image and is no longer visible.

The road edge was automatically reconstructed by extracting four points
on the road-pavement intersection in the 2D mapping image (using the
semantic labellings), identifying the 3D points visible within the obtained
quadrilateral, and then fitted a (road) plane through the corresponding 3D
points using RANSAC [36]. The four corner points identified in the picture
were then added to the 3D road curve. This procedure was repeated through
the mapping sequences.
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Figure 5: Example of cross-section of the loss function along the longitu-
dinal direction. This line search is performed after the lateral direction
and rotation have been established through gradient descent on the terms
representing road edges in Eq. (1).

The poles were automatically reconstructed by tracking the correspond-
ing connected components of the segmented pictures in the mapping se-
quence. Lines were then fitted to each pole in each image using a Hough
transform. A line in 3D space was then obtained for each pole by back-
projecting each observed 2D line and finding the intersection between these
planes. The top and bottom points on the 3D lines were extracted based
on at what height the top and bottom points of the pole were seen in the
images. The 3D points of the model were obtained by triangulating consis-
tent SIFT matches in the mapping sequences, where consistent here means
that the 3D points satisfy the epipolar geometry and that they project to
the same semantic label in all the visible mapping images.

The vegetation-sky curves were manually extracted by selecting a piece-
wise linear arc in an image. The 3D points seen in the image near that
region were then retrieved, and the 3D curve was placed at a depth equal
to the median depth of those points.

To perform localization of a single query image, the following procedure
is followed. First, the image is semantically labelled. From this labelling, the
error maps ηL1

i ,L
2
i
and dLi are calculated (cf. Figure 8). An initial estimate

for the camera matrix P is then obtained, from which local optimization of
(1) is performed. All constants λ and γ in (1) were set to one.
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6 Results

The localization results are shown in Figure 6. Localization was performed
on every image in the test datasets, each image being treated completely
independently from the others. The results for datasets 2 and 3 (cf. Table 1)
are shown together, and contain a total of 367 query images. The winter
sequence (dataset 5) contains 71 images in total. The top left histogram
over translational errors only show errors up to 10 m, but there were 20
outliers with translational errors greater than this, corresponding to bad
initializations by the histogram matching procedure described at the end
of Section 4. The rotational error histogram in the left column show all
rotational errors, while in the winter road sequence (right histogram), there
were 5 outliers outside the range shown. For the translational errors in the
winter road sequence, there are only three outlier images outside the range
shown in the translational error histogram.

The bottom row in Figure 6 shows a comparison with a three-point
RANSAC using LIFT features. For a given value on the x-axis, the y-axis
shows what fraction of the test images were localized to within the given
value of x.

A few remarks are in order. First, for the first two test datasets, the
localization accuracy is reasonably good. The translational error is less than
a meter for around 73% of the images, and it is within two meters for 89%.
The rotation was recovered within 2◦ degrees for 89% of the images.

When an image is successfully localized by LIFT, it is in general much
more precisely localized than it is by the semantic localization method pre-
sented here. LIFT often recovers the pose with centimeter accuracy, whereas
a pose constrained by several clear curves in our model tends to be localized
within a few decimeters or half a meter. This is not very surprising, since
the semantic features are more smeared out across the image than point
features, and when looking at a given semantic segmentation, there often
exists a rather large ambiguity as to where, for example, the poles and road
edges actually are located.

For the winter road sequence, the localization errors for both LIFT and
the current method were much larger than in the other test sets. In the
first sequence, all three datasets were collected during the same day, so the
dataset used to create the map was similar in appearance to the two test
datasets. However, for the second sequence, the mapping dataset used to
create the semantic 3D map was collected in late fall during a day when
there was no snow, and the test dataset was collected in February during a
snowy day, so the mapping and the test datasets appear very different.

The semantic localization algorithm mostly failed due to inaccurate seg-
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Figure 6: Localization results for the three datasets. The results for
datasets 2 and 3 were similar, and have therefore been merged together.
The first row shows histograms over the translational localization errors,
and the second row shows the rotational errors. On the third row, a com-
parison is made with an approach based on LIFT point features. For a
given value on the x-axis, the corresponding y-value gives the proportion
of localizations with a translational error less than the x-value. For exam-
ple, for datasets 2 and 3, 90% of the images were retrieved with 2.5 m or
less translational error. Also shown is the translational errors before any
local optimization is performed (i.e., using only the image retrieved by the
semantic retrieval initialization method).
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Figure 7: A failure case: No pavement was labelled as pavement, yielding
no road edges that could be used for localization.

mentations. Most public datasets for street-view segmentation do not con-
tain winter scenes, making the segmenters less accurate on these scenes.
For example, the snowy ground was often misclassified, typically as a car,
which made the loss function inaccurate since one of its terms evaluated
how well the 3D curves corresponding to the road edges project down onto
the road edges as seen in the query image. Figure 7 shows an example that
our algorithm failed to localize. No correct road edges were detected, and
the only pole that was correctly segmented was a drain pipe on the house
in the background. Since very little useful information could be extracted
from the input image, the localization failed.

Overall, we have seen that when the segmentation is accurate, it is gen-
erally possible to recover the camera rotation and translation with good
accuracy, confirming that the semantic labelling conveys very strong in-
formation about the camera pose. See Figures 1 and 8 for examples of
successful localizations.

7 Conclusion

We have considered the problem of how much pose information is stored
in the semantic labels of a picture alone. We presented a method for per-
forming full camera pose estimation based only on the pixelwise semantic
labelling of the query image, and saw that in situations where the labelling
is accurate, it is possible to recover the camera translation to within a few
decimeters or meters accuracy, depending on the quality and location of the
features observed, and the camera rotation to within a few degrees. We
have thus shown that a good semantic segmentation provides very strong
constraints on the camera pose.
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Figure 8: Top: An example of a successful localization from the winter
sequence. The image to the top left is the semantic segmentation of the
query image. The top middle image shows the error map η corresponding
to the poles observed in the segmented image. The figure on the top right
shows the original version of the query image before semantic segmentation,
together with the 3D structure projected down into the estimated camera
P found by minimizing the loss function. Bottom: The error maps dLi for
the classes sidewalk, building and vegetation, respectively, together with
the corresponding 3D points Xi projected down onto the estimated camera
P .
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We believe that these results are very encouraging, since it implies that
the steady progress of pixelwise semantic labelling can naturally be lever-
aged to improve the robustness of localization algorithms that otherwise
have trouble when mapping and localization occur far apart in time.

This work has been funded by the Swedish Research Council (grant
no. 2016-04445), the Swedish Foundation for Strategic Research (Semantic
Mapping and Visual Navigation for Smart Robots) and Vinnova / FFI
(Perceptron, grant no. 2017-01942).
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