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HALF–CENTERED OPERATORS

OLOF GISELSSON

(Communicated by H. Radjavi)

Abstract. An operator T on a Hilbert space is called half-centered if the sequence

T ∗T, (T ∗)2T 2, . . .

consists of mutually commuting operators. The class of such operators contains the well-studied
class of centered operators. In this paper we give a criterion for when a half-centered operator is
centered and prove a structure theorem for half-centered operators that satisfy some additional
conditions.

1. Introduction

A bounded operator T on a Hilbert space H is called centered if the operators in
the sequence {

. . .T 3T ∗3,T 2T ∗2,TT ∗,T ∗T,T ∗2T 2,T ∗3T 3 . . .
}

(1)

are mutually commuting. Examples include weighted shifts and obviously isometries
and self-adjoint operators. The structure of these operators is well understood; it has
been shown in [4] that, a bit simplified, a general centered operator is a direct sum
of weighted shifts (unilateral, bilateral or truncated). Another interesting article on the
subject is [6], here some particular situations are investigated in relation to more general
problems in operator theory.

The purpose of this paper is to investigate operators T satisfying the more general
condition that the sequence

{
T ∗T,T ∗2T 2,T ∗3T 3 . . .

}
(2)

consists of mutually commuting operators. As (2) is half of (1), we call such operators
half-centered.

We will mainly consider half-centered operators satisfying dim(TH )⊥ = 1 and
a certain technical density condition, which is however not very restrictive. It turns
out, that under these assumptions, either the structure of T is very simple and can be
explicitly described, or the operators in the sequence

{
T ∗kT k,k ∈ N

}
are not linearly
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independent. More specifically, there exists a,b,c,d ∈ R, not all zero, and strictly
positive integers n,m ∈ Z> such that the equation

aI +bT∗nTn + cT∗mTm +dT ∗m+nTm+n = 0 (3)

holds. This is the main result of the paper, and most of this text is concerned with
proving it.

In section 2, we first prove a result that gives necessary and sufficient conditions
for when a half-centered operator is centered; for example, any half-centered opera-
tor with dense range is centered. We will then give several examples of classes of
half-centered operators that are not necessarily centered, some of which have been ex-
tensively studied in the literature. It will also be shown that some very natural op-
erators are half-centered. For instance, any operator T ∈ B(L2(X ,μ)), that acts by
f (x) �→ a(x) f (φ(x)) where a ∈ L∞(X ,μ) and φ : X → X is a measurable function, is
half-centered by Proposition 2.5. In Section 2 will here also state the main theorem
and discuss the conditions under which it holds.

This paper is written in a decreasing level of generality. In section 3 we will
develop a theory for general injective operators that is needed in the latter sections and
which provides a useful framework to analyze the half-centered operators. Here we
will also prove some more general results about half-centered operators which do not
necessarily fall under the hypothesis of the main theorem.

Section 4 concerns injective half-centered operators T with dim(TH )⊥ = 1. It
will be shown that in this case, the spectrum of T ∗kT k restricted to certain subspaces
can be quite effectively analyzed.

In the last sections, 5 and 6, we will include then density condition as an assump-
tion and prove the main result.

Acknowledgment: The author would like to thank Åse Fahlander, Alexandru Ale-
man and Lyudmila Turowska for helpful discussions and valuable comments on the
text.

2. Half-centered operators: examples and notations

Clearly every centered operator is half-centered. As a first basic result, we give a
characterization of the half-centered operators that are actually centered. Here we use
the notation E := kerT ∗ = (TH )⊥. For a closed subspace V ⊆H , denote by PV the
orthogonal projection onto V.

PROPOSITION 2.1. Let T ∈B(H ) be a half-centered operator. The following
are equivalent:

1. T is centered.

2. T k∗TkE ⊆ E for all k ∈ N.

Proof. (1⇒2). Since (TT ∗)(Tk∗Tk) = (Tk∗Tk)(TT ∗) for all k ∈ N, it is easy to
see that the space E = kerT ∗ = kerTT ∗ is invariant under the operators T ∗kT k.
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(2⇒1). First, we notice that by 2, the projection PE commutes with the operators
T ∗kT k, this is then also true for the projection PTH = I−PE .

Now since
T ∗((T ∗ jT j)(TT ∗))T = (T ∗( j+1)T j+1)(T ∗T )

= (T ∗T )(T ∗( j+1)T j+1) = T ∗((TT ∗)(T ∗ jT j))T,

we have (PTH (T ∗ jT j)PTH )(TT ∗) = (TT ∗)(PTH (T ∗ jT j)PTH ) for all j ∈ N. This
gives

[T ∗ jT j,TT ∗] = PE (T ∗ jT j)TT ∗ −TT ∗(T ∗ jT j)PE = 0 (4)

as TT ∗(T ∗ jT j)PE = TT ∗PTH (T ∗ jT j)PE = 0 by 2, so T ∗kT k commutes with TT ∗.
Hence for any k ∈N, we have

T ∗k((T ∗ jT j)(Tk+1T ∗(k+1)))Tk = (T ∗( j+k)T j+k)(TT ∗)(T ∗kT k)

= (T ∗kT k)(TT ∗)(T ∗( j+k)T j+k) = T ∗k((T k+1T ∗(k+1))(T ∗ jT j))Tk,
(5)

where the second equality follows from (4). As

P
TkH

(Tk+1T ∗(k+1))P
TkH

= Tk+1T ∗(k+1),

we get from (5)

(P
TkH

(T ∗ jT j)P
TkH

)(Tk+1T ∗(k+1)) = (Tk+1T ∗(k+1))(P
TkH

(T ∗ jT j)P
TkH

) (6)

for all k, j ∈ N. We claim that (6) actually implies

(TkT ∗k)(T ∗ jT j) = (T ∗ jT j)(TkT ∗k) for all j,k ∈N . (7)

The proof is by induction on k. We already know that it holds for k = 1, so assume it
is true for k−1 � 1. Now

(Tk−1T ∗(k−1))(T ∗ jT j) = (T ∗ jT j)(Tk−1T ∗(k−1))

gives (T ∗ jT j)P
Tk−1H

= P
Tk−1H

(T ∗ jT j) since P
Tk−1H

= I−Pker(Tk−1T ∗(k−1)). As

P
Tk−1H

(TkT ∗k) = (TkT ∗k)

we see that
T ∗ jT jT kT ∗k = (P

Tk−1H
T ∗ jT jP

Tk−1H
)TkT ∗k

T kT ∗kT ∗ jT j = TkT ∗k(P
Tk−1H

T ∗ jT jP
Tk−1H

)

and by (6), the right hand sides are equal. Hence (6) is true also for k.
There is only the equality (TkT ∗k)(TmT ∗m) = (TmT ∗m)(TkT ∗k) left to prove. But

this follows from what has already been proven, since if, say m � k, then

(TkT ∗k)(TmT ∗m) = Tk((T ∗kT k)(Tm−kT ∗(m−k)))T ∗k

= Tk((Tm−kT ∗(m−k))(T ∗kT k))T ∗k = (TmT ∗m)(TkT ∗k).

The proof is now complete. �
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COROLLARY 2.2. If T ∈B(H ) is half-centered and TH = H , then T is cen-
tered.

EXAMPLE 2.3. (2-isometries) An operator T satisfying the equation

I−2T∗T +T 2∗T 2 = 0 (8)

is called a 2-isometry. Equation (8) implies that T ∗kT k is a linear combination of I and
T ∗T for every k ∈ N and this gives that T is half-centered. 2-isometries have been
studied a lot due to their connection with the Dirichlet shift (see [1], [2], [3]). From
their theory one can deduce that a centered 2-isometry must be of the form T =U⊕S,
with U an isometry and S a weighted shift. In general, 2-isometries have a quite
complicated structure, so in this case the centered 2-isometries forms a strict (and quite
boring) subclass.

More generally, any operator T satisfying

a0I +a1T
∗T +a2T

∗2T 2 = 0

for constants a0,a1,a2 ∈R (where at least one ai 
= 0) will be half-centered, since then
again every T ∗kT k will be a linear combination of I and T ∗T.

EXAMPLE 2.4. Let P,Q be two orthogonal projections and consider

T = PQ.

Then T is half-centered since

T ∗kT k =
k

∏
j=1

QP
k

∏
j=1

PQ = Q
2k−1

∏
j=1

PQ = QT 2k−1

and so (
T ∗ jT j)(

T ∗kT k
)

= QT 2 j−1QT 2k−1 = QT 2k+2 j−2

= QT 2k−1QT 2 j−1 =
(
T ∗kT k

)(
T ∗ jT j) .

Now, TT ∗ = PQP and from this we calculate

(TT ∗)(T ∗T ) = PQPQPQ = T 3

(T ∗T )(TT ∗) = QPQPQP = T ∗3.

So if T ∗3 
= T 3 then T is half-centered but not centered. The latter holds if we take,
for example

P =
[ 1

2 − 1
2

− 1
2

1
2

]
, Q =

[
1 0
0 0

]
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then T =
[ 1

2 0
− 1

2 0

]
and so

T 3 =
[ 1

23 0
− 1

23 0

]

=

[ 1
23 − 1

23

0 0

]
= T ∗3.

A large class of half-centered operators are given by the following proposition:

PROPOSITION 2.5. Let (X ,μ) be a measure space with σ -finite measure μ and
let ψ : X → X be a measurable function such that the linear map

f (x) �→ f (ψ(x))

induces a bounded linear operator on L2(X ,μ) and let ξ ∈ L∞(X ,μ). Then the oper-
ator

T : f ∈ L2(X ,μ) �→ ξ (x) f (ψ(x)) (9)

is half-centered.

Proof. Since T is the composition of two bounded linear operators, we have T ∈
B(L2(X ,μ)). Take any h ∈ L∞(X ,μ) and let Mh denote multiplication by h. For all
f ,g ∈ L2(X ,μ)

〈g,T ∗TMh f 〉 = 〈Tg,TMh f 〉=
∫

X
T (g)(x)T (h f )(x)dμ(x)

=
∫

X
ξ (x)g(ψ(x))ξ (x)h(ψ(x)) f (ψ(x))dμ(x)

=
∫

X
ξ (x)h(ψ(x))g(ψ(x))ξ (x) f (ψ(x))dμ(x)

=
∫

X
T (hg)(x)T ( f )(x)dμ(x)

=
〈
TMhg,T f

〉
= 〈TM∗hg,T f 〉 = 〈g,MhT

∗T f 〉 .
This gives MhT ∗T = T ∗TMh and since h was arbitrary T ∗T commutes with all of
L∞(X ,μ). The von Neumann algebra L∞(X ,μ) ⊆ B(L2(X ,μ)) is maximal abelian
(see [5]) and so T ∗T ∈ L∞(X ,μ). The same argument gives T ∗kT k ∈ L∞(X ,μ) for ev-
ery k∈N and therefore the operators in the sequence (2) commute with each other. �

Notice that if, for example, the set
{

ξ (x) f (ψ(x)); f ∈ L2(X ,μ)
}

is dense in
L2(X ,μ) then Proposition 2.1 gives that T is actually centered. However, in general,
the operators defined in Proposition 2.5 will not be centered.

Before we proceed any further, let’s first fix some notations.
The operators T ∗kT k are referred to a lot, so in order to make things appear more

concise, we write them as Tk . We again denote kerT ∗ = (TH )⊥ by E and this nota-
tion will be used for the rest of the text. We also remark that in this paper we consider
0 ∈N, and we let T0 = I.

Next, we define a subspace that will be of utmost importance here:
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Let ME be the smallest closed subspace containing E that is invariant with re-
spect to all the operators Tk. Proposition 2.1 indicates that ME is a natural starting
point when investigating the strictly half-centered operators, since this result is saying
that half-centered T is centered iff ME = E .

If we have an operator R ∈ B(H ) and a closed subspace V ⊆ H such that
RV ⊆V and R∗V ⊆V, then V is said to be reducing for R. In the case when R has no
reducing subspaces, R is called irreducible. If T is centered, then E is a reducing sub-
space for both Tk and TkT ∗k. Assuming E 
= 0, then if T is centered and irreducible,
we must have dimkerT ∗ = 1. This is generally not true for half-centered operators.

In this paper we will prove a structure theorem for half-centered operators T sat-
isfying the following assumptions:

I. T is injective and E has dimension 1.

II.
∨∞

k=0 TkME = H .

Theorem 3.23 below shows that
∨∞

k=0 TkME can alternately be defined as the
smallest closed subspace containing E that is invariant under T and the operators Tk.
However, without any further conditions this subspace will in general not be reducing
for T. Notice also that these conditions imply that the Hilbert space H is separable.

Spread throughout the rest of this section are some examples of half-centered op-
erators that satisfy conditions I and II.

Let us recall the notion of wandering subspace property for an injective operator
R on a Hilbert space H . Given R ∈B(H ), let, as before, E := kerR∗, then R is said
to satisfy the wandering subspace property if

∞∨
k=0

RkE = H . (10)

This condition resembles II. The subspace E is often called the wandering subspace
for R.

Closely related to (10) is the condition

∞⋂
k=0

RkH = {0} . (11)

If for an injective operator R with closed range we let R′ = R(R∗R)−1, then by
results in [7] (10) holds for R iff (11) holds for R. Observe that kerR∗ = kerR′∗ and
(R′)′ = R. The operator R′ is called the Cauchy dual of R.

An important fact about injective operators satisfying (10) and having closed range
is that they are unitarily equivalent to the multiplication operator f (z) �→ z f (z) on a
Hilbert space L (E ) of E -valued analytic functions (with E = kerR∗ ).

The condition II is actually weaker than (10) for both T and T ′ since the subspace∨k
j=0 T jME contains both TkE and T ′kE for every k ∈N. Indeed, this is trivial for T.

To prove it for T ′, notice that T ∗ is a left inverse for T ′, so that T ∗k+1T ′kE = T ∗E = 0.
This gives T ′kE ⊆ kerT ∗k+1. It is not hard to see that kerT ∗k+1 is spanned by the
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subspaces T j(T ∗ jT j)−1E for 0 � j � k and these are all subspaces of
∨k

j=0 T jME . It
now follows:

PROPOSITION 2.6. II holds for R if (10) or (11) holds for R or R′ (if the latter
operator exists).

For instance, this implies that if S is the shift operator on �2, then as any operator of
the form ASA−1 with A ∈B(�2) satisfies (11), it has property II.

As two of the most distinguished cases of half-centered operators satisfying I and
II are the weighted shifts and the 2-isometries (in the irreducible non-isometry case)
and both of these classes of operators satisfy (10) and (11) (this claim is trivial for
weighted shifts, and for 2-isometries, see [7]). It is natural to ask if (10) and (11) are
true in general for a half-centered operator satisfying I and II. However, as our next
example shows, this is not the case.

EXAMPLE 2.7. Let S be the isometric shift on the Hardy space H2 , i.e

f (z) ∈H
2 �→ z f (z).

Now consider
T = aS+(I−SS∗) ,

with a ∈C such that 0 < |a|< 1. An easy way to see that both T and T ′ = T (T ∗T )−1

are half-centered is to write them down as matrices in the standard basis
{
zk;k ∈ N

}
:

T =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 . . .
a 0 0 0 . . .
0 a 0 0 . . .
0 0 a 0 . . .
. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦ (12)

T ∗T =

⎡
⎢⎢⎢⎢⎣

1+ |a|2 0 0 0 . . .
0 |a|2 0 0 . . .
0 0 |a|2 0 . . .
0 0 0 |a|2 . . .
. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦ (13)

T ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1+|a|2 0 0 0 . . .

a
1+|a|2 0 0 0 . . .

0 a
|a|2 0 0 . . .

0 0 a
|a|2 0 . . .

. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

It is not hard to see now that for all k ∈ N, both matrices T ∗kT k and T ′∗kT ′k are
diagonal. From (12), we see that kerT ∗ is spanned by a− z and from (2.7) that T ∗T −
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|a|2 I is the operator f (z) �→ (1+ |a|2) f (0). Thus 1,z∈ME and since Tkz = akzk, this
gives

∞∨
k=0

TkME = H
2.

Hence both I and II are fulfilled by T . However, as

∞

∑
k=0

akzk =
1

a− z
∈H

2

is an eigenvector for T and thus in the range of Tk for all k∈N, T does not satisfy (11)
and hence the Cauchy dual T ′ does not possess the wandering subspace property.

EXAMPLE 2.8. The operator in Example 2.7 is a special case of a more general
type of half-centered operator. Let H be a separable Hilbert space with an orthonormal
basis {xk : k ∈N} and inner product 〈., .〉 . Let J be an injective weighted shift operator
with respect to this basis, so that

Jxk = akxk+1

for some nonzero constants ak ∈C. If x0⊗x∗n denotes the operator x �→ 〈x,xn〉x0, then
for any n ∈ N and a ∈C, the operator

T = J +a(x0⊗ x∗n) (15)

is half-centered.

In fact, the operator (15) can be seen to be of type (9) if we view H as L2(N,μ),
where μ is the counting measure. Define ψn : N→ N by ψn(k) = k−1 if k � 1 and
ψn(0) = n and let ξ (k) = ak−1 if k � 1 and ξ (0) = a. It is not hard to see that the
operator

f (x) �→ ξ (x) f (ψn(x))

coincides with the operator (15). Hence, by Proposition 2.5, the latter is half-centered.

2.1. The main theorem

The main purpose of this paper is to prove the following result.

THEOREM 2.9. (Main) Let T be an injective half-centered operator on H such
that

∨∞
k=0 TkME = H and dimE = 1.

Then there are two possibilities (though not mutually exclusive).

1. There is an orthonormal basis {xk : k ∈ N} of common eigenvectors for the op-
erators {Tk}k∈N

such that with respect to this basis, T is either a weighted shift
or there is a weighted shift J such that

T = J +a(x0⊗ x∗n) (16)

for n ∈ N and a ∈C.
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2. There are constants a,b,c,d ∈R, not all zero and k,n ∈N+ such that

aI +bT∗kT k + cT ∗nT n +dT ∗k+nTk+n = 0. (17)

Moreover, if dimME � 3 then (17) holds with a 
= 0 and the range of T is closed.

REMARK 2.10. Notice that if dimME = 1 then ME = E and hence T ∗kT kE ⊆
E for all k ∈ N. By Proposition 2.1, T is centered and the condition

∨∞
k=0 TkE = H

gives that T is a weighted shift.

So far, we have not given any concrete example of a half-centered operator where
dimME � 3. In order to show that this class is not just void, we construct below a
half-centered operator having the property that ME is the whole space.

EXAMPLE 2.11. Let H = �2 with standard basis {ek : k ∈ N} and let S be the
shift operator. For 0 < q < 1, let Aq be the operator that in the standard basis can be
written as the infinite matrix

Aq =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 . . .
1 0 q 0 . . .
0 q 0 q2 . . .
0 0 q2 0 . . .
. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦ . (18)

Since 0 < q < 1, it is straightforward to deduce that Aq is a compact self-adjoint oper-
ator. Moreover, it is easy to see that

S∗AqS = qAq (19)

and kerAq = {0} . Thus �2 has an orthonormal basis {xk : k ∈N} consisting of eigen-
vectors for Aq and we can easily deduce that 〈xk,e0〉 
= 0 for all k which implies that
every eigenspace of Aq must be one-dimensional.

Since Aq is self-adjoint, there is r > 0 such that Aq + rI is invertible and positive.
Now let

T = (Aq + rI)
1
2 S(Aq + rI)−

1
2 . (20)

Then
Tn = (Aq + rI)

1
2 Sn(Aq + rI)−

1
2 (21)

and so by (19), we see that

T ∗nT n = (Aq + rI)−
1
2 (qnAq + rI)(Aq + rI)−

1
2 (22)

from which it follows that (T ∗nT n)(T ∗mTm) = (T ∗mTm)(T ∗nTn) for m,n � 0 and
hence T is half-centered. Furthermore, if λk is the eigenvalue of the eigenvector xk

for Aq, then xk is clearly an eigenvector for T ∗nT n, with eigenvalue qnλk+r
λk+r . Since the
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function qnx+r
x+r is one to one on (−r,∞), we get that T ∗nTn has only one-dimensional

eigenspaces. From the formula (21), we have

E = kerT ∗ = (Aq + rI)−
1
2 e0

giving 〈E ,xk〉 
= 0 for all k. If V were a nontrivial closed subspace, invariant under
the Tk ’s and orthogonal to E , then V would have to contain a nonzero eigenvector xm

of Aq, giving 〈E ,xm〉= 0, a contradiction. Since the operators Tk are all self adjoint,
also ME

⊥ is invariant with respect to them and so by the last sentence, we must have
ME

⊥ = {0} giving ME = �2.

It can be seen from (21) that the operator defined in Example 2.11 satisfies the
equation

I− (1+q−1)T ∗T +q−1T ∗2T 2 = 0. (23)

This is similar to the one that defines the 2-isometries. Indeed, the 2-isometries are a
natural occurring example where often dimME � 3, although the way they usually are
constructed makes this a bit cumbersome to check.

3. Theory for general injective operators

Before we can tackle the main theorem we must first build up some machinery.
While the theory presented in this section was developed specifically to deal with

the half-centered operators, it turned out that it could, with minor extra work, be gener-
alized to a more general setting. Hence it is presented in this fashion.

Let us fix some more notation:
Let H be a separable complex Hilbert space with inner product 〈·, ·〉 and B (H )

be the C∗ -algebra of bounded operators on H . Let R ∈B (H ) be a fixed bounded
injective linear operator. As in the introduction, we denote kerR∗ by E , and the small-
est subspace containing E that is also invariant with respect to the set of operators
{R∗kRk;k ∈N} is denoted by ME . Throughout the rest of this paper the letter T will be
reserved for injective half-centered operators. Given a closed subspace V of the Hilbert
space H we write PV for the orthogonal projection onto V. Also, for an operator B
and a subspace V of H we write the restriction of B to V as B|V (or sometimes, to
avoid multiple index, we write B|V instead). Notice that if V is an invariant subspace
for B then

(B|V )k = Bk|V
for all k ∈ N. When we have an algebra of operators A ⊆B (H ) and a subspace V
which is invariant under all operators in A , then A |V ⊆B (V ) is the algebra of all
operators that are elements in A restricted to V.

The main idea of this section is to decompose the subspace
∨∞

m=0 RmME into a
direct sum ⊕∞

m=0Vm of orthogonal subspaces Vm with V0 = ME , such that R acts on
each Vm in a “reasonable” predictable way. Moreover, each Vm will be an invariant
subspace for all the operators R∗kRk. We will furthermore show that there is a strong
relation between the restrictions of R∗kRk to different Vm ’s in the sense that there is a
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natural surjective homomorphism from a sub-algebra of the von Neumann algebra gen-
erated by the operators

{
R∗kRk|Vm;k ∈ N

}
onto the von Neumann algebra generated

by
{
R∗kRk|Vn;k ∈ N

}
when n � m. This construction makes up the technical core of

this text, and it will take some time to complete.

3.1. The C∗ -algebras MR,n and Mn
R

The purpose of this subsection is to introduce two sequences of C∗ -algebras MR,n

and Mn
R, both indexed over N. We refer the reader to [5] for the background on C∗ -

algebras.
We also remind the reader of the notation

Rk = R∗kRk

that will be used for the remainder of the text. Note that if V is an invariant subspace
for R, then

(R|V )k = (R|V )∗k (R|V )k = PVR∗kRkPV |V = Rk|V . (24)

We will for technical reasons often not differentiate between the restriction of an op-
erator A to a subspace V and PVAPV , so for example, we write the equality (24) as
(R|V )k = PVRkPV . This is hopefully never a source of confusion. To further simplify
notation, we write

Hn = RnH .

Notice that although we may have H1 
= H , this does not in general imply Hn+1 
= Hn

for all n ∈ N .
Next, we are going to define some of the main objects studied in this section:
Let MR be the von Neumann algebra generated by the operators Rk for all k ∈N .

If θR is the isometric part of the polar decomposition of R i.e R = θRR
1
2
1 , let M1

R
be the von Neumann algebra generated by the operators

θ ∗RR jθR for all j ∈N.

If R has a closed range, then R1 is invertible, so θR = RR
− 1

2
1 and thus in this case

we have

θ ∗RR jθR = R
− 1

2
1 Rj+1R

− 1
2

1 ∈MR.

So for closed range R it is easy to see that M
1
R is a sub-algebra of MR. This is also true

in general:

PROPOSITION 3.1. The von Neumann algebra M1
R is a sub-algebra of MR. More-

over, M1
R is isomorphic to MR|H1

.

Proof. Since MR is von Neumann algebra, we have by the double commutant
theorem

(M′R)′ = MR
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where A ′ denotes the commutant of the algebra A . Let m be an element in M′R.

Since θRR
1
2
1 = R, we have

R
1
2
1 θ ∗RR jθRR

1
2
1 = R∗RjR = Rj+1.

Thus

R
1
2
1 θ ∗RR jθRmR

1
2
1 = R

1
2
1 θ ∗RR jθRR

1
2
1 m = mR

1
2
1 θ ∗RR jθRR

1
2
1 = R

1
2
1 mθ ∗RR jθRR

1
2
1 .

If R is injective then the range of R
1
2
1 is dense in H , this gives

θ ∗RR jθRm = mθ ∗RR jθR

for all m ∈M′R so that
θ ∗RR jθR ∈M

′′
R = MR.

For the second claim, note that the map

B ∈B(H ) �→ θRBθ ∗R

is an isomorphism B (H )→B (H1) such that

θ ∗RR jθR �→ θRθ ∗RR jθRθ ∗R = PH1RjPH1 =
(
R|H1

)
j

for all j ∈ N. Since MR|H1
is generated by these operators and the map is weakly

continuous, the range must be equal to MR|H1
. �

By Propositions 3.1, there is an injective homomorphism

MR←MR|H1(
R|H1

)
j = PH1RjPH1 �→ θ ∗RR jθR.

If we now consider R|H1 instead, we get by the same reasoning that there is an injective
homomorphism

MR|H1
←MR|H2

.

So by induction, there is a sequence of injective homomorphisms

MR←MR|H1
←MR|H2

←MR|H3
←MR|H4

← . . . (25)

where the n ’th arrow is induced by θR|Hn−1
: Hn−1→Hn. Since the maps in (25) are

all injective, we can deduce

PROPOSITION 3.2. If T is half-centered, then T |Hn is also half-centered.
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We see that the composition MR←MR|Hn is induced by an isometry θR,n : H →
Hn given by the product

θR,n = θR|Hn ·θR|Hn−1
· . . . ·θR|H0

. (26)

We set θR,1 = θR and θR,0 = I. We will identify θR,n with the map on H given by

x ∈H �→ (0,θR,nx) ∈H ⊥
n ⊕Hn = H ,

so that
θR,nθ ∗R,n = PHn .

More generally, θR|Hn is interpreted as a partial isometry (that fails to be left-invertible
if Hn 
= H ) that is zero on H ⊥

n and maps Hn→Hn+1.
For a half-centered operator T the isometries (26) can be described as follows.

PROPOSITION 3.3. If T is injective and half-centered, and Tn = θTnT
1
2

n is the
polar decomposition of T n, then

θT,n = θTn .

Therefore, if T has closed range, then

θT,n = TnT
− 1

2
n .

The proof will be given after we prove Lemma 3.11.

REMARK 3.4. An important result in the theory of centered operators is that θ n
T =

θTn ; the above proposition can be seen as a generalization of this.

Next we define a class of sub-algebras of MR.

DEFINITION 3.5. For every n ∈ N, we define the von Neumann algebra Mn
R to

be the weakly closed sub-algebra of MR generated by the operators θ ∗R,nR jθR,n.

REMARK 3.6. By Lemma 3.8 below, this algebra can alternatively be defined as
the image of MR|Hn inside MR under the composition of homomorphisms in (25).

We write down some direct consequences the preceding definitions:

LEMMA 3.7. For all k,n ∈ N

θR|Hk,nθR,k = θR,n+k (27)

LEMMA 3.8. The image of (R|Hn)k ∈MR|Hn in MR is θ ∗R,nRkθR,n, and hence
M

n
R is isomorphic to MR|Hn via compositions of the homomorphisms in (25).
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Proof. We have (R|Hn)k = PHnRkPHn since Hn is an invariant subspace for R
and also PHnθR,n = θR,n. Therefore the image of (R|Hn)k in MR is given by θ ∗R,nRkθR,n.
The second part is obvious as the operators (R|Hn)k generate MR|Hn and the homomor-
phisms in (25) are weakly continuous. �

COROLLARY 3.9. If T is half-centered and has closed range, then Mn
R is gener-

ated by the operators Tk+nT−1
n as a von Neumann algebra.

Proof. By Proposition 3.3

θT,n = TT
− 1

2
n .

From this we get
θ ∗T,nTkθT,n = Tk+nT

−1
n . �

Next, we introduce another class of C∗ -algebras MR,n, where n ∈ N, which
are also associated to R. These algebras will in general be non-unital weakly closed
sub-algebras of B(H ) that have Hn as an invariant subspace and MR,nH ⊥

n = 0.
Moreover, MR,n|Hn is a von Neumann algebra such that MR,n|Hn

∼= MR by Proposi-
tion 3.12 below.

For every n ∈N, take the set of operators

Rn
MRR∗n = {R∗naRn : a ∈MR}

and let MR,n to be the weak closure of this set. We let MR = MR,0.

LEMMA 3.10. MR,n is a C∗ -algebra.

Proof. Additive and adjoint closeness are obvious. If a,b ∈MR, then

RnaR∗nRnbRn = RncR∗n

with c = aR∗nRnb ∈MR. The rest follows now from continuity. �
Next, we will see that θR,n induces an isomorphism between MR and MR,n given

by the mapping
m �→ θR,nmθ ∗R,n.

To prove this, we first need a technical lemma.

LEMMA 3.11. For every n ∈ N, there is an operator rn ∈MR such that

θR,nrn = Rn. (28)

and
r∗nrn = Rn. (29)

Moreover, rn has dense range and is given by the formula

rn =
(
θ ∗R,n−1R1θR,n−1

) 1
2 · (θ ∗R,n−2R1θR,n−2

) 1
2 · . . . · (θ ∗R,0R1θR,0

) 1
2 . (30)
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Proof. We use induction. For n = 1, then θR,1 = θR and so rn = R
1
2
1 . Now as-

sume (30) is true for n � 1, then

Rn+1 = RPHnR
n = RPHnθR,nrn.

We have
RPHn = θR|Hn (PHnR1PHn)

1
2 .

Since PHn = θR,nθ ∗R,n and m �→ θR,nmθ ∗R,n is a homomorphism of C∗ -algebras (recall
that θR,n is an isometry), we have

θR|Hn (PHnRPHn)
1
2 = θR|HnθR,n

(
θ ∗R,nR1θR,n

) 1
2 θ ∗R,n

= θR,n+1
(
θ ∗R,nR1θR,n

) 1
2 θ ∗R,n.

Putting this together, we get

Rn+1 = θR,n+1
(
θ ∗R,nR1θR,n

) 1
2 rn.

From this (28), (29) and (30) follow for n+1. Since every operator
(

θ ∗R,kR1θR,k

) 1
2

has

dense range, the same is true for their product rn. �

We can now prove Proposition 3.3. Let tn ∈MT be the operator from Lemma 3.11
such that θT,ntn = Tn. As

tn =
n−1

∏
k=0

(
θ ∗T,kT1θT,k

) 1
2

and every
(

θ ∗T,kT1θT,k

) 1
2 ∈MT , tn is a product of positive operators that commute with

each other, hence it is also positive. Now, since(
tnθ ∗T,n

)
(θT,ntn) = t2n = Tn,

we must have tn = T
1
2

n , by the uniqueness of the square root of a positive operator. So

θT,nT
1
2

n = θT,ntn = Tn and as T
1
2

n has dense range, we have θT,n = θTn .

PROPOSITION 3.12. For every n ∈N, the homeomorphism m �→ θR,nmθ ∗R,n is an
isomorphism

MR→MR,n.

Proof. For any c ∈ MR, we have rncr∗n ∈ MR and this operator is mapped to
RncR∗n by Lemma 3.11. The homomorphism preserves weak closure (since it is in-
duced by an isometry) so

MR,n ⊆ θR,nMRθ ∗R,n.
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To prove the reverse inclusion, take any m ∈MR. Since rnr∗n has dense range, there is
a sequence of self-adjoint yk ∈MR such that

ykrnr
∗
n,rnr

∗
nyk→ I

strongly in H as k→ ∞ (this follows from a basic application of the general spectral
theorem). Now take the product

r∗nykmykrn ∈MR

for every k ∈ N. Then we have

Rn (r∗nykmykrn)R∗n ∈MR,n

for all k ∈ N. But since R∗n = r∗kθ ∗R,n, we get

Rn (r∗nykmykrn)R∗n = θR,n (rnr
∗
nyk)m(ykrnr

∗
n)θ ∗R,n→ θR,nmθ ∗R,n

strongly. So θR,nmθ ∗R,n ∈MR,n and thus

θR,nMRθ ∗R,n = MR,n. �

A consequence can be directly drawn from Proposition 3.12.

COROLLARY 3.13. For every n ∈ N, the C∗ -algebra MR|Hn is a sub-algebra of
MR,n.

REMARK 3.14. Similar to what was mentioned in the introduction to this sub-
section, we mostly view MR,n and MR|Hn as non-unital weakly closed C∗ -algebras
in B(H ) rather than unital C∗ -algebras in B(H n) that perhaps would seem more
natural. This is because in the upcoming sections, the main job of these algebras are
to act on H and therefore it would be cumbersome if we always first have to project
down to Hn before they can be applied.

3.2. A subspace decomposition

Here we will first decompose the Hilbert space H into HE ⊕HE
⊥, where HE

is the smallest closed subspace containing E that is invariant with respect to both R
and MR. We then show that there is a further decomposition of HE into orthogonal
subspaces

HE =⊕∞
k=0Vk

with V0 = ME such that all the Vk ’s are invariant subspaces for the algebra MR. The
important point of this construction emerges in the next subsection where we show that
MR|Vk and MR|V0 are related in a certain way.

From now on R will, as well as being injective, also be subject to the condition
E 
= 0 (recall E = H ⊥

1 = (RH )⊥ = kerR∗ ).



HALF-CENTERED OPERATORS 671

Also recall from the introduction that ME was defined as the linear closure of

my, m ∈MR, y ∈ E .

For notational purposes, we sometimes abbreviate this as MRE and this notation
will be used from now on in general, when we have a C∗ -algebra or a set of operators
acting on some subspace. All subspaces here will be considered as norm-closed, unless
explicitly stated otherwise. So, for example, given subspaces V,X ⊆H the subspace
RX +V will denote the norm-closure of

{Rx+ v;x ∈ X ,v ∈V} .
We remark that, as E ⊆ME , the subspace ME is invariant for PH1 and hence

also an invariant subspace for the operators(
R|H1

)
k = PH1RkPH1 .

LEMMA 3.15. For all m ∈N and n � m

MR,mRmE = Rn
MR,m−nR

m−nE = RmME .

Proof. We will prove the equality

MR,mRmE = RmME . (31)

The rest of the Lemma then follows from

Rn
MR,m−nR

m−nE = Rn
MR,m−nR

m−nE = Rn(Rm−nME ) = RmME .

Since MR,mE and RmME are both closed subspaces of Hm and PHm = θR,mθ ∗R,m, we
can prove (31) by proving that

θ ∗R,mMR,mRmE = ME = θ ∗R,mRmME . (32)

But since by Proposition 3.12 MR,m = θ ∗R,mMRθ ∗R,m and θ ∗R,mRm = rm where rm ∈
MR is as in Lemma 3.11, we have θ ∗R,mRmME = rmME and

θ ∗R,mMR,mRmE = MRrmE .

From this it is now obvious that they are both subspaces of ME . Since the range of
rm is dense in H and ME is an invariant subspace for both rm and r∗m, we must
have rmME = ME . So the second equality in (32) is proven. To prove the first, recall
r∗mrm = Rm and take a sequence {ak} ⊆MR such that akRm → I strongly. Then the
sequence {akr∗m} ⊆MR is such that (akr∗m)rm → I strongly. From this we see that
E ⊆MRrmE and since the space in question is also invariant under MR, it must be
equal to ME . �

LEMMA 3.16. Let En = Hn�Hn+1 be the kernel of R∗ restricted to Hn. For
all n ∈ N, we have En ⊆ RnME .
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Proof. Since En⊥Hn+1, we have for any x ∈H and e ∈ En that

0 =
〈
e,Rn+1x

〉
= 〈R∗ne,Rx〉 .

From this, we see R∗nEn ⊆ (RH )⊥ = E so that RnMRR∗nEn ⊆ RnME . Since MR,n

is the weak closure of the set RnMRR∗n, we get MR,nEn ⊆ RnME . Now, we have
PHn ∈MR,n and so PHnEn = En ⊆ RnME . �

DEFINITION 3.17. For n ∈ N, let Xn =
∨n

j=0 RjME . When n � 1, define

Vn = Xn�Xn−1

and when n = 0, let V0 = ME .

LEMMA 3.18. Vn and Xn are invariant subspaces for MR .

Proof. We use induction on n . The lemma is true by construction for V0 = ME .
Since the Rj ’s are self-adjoint, we only have to show that Xn is Rj -invariant for all
j ∈ N. Assume now that the lemma is true for 0 � m � n−1. The vectors of the form

xn = mn + xn−1,

with mn ∈ RnME and xn−1 ∈ Xn−1, are dense in Xn and for these:

Rjxn = Rjmn +Rjxn−1 = PHnR jPHnmn +(I−PHn)Rjmn +Rjxn−1. (33)

We have PHnR jPHnmn ∈ RnME by Lemma 3.15, since PHnR jPHn ∈MR,n.
As E j = H j�H j+1 we have

n−1∨
j=0

E j = H ⊥
n

and therefore I−PHn = PH ⊥
n

projects down to the space generated by E j for 0 � j �
n−1 and as E j ⊂ME by Lemma 3.16, we have (I−PHn)Rjmn ∈ Xn−1.

By induction, we have Rjxn−1 ∈ Xn−1 and hence all the vectors on the right hand
side of (33) are in Xn. �

COROLLARY 3.19. For x ∈ X⊥n−1 we have R jx = (R|Hn) j x and Xn−1 is an in-
variant subspace for MR|Hn .

Proof. As kerR∗n = H ⊥
n =

∨n−1
k=0 Ek, we have by Lemma 3.16 that

kerR∗n ⊆
n−1∨
j=0

RjME = Xn−1
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and hence X⊥n−1 ⊆Hn. By Lemma 3.18, X⊥n−1 is invariant with respect to Rj. Hence
for all x ∈ X⊥n−1, we have PHnx = x and so

Rjx = PHnR jPHnx = (R|Hn) j x.

To see the second claim, we observe that since Xn−1 is an invariant subspace for
PHn , it is an invariant subspace for all

PHnRkPHn = (R|Hn)k

and hence for MR|Hn . �

PROPOSITION 3.20. For all m � n we have PVmRm−nVn = Vm.

Proof. Since Vm = Xm�Xm−1 and Xm = Xm−1+RmME we have Vm = PVmRmME .
So for every vm ∈ Vm and ε > 0 there is a v0 ∈ME such that ‖vm−PVmRmv0‖ < ε.
Then PVmRmv0 
= 0 will imply PVnR

nv0 
= 0 since PVnR
nv0 = 0 would imply Rnv0 ∈

Xn−1 and so Rmv0 ∈ Xm−1⊥Vm. Since PVkR
kv0 = Rkv0− xk−1 with xk−1 ∈ Xk−1 we

then have
PVmRm−nPVnR

nv0 = PVmRm−n (Rnv0− xn−1) = PVmRmv0

and hence ∥∥vm−PVmRm−nPVnR
nv0

∥∥ < ε. �
Proposition 3.20 directly implies:

COROLLARY 3.21. For all m � n, we have dimVm � dimVn. Especially, if VN =
{0} for some N ∈ N then Vn = {0} for all n � N.

So if dimME = V0 is finite, then dimVn must be finite for all n ∈ N. The injec-
tivity of R now gives:

PROPOSITION 3.22. If V0 = ME is finite dimensional, then Vk 
= {0} for all k ∈
N .

Proof. If there were a K ∈ N such that VK = {0} then Corollary 3.21 would give
Vk = {0} for all k � K. By Theorem 3.23, HE must be finite dimensional and mapped
by R again into HE with a nontrivial cokernel, but then there must be a nonzero vector
v ∈H1 such that Rv = 0, a contradiction. �

THEOREM 3.23. For an injective operator R on a Hilbert space H , the sub-
space HE =

∨∞
j=0 RjME is R and MR invariant. Moreover

HE =⊕∞
k=0Vk

and
RVk ⊆Vk+1⊕ (Xk�RXk−1).
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Proof. The decomposition HE =⊕∞
k=0Vk follows by definition. Since

HE =⊕∞
k=0Vk =

∞∨
k=0

RkME

and
∨∞

k=0 RkME are invariant under R, the first claim is proved.
To prove the last claim, notice that, since RXk =

∨k
j=0 Rj+1ME , we have

RVk⊥Vk+2+m,

for all m � 0. Also, as Vk = Xk�Xk−1 and Xk−1 is invariant under R1 by Lemma 3.18,
we have

〈RVk,RXk−1〉= 〈Vk,R1Xk−1〉= 0.

Thus RVk⊥RjME for 1 � j � k and RVk⊥⊕∞
m=k+2 Vm. For vk ∈ Vk, we have Rvk =

PX⊥k
Rvk +PXkRvk. Now PX⊥k

Rvk ∈Vk+1 and we have

〈
PXkRvk,R

jV0
〉

=
〈
Rvk,R

jV0
〉

= 0

for 1 � j � k so that
PXkRvk ∈ Xk�RXk−1. �

COROLLARY 3.24. If T is injective and half-centered, then T |HE is also injec-
tive and half-centered.

By Theorem 3.23, if v ∈Vm and Rv⊥Xm�RXm−1, then we get Rv ∈Vm+1. In the
context here, this is not a particular useful characterization of those v ∈ Vm that end
up in Vm+1 when applying R. As we will see in the next proposition, it turns out that
while we may not have Xm+1�RXm ⊆ME , none of the vectors in RVk�Vk+1 can be
orthogonal to ME .

PROPOSITION 3.25. If vm ∈Vm and Rvm⊥ME , then Rvm ∈Vm+1.

Proof. From the proof of Theorem 3.23 we know that Rvm⊥∨m
j=1 RjME , and

so Rvm⊥ME would imply that Rvm ∈ Xm+1 and Rvm⊥∨m
j=0 RjME = Xm, i.e Rvm ∈

Vm+1. �

COROLLARY 3.26. If vm ∈Vm and θRvm⊥ME , then θRvm ∈Vm+1.

Proof. Since R1 has dense range, there is a sequence R1xk ∈Vm such that R1xk→
vm. Then θRR1xk = Rxk → θRvm⊥V0 and the same arguments as in Proposition 3.25
show that θRvm ∈Vm+1. �

LEMMA 3.27. For m � n the projection PVm commutes with the operators in
MR|Hn .
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Proof. Since every Vm is invariant under MR, we have that PVm must commute
with all Rj. By Corollary 3.19 we have

(R|Hn) j PVm = RjPVm = PVmRj = PVm (R|Hn) j . �

A consequence of Corollary 3.19 is the following:

PROPOSITION 3.28. We have

R j|Vm = (R|Hn) j |Vm

when m � n, so that
MR|Hn |Vm = MR|Vm.

Moreover, for m � n and all j ∈N we have

θ ∗R|Hn, j (R|Hn)i θR|Hn, j|Vm = θ ∗R, jRiθR, j|Vm (34)

so that
M

j
R|Hn
|Vm = M

j
R|Vm. (35)

Notice that the slightly complicated expression

θ ∗R|Hn, j (R|Hn)i θR|Hn, j

is simply the image of
(
R|Hn+ j

)
i
under the homomorphism MR|Hn+ j

→MR|Hn com-

ing from (25).

Proof. We will prove (34) by induction on j. The other claim (35) then follows
from the fact that the operators in (34) generate M

j
R|Hn
|Vm. From Lemma 3.18 and

Corollary 3.19 it follows that

Ri|Vm = (R|Hn)i |Vm

so the claim is true for j = 0.
Now, assume it is true for j−1 � k � 0. By Lemma 3.11 there is a rn, j ∈MR|Hn

such that θR|Hn, jrn, j = Rj|Hn and hence

r∗n, j

(
θ ∗R|Hn, j

(R|Hn)i θR|Hn, j

)
rn, j =

(
r∗n, jθ

∗
R|Hn, j

)
(R|Hn)i

(
θR|Hn, jrn, j

)
= (R|Hn)i+ j .

If we also take r j ∈MR such that θR, jr j = Rj then

r∗j
(
θ ∗R, jRiθR, j

)
r j = Ri+ j.

We want to prove that
rn, j|Vm = r j|Vm.
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But this follows from the induction hypothesis, as the formula for rn, j is given by

rn, j =
(

θ ∗R|Hn, j−1 (R|Hn)1 θR|Hn, j−1

) 1
2 · . . . ·

(
θ ∗R|Hn,0 (R|Hn)1 θR|Hn,0

) 1
2

and since we assumed that (34) was true for j−1 � k � 0, we get rn, j|Vm = r j|Vm.
We can now calculate

r∗j
(
θ ∗R, jRiθR, j

)
r j|Vm = Ri+ j|Vm = (R|Hn)i+ j |Vm

= r∗n, j

(
θ ∗R|Hn, j (R|Hn)i θR|Hn, j

)
rn, j|Vm

= r∗j
(

θ ∗R|Hn, j
(R|Hn)i θR|Hn, j

)
r j|Vm

and since r j has dense range, we must have

θ ∗R, jRiθR, j|Vm = θ ∗R|Hn, j
(R|Hn)i θR|Hn, j|Vm.

Hence (34) is also true for j. �

3.3. A connection between MR|Vn and MR|Vm

In the previous subsection we found a decomposition of HE =
∨∞

k=0 RkME into
subspaces Vn which are invariant with respect to the algebra MR. Here we show that
there is a natural way to connect the different restrictions MR|Vn and MR|Vm. This will
be essential in the proof of the main theorem. To explain what this connection is, we
need some results that are proven below. Theorem 3.32 shows that for all n,m∈N such
that m � n, there is a surjective homomorphism

Γm,n : M
m−n
R |Vn→MR|Vm

which, in particular, maps

θ ∗R,m−nRkθR,m−n|Vn �→ Rk|Vm (36)

and more generally

θ ∗R,m−n+ jRkθR,m−n+ j|Vn �→ θR, jRkθR, j|Vm (37)

for all j � 0. There is also the inclusion homomorphism M
m−n
R |Vn ↪→MR|Vn, so we

have the following diagram:

MR|Vm

M
m−n
R |Vn

Γm,n

��

� � �� MR|Vn

(38)
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From (37), the homomorphisms Γm,n also “preserve” the sub-algebras M
j
R in the sense

that the restrictions of Γm,n to M
m−n+ j
R |Vn are surjective homomorphisms

M
m−n+ j
R |Vn→M

j
R|Vm.

Another property of the homomorphisms Γm,n is that they factor through m � i � n
so that the following diagram commutes

MR|Vm

M
m−n
R |Vn

Γm,n
������������

Γi,n

�� M
m−i
R |Vi

Γm,i

��
(39)

We start with a particular example.

EXAMPLE 3.29. Let T be a left invertible weighted shift on �2 (thus T is cen-
tered) and let {xk : k ∈ N} denote the standard basis of �2, so that Txk = akxk+1, with
ak ∈C and ak 
= 0. Then the kernel of T ∗ is 〈x0〉 , the subspace generated by x0. Since
there is λk ∈ R such that

Tkx0 = λkx0

for all k ∈ N, we have ME = 〈x0〉 . From this we can deduce

Vk = 〈xk〉 .

Moreover, it is also easy to see that θT = TT
− 1

2
1 is an isometric shift on the basis

{xk : k ∈ N} and

θT,k = θT k = TkT
− 1

2
k

(for a proof of this, use Proposition 3.3). Then (38) and (39) can be seen as a general-
ization of the fact that for any m,n, j ∈N with m � n, we have

Tjxm =
λm+ j

λm
xm

and

θ ∗Tm−nTjθTm−nxn = T−1
m−nTj+m−nxn =

λn+(m−n)+ j

λn

λn

λm
xn =

λm+ j

λm
xn.

It is good to keep Example 3.29 in mind, since all the components defined in this
section (MR,Vk,Γm,n etc) becomes very simple in this case.

LEMMA 3.30. For m � n, the operator θR|Hn,m−n is a bijective isometry

RnME → RmME
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that induces an isomorphism

Θm,n : MR,n|RnME →MR,m|RmME

given by
Θm,n : b �→ θR|Hn,m−nbθ ∗R|Hn,m−n (40)

for b ∈MR,n. Moreover, if m � i � n, then

Θm,iΘi,n = Θm,n. (41)

Proof. We have
Rm = θR|Hn,krn,m−nR

n

were rn,m−n is the same as in Proposition 3.28. Since rn,m−n ∈MR,n has dense range
in Hn, we get

RmME = θR|Hn,m−nrn,m−nR
nME = θR|Hn,m−nR

nME .

Now, since
θR|Hn,m−nMR,nθ ∗R|Hn,m−n = MR,m,

as θR|Hn,m−nθR,n = θR,m, it is not hard to see that (40) defines an isomorphism

Θm,n : MR,n|RnME →MR,m|RmME .

The property (41) follows from

θR|Hn,m−n = θR|Hi,m−iθR|Hn,i−n

so that

θR|Hn,m−nMR,nθ ∗R|Hn,m−n = θR|Hi,m−iθR|Hn,i−nMR,nθ ∗R|Hn,i−nθ ∗R|Hi,m−i

= θR|Hn,m−iMR,iθ ∗R|Hn,m−i = MR,m. �

LEMMA 3.31. For every n ∈N there is a surjective homomorphism

Φn : MR|Hn |RnME →MR|Vn

given by
(R|Hn) j |RnME �→ Rj|Vn.

Furthermore, Φn restricts to a surjective homomorphism

M
k
R|Hn
|RnME →M

k
R|Vn

that maps
θR|Hn,k (R|Hn) j θR|Hn,k|RnME �→ θ ∗R,kR jθR,k|Vn

for all k � 0.
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Proof. Since MR|Hn is a sub-algebra of MR,n and by Lemma 3.15 MR,nRnME ⊆
RnME , the restriction map

ηn : MR|Hn →MR|Hn |RnME

b �→ b|RnME

is a homomorphism. By Proposition 3.28, the map

ξn : MR|Hn →MR|Hn |Vn = MR|Vn

that sends (R|Hn) j to Rj|Vn is a homomorphism. Now PVnR
nME = Vn, so if we take

any mn ∈ kerηn, then by Lemma 3.27,

mnPVnR
nME = PVnmnR

nME = 0.

Hence the map Φn : ξn(b) �→ ηn(b),b ∈ MR|Hn is a well-defined surjective homo-
morphism from MR|Hn |RnME to MR|Vn. The second claim follows from Proposi-
tion 3.28. �

THEOREM 3.32. There are surjective homomorphisms

Γm,n : M
m−n
R |Vn→MR|Vm

that map
θ ∗R,m−n+ jRkθR,m−n+ j|Vn �→ θ ∗R, jRkθR, j|Vm (42)

for all j � 0. Furthermore, for every n � i � m, Γi,n restricts to a homomorphism

Γi,n : M
m−n
R |Vn→M

m−i
R |Vi

such that
Γm,iΓi,n = Γm,n.

Proof. Combining Lemma 3.31 and Lemma 3.30, we get a diagram

M
m−n
R|Hn
|RnME

Φn
��

Θm,n

�� MR|Hm |RmME

Φm
��

M
m−n
R |Vn MR|Vm

(43)

and we want to prove that there is a unique

Γm,n : M
m−n
R |Vn→MR|Vm

that makes this diagram commutative. Making the composition

ΦmΘm,n : M
m−n
R|Hn
|RnME →MR|Vm
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we need to prove that kerΦn ⊆ kerΦmΘm,n, because then we can define Γm,n as the
map sending Φn(b) to ΦmΘm,n(b) for b ∈M

m−n
R|Hn
|RnME .

If we take b ∈M
m−n
R|Hn
|RnME such that Φn (b) = 0, then as PVnR

nME =Vn and b
commutes with PVn by Lemma 3.27, we obtain

Φn (b)Vn = bPVnR
nME = PVnbRnME = 0,

so
bRnME ⊆ Xn−1. (44)

We have also that ΦmΘm,n (b) = 0 implies

θR|Hn,m−nbRnME ⊆ Xm−1. (45)

We want to prove that (44) implies (45). To show this, we prove the more general
statement that

θR|Hn,m−nXn−1 ⊆ Xm−1.

The partial isometry θR|Hn,m−n has a kernel equal to H ⊥
n , so

θR|Hn,m−nXn−1 = θR|Hn,m−n

(
Xn−1�H ⊥

n

)
.

We know that there is a rn,m−n ∈MR|Hn with dense range in Hn such that θR|Hn,m−nrn,m−n

= Rm−n|Hn and by Corollary 3.19

rn,m−n

(
Xn−1�H ⊥

n

)
= Xn−1�H ⊥

n .

From this we can deduce

θR|Hn,m−n

(
Xn−1�H ⊥

n

)
= Rm−n

(
Xn−1�H ⊥

n

)
⊆ Xm−1.

This gives the existence of Γm,n. The surjectivity follows from ΦmΘm,n = Γm,nΦn and
the surjectivity of ΦmΘm,n . The uniqueness follows from the surjectivity of Φn.

Property (37) follows by applying the commutative diagram to

θR|Hn,m−n+ j (R|Hn)i θR|Hn,m−n+ j ∈M
m−n
R|Hn
|RnME

for j � 0. Property (39) follows, as remarked, from (37). �
With the help of Theorem 3.32 we can now express the spectrum of θ ∗T,kTjθT,k|Vn

via the spectrum of MT |ME .

PROPOSITION 3.33. If T is half-centered and if γ is a point of the spectrum of
MT |Vn, then there is a point λ in the spectrum of MT |ME such that

γ
(
θ ∗T,kTjθT,k

)
= λ

(
θ ∗T,k+nTjθT,k+n

)
for all j,k ∈N.
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Note that for every point γ in the spectrum of MT and all j,k ∈ N, we have

γ
(
θ ∗T,kTjθT,k

)
γ (Tk) = γ

(
T

1
2

k θ ∗T,kTjθT,kT
1
2

k

)
= γ

(
Tk+ j

)
.

So, if γ (Tk) 
= 0, then

γ
(
θ ∗T,kTjθT,k

)
=

γ
(
Tk+ j

)
γ (Tk)

.

4. Fundamentals for half-centered operators

Here we present some initial results that hold for all injective half-centered oper-
ators with dimE = 1. Much of the work in this section will aim towards showing that
the operator Tk has a simple form when restricted to ME . We will see that there are
real parameters τk,βk and a self adjoint operator A ∈B(ME ) which is independent of
k, such that Tk|ME

is given by the formula

Tk|ME
= τkI + βkA,

where I is the identity on ME . This implies that there are a,b,c ∈R, not all zero, and
k,m ∈N

+ such that
aI +bTk + cTm|ME

= 0, (46)

which can be seen as a weaker form of the main theorem. Indeed if ME =H , then (46)
directly implies it. However, we cannot conclude from (46) that the same identity
must hold for the whole space (and in general it will not). The step from the linear
dependence in ME to the linear dependence in H is the main obstacle here and much
of the theory in section 2 was introduced as a way to deal with this.

Since the subspace E is now one dimensional, we take E to mean a unit vector
that spans the subspace. To keep the notations simpler, we also write P instead of PH1 .

We recall the earlier result (Proposition 3.2):

If T is half-centered then so is T |H1 .

This implies that PTkPTjP = PTjPTkP for all j,k ∈ N. As PE = I−P, we can
deduce

PTkPE TjP = PTkTjP−PTkPTjP

= PTjTkP−PTjPTkP = PTjPE TkP

so that
PTkPE TjP = PTjPE TkP. (47)

This equation leads to the following.

PROPOSITION 4.1. For every x ∈H1 and u ∈ME

〈x,TmE 〉(Tk−〈TkE ,E 〉 I)u = 〈x,TkE 〉(Tm−〈TmE ,E 〉 I)u. (48)
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Proof. First we prove

〈Ty,TmE 〉(Tk−〈TkE ,E 〉 I)E = 〈Ty,TkE 〉(Tm−〈TmE ,E 〉 I)E (49)

for each y ∈H . Since
PTmE = (Tm−〈TmE ,E 〉 I)E ,

we have
PTmPE TkPT = (Tm−〈TmE ,E 〉 I)PE TkT.

By (47), this is the same as

PTkPE TmPT = (Tk−〈TkE ,E 〉 I)PE TmT.

So we have
(Tm−〈TmE ,E 〉 I)PE TkTy = (Tk−〈TkE ,E 〉 I)PE TmTy

for all y ∈H . Equation (49) now follows from

PE TmTy = 〈Ty,TmE 〉E .

As MT is commutative, we have for any a ∈MT that

〈Ty,TmE 〉(Tk−〈TkE ,E 〉 I)aE = a(〈Ty,TmE 〉 (Tk−〈TkE ,E 〉 I)E )
= a(〈Ty,TkE 〉 (Tm−〈TmE ,E 〉 I)E )
= 〈Ty,TkE 〉 (Tm−〈TmE ,E 〉 I)aE

for every Tn. The statement now follows by continuity arguments. �
The following statement must be known, but since we could not find an exact

reference for it, we include the proof for the sake of completeness.

LEMMA 4.2. Let A be a commutative C∗ -algebra of operators on a Hilbert
space K with a cyclic vector x ∈K . Then given a1,a2 ∈ A and a point λ in the
spectrum of A there is a sequence of vectors xl ∈K such that

aixl−λ (ai)xl → 0

as l→ ∞ for i = 1,2 and
〈aixl,x〉
〈xl,x〉 → λ (ai)

as l→ ∞.

Proof. For simplicity, we write â for the Gelfand transform of a ∈ A . As x is
a cyclic vector for A , there is an isometric representation u : K → L2(X ,μx), where
X is the Gelfand spectrum of A and μx is the Borel measure on X induced by the
positive linear functional on C(X) given by

â �→ 〈ax,x〉 .
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Let Bε [âi(λ )] denote the open ball in C centered on âi(λ ) and with radius ε. Now
define

Wε = â−1
1 (Bε [â1(λ )])∩ â−1

2 (Bε [â2(λ )])

i.e the subset of X such that both â1 and â2 have distance less than ε from their
value at λ . Since â1 and â2 are both continuous, Wε is an open set and thus there is
a non-constant positive continuous function gε , that is zero on Wc

ε . Since μx is finite
and has X as its support (due to the fact that x is cyclic), we can further assume that∫
X |gε(z)|2 dμx(z) = 1 and as gε is positive, we have 0 <

∫
X gε(z)dμx(z) < ∞.

Now we see that ∫
X
|âi(λ )gε(z)− âi(z)gε(z)|2 dμx(z)

=
∫
Wε
|(âi(λ )− âi(z))|2 |gε(z)|2 dμx(z) < ε2

for 1 � i � 2 and thus âigε − âi(λ )gε → 0 in L2(X ,μx) as ε → 0. Moreover∣∣∣∣
∫
X âi(z)gε(z)dμx(z)∫

X gε(z)dμx(z)
− âi(λ )

∣∣∣∣ =
∣∣∣∣
∫
X âi(z)gε (z)− âi(λ )gε(z)dμx(z)∫

X gε(z)dμx(z)

∣∣∣∣
�

∫
Wε
|âi(z)− âi(λ )|gε(z)dμx(z)∫

Wε
gε(z)dμx(z)

< ε ·
∫
Wε

gε(z)dμx(z)∫
Wε

gε(z)dμx(z)
= ε

for 1 � i � 2. Taking xl = u−1g 1
l
, we obtain the statement. �

COROLLARY 4.3. Given two points λ ,μ of the spectrum of MT restricted to
ME and m1,m2 ∈ N, there are two sequences of unit vectors xl,yl ∈ME such that

〈Tmixl,E 〉
〈xl ,E 〉 → λ (Tmi)

and 〈Tmiyl,E 〉
〈yl,E 〉 → μ (Tmi)

as l→ ∞ for i = 1,2.

Now, let (λ ,μ), m1,m2 ∈N and xl,yl ∈ME be as in Corollary 4.3. Consider the
new sequence

vl =
xl

〈xl ,E 〉 −
yl

〈yl,E 〉 .

Then vl⊥E for all l ∈N so that vl ∈H1. Moreover, for i = 1,2

〈vl,TmiE 〉 → λ (Tmi)− μ (Tmi)

as l→ ∞.
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If we apply Proposition 4.1 with the sequence vl in the place of x and k = m1 ,
m = m2 and let l→ ∞, then we get for every u ∈ME

(λ (Tm)− μ (Tm))(Tk−〈TkE ,E 〉 I)u = (λ (Tk)− μ (Tk))(Tm−〈TmE ,E 〉 I)u. (50)

We can draw some conclusions from this formula. Write σ(A ) for the spectrum
of a C∗ -algebra A .

PROPOSITION 4.4. Let λ ,μ ∈ σ(MT |ME ) and λ 
= μ . Then λ (Tm) = μ (Tm)
for some m ∈ N if and only if

TmE = 〈TmE ,E 〉E

i.e E is an eigenvector for Tm.

Proof. If k is such that λ (Tk) 
= μ (Tk) and m is such that λ (Tm) = μ (Tm) ,
then the left-hand side of (50) is zero and therefore so is the right-hand side, but since
λ (Tk) 
= μ (Tk) , we obtain

(Tm−〈TmE ,E 〉 I)E = 0.

The other direction is trivial. �
If dimME � 2 then there must be at least two different point in the spectrum of

MT restricted to ME , this makes it possible to do the following definition.

DEFINITION 4.5. Let dimME � 2 and let (λ ,μ) be two different points in
σ(MT |ME ). For every k ∈ N, let

βk := λ (Tk)− μ (Tk) . (51)

REMARK 4.6. Clearly β0 = 0. We note also that if (λ ′,μ ′) is another couple of
points in σ(MT |ME ) then by Lemma 4.8 below we have λ (Tk)−μ (Tk) = c(λ ′ (Tk)−
μ ′ (Tk)) for a nonzero constant c ∈ R and every k ∈ N, so the sequence {βk} is de-
fined up to a multiplicative constant by a couple of different points in the spectrum
σ(MT |ME ).

DEFINITION 4.7. We let
τk := 〈TkE ,E 〉 (52)

for all k ∈ N.

LEMMA 4.8. If λ is in the spectrum of MT |ME then

λ (Tk) = τk +Aλ βk

for some constant Aλ ∈ R only depending on λ .
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Proof. With our new notations (50) can be now rewritten as

βk (Tm− τm)u = βm (Tk− τk)u. (53)

By Lemma 4.2 we can find a sequence
{
x j

} ∈ME such 〈Tkx j ,E 〉
〈x j ,E 〉 → λ (Tk) and

〈Tmxj ,E 〉
〈x j ,E 〉 → λ (Tm) . Substituting v with

x j

〈x j ,E 〉 in (53), then taking the scalar product

with E on both sides and letting j→ ∞, we get

βk (λ (Tm)− τm) = βm (λ (Tk)− τk) . (54)

If dimME � 2 then there must be at least one m ∈ N such that βm 
= 0 and if we take

Aλ =
(λ (Tm)− τm)

βm

then we see from (54) that Aλ is independent of the choice of k ∈N as long as βk 
= 0.
So we have

λ (Tk) = τk +
λ (Tk)− τk

βk
βk = τk +Aλ βk

when βk 
= 0 and when β j = 0 we have from Proposition 4.4 that

λ (Tj) = τ j = τ j +Aλ β j

so that the formula is valid in this case also. �
The results of this subsection can be summarized as follows:

THEOREM 4.9. If T ∈B (H ) is half-centered and injective with dim(TH )⊥ =
1, then there are self adjoint operators A,C ∈B(ME ), such that for every k ∈ N

Tk|ME
= τkI + βkA. (55)

PTkP|ME
= τkP+ βkC. (56)

where C = PAP.

While T is assumed to be injective, we cannot rule out the possibility that 0 /∈
σ(MT ), in fact we can not even rule out 0 /∈ σ(MT |ME

). In the end of Section 5, we
will see that if

∨∞
k=0 RkME = H , then actually 0 /∈ σ(MT |ME

), but in general this
may not be the case. However, the property 0 ∈ σ(MT |ME

) does give quite strong
implications regarding the structure of T and we must take these into account in the
next section when we add the condition

∨∞
k=0 RkME = H , even though we end up

showing the non-existence of such points.

LEMMA 4.10. If γ(Tk) = 0 for some γ ∈ σ(MT ) and k ∈ N, then γ
(
Tk+ j

)
= 0

for all j ∈ N.
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Proof. We have

0 = γ (Tk)γ
(
θ ∗T,kTjθT,k

)
= γ

(
(T

1
2

k θ ∗T,k)Tj(θT,kT
1
2

k )
)

= γ
(
Tk+ j

)
. �

PROPOSITION 4.11. If 0 ∈ σ(Tk|ME ) for some k ∈ N, then

βk+ j =
τ j+k

τk
βk

and
θ ∗T,kTjθT,k|ME

=
τ j+k

τk
I|ME

for all j ∈ N.

Proof. It follows from Theorem 4.9 that if 0 ∈ σ(Tk|ME ), then there is λ ∈
σ(MT |ME ) such that 0 = λ (Tk) = τk + βkAλ for some Aλ ∈ R. By Lemma 4.10 we
have τk+ j +βk+ jAλ = 0. Since τ j 
= 0 for all j ∈N we must have τk+ j =−βk+ jAλ 
= 0
for all j ∈ N. Hence

τk+ j + βk+ jAλ = τk+ j +
τk+ j

τk
βkAλ (57)

giving βk+ j = τk+ j
τk

βk. Furthermore, the formula (57) shows that(
τk+ j

τk
I

)
Tk|ME

= Tk+ j|ME
.

As also (θ ∗T,kTjθT,k)Tk|ME
= Tk+ j|ME

and the range of Tk is dense in ME , we must
have

θ ∗T,kTjθT,k|ME
=

τ j+k

τk
I|ME

. �

5. Structure properties of injective half-centered operators

The aim of this section is to establish structure results for injective half-centered
operators that satisfy the main assumptions: dimE = 1 and HE = H .

As it was mentioned after the statement of the main theorem, if dimME = 1 then
T is centered and moreover if

∨∞
k=0 TkE = H , then T is a weighted shift. Hence in

what follows, we assume that dimME � 2.
First we discuss the spectrum of MT |H1

|ME �E .

PROPOSITION 5.1. If dimME � 3 then the spectrum of MT |H1
|ME � E con-

tains at least two points.

Proof. As before, we denote by P the orthogonal projection onto H1 = TH .
To prove the statement it is enough to see that if dimME � 2 and PTkE 
= 0 (such k
exists, otherwise dimME = 1), then

MT |H1
PTkE = ME �E . (58)
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Since if PTkE ∈ME �E is a cyclic vector for MT |H1
|ME �E , then the number of

points in σ(MT |H1
|ME �E ) is equal to dimME �E and by assumption, it is larger

than two.
Let A be the operator from Theorem 4.9, then PTkE = βkPAE so for any j,k ∈N

the two vectors PTkE and PTjE differ only by a constant multiple. Hence PTjE ∈
MT |H1

PTkE for any j ∈ N.
The space MT |H1

PTkE is of course a subspace of ME , so if we can prove that
(MT |H1

PTkE )⊕ E is invariant for every Tj, then, since ME is the smallest closed
subspace containing E that is invariant under MT , this would imply (MT |H1

PTkE )⊕
E = ME and therefore MT |H1

PTkE = ME �E .
So take any x+ cE ∈ (MT |H1

PTkE )⊕E with c ∈ C and x ∈MT |H1
PTkE . Then

since P+PE = I we have

Tjx+ cTjE = (P+PE )(Tjx+ cTjE ) = PTjPx+PE Tjx+ cPTjE + cPE TjE .

As PTjP ∈MT |H1
and PE TjE =

〈
TjE ,E

〉
E = τ jE , we obtain

(PTjPx+ cPTjE )+
(〈

Tjx,E
〉
+ cτ j

)
E ∈MT |H1

PTkE ⊕E . �

5.1. Relating MT |ME to MT |H1
|ME �E ; the discrete case

The purpose of the next two subsections is to show that when dimME � 2, then
there is a relation between the spectrum of MT |ME and that of MT |H1

|ME �E .
To see where this relation comes from, assume for a moment that MT |ME has an

orthonormal basis of eigenvectors xi ∈ME . Since
∨∞

k=0 TkME = H and dimE = 1,
we can find an eigenvector xk and a smallest integer m � 1 such that Tmxk is not
orthogonal to ME but T jxk⊥ME for 1 � j � m−1 (if this set of j ’s is non-empty!).
Such xk and m must exist; in fact the converse would imply TH ⊥ME and hence
ME ⊆ E , contradicting dimME � 2.

Now fix such xk and m. From Proposition 3.25 we get T jxk ∈ Vj for 1 � j �
m− 1. Moreover, T jxk is an eigenvector for MT |Vj. This is due to the following cal-
culation: given l ∈ N

TlT
jxk = PH j TlPH j T

jxk =
(
θT, jθ ∗T, j

)
Tl

(
θT, jθ ∗T, j

)
T jxk

= θT, j
(
θ ∗T, jTlθT, j

)
θ ∗T, jT

jxk = θT, j
(
θ ∗T, jTlθT, j

)
T

1
2
j xk

= θT, jT
1
2
j

(
θ ∗T, jTlθT, j

)
xk = λ

(
θ ∗T, jTlθT, j

)
T jxk

where λ ∈ σ(MT) is the eigenvalue corresponding to xk.
Next we observe that Tmxk can not be an eigenvector for MT . In fact, assume

contrary to our claim, that bTmxk = γ(b)Tmxk for all b ∈ MT , where γ ∈ σ(MT ).
Then as Tmxk⊥E , we obtain

〈Tmxk,bE 〉= 〈bTmxk,E 〉= γ (b)〈Tmxk,E 〉= 0

as Tmxk⊥E . Hence Tmxk⊥ME , a contradiction.
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However, Tmxk must be an eigenvector for MT |H1
since

PTlPTmxk = (θT θ ∗T )Tl (θT θ ∗T )Tmxk = θT (θ ∗T TlθT )T
1
2

1 Tm−1xk

= γm−1 (θ ∗T TlθT )Tmxk = λ
(
θ ∗T,mTlθT,m

)
Tmxk

where γm−1 ∈ σ(MT |Vm−1) is the eigenvalue corresponding to Tm−1xk ∈Vk−1 (the last
equality follows from Proposition 3.33). If we project Tmxk onto ME , then this will
still be an eigenvector, since the projection commutes with MT |H1

.
From this we see that for one of the points γ in the spectrum of MT |H1

|ME �E
there is λ in the spectrum of MT |ME is such that

γ (PTlP) = λ
(
θ ∗T,mTlθT,m

)
(59)

for all l ∈ N. If we multiply both sides of (59) with λ (Tm) and use

λ (Tm)λ
(

θ ∗T,mTlθT,m

)
= λ (Tm+l) , we get the equality

λ (Tm)γ (PTlP) = λ (Tm+l) (60)

which is valid for all l ∈N. This shows how it is possible to express some points in the
spectrum of MT |H1

|ME �E in terms of the spectrum of MT |ME .

5.2. Relating MT |ME to MT |H1
|ME �E ; the general case

A similar reasoning as one used to derive (59) can be generalized to work even
in the general case, but due to the possible lack of eigenvectors, the proof of Proposi-
tion 5.3 uses the above arguments in a “reversed” way. However, this approach has a
disadvantage of making less clear what the central idea is. This is why we included the
discrete case as motivation.

First we need an easy result.

LEMMA 5.2. There is an isomorphism

Ψ : MT |H1
|ME �E →M

1
T |θ ∗T ME

induced by
b ∈MT |H1

|ME �→ θ ∗T bθT |θ ∗TME .

We can now proceed to prove the generalization of the result in the last subsection
to the case when we may not have any non-trivial eigenvectors of MT .

PROPOSITION 5.3. If
∨∞

k=0 TkME = H , then there is a dense subset M of the
spectrum of MT |H1

|ME �E such that for every γ ∈M there is a point λ in the spec-
trum of MT |ME and an integer m ∈ N such that

γ (PTkP) = λ
(
θ ∗T,mTkθT,m

)
for all k ∈ N.
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Proof. Consider the subspace θ ∗TME . Since dimME � 2 and dimkerθ ∗T = 1,
this subspace is nonzero. By assumption, HE = H , and hence ∑∞

k=0 PVk = I , so there
exists m ∈ N such that PVmθ ∗TME 
= 0. Since the projection PVk commutes with MT ,
we have a homomorphism

sk : MT |H1
|ME �E →M

1
T |PVkθ

∗
TME

which is defined as the composition

MT |H1
|ME �E

Ψ→M
1
T |θ ∗TME →M

1
T |PVkθ

∗
TME

where Ψ is the isomorphism from Lemma 5.2 and the second arrow is the restriction.
The homomorphism sk induces an injective continuous map

s∗k : σ(M1
T |PVkθ

∗
T ME )→ σ(MT |H1

|ME �E ).

As ∑PVk = I and Ψ is an isomorphism, given a ∈MT |H1
|ME � E , we have a = 0

iff sk (a) = 0 for all k ∈ N. So the union of the ranges of all s∗k must be dense in
σ(MT |H1

|ME �E ).
If μ ∈ σ(M1

T |PVkθ
∗
TME ) then there is μk ∈ σ(MT |Vk) such that

μ (θ ∗T TjθT ) = μk (θ ∗T TjθT )

and so by Proposition 3.33 there is λ ∈MT |ME such that

μ (θ ∗T TjθT ) = μk (θ ∗T TjθT ) = λ
(
θT,k+1TjθT,k+1

)
.

Taking γ = s∗k(μ), we have γ (PTjP) = μ (θ ∗T TjθT ) and so

γ (PTjP) = μ (θ ∗T TjθT ) = λ
(
θT,k+1TjθT,k+1

)
for all j ∈ N. This implies the statement with m = k+1. �

Proposition 5.3 motivates the following definition:

DEFINITION 5.4. Let F be the set of all triples (λ ,γ,m) consisting of

λ ∈ σ(MT |ME )

γ ∈ σ(MT |H1
|ME �E )

and m ∈ N+ such that
γ (PTkP) = λ

(
θ ∗T,mTkθT,m

)
for all k ∈ N. We say that the triples (λ ,γ,m) and (λ ′,γ ′,m′) are not equal if either
λ 
= λ ′ or γ 
= γ ′ or m 
= m′.
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Recall from Theorem 4.9 that if λ ∈ σ(MT |ME ) and γ ∈ σ(MT |H1
|ME � E )

then
λ (Tk) = τk + βkAλ

γ(PTkP) = τk + βkCγ

for some Aλ ,Cγ ∈ R.
Next proposition shows how every triple (λ ,γ,m) ∈ F gives rise to a relation

between the τk ’s and βk ’s.

PROPOSITION 5.5. For any triple (λ ,γ,m) ∈F and every k ∈ N we have

λ (Tm)γ (PTkP) = λ (Tm+k) . (61)

Moreover, if λ (Tm) = τm +Aλ βm and γ (PTmP) = τm +Cγβm then for all k ∈N

τk− τm+k

λ (Tm)
=

Aλ βm+k

λ (Tm)
−Cγβk (62)

when λ (Tm) 
= 0 and

τk− τm+k

τm
=−Cγβk (63)

when λ (Tm) = 0.

Proof. We have γ (PTkP) = λ
(

θ ∗T,mTkθT,m

)
, so

λ (Tm)γ (PTkP) = λ (Tm)λ
(
θ ∗T,mTkθT,m

)
= λ (Tm+k)

proving the first part. If λ (Tm) 
= 0, then

λ (Tm)τk + λ (Tm)Cγ βk = λ (Tm)γ (PTkP) = λ (Tm+k)

by (61). As λ (Tm+k) = τm+k +Aλ βm+k, we obtain (62). When λ (Tm) = 0, we get the
formula from Propositions 3.33 and 4.11. �

6. Main theorem: the case |F |� 2

The aim of this section is to show that when F has at least two elements, then T
satisfies equation (17) in the main theorem.

Let {τk} and {βk} be the sequences of real numbers associated to T that are
defined by (52) and (51). Let

τ (z) =
∞

∑
j=0

τ jz
j

and

B(z) =
∞

∑
j=0

β jz
j.
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be formal power series associated to {τk} and {βk} .
Let S∗ be the backwards shift operator, defined on power series as

S∗ :
∞

∑
k=0

akz
k �→

∞

∑
k=0

ak+1z
k

and pick (λ ,γ,m) ∈F . Then (62) and (63) can be rewritten as follows:(
I− S∗m

λ (Tm)

)
τ (z) =−

(
Cγ I− Aλ S∗m

λ (Tm)

)
B(z) . (64)

when λ (Tm) 
= 0 and (
I− S∗m

τm

)
τ (z) =−CγB(z) (65)

otherwise.
Taking another triple (μ ,ω ,n) ∈ F we obtain similar equalities with (λ ,γ,m)

replaced by (μ ,ω ,n)
Letting

P1(z) =

{
1− zm

λ (Tm) λ (Tm) 
= 0

1− zm
τm

otherwise
, P2(z) =

{
Cγ − Aλ zm

λ (Tm) λ (Tm) 
= 0

Cγ otherwise
,

Q1(z) =

{
1− zn

μ(Tn)
μ(Tn) 
= 0

1− zn
τn

otherwise
, Q2(z) =

{
Cω − Aμ zn

μ(Tn)
μ(Tm) 
= 0

Cω otherwise
.

We have

P1(S∗)τ(z) =−P2(S∗)β (z)
Q1(S∗)τ(z) =−Q2(S∗)β (z).

(66)

Now let P(z) = P1(z)Q2(z)−P2(z)Q1(z).

LEMMA 6.1. We have

P(S∗)τ(z) = 0

P(S∗)β (z) = 0

Proof. If follows from (66) that

P1(S∗)Q1(S∗)τ(z) =−P1(S∗)Q2(S∗)β (z)

Q1(S∗)P1(S∗)τ(z) =−Q1(S∗)P2(S∗)β (z)

giving the first equality P(S∗)β (z) = 0. A similar calculation gives P(S∗)τ(z) = 0. �
Our next goal is to show that if F contains at least two triples, then we can choose

(λ ,γ,m) and (μ ,ω ,n) such that P(z) is not identically zero.
Since we will always work with only two triples at the time, we can without any re-

sulting confusion denote the polynomial corresponding to (λ,γ,m) ,(μ ,ω ,n) by P(z) .
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LEMMA 6.2. If dimME = 2 then for every triple (λ ,γ,m) ∈F we have Aλ 
=
Cγ .

Proof. Choose k ∈ N such that βk 
= 0. Then the spectrum of Tk|ME consists
of two points, since from (55) we find that in this case, I and Tk are generators for
MT |ME . Now consider the function H (z) =

〈
(Tk− z)−1E ,E

〉
. This is a rational func-

tion with simple poles at the eigenvalues of Tk. Since for real z

H ′ (z) =
〈
(Tk− z)−2E ,E

〉
=

〈
(Tk− z)−1E ,(Tk− z)−1E

〉
> 0

we see that H (z) has a zero χ between its two poles. As χ is not in the spectrum
of Tk we must have (Tk − χ)−1E 
= 0 and then from

〈
(Tk− χ)−1E ,E

〉
= 0 we get

(Tk− χ)−1E⊥E . Now we can calculate

PTkP(Tk− χ)−1E = PTk(Tk− χ)−1E = P(Tk− χ + χ)(Tk− χ)−1E

= χ(Tk− χ)−1E .

Hence χ is in the spectrum of PTkP|ME �E so

χ = τk +Cγβk.

But χ is not in the spectrum of Tk|ME and therefore χ 
= τk + βkAλ . As βk 
= 0, we
get Cγ 
= Aλ . �

If dimME = 2, there is only one element in σ(MT |H1
|ME �E ). Hence for two

triples (λ ,γ,m) ,(μ ,ω ,n) ∈F we must have γ = ω .

LEMMA 6.3. Let dimME = 2. If there are two different triples

(λ ,γ,m) ,(μ ,γ,n) ∈F ,

then P(z) 
≡ 0 . However, we have P(0) = 0.

Proof. First, note that since dimME = 2 and T is injective we can not have
λ (Tk) = 0 for any λ ∈ σ(MT |ME ) and k ∈N, since otherwise we will have a nonzero

u∈ME such that Tku = 0 and hence 0 = 〈Tku,u〉= ∥∥Tku
∥∥2

. Let (λ ,γ,m) ,(μ ,γ,n) ∈
F , then λ (Tm) 
= 0 and μ(Tn) 
= 0. The corresponding polynomial P(z) is then of the
form

P(z) =
(

Cγ − Aλ zm

λ (Tm)

)(
1− zn

μ (Tn)

)
−

(
Cγ − Aμzn

μ (Tn)

)(
1− zm

λ (Tm)

)
. (67)

Assume on the contrary that P(z) ≡ 0. By expanding the right-hand side of (67) and
use Aλ 
= Cγ and Aμ 
= Cγ , we easily see that P(z) ≡ 0 implies m = n and Aλ = Aμ
and hence the triples are equal. The second claim follows from the fact that the constant
term on the right-hand side of (67) vanishes. �
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PROPOSITION 6.4. If the set F has more than two elements, then there are two
triples (λ,γ,k) ,(μ ,ω ,m) ∈F such that the polynomial P(z) is not the zero polyno-
mial. Moreover, if dimM � 3, then there are different triples such that P(0) 
= 0 .

Proof. We already know that if dimME = 2 and there are two different triples,
then the polynomial P(z) is not constantly zero. If dimME � 3 then by Lemma 5.1 the
C∗ -algebra generated by the PTjP’s restricted to ME must have a spectrum consisting
of at least 2 different points. Proposition 5.3 now gives that there are γ,ω ∈M with
γ 
= ω and thus also with Cγ 
= Cω . An easy calculation gives that the constant term of
P(z) is Cγ −Cω and hence P(z) 
= 0. �

Now we can prove the main result of this section:

THEOREM 6.5. If F has at least two elements, then there are constants
a,b,c,d ∈ R, not all zero, and integers n,m ∈N

+ , such that

aI +bTn + cTm +dTn+m = 0. (68)

In particular, if dimME � 3 then we may assume that a 
= 0.

Proof. If F has at least two elements, it follows from Proposition 6.4 that there
exist (λ,γ,k) and (μ ,ω ,m) in F such that the corresponding polynomial P(z) is of
the form a+ bzn + czm + dzn+m, where a,b,c,d ∈ R are not all zero and n,m ∈ N+.
As P(S∗)B(z) = 0 and P(S∗)τ (z) = 0, we obtain that for all k ∈N

aτk +bτk+n + cτk+m +dτk+n+m = 0 (69)

aβk +bβk+n + cβk+m +dβk+n+m = 0. (70)

By Theorem 4.9, these equations imply

aTk +bTn+k + cTm+k +dTn+m+k|ME
= 0

for all k ∈ N. Now fix k ∈ N and consider

aI +b(θ ∗T,kTnθT,k)+ c(θ ∗T,kTmθT,k)+d(θ ∗T,kTn+m+kθT,k).

Restricted to ME , we have

T
1
2

k

(
aI +b(θ ∗T,kTnθT,k)+ c(θ ∗T,kTmθT,k)+d(θ ∗T,kTn+mθ ∗T,k)

)
T

1
2

k |ME

= aTk +bTn+k + cTm+k +dTn+m+k|ME
= 0.

Since T
1
2

k has dense range, we must have

aI +b(θ ∗T,kTnθT,k)+ c(θ ∗T,kTmθT,k)+d(θ ∗T,kTn+mθ ∗T,k)|ME
= 0.
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By Theorem 3.32, this implies that

aI +bTn + cTm +dTn+m|Vk = 0.

As this is true for every k ∈ N and the subspaces Vk span H , we have

aI +bTn + cTm +dTn+m = 0.

If dimME � 3 then by Proposition 6.4 there are (λ ,γ,n) ,(μ ,ω ,m) ∈ F such that
P(0) = a 
= 0. �

COROLLARY 6.6. For all k, j ∈N, the restriction Tj|Vk is invertible. If dimME �
3, then Tj is invertible for all j ∈N , or equivalently, T has closed range.

Proof. Since T is injective, every Tj has dense range. If dimME � 2 then
dimVk � 2 for all k ∈ N, so Tj|Vk must be invertible.

When dimME � 3, it follows from Theorem 6.5 that there are b,c,d ∈ R and
m,n ∈ N

+ such that
I +bTn + cTm +dTn+m = 0

(we can divide (68) by a 
= 0). If, say, n � m then consider

−bI− c(θ ∗T,nTm−nθT,n)−d(θ ∗T,nTmθT,n).

This is an inverse of Tn since

Tn
(−bI− c(θ ∗T,nTm−nθT,n)−d(θ ∗T,nTmθT,n)

)
=−bTn− cTm−dTn+m = I.

But if Tn is invertible, then so is T1 , since Tn = T1(θ ∗T Tn−1θT ). �

6.1. Main theorem: the case |F |= 1

The final case to consider is when there is only one triple in F .
Take J to be a weighted shift on �2 with the standard basis {ek;k ∈N} . Now for

some n ∈ N and a ∈C consider

L = J +a(e0⊗ e∗n)

(recall that by e0⊗ e∗n we denote the rank one operator x �→ 〈x,en〉e0 ). With respect to
the standard basis, this infinite matrix will look as follows

L =

⎡
⎢⎢⎢⎢⎣

a 0 0 0 . . .
a0 0 0 0 . . .
0 a1 0 0 . . .
0 0 a2 0 . . .
. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦ (71)
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when n = 0 and

L =

⎡
⎢⎢⎢⎢⎣

0 . . . a 0 . . .
a0 . . . 0 0 . . .
. . . . . . . . . . . . . . .
0 . . . an 0 . . .
. . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦ (72)

for a general n.

LEMMA 6.7. The operator L is half-centered and for every k ∈ N we have that
Lk is diagonal with respect to the standard basis {ek;k ∈ N} .

Proof. As it was mention after Example 2.8, this is a corollary of Proposition 2.5. �

In this section, we prove the following:

THEOREM 6.8. If F has only one triple (λ ,γ,n) , then there is an orthonormal
basis {xk;k ∈ N} of H , a wighted shift J on this basis and a ∈C such that

T = J +a(x0⊗ x∗n).

There is an orthonormal basis v,w of ∈ME consisting of common eigenvectors
for all the T ′j s restricted to this space. Let, say, w be an eigenvector corresponding

to λ . As there is only one triple, we must have Tkv ∈ Vk for all k ∈ N, otherwise the
reasoning used in subsection 4.1 would yield a different triple. Furthermore:

LEMMA 6.9. If there is only one triple (λ ,γ,n) in F , then Vn+ j =
〈
Tn+ jv

〉
for

all j ∈N.

Proof. The reasoning used in the proof of Proposition 5.3 shows that the only
way we could end up with only one triple (λ ,γ,n) is if dimME = 2 and T ∗ME is a
subspace of Vn−1. This in turn gives TVk⊥ME for k 
= n−1. Hence TVn+ j = Vn+ j+1

for all j ∈ N by Proposition 3.20 and Proposition 3.25. This shows that the subspace
⊕∞

m=n+2Vm is T -invariant and so ⊕n+1
m=0Vm is T ∗ -invariant. Now T ∗Vn+1 = T ∗TVn =Vn

and 〈
T ∗Vj,Vn+1

〉
=

〈
Vj,TVn+1

〉
=

〈
Vj,Vn+2

〉
= 0

for j 
= n + 2, so Vn+1⊥T ∗ ⊕n+1
m=0 Vm. But T ∗ restricted to ⊕n+1

m=0Vm still has just E

as its kernel and since the space ⊕n+1
m=0Vm has finite dimension, the dimension of the

kernel must be equal to that of the cokernel. So dimVn+1 = 1 and since Vn+1 = TVn

this must also be true for Vn. Since Tn+ jv∈Vn+ j, the whole space must be spanned by
this vector. �

PROPOSITION 6.10. We have Tnw ∈ME .
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Proof. If m � n+ 1, then as Tnw ∈ Xn, we have Tnw⊥Vm by definition of Vm .
Also Vn = 〈Tnv〉 and so

〈Tnv,Tnw〉= 〈Tnv,w〉= λ (Tn)〈v,w〉= 0.

The same argument shows that Tnw⊥Vm for 1 � m � n−1 since

〈Tmw,T nw〉= 〈
Tmw,Tn−mw

〉
= 0

〈Tmv,Tnw〉= 〈
Tme0,T

n−mw
〉

= 0

and the vectors Tmw,T mv span Vm for 1 � m � n−1. So Tnw∈ (⊕∞
k=1Vk

)⊥= ME . �

COROLLARY 6.11. We have ME �E = 〈Tnw〉 and T ∗ME =
〈
Tn−1w

〉
.

Proof. Tnw∈ME is orthogonal to E and since dimME = 2, the subspace ME �
E must be generated by Tnw. The second claim now follows from

T ∗ME = T ∗ME �E =
〈
T1T

n−1w
〉

=
〈
Tn−1w

〉
since Tn−1w is an eigenvector for MT by the introduction to subsection 4.1. �

With the help of these result we can now proceed to prove Theorem 6.8:

Proof. For 0 � k � n−1 take

xk =
Tkw
‖Tkw‖

and when n � k take

xk =
Tk−nv
‖Tk−nv‖ .

Thus {xk;k ∈ N} is an orthonormal basis for the Hilbert space H and by the results
above, there are constants ak,a ∈ C such that

Txk = akxk+1

when 0 � k � n−2 or n � j and

Txn−1 = anxn +ax0

(since Tnw was in ME generated by w = x0,v = xn ). If we now take J to be the shift

Jxk = akxk+1

then
T = J +a(x0⊗ x∗n). �
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The main theorem can now be proven by combining the results from sections 5
and 6 :

Proof of the main theorem. When dimME = 1, we refer to the remarks given
after the statement of the main theorem in section 2. When dimME � 2, it follows
from Propositions 5.1 and 5.3 that |F | � 1 and hence we can split the arguments into
the cases |F | = 1 and |F | � 2. When |F | = 1, we get from Theorem 6.8 that this
corresponds to the second part of case 1. When |F | � 2, we get (17) from Theo-
rem 6.5. Finally, when dimME � 3, the claim follows from Theorem (6.5) and Corol-
lary 6.6. �
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