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HALF-CENTERED OPERATORS

OLOF GISELSSON

(Communicated by H. Radjavi)

Abstract. An operator T on a Hilbert space is called half-centered if the sequence
T*T, (T*)*T?,...

consists of mutually commuting operators. The class of such operators contains the well-studied
class of centered operators. In this paper we give a criterion for when a half-centered operator is
centered and prove a structure theorem for half-centered operators that satisfy some additional
conditions.

1. Introduction

A bounded operator T on a Hilbert space .77 is called centered if the operators in
the sequence
{773, 1* 12, 17", 7T, 71>, 7713 ...} (1)

are mutually commuting. Examples include weighted shifts and obviously isometries
and self-adjoint operators. The structure of these operators is well understood; it has
been shown in [4] that, a bit simplified, a general centered operator is a direct sum
of weighted shifts (unilateral, bilateral or truncated). Another interesting article on the
subject is [6], here some particular situations are investigated in relation to more general
problems in operator theory.

The purpose of this paper is to investigate operators 7 satisfying the more general
condition that the sequence

{r*1, 71,7717 ...} )

consists of mutually commuting operators. As (2) is half of (1), we call such operators
half-centered.

We will mainly consider half-centered operators satisfying dim(7.7#)+ = 1 and
a certain technical density condition, which is however not very restrictive. It turns
out, that under these assumptions, either the structure of 7 is very simple and can be
explicitly described, or the operators in the sequence {T*T* k € N} are not linearly
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independent. More specifically, there exists a,b,c,d € R, not all zero, and strictly
positive integers n,m € Z~ such that the equation

aI-l—bT*nTn —I—CT*me +dT*m+nTrn+n =0 (3)

holds. This is the main result of the paper, and most of this text is concerned with
proving it.

In section 2, we first prove a result that gives necessary and sufficient conditions
for when a half-centered operator is centered; for example, any half-centered opera-
tor with dense range is centered. We will then give several examples of classes of
half-centered operators that are not necessarily centered, some of which have been ex-
tensively studied in the literature. It will also be shown that some very natural op-
erators are half-centered. For instance, any operator T € %(L*(X,u)), that acts by
f(x) —a(x)f(¢(x)) where a € L*(X,u) and ¢ : X — X is a measurable function, is
half-centered by Proposition 2.5. In Section 2 will here also state the main theorem
and discuss the conditions under which it holds.

This paper is written in a decreasing level of generality. In section 3 we will
develop a theory for general injective operators that is needed in the latter sections and
which provides a useful framework to analyze the half-centered operators. Here we
will also prove some more general results about half-centered operators which do not
necessarily fall under the hypothesis of the main theorem.

Section 4 concerns injective half-centered operators 7' with dim(7.#)* = 1. It
will be shown that in this case, the spectrum of T*¥T* restricted to certain subspaces
can be quite effectively analyzed.

In the last sections, 5 and 6, we will include then density condition as an assump-
tion and prove the main result.

Acknowledgment: The author would like to thank Ase Fahlander, Alexandru Ale-
man and Lyudmila Turowska for helpful discussions and valuable comments on the
text.

2. Half-centered operators: examples and notations

Clearly every centered operator is half-centered. As a first basic result, we give a
characterization of the half-centered operators that are actually centered. Here we use
the notation & :=kerT* = (T 7). For a closed subspace V C 7, denote by Py the
orthogonal projection onto V.

PROPOSITION 2.1. Let T € B(H) be a half-centered operator. The following
are equivalent:

1. T is centered.
2. THTkg C & forall k € N.

Proof. (1=2). Since (TT*)(T*TF) = (T*T*)(TT*) for all k € N, it is easy to
see that the space & = kerT* = ker TT* is invariant under the operators T*¥T*.
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(2=-1). First, we notice that by 2, the projection P¢ commutes with the operators
T*KT*, this is then also true for the projection P = I — Ps.

Now since o ‘ ‘

T*((TT)(TT*)T = (T*UVTHY(T°T)
= (T (T T = T (T VT,
we have (Pr7(T*T/)Pr7)(TT*) = (TT*)(Pr57(T*/ T/)Pr7) for all j € N. This
gives . . .
[T*T) TT*) = Po(TT)TT* —TT*(TYT/)Ps =0 (4)

as TT*(T*T/)Pg = TT*Py(T*T/)Ps = 0 by 2, so T**T* commutes with T7T*.

Hence for any k£ € N, we have

T*k((T*jTj)(TkJrlT*(k+l)))Tk _ (T*(jJrk)TjJrk)(TT*)(T*ka) S

(T TR — TR ey i,

where the second equality follows from (4). As

PTkjf(TkJrlT*(k-i_l))PTk(;f _ Tk+lT*(k+1)7

we get from (5)

(T*jTj)P )(Tk+1T (k+1)) _ (Tk+1T*(k+l))(P7

(P ka%ﬂ(

Tk

TP ) (6)

for all k, j € N. We claim that (6) actually implies
(T*T* (T T7) = (T T7)(T*T**) for all j,k €N, (7)

The proof is by induction on k. We already know that it holds for k = 1, so assume it
is true for k—1 > 1. Now

(A DY (T Ty = () (TR )

=P

giVGS (T*’T’)PW W(T*JT/) since Poy——,=1— Pker(Tk Lx(k— 1)) As

Tl —

PTk l)f(TkT*k) (TkT*k)
we see that o
TYITITT™ = (P T T P p) T T
T T TT) =TT (P T T Pr)

and by (6), the right hand sides are equal. Hence (6) is true also for %.
There is only the equality (T*T*)(T™T*™) = (T™T*™)(T*T**) left to prove. But
this follows from what has already been proven, since if, say m > k, then

(TkT*k)(TmT*m) _ Tk((T*ka)(TmfkT*(mfk)))T*k
_ Tk((Tm—kT*(m—k))(T*ka))T*k (TmT*m)(TkT*k).

The proof is now complete. [
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COROLLARY 2.2. If T € B(H€) is half-centered and T 7 = H, then T is cen-
tered.

EXAMPLE 2.3. (2-isometries) An operator 7" satisfying the equation
[-2T*T+T*T*=0 (8)

is called a 2-isometry. Equation (8) implies that T*¥T* is a linear combination of I and
T*T for every k € N and this gives that 7 is half-centered. 2-isometries have been
studied a lot due to their connection with the Dirichlet shift (see [1], [2], [3]). From
their theory one can deduce that a centered 2-isometry must be of the form 7' =U @ S,
with U an isometry and S a weighted shift. In general, 2-isometries have a quite
complicated structure, so in this case the centered 2 -isometries forms a strict (and quite
boring) subclass.

More generally, any operator 7 satisfying
aol + a1 T*T + axT**T?> =0

for constants ag,a;,a; € R (where at least one a; # 0) will be half-centered, since then
again every T*¥T* will be a linear combination of / and T*T.

EXAMPLE 2.4. Let P,Q be two orthogonal projections and consider
T =PQ.

Then T is half-centered since

k 2k—1

k
r*1r* =[] oP[]Po =0 [] Po=0T*"!
L o

j=1  j=1
and so
(T97T7) <T*kT"> — QT 1T = QT2k+2i-2
= or*lor¥! = (T*ka> (177T7).
Now, TT* = PQP and from this we calculate
(TT*)(T*T) = PQPQPQ =T
(T*T)(TT*) = QPQPQP =T™*.

So if T*3 #* T3 then T is half-centered but not centered. The latter holds if we take,

for example
11
5 —35 10
-3 3 00
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N[ —

then T = [ 8] and so

1
2
s[5 0], [#—% 3
—| 2 2B =T
gl =
A large class of half-centered operators are given by the following proposition:

PROPOSITION 2.5. Let (X,1) be a measure space with © -finite measure | and
let W : X — X be a measurable function such that the linear map

f(x) = fy(x)

induces a bounded linear operator on L*(X, 1) and let & € L= (X, ). Then the oper-
ator

T:fel*(X,n)— E@)f(w(x) 9)

is half-centered.

Proof. Since T is the composition of two bounded linear operators, we have T €
B(L*(X,u)). Take any h € L=(X,u) and let M, denote multiplication by &. For all

fige P (X,p)
(. T'TM,f) = (Te.TMuf) = | T(COT(1f)(x)du
= | EWsWENEMMY ) (W (W)du()
— [ ERWENS(W0)E WS (W()du()
= [ T T ()@ ()

= (TMg,Tf) = (TM;;g,Tf) = (g, M;T*Tf).

This gives M;T*T = T*TM,, and since h was arbitrary T*T commutes with all of
L=(X,u). The von Neumann algebra L= (X,u) C %(L*(X,u)) is maximal abelian
(see [5]) and so T*T € L™(X, ). The same argument gives T**T* € L=(X, ) for ev-
ery k € N and therefore the operators in the sequence (2) commute with each other. [J

Notice that if, for example, the set {&(x)f(y(x));f € L*(X,u)} is dense in
L?(X,u) then Proposition 2.1 gives that T is actually centered. However, in general,
the operators defined in Proposition 2.5 will not be centered.

Before we proceed any further, let’s first fix some notations.

The operators T*KT* are referred to a lot, so in order to make things appear more
concise, we write them as T;. We again denote ker 7* = (T )" by & and this nota-
tion will be used for the rest of the text. We also remark that in this paper we consider
0€N, and we let Ty = 1.

Next, we define a subspace that will be of utmost importance here:
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Let .#¢ be the smallest closed subspace containing & that is invariant with re-
spect to all the operators 7Tj. Proposition 2.1 indicates that .Zs is a natural starting
point when investigating the strictly half-centered operators, since this result is saying
that half-centered 7T is centered iff .#Zx = &.

If we have an operator R € #(#) and a closed subspace V C ¢ such that
RV CV and R*V CV, then V is said to be reducing for R. In the case when R has no
reducing subspaces, R is called irreducible. If T is centered, then & is a reducing sub-
space for both T; and T*T*K. Assuming & # 0, then if T is centered and irreducible,
we must have dimker7* = 1. This is generally not true for half-centered operators.

In this paper we will prove a structure theorem for half-centered operators 7 sat-
isfying the following assumptions:

I. T isinjective and & has dimension 1.
L o Tr e =57

Theorem 3.23 below shows that \/7_oT*.#s can alternately be defined as the
smallest closed subspace containing & that is invariant under 7' and the operators Tj.
However, without any further conditions this subspace will in general not be reducing
for T. Notice also that these conditions imply that the Hilbert space .77 is separable.

Spread throughout the rest of this section are some examples of half-centered op-
erators that satisfy conditions I and II.

Let us recall the notion of wandering subspace property for an injective operator
R on a Hilbert space .7 . Given R € B(s¢), let, as before, & := kerR*, then R is said
to satisfy the wandering subspace property if

\/ R'¢ = (10
k=0

This condition resembles II. The subspace & is often called the wandering subspace
for R.
Closely related to (10) is the condition

(\R*# ={0}. (11)
k=0

If for an injective operator R with closed range we let R' = R(R*R)~!, then by
results in [7] (10) holds for R iff (11) holds for R. Observe that kerR* = kerR™* and
(R") = R. The operator R’ is called the Cauchy dual of R.

An important fact about injective operators satisfying (10) and having closed range
is that they are unitarily equivalent to the multiplication operator f(z) — zf(z) on a
Hilbert space £ (&) of & -valued analytic functions (with & = kerR").

The condition I1 is actually weaker than (10) for both T and T’ since the subspace
\/’J‘-:O T/ #s contains both T*& and T'*& for every k € N. Indeed, this is trivial for 7.
To prove it for T, notice that T* is a left inverse for T/, so that T**+!1T7%& = T*& = 0.
This gives T*& C ker T***1. It is not hard to see that ker 7***! is spanned by the
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subspaces T/(T*/T7)~1& for 0 < j < k and these are all subspaces of \/5_ T/.#. It
now follows:

PROPOSITION 2.6. I holds for R if (10) or (11) holds for R or R’ (if the latter
operator exists).

For instance, this implies that if S is the shift operator on ¢2, then as any operator of
the form ASA~! with A € Z(¢?) satisfies (11), it has property II.

As two of the most distinguished cases of half-centered operators satisfying I and
IT are the weighted shifts and the 2-isometries (in the irreducible non-isometry case)
and both of these classes of operators satisfy (10) and (11) (this claim is trivial for
weighted shifts, and for 2-isometries, see [7]). It is natural to ask if (10) and (11) are
true in general for a half-centered operator satisfying I and II. However, as our next
example shows, this is not the case.

EXAMPLE 2.7. Let S be the isometric shift on the Hardy space H?, i.e

f(z) e H? = zf(2).

Now consider
T=aS+(I-SS"),

with a € C such that 0 < |a| < 1. An easy way to see that both T and T' = T (T*T) "
are half-centered is to write them down as matrices in the standard basis {zk;k eN } :

1 000O0..
a 000 ..
T=10a 0 O .. (12)
00 a O..
[1+1]a)> O 0 0
0 Ja?* 0 0 ...
™"T=| 0 0 |a? 0 ... (13)
0 0 0 |af?...
[—> 0 0 0 ..]
1+|a?
T 0 0 0.
T'=1] 0 ﬁ 0 0 .. (14)
0 o

It is not hard to see now that for all k € N, both matrices T*KT* and T"*T’ are
diagonal. From (12), we see that ker 7 is spanned by @ — z and from (2.7) that T*T —
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|a|* I is the operator f(z) — (14 |a|?)f(0). Thus 1,z € .#¢ and since T*z = a*zF, this
gives

\/ Tk//f(gﬁ = H>.
k=0
Hence both I and II are fulfilled by 7. However, as

& 1
Zakzkz— € H?
a—z

is an eigenvector for 7' and thus in the range of T* forall k € N, T does not satisfy (11)
and hence the Cauchy dual 7’ does not possess the wandering subspace property.

EXAMPLE 2.8. The operator in Example 2.7 is a special case of a more general
type of half-centered operator. Let .77 be a separable Hilbert space with an orthonormal
basis {x; : k € N} and inner product (.,.). Let J be an injective weighted shift operator
with respect to this basis, so that

Jxi = agxpy

for some nonzero constants a; € C. If xy ®x}; denotes the operator x — (x,x,) xo, then
forany n € N and a € C, the operator

T=J+a(xo®x)) (15)
is half-centered.

In fact, the operator (15) can be seen to be of type (9) if we view J# as L? (N, ),
where U is the counting measure. Define y;, : N — N by v, (k) =k—1if k> 1 and
¥, (0) = n and let &(k) = a;_1 if k> 1 and £(0) = a. It is not hard to see that the
operator

f0) = S f (Yalx))

coincides with the operator (15). Hence, by Proposition 2.5, the latter is half-centered.

2.1. The main theorem

The main purpose of this paper is to prove the following result.

THEOREM 2.9. (Main) Let T be an injective half-centered operator on ¢ such
that \/z_oT* Mg = 7 and dim& = 1.
Then there are two possibilities (though not mutually exclusive).

1. There is an orthonormal basis {x; : k € N} of common eigenvectors for the op-
erators {Ti} e Such that with respect to this basis, T is either a weighted shift
or there is a weighted shift J such that

T =J+a(xo®x;) (16)
forne N and a € C.
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2. There are constants a,b,c,d € R, not all zero and k,n € N such that

al + bT*T* + T T" + dT** Tk = 0. (17)
Moreover, if dim.#g > 3 then (17) holds with a # 0 and the range of T is closed.

REMARK 2.10. Notice that if dim.#, = 1 then .#e = & and hence T**Tk& C
& for all k € N. By Proposition 2.1, T is centered and the condition \/i_( T*& = #
gives that T is a weighted shift.

So far, we have not given any concrete example of a half-centered operator where
dim.#Zz > 3. In order to show that this class is not just void, we construct below a
half-centered operator having the property that .Z is the whole space.

EXAMPLE 2.11. Let # = ¢* with standard basis {e; : k € N} and let S be the
shift operator. For 0 < g < 1, let A, be the operator that in the standard basis can be
written as the infinite matrix

0100
1 0 g 0...

Ag=10 g 0 ¢ ...|. (18)
0 0¢g*>0

Since 0 < ¢ < 1, it is straightforward to deduce that A, is a compact self-adjoint oper-
ator. Moreover, it is easy to see that

S*A,S = gA, (19)

and kerA, = {0}. Thus ¢? has an orthonormal basis {x; : k € N} consisting of eigen-
vectors for A, and we can easily deduce that (xi,eq) # O for all k& which implies that
every eigenspace of A, must be one-dimensional.

Since A, is self-adjoint, there is 7 > 0 such that A, + 7/ is invertible and positive.
Now let

1 1
T=(A;+rD)IS(Ag+711)" 2. (20)
Then 1 :
T" = (Ag+r1)2S"(Ay+rl)" 2 (21
and so by (19), we see that
T = (Ag+ 1)~ 2 (g"Ag + rI) (A + 1) 2 22)

from which it follows that (7*"7")(T*"T™) = (T*"T™)(T*"T") for m,n > 0 and
hence T is half-centered. Furthermore, if A; is the eigenvalue of the eigenvector x;

for Ay, then x; is clearly an eigenvector for 7*"T", with eigenvalue % Since the
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. n . . .
function L2 is one to one on (—r,e0), we get that 7*"T" has only one-dimensional

eigenspaces. From the formula (21), we have
E=kerT" = (A, + VI)7%€0

giving (&, x) # 0 for all k. If V were a nontrivial closed subspace, invariant under
the 7;’s and orthogonal to &, then V would have to contain a nonzero eigenvector x;,
of Ay, giving (&, x,) = 0, a contradiction. Since the operators T} are all self adjoint,
also .#s" is invariant with respect to them and so by the last sentence, we must have

Met = {0} giving Mg = (.

It can be seen from (21) that the operator defined in Example 2.11 satisfies the
equation
I—(14+¢ YT'T+4¢7'T?1* =0. (23)

This is similar to the one that defines the 2-isometries. Indeed, the 2-isometries are a
natural occurring example where often dim.Z > 3, although the way they usually are
constructed makes this a bit cuambersome to check.

3. Theory for general injective operators

Before we can tackle the main theorem we must first build up some machinery.

While the theory presented in this section was developed specifically to deal with
the half-centered operators, it turned out that it could, with minor extra work, be gener-
alized to a more general setting. Hence it is presented in this fashion.

Let us fix some more notation:

Let 77 be a separable complex Hilbert space with inner product (-,-) and £ ()
be the C*-algebra of bounded operators on 7. Let R € % (.7) be a fixed bounded
injective linear operator. As in the introduction, we denote ker R* by &, and the small-
est subspace containing & that is also invariant with respect to the set of operators
{R*kRk ;k € N} is denoted by .#s. Throughout the rest of this paper the letter T will be
reserved for injective half-centered operators. Given a closed subspace V of the Hilbert
space ¢ we write Py for the orthogonal projection onto V. Also, for an operator B
and a subspace V of .7 we write the restriction of B to V as Bly (or sometimes, to
avoid multiple index, we write B|V instead). Notice that if V is an invariant subspace
for B then

(Blv)" =B'|v

for all kK € N. When we have an algebra of operators <7 C % (.7) and a subspace V
which is invariant under all operators in .27, then </|V C % (V) is the algebra of all
operators that are elements in .o/ restricted to V.

The main idea of this section is to decompose the subspace \/;,_oR™.# s into a
direct sum @;,_,V,, of orthogonal subspaces V,, with Vy = .#¢, such that R acts on
each V,, in a “reasonable” predictable way. Moreover, each V,, will be an invariant
subspace for all the operators R**R¥. We will furthermore show that there is a strong
relation between the restrictions of R**RF to different V,,’s in the sense that there is a
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natural surjective homomorphism from a sub-algebra of the von Neumann algebra gen-
erated by the operators {R*R¥|V,,;k € N} onto the von Neumann algebra generated
by {R*R¥|V,;k € N} when n > m. This construction makes up the technical core of
this text, and it will take some time to complete.

3.1. The C*-algebras Mg, and Mj

The purpose of this subsection is to introduce two sequences of C*-algebras Mg ,
and M}, both indexed over N. We refer the reader to [5] for the background on C*-
algebras.

We also remind the reader of the notation

R, = R*kRk

that will be used for the remainder of the text. Note that if V' is an invariant subspace
for R, then

(RIv)e = (RIv)™* (RIv)" = PYR™R*Py|y = Ry (24)

We will for technical reasons often not differentiate between the restriction of an op-
erator A to a subspace V and PyAPy, so for example, we write the equality (24) as
(R|v); = PvRyPy. This is hopefully never a source of confusion. To further simplify
notation, we write
Iy =R .

Notice that although we may have 77 # ¢, this does not in general imply %, | # 7,
forall n € N.

Next, we are going to define some of the main objects studied in this section:

Let Mz be the von Neumann algebra generated by the operators R for all k € N.

1
If 6 is the isometric part of the polar decomposition of R i.e R = 6gR;, let M}g
be the von Neumann algebra generated by the operators

OzR ;0 forall j€N.

_1
If R has a closed range, then R, is invertible, so 6g = RR, 2 and thus in this case
we have . .
O;RjOR = RI_QRJ'_HRI_7 € Mg.

So for closed range R it is easy to see that M}, is a sub-algebra of M. This is also true
in general:

PROPOSITION 3.1. The von Neumann algebra M}q is a sub-algebra of Mg. More-
over, M}q is isomorphic to Mg -

Proof. Since M is von Neumann algebra, we have by the double commutant
theorem
(Mz)' = Mg
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where <7’ denotes the commutant of the algebra <7. Let m be an element in M.
1
Since OgR{ = R, we have
1 1
R{OgR;6rR{ =R'RiR=Rj,.
Thus

1 L 1 L 1 L 1 L
R12 G;RjGRmRZ :R12 G;RjGRRlzm :mR12 G;RjGRRZ :RfmGj{RjGRRf.

1
If R is injective then the range of R} is dense in #, this gives
ORijORm = mGR?‘RjGR

for all m € M} so that
O;RjOR S M% = Mk.

For the second claim, note that the map
B € B(H)— OrBOg
is an isomorphism & (.%¢°) — % (1) such that
OxR 6k — OrOKR,6kOz = P R;P; = (R|) ;

for all j € N. Since My is generated by these operators and the map is weakly
continuous, the range must be equal to Mgy ;. U

By Propositions 3.1, there is an injective homomorphism
MR — MR‘);ﬂl
(Rl%) ; = PR P — OgR;6r.

If we now consider R| »; instead, we get by the same reasoning that there is an injective
homomorphism

M) — Mgj -

So by induction, there is a sequence of injective homomorphisms
MR — MR\Jfl — MRL%% — MRU% — MRUﬁ — ... (25)

where the n’th arrow is induced by 6|, : F,—1 — F¢;,. Since the maps in (25) are
all injective, we can deduce

PROPOSITION 3.2. If T is half-centered, then T |, is also half-centered.
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We see that the composition Mg «— MR| o, 1s induced by an isometry g, : H —
¢, given by the product

Orn = OR|7, Orlt, - ORI (26)
We set Og1 = Og and Og o = I. We will identify 6O, with the map on 7’ given by
x € H — (0,0p,x) € A © A=,

so that
Ok 65 = P

More generally, g, is interpreted as a partial isometry (that fails to be left-invertible
if 22, # ) that is zero on %’# and maps 74, — 54 1.
For a half-centered operator T the isometries (26) can be described as follows.

1
PROPOSITION 3.3. If T is injective and half-centered, and T" = O T, is the
polar decomposition of T", then

Or,, = Or».

Therefore, if T has closed range, then

D=

Orn=T"T, *.
The proof will be given after we prove Lemma 3.11.

REMARK 3.4. Animportant result in the theory of centered operators is that 67 =
Orn; the above proposition can be seen as a generalization of this.

Next we define a class of sub-algebras of M.

DEFINITION 3.5. For every n € N, we define the von Neumann algebra M to
be the weakly closed sub-algebra of Mg generated by the operators g ,R;6g .

REMARK 3.6. By Lemma 3.8 below, this algebra can alternatively be defined as
the image of Mg, 4, inside Mg under the composition of homomorphisms in (25).

We write down some direct consequences the preceding definitions:
LEMMA 3.7. Forall k,;n € N
Or|. .10k k = OR sk 27

LEMMA 3.8. The image of (R|x,), € Mgy, in Mg is g ,RiOrn, and hence
My is isomorphic to Mg, via compositions of the homomorphisms in (25).
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Proof. We have (R|,), = P#RiPx, since %, is an invariant subspace for R
and also P, 0 » = Or ». Therefore the image of (R| ), in Mg is given by 60z , RO »-
The second part is obvious as the operators (R| ), generate Mg 4, and the homomor-
phisms in (25) are weakly continuous. []

COROLLARY 3.9. If T is half-centered and has closed range, then My, is gener-
ated by the operators Ty, T, as a von Neumann algebra.

Proof. By Proposition 3.3
1
Orn=TT, *.
From this we get
07,1010 =TT, . O

Next, we introduce another class of C*-algebras Mg ,, where n € N, which
are also associated to R. These algebras will in general be non-unital weakly closed
sub-algebras of () that have %, as an invariant subspace and Mg, 7" = 0.
Moreover, Mg |7, is a von Neumann algebra such that Mg ,|-7%, = Mg by Proposi-
tion 3.12 below.

For every n € N, take the set of operators

R"MRR*H = {R*"aR" rac MR}
and let Mg, to be the weak closure of this set. We let Mg = Mg .

LEMMA 3.10. Mg, is a C*-algebra.

Proof. Additive and adjoint closeness are obvious. If a,b € M, then
R'aR™R"bR" = R"cR™
with ¢ = aR*R"b € Mg. The rest follows now from continuity. [J

Next, we will see that Og, induces an isomorphism between Mz and Mg, given
by the mapping
mi— 9R7nm9§‘7n.

To prove this, we first need a technical lemma.
LEMMA 3.11. Forevery n € N, there is an operator r, € Mpg such that
Or nrn = R". (28)

and
rorn =Ry, (29)

Moreover, 1, has dense range and is given by the formula

1 L L
Iy = (9;7,[711319137",1) 2. (9;57"721319]{7”,2) 2. (9;70R19R70) 2, (30)
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1
Proof. We use induction. For n =1, then 6g; = 6 and so r, = R{. Now as-
sume (30) is true for n > 1, then

R = RPyz R" = RPy, O 7.

We have .
RPy;, = Ors, (P R\ P, )% -

Since Py, = Orn0g, and m+— Og,m0y, is a homomorphism of C*-algebras (recall
that Og, is an isometry), we have

Nl—

1
= Okl Ok (Og nR1OR0) * Ok s

1
= 9R7n+1 (G;JIRIOR/H) ’ eﬁ,n

Or|.4, (P RPx;,)

Putting this together, we get

1
R}H_1 = 9R7n+1 (9;7nR19R,n) 2 n-

(S

From this (28), (29) and (30) follow for n+ 1. Since every operator (GRT K1 6R7k> has
dense range, the same is true for their product r,. [

We can now prove Proposition 3.3. Let #, € My be the operator from Lemma 3.11
such that 67,1, =T". As

n—1

=] (67T Or.x)
k=0

D=

1
2 . . .
and every (0; 167, k) € My, t, is a product of positive operators that commute with

each other, hence it is also positive. Now, since

(tne;in) (GT,ntn) - tn2 = T},“

1
we must have 7, = T,?, by the uniqueness of the square root of a positive operator. So
1

1 1
OrnTi? = Orpt, =T" and as T, has dense range, we have 07, = Or».

PROPOSITION 3.12. For every n € N, the homeomorphism m — O ,m0y , is an
isomorphism
Mg — Mg .

Proof. For any ¢ € Mg, we have r,cr;, € Mg and this operator is mapped to
R'cR** by Lemma 3.11. The homomorphism preserves weak closure (since it is in-
duced by an isometry) so

MR,n - OR,nMRGI}k,n'
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To prove the reverse inclusion, take any m € Mg. Since r,r; has dense range, there is
a sequence of self-adjoint y; € Mg such that

% %
ykrnrnarnrnykql

strongly in 7 as k — oo (this follows from a basic application of the general spectral
theorem). Now take the product

Fayimygrn € Mg
for every k € N. Then we have
R" (rpyemyprn) R € Mg
forall k € N. But since R™ =r; 6z ,, we get

R (ryywmyrn) R™ = O (raryye) m Virary) Opn — OramOg
strongly. So 6g ,m0y , € Mg, and thus

Ok Mr65, = Mg, O

A consequence can be directly drawn from Proposition 3.12.

COROLLARY 3.13. For every n €N, the C*-algebra Mg », is a sub-algebra of
Mg,

REMARK 3.14. Similar to what was mentioned in the introduction to this sub-
section, we mostly view Mg, and Mg, as non-unital weakly closed C*-algebras
in () rather than unital C*-algebras in Z(.¢,) that perhaps would seem more
natural. This is because in the upcoming sections, the main job of these algebras are
to act on # and therefore it would be cumbersome if we always first have to project
down to .77, before they can be applied.

3.2. A subspace decomposition

Here we will first decompose the Hilbert space .7 into % ® Ao, where Hr
is the smallest closed subspace containing & that is invariant with respect to both R
and Mpg. We then show that there is a further decomposition of 7% into orthogonal
subspaces
He = DroVi

with V) = .# such that all the V’s are invariant subspaces for the algebra Mg. The
important point of this construction emerges in the next subsection where we show that
Mg|Vy and Mg|V; are related in a certain way.

From now on R will, as well as being injective, also be subject to the condition
& #0 (recall & = #+ = (RA#)* = kerR*).



HALF-CENTERED OPERATORS 671

Also recall from the introduction that .#» was defined as the linear closure of
my, me Mg, ye&.

For notational purposes, we sometimes abbreviate this as Mg& and this notation
will be used from now on in general, when we have a C*-algebra or a set of operators
acting on some subspace. All subspaces here will be considered as norm-closed, unless
explicitly stated otherwise. So, for example, given subspaces V,X C .7 the subspace
RX +V will denote the norm-closure of

{Rx+vixeX,veV}.

We remark that, as & C .#Z, the subspace .#¢ is invariant for Py; and hence
also an invariant subspace for the operators

(RlA), = P RiePors.
LEMMA 3.15. Forall m e N and n <m

Mg R"E = R"Mg _nR" " = R" M 5.

Proof. We will prove the equality
Mg R"E =R" Ms. 3D
The rest of the Lemma then follows from
R'"MRg y—nR""E =R"MRg ;y_nR" " =R'"(R" " Mg) =R" Mp.

Since Mg né&” and R".#¢ are both closed subspaces of .7, and Py, = Og mg ., we
can prove (31) by proving that

ORf,mM&mRmé& =Mp = ORf,mRm%ﬁ" (32)

But since by Proposition 3.12 Mg , = 6 , Mgy, and 6 ,,R™ = r,, where r,, €
Mg is as in Lemma 3.11, we have 6§7mR’“¢///g = rm#e and

Oﬁﬂ,nMRmRméa = MRI"méa.

From this it is now obvious that they are both subspaces of .#Z,. Since the range of
rm is dense in 2 and .# is an invariant subspace for both r,, and r},, we must
have r,, . #¢ = #g. So the second equality in (32) is proven. To prove the first, recall
rirm = Ry and take a sequence {a;} C My such that aiR,, — I strongly. Then the
sequence {air;,} € Mg is such that (axr},)rm — I strongly. From this we see that
& C Mgr, & and since the space in question is also invariant under Mg, it must be
equalto Ae. O

LEMMA 3.16. Let &, = 9, © F;, 11 be the kernel of R* restricted to F¢,. For
all n e N, we have &, CR" #z.
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Proof. Since &, 177, 1, we have for any x € 77 and e € &, that
0= (e,R""'x) = (R"e,Rx).

From this, we see R*&, C (R,%”)L = & so that R"MrR*""&, C R".#s. Since Mg,
is the weak closure of the set R"MgR*, we get Mg ,&, C R".#s. Now, we have
Py, € Mg, andso Py, &, =&, CR" My, O

DEFINITION 3.17. For n € N, let X, = \/}_gR/.#s. When n > 1, define
Vi =X ©X-1
and when n =0, let Vy = . #¢.

LEMMA 3.18. V, and X,, are invariant subspaces for Mg.

Proof. We use induction on n. The lemma is true by construction for V) = .#s.
Since the R;’s are self-adjoint, we only have to show that X, is R;-invariant for all
J € N. Assume now that the lemma is true for 0 < m < n— 1. The vectors of the form

Xp = My +~xn—17
with m,, € R".#¢ and x,,_| € X,,_1, are dense in X, and for these:
ijn = ijn +ijn—l = ijnRij;glmn + (I - ijn)ijn +ijn—1~ (33)

We have Py R ;P my, € R".#s by Lemma 3.15, since Pyz R Py, € Mg .
As & = H;© Ay we have

n—1
\ &=
Jj=0

and therefore I — Py, = P - projects down to the space generated by &’ for 0 < j <
n—1and as &; C .#s by Lemma 3.16, we have (I — Py, ) Rjmy € X, _1.

By induction, we have R;x,_| € X,,—1 and hence all the vectors on the right hand
side of (33) arein X,,. [

COROLLARY 3.19. For x € X;* | we have Rjx = (R|;);x and X,y is an in-
variant subspace for Mg, .

Proof. As kerR™ = ;- =\/}_ &, we have by Lemma 3.16 that

n—1
kerR*" C \/ RI My =X,
j=0
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and hence X.- | C 7. By Lemma 3.18, X;- | is invariant with respect to R;. Hence
forall x € X;" |, we have Py;x =x and so

Rjx = Py RiPyx = (R|,) ; x.

To see the second claim, we observe that since X,,_; is an invariant subspace for
Py, itis an invariant subspace for all

Py RiPy, = (R| z,),

and hence for Mgy . U

PROPOSITION 3.20. For all m > n we have Py, R "V, =V,,.

Proof. Since Vi, =X, ©Xpu—1 and X, = X,—1 +R" M s wehave V,, = Py, R" M.
So for every v, € V,, and € > 0 there is a vy € .#g such that ||v,, — Py, R"v|| < €.
Then Py, R™vy # 0 will imply Py, R"vo # 0 since Py,R"vy = 0 would imply R"v €
X,—1 and so R™vy € X,,_11V,,. Since PVkRkvo = R*vy —xp_1 with x;_; € X4 we
then have
PVmRm_nPVanVO _ PVmRm—n (RnV() _xn—l) _ PVmRmVO

and hence
|| vin — Py, R""Py,R"vo|| <e. O

Proposition 3.20 directly implies:

COROLLARY 3.21. Forall m > n, we have dimV,, < dimV;,. Especially, if Vy =
{0} for some N € N then V,, = {0} forall n > N.

So if dim.Zg =V} is finite, then dimV,, must be finite for all n € N. The injec-
tivity of R now gives:

PROPOSITION 3.22. If Vo = Mg is finite dimensional, then Vi # {0} forall k €
N.

Proof. If there were a K € N such that Vx = {0} then Corollary 3.21 would give
Vi = {0} forall k > K. By Theorem 3.23, 7%, must be finite dimensional and mapped
by R again into .7z with a nontrivial cokernel, but then there must be a nonzero vector
v € 74 such that Rv = 0, a contradiction. []

THEOREM 3.23. For an injective operator R on a Hilbert space ¢, the sub-
space Hp = VT:()RJ///(,@ is R and My, invariant. Moreover

Hy = @Z’:()Vk

and
RV C Vi1 © (Xx © RXy—1).
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Proof. The decomposition 7% = @;_,Vi follows by definition. Since

A =D Vi = \/ Rkt///g
k=0

and \/;_oRf.#s are invariant under R, the first claim is proved.
To prove the last claim, notice that, since RX; = V];-:O RITY /s, we have

RVkJ—Vk+2+ma

for all m > 0. Also, as V; = X; ©X;_1 and X;_; is invariant under R; by Lemma 3.18,
we have
(RVj,RX;—1) = (Vi,R1Xi—1) = 0.

Thus RV, LR/.#s for 1 < j <k and RV, L&, Viy. For v € Vi, we have Ry =
PXkLRVk + Py, Rvi. Now PXkLRvk € Via1 and we have

(Px,Rvi, V) = (Rvg,R'Vp) =0

for 1 < j <k so that
PXkRVk €EXySRX, 1. U

COROLLARY 3.24. If T is injective and half-centered, then T|.7% is also injec-
tive and half-centered.

By Theorem 3.23, if v € V,, and Rv 1 X,,©RX,,—1, then we get Rv € V,,;1. In the
context here, this is not a particular useful characterization of those v € V,,, that end
up in V11 when applying R. As we will see in the next proposition, it turns out that
while we may not have X, © RX,, C .#, none of the vectors in RV; © V| can be
orthogonal to .Z .

PROPOSITION 3.25. If v, € V), and Rvy, L # s, then Rv,, € V1.

Proof. From the proof of Theorem 3.23 we know that Rva_\/;-”lej Mg, and
s0 Rvy L. would imply that Rv,, € X,s1 and Rvy L\/J_g R/ Mg = X, i.e Rvy, €
Vm-‘rl~ U

COROLLARY 3.26. If vy, € Vi, and Ogvy, L Mg, then Opvy, € Vi .

Proof. Since R; has dense range, there is a sequence Rjx; € V,, such that Rjx; —
V. Then OgRix; = Rx;y — Orv,, LV and the same arguments as in Proposition 3.25
show that Ogv,, € V1. O

LEMMA 3.27. For m = n the projection Py, commutes with the operators in
Mgz,
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Proof. Since every Vj, is invariant under Mg, we have that Py, must commute
with all R;. By Corollary 3.19 we have

A consequence of Corollary 3.19 is the following:

PROPOSITION 3.28. We have
RilVin = (R|;,) ; [Vin

when m > n, so that
MR‘:%W = Mg| V-

Moreover, for m > n and all j € N we have
O, (R|#,); Or 4, j|Vin = Og jRiOk j|Vin (34)

so that ' '
M;Q%W = M| Vi (35)

Notice that the slightly complicated expression
G;L}?ﬁhj (R|%”n)z 9R|)fn’j

is simply the image of (R |z, +j> _under the homomorphism Mg b Mg/, com-
1
ing from (25).

Proof. We will prove (34) by induction on j. The other claim (35) then follows
from the fact that the operators in (34) generate M’I’Ql " |Vin. From Lemma 3.18 and
Corollary 3.19 it follows that

RilVin = (R|,); |V

so the claim is true for j = 0.
Now, assume it is true for j—1 >k > 0. By Lemma 3.11 there is a r,,j € Mg,
such that Og| ., jra.j = R/|.7, and hence

1o i (8ot (1), O015) i = (7381 ) (Rl (8wt 7.1)
= (R|-')?§,)i+j'
If we also take r; € Mg such that 6g jr; = R/ then
r}k- (Gﬁ’jR,‘OR?j) rj = RiJrj.

We want to prove that
rnh,'\Vm = rj|Vm.
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But this follows from the induction hypothesis, as the formula for 7, ; is given by

L 1

2 2
Fnj = (95\%,-_1 (Rl.), GR%J—l) SOS (95\%0 (Rl.), 9R\%0>

and since we assumed that (34) was true for j—1 >k > 0, we get rnh,'\Vm = rj|Vm.
‘We can now calculate

r; (6 jRiOR ) 7j1Vin = Rt j|Vin = (Rl,) 1y ;| Vin

i+j
= 121 (Ot (Rt ) Ok 4.5) sl Vi

=T <6R|jﬁ1,j (R|,); GRIMH./') 75V
and since r; has dense range, we must have
* *
0%, jRiOR j|Vin = Og 1, ; (Rl 1), Or|.75, j | Vin-

Hence (34) is also true for j. [

3.3. A connection between M|V, and Mg|V,,

In the previous subsection we found a decomposition of 7% = \/;_, RF.# s into
subspaces V;,, which are invariant with respect to the algebra Mg. Here we show that
there is a natural way to connect the different restrictions Mg|V,, and Mg|V,,. This will
be essential in the proof of the main theorem. To explain what this connection is, we
need some results that are proven below. Theorem 3.32 shows that for all n,m € N such
that m > n, there is a surjective homomorphism

Dy s Mg "V, — Mg |Viy
which, in particular, maps
OR m—nRiOR m—n |V = Rie|Vin (36)

and more generally

OR n—n-+ Rk ORm—n-+ |V = O, jRiOR.j|Vin (37

for all j > 0. There is also the inclusion homomorphism My ~"|V,, < Mg|V,,, so we
have the following diagram:

Mg|Vin (38)

Trm,n

Mzﬁn ‘Vn<—> MR|V,,
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From (37), the homomorphisms I, ,, also “preserve” the sub-algebras M{Q in the sense
that the restrictions of I, , to M}’g*"ﬂ |V}, are surjective homomorphisms

My " |V, — M| Vi

Another property of the homomorphisms I, ,, is that they factor through m > i>n
so that the following diagram commutes

M|V (39)

1—‘m,n
Trm,i

MgV M1V

We start with a particular example.

EXAMPLE 3.29. Let T be a left invertible weighted shift on ¢? (thus T is cen-
tered) and let {x; : k € N} denote the standard basis of £2, so that Tx; = agx; 1, with
ax € C and gy # 0. Then the kernel of T* is (x), the subspace generated by x¢. Since
there is A; € R such that

Tixo = Aixo
for all k € N, we have .#¢ = (xo) . From this we can deduce
Vk = (xk> .
_1
Moreover, it is also easy to see that 6y = T'T; 2 is an isometric shift on the basis
{xx 1 ke N} and
_1
Ori = O = T*T, 2

(for a proof of this, use Proposition 3.3). Then (38) and (39) can be seen as a general-
ization of the fact that for any m,n, j € N with m > n, we have

Dot
Th Am
A’ﬂ’l

Ty =

and

A i A At j
1 n+(m—n)+j Mn m+
OFmnTiOrmnxy =T, TjsmnXn = (7—x =

An " A

It is good to keep Example 3.29 in mind, since all the components defined in this
section (Mg, Vi, I etc) becomes very simple in this case.

LEMMA 3.30. For m = n, the operator Oy, ,,—, is a bijective isometry

R' My — R" Mg
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that induces an isomorphism
Oy : Mgy |R" My — Mg m|R" Mg

given by
Oun:b— OR\iﬁl,m—an;L}ﬂ,,m—n (40)

for b € Mg ,. Moreover, if m > i 2 n, then
Gm,igi,n = Gm,n- (41)
Proof. We have
R" = OR\%,krn,m—an

Were 7y, i the same as in Proposition 3.28. Since r,,,—, € Mg, has dense range
in J7,, we get

R" Mo = 9R|(;fmm_nrn7m,nR"///g = Gth;fmm_an%(g’.

Now, since
.
9R|(}ﬂ,,;n—nMR,n 9R|Jﬁ,,m—n = MRJ’H

as Or|s,.m—nOrn = Orm, itis not hard to see that (40) defines an isomorphism
Oy Mgy |R My — Mg u|R" M 5.
The property (41) follows from
Or|.#,m—n = OR|72.m—iOR A0 n
so that
Ok | #y.m-nMR 1 OR s = OR|Ar.m—iOR| Hr,i-n MR 1 OR | i OR| 1 i
= 6R|Mﬁm,iMR7i0RT‘%7m_i =Mg,,. O
LEMMA 3.31. Forevery n € N there is a surjective homomorphism
@, : Mg |R" M s — MR|V,

given by
(R|;fn), |R" M5 — Rj|Vn.

Furthermore, ®,, restricts to a surjective homomorphism
k k
MR‘%|R”///(9 — MgV,

that maps
Ok|. .k (R|#,) ; ORo, kIR M s — Og (RO [V

forall k> 0.
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Proof. Since MR| o, is a sub-algebra of Mg, and by Lemma 3.15 Mg ,R".Zc C
R" # s, the restriction map

M - M), — Mg, |R" A g
b— b|R" M s
is a homomorphism. By Proposition 3.28, the map
&n: MR\)?”,, - MR\%,‘Vn = MgV,

that sends (R|;,); to R;|V, is a homomorphism. Now Py, R".#s = V,, so if we take
any m, € kermy, then by Lemma 3.27,

mu Py, R M5 = Py,m,R" Mg = 0.

Hence the map @, : §,(b) — N,(b),b € Mg 4, is a well-defined surjective homo-
morphism from Mg |[R".#s to Mg|V,. The second claim follows from Proposi-
tion 3.28. [

THEOREM 3.32. There are surjective homomorphisms
Ly s Mg "V, — Mg |V

that map
Ok m—n+ Rk OR m—n+ |V = O ;RkOR |V (42)

forall j = 0. Furthermore, for every n <i < m, I';, restricts to a homomorphism
Ti s M|V — M|V

such that
1—‘m,il—‘i,n = Lmn-

Proof. Combining Lemma 3.31 and Lemma 3.30, we get a diagram

M}’g‘ ;;L |R" A 5 m Mg, |R" M s (43)
o
Mgin |Vn MR ‘Vm

and we want to prove that there is a unique
Ly s MgV, — Mg |Viy
that makes this diagram commutative. Making the composition

D,,0,,,, : Mg@% ‘R”///(gﬁ — MR|Vm
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we need to prove that ker®, C ker®,,0,,,, because then we can define I',,,, as the

map sending @, (b) to ©,,0,,,(b) for b € I\\/JIZ";% |R" A 5.

If we take b € M}’gl;% |R". s such that @, (b) =0, then as Py, R".#s =V, and b
commutes with Py, by Lemma 3.27, we obtain

@, (b)V,, = bPy,R" M5 = Py, bR" M =0,

)
DR" My C Xy—1. (44)

We have also that @,,0,, , (b) = 0 implies
9R|(}fn,m—ann%(5" C Xin—1- (45)

We want to prove that (44) implies (45). To show this, we prove the more general
statement that
OR\%,mannfl C Xin—1-

The partial isometry g, ., has a kernel equal to H-, 50

OR\%,mann—l = OR\%,mfn (Xn—l @%L> :

We know that there is a 1 u—n € Mg 5, with denserange in 77, such that Og| . ;n—nFnm—n
= R"""| 4, and by Corollary 3.19

rn,;n—n <Xn71 S %L> = anl @%’J‘.
From this we can deduce
Ot n (Yo 186 ) =R (X1 £ ) C X,

This gives the existence of I',, ,. The surjectivity follows from ®,,0,,, =TI, ,®, and
the surjectivity of ®,,0,,,. The uniqueness follows from the surjectivity of ®,.
Property (37) follows by applying the commutative diagram to

OR\.')fn,mfnJrj (R|)fn)l OR‘%”WLfn‘Fj € M%_)% ‘Rn%é’

for j > 0. Property (39) follows, as remarked, from (37). O

With the help of Theorem 3.32 we can now express the spectrum of 65, 7;0r |V,
via the spectrum of My |.Z.

PROPOSITION 3.33. If T is half-centered and if 7y is a point of the spectrum of
My |V, then there is a point A in the spectrum of Mr|.#g such that

Y (074Tj0rk) = A (67 snT)Or i)
forall jkeN.
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Note that for every point 7y in the spectrum of My and all j,k € N, we have

1 1
v(07xTi0rk) Y(Ti) =¥ (Tk7 9;,k7}9T,ka7> =7 (Tisj) -

So, if y(Ty) # 0, then

v (674T;6rx) =

4. Fundamentals for half-centered operators

Here we present some initial results that hold for all injective half-centered oper-
ators with dim& = 1. Much of the work in this section will aim towards showing that
the operator 7; has a simple form when restricted to .#¢. We will see that there are
real parameters T, B and a self adjoint operator A € %(.#) which is independent of
k, such that Ty| 4, is given by the formula

Tkl e = Tl + BiA,

where [ is the identity on .#. This implies that there are a,b,c € R, not all zero, and
k,m € NT such that
al +bT+ Tl 4, =0, (46)

which can be seen as a weaker form of the main theorem. Indeed if .#Z = 7, then (46)
directly implies it. However, we cannot conclude from (46) that the same identity
must hold for the whole space (and in general it will not). The step from the linear
dependence in .Z¢ to the linear dependence in .7 is the main obstacle here and much
of the theory in section 2 was introduced as a way to deal with this.

Since the subspace & is now one dimensional, we take & to mean a unit vector
that spans the subspace. To keep the notations simpler, we also write P instead of P .

We recall the earlier result (Proposition 3.2):

If T is half-centered then so is T| .

This implies that PTyPT;P = PT;PT;P for all j,k € N. As Po =1 — P, we can
deduce

PTyPsT;P = PT,T;P — PT;PT;P
= PT;TyP — PT,PTyP = PTjPsT,P

so that
PTyPsT;P = PT;PsT;P. 47)

This equation leads to the following.

PROPOSITION 4.1. Forevery x € 7 and u € Mg

<X, Tm@@> (Tk - <Tk@@7@@> I) u= <x» Tk@@> (Tm - <Tm@@7@@> I) u. (48)
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Proof. First we prove
(13, T0&) (T = (k& E) 1) & = (Ty, i) (Tn = (Tn&, E) ) & (49)

for each y € JZ. Since
PT& = (Tpy — (Tp&,E)) &,

we have
PTuPsTiPT = (T — (Tn&,E)I) P Ti T.

By (47), this is the same as
PTiPsTyPT = (T — (Tt &, E) 1) Pe T, T.

So we have
(Tn — (T8, EVI) PsTi Ty = (Tj, — (Tk &, &) I) P T, Ty

for all y € #Z. Equation (49) now follows from
PsT, Ty =Ty, T,&) &.
As Mz is commutative, we have for any a € My that

(T, Tu8) (T — (16, E) ) a8 = a((Ty, T6) (T — (T8, E)1) &)
= a((Ty, Ti&) (T — (Tu&, &) 1) &)
=Ty, T}, &) (T — (Tp&,EVI) a&
for every 7,,. The statement now follows by continuity arguments. [l
The following statement must be known, but since we could not find an exact

reference for it, we include the proof for the sake of completeness.

LEMMA 4.2. Let &/ be a commutative C*-algebra of operators on a Hilbert
space X~ with a cyclic vector x € & . Then given ay,a; € &/ and a point A in the
spectrum of <f there is a sequence of vectors x; € &~ such that

aix; — A (ai)xl —0

as | — oo fori=1,2 and
{aix;,x)

<xl7x>

— A (@)

as | — oo,

Proof. For simplicity, we write @ for the Gelfand transform of a € &7. As x is
a cyclic vector for .7, there is an isometric representation u : # — L*(X, 1), where
X is the Gelfand spectrum of </ and p, is the Borel measure on X induced by the
positive linear functional on C(X) given by

a— {ax,x).
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Let Bg [@;(A)] denote the open ball in C centered on d;(1) and with radius €. Now
define
We = ay ! (Be [a1(M)]) Ny ' (Be [a2(A)))

i.e the subset of X such that both d; and a4, have distance less than & from their
value at A. Since @; and d; are both continuous, W, is an open set and thus there is
a non-constant positive continuous function ge, that is zero on Wy. Since [, is finite
and has X as its support (due to the fact that x is cyclic), we can further assume that
Jx lge(2)*duix(z) = 1 and as g, is positive, we have 0 < [y g (2)d 1y (z) < oe.

Now we see that

[ Jauh)e(@) ~ aige(0) dus(2)

= v (@i(A) = ai(2)) | ge (2) P dpin(2) < €7

for 1 <i <2 and thus d;ge — @;(1)ge — 0 in L?>(X, u,) as € — 0. Moreover

Jx 4i(2)8e (2)di(2) Ji @i(2)ge(2) — ai(A)ge (2)d s (2)
Jx 8e(2)dp(z) Jx ge(z)d i (z)
Jw, 16i(z) — ai(A)| ge (2)dpx(2)
Jw, ge(2)d i (2)
e 8e(2)din(2)
Jw, 8e(2)di(2)

_@i(x)‘ —

for 1 <i< 2. Taking x;, = u~'g 1, we obtain the statement. [J
1

COROLLARY 4.3. Given two points A,ll of the spectrum of My restricted to
Mg and my,my € N, there are two sequences of unit vectors x;,y; € Mg such that

<Tmixl ) éo>

0. 6) — A (Tw)
and (T, )

m; Y15

<yl,éa> - nu (Tmi)

asl — oo fori=1,2.

Now, let (A,u), mi,my € N and x;,y; € # s be as in Corollary 4.3. Consider the

new sequence
X i

(1, &) (v, &)
Then v; L& forall [ € N so that v; € 7. Moreover, for i = 1,2

V] =

<vl7Tmiéa> — A (Tm,) —u (Tm,)

as [ — oo,
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If we apply Proposition 4.1 with the sequence v; in the place of x and k = m,
m =my and let [ — oo, then we get for every u € #g

(A (T) = 1 (T)) (T — (T8, E) Dt = (A (1) — (1)) (T — (T E) Dt (50)

We can draw some conclusions from this formula. Write o (/) for the spectrum
of a C*-algebra <.

PROPOSITION 4.4. Let A, € 6(Mr|#ys) and A # p. Then A (Ty) = w(Ty)
for some m € N if and only if

i.e & is an eigenvector for Tp,.

Proof. 1If k is such that A (T;) # u(T;) and m is such that A (7,) = u(T,),
then the left-hand side of (50) is zero and therefore so is the right-hand side, but since
A(T}) # u(Ty), we obtain

(Tm_ <Tméaaéa>1)@pzo'

The other direction is trivial. [

If dim.Zg > 2 then there must be at least two different point in the spectrum of
My restricted to .Z¢, this makes it possible to do the following definition.

DEFINITION 4.5. Let dim.#Z, > 2 and let (A,u) be two different points in
o (Mry|.#g). For every k € N, let

Br:=A(Ti) —u(Ti) . 1)

REMARK 4.6. Clearly ) = 0. We note also that if (', u’) is another couple of
points in 0(My|.#Z) then by Lemma 4.8 below we have A (Ty) — u (Tx) = c¢(A' (Ty) —
w' (T;)) for a nonzero constant ¢ € R and every k € N, so the sequence {f;} is de-
fined up to a multiplicative constant by a couple of different points in the spectrum
o (MT |///g)

DEFINITION 4.7. We let
T = <Tkéo,éo> (52)

forall k € N.

LEMMA 4.8. If A is in the spectrum of My |.# s then
A(Ti) = T+ A Pr

for some constant A), € R only depending on A.
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Proof. With our new notations (50) can be now rewritten as

ﬁk (T, —Tm)l/t:ﬁm (Tk—Tk)I/L. (53)

By Lemma 4.2 we can find a sequence {x;} € .#Zs such <<TZ’(;;> — A(T;) and

(Tt 6) — A (T;,). Substituting v with —~_— in (53), then taking the scalar product
(x.) (xj.)

with & on both sides and letting j — oo, we get

Be (A (T) = Tn) = B (A (Ti) — ) - (54)
If dim.#Zs > 2 then there must be at least one m € N such that 3,, # 0 and if we take
Tm — 'm
PRCACARSY)
ﬁﬂ’l

then we see from (54) that A, is independent of the choice of k € N as long as fB; # 0.

So we have A(T)
-1
%ﬁk =T+ Ay Bx

when f3; # 0 and when f; =0 we have from Proposition 4.4 that

A(T) =1+

A(T;) =1 =1+ AP;
so that the formula is valid in this case also. [
The results of this subsection can be summarized as follows:

THEOREM 4.9. If T € B () is half-centered and injective with dim (T )" =
L, then there are self adjoint operators A,C € B(Mg), such that for every k € N

Tk‘,///éc =71+ BiA. (55)

PTkP‘L//g =P+ BC. (56)
where C = PAP.

While T is assumed to be injective, we cannot rule out the possibility that 0 ¢
o(Mr), in fact we can not even rule out 0 ¢ o(Mr| 4, ). In the end of Section 5, we
will see that if \/{_oR*.#s = #, then actually 0 ¢ 6(Mr| 4, ), but in general this
may not be the case. However, the property 0 € 6(Mr| 4, ) does give quite strong
implications regarding the structure of 7 and we must take these into account in the
next section when we add the condition \/{_oR¥.#s = 2, even though we end up
showing the non-existence of such points.

LEMMA 4.10. If y(Ti) = 0 for some y € 6(Mr) and k € N, then y(Tiy;) =0
forall jeN.
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Proof. We have
o:ﬂn)y(e;menk):y(w 61,0761} >)=y<Tk+,,»>- O

PROPOSITION 4.11. If 0 € o(Ty|.#¢) for some k € N, then

Tj+k
Brrj = =P

and
Tj+k

07k Ti0r sl .ty = ——1.uz,

forall jeN.

Proof. 1t follows from Theorem 4.9 that if 0 € 6(7;|#s), then there is A €
6 (My|#g) such that 0 = A(T}) = 1 + BrA, for some A) € R. By Lemma 4.10 we
have Ty, j+ Bis jAy =0. Since 7; #0 forall j € N we must have 74y j = — A, #0
for all j € N. Hence

T+ 7
Ty j+ BrrjAr = Ty j + %ﬁkAl (57)

giving By ;= T"T—:’ Bi- Furthermore, the formula (57) shows that

Tt j —
(T—kl) Ty = T jloats -

As also (07, T;0rx)Tk|.z; = Tiy jl.u, and the range of Ty is dense in .#, we must
have

j+k

07 TOral.ay = = ~Il.ap- O

5. Structure properties of injective half-centered operators

The aim of this section is to establish structure results for injective half-centered
operators that satisfy the main assumptions: dimé& =1 and J7» = 7.

As it was mentioned after the statement of the main theorem, if dim.#Z, = 1 then
T is centered and moreover if \/;_(T*& = J#, then T is a weighted shift. Hence in
what follows, we assume that dim.Ze > 2.

First we discuss the spectrum of My ;4 | Me O E.

PROPOSITION 5.1. If dim.#g > 3 then the spectrum of My | #e S & con-
tains at least two points.

Proof. As before, we denote by P the orthogonal projection onto J¢] = T 7.
To prove the statement it is enough to see that if dim.Z¢ > 2 and PT;& # 0 (such k
exists, otherwise dim.#» = 1), then
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Since if PTy& € Mg © & is a cyclic vector for My |45 © &, then the number of
points in 6(My|4|.#s © &) is equal to dim.Zg © & and by assumption, it is larger
than two.

Let A be the operator from Theorem 4.9, then PT,& = BPA& so forany j,k € N
the two vectors PT;& and PT;& differ only by a constant multiple. Hence PT;& €
My 4 PTi& forany j € N.

The space My 4 PTi& is of course a subspace of .#Zg, so if we can prove that
(I\\/JIT‘ #PTi&) @ & is invariant for every Tj, then, since .#s is the smallest closed
subspace containing & that is invariant under My, this would imply (My 4, PTi&) ©
& = Mg and therefore My q PTi& = M S &.

So take any x+c& € (My| 4 PTi8) @ & with ¢ € C and x € My 4 PTi&. Then
since P+ Pg =1 we have

Tix+cT;& = (P+Ps)(Tjx+cT;&) = PTjPx+ PsTix + cPT;& 4 cPsT; & .
As PT;P € My and PsT;& = (T;&,&) & = ;& , we obtain

(PT;Px+cPTi&) + ((Tjx, &) + c1j) & €My PTiE S E. O

5.1. Relating Mr|.Zs to My 4|45 © &; the discrete case

The purpose of the next two subsections is to show that when dim.#s > 2, then
there is a relation between the spectrum of Mr|.ZZ¢ and that of My x| #s© &

To see where this relation comes from, assume for a moment that My |.#Zs has an
orthonormal basis of eigenvectors x; € .#Zg. Since \/;_g Tk My = # and dimé& = 1,
we can find an eigenvector x; and a smallest integer m > 1 such that 7"x; is not
orthogonal to .# but T/x; L.#s for 1 < j <m— 1 (if this set of j’s is non-empty!).
Such x; and m must exist; in fact the converse would imply 75¢ L.# s and hence
Mg C &, contradicting dim.Z g > 2.

Now fix such x; and m. From Proposition 3.25 we get T/x; € Vi for 1 < j <
m — 1. Moreover, T/x; is an eigenvector for My |V;. This is due to the following cal-
culation: given [ € N

TiT'x; = Py TiPy T'x; = (67,67 ;) Ty (61,67 ;) T'xi
, 1
= QTJ (G;ITI GT,j) 9}7J-fok = GT,j (0;‘7.]‘7}0T7j) szxk
1 .
= QTJTJ-Z (G;JJ}GT?‘/)xk =2 (9;:7]-7"19[]‘) T/ x;

where A € 6(Mr) is the eigenvalue corresponding to x;.

Next we observe that 7"x; can not be an eigenvector for Myz. In fact, assume
contrary to our claim, that bT"x; = y(b)T"x; for all b € My, where y € o(Mr).
Then as T"x; L&, we obtain

(T, &) = (bT™xy,, &) = 7(b) (T"x1, &) = 0

as T"x; L&. Hence T"'x; L. .# ¢, a contradiction.
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However, 7""x;, must be an eigenvector for MT| S since

1
PTiPT"x; = (6r07)T; (67 07) T"x; = Or (67 T167) T "y
= Ym—1 (O;:EGT) T"xx =2 (9;7,,17}9T7m) T"x
where ¥, € 6(Mr|V;,_1) is the eigenvalue corresponding to 7" 'x; € V;_; (the last
equality follows from Proposition 3.33). If we project T™x; onto .#g, then this will
still be an eigenvector, since the projection commutes with Mz .

From this we see that for one of the points y in the spectrum of My 4 | Ao &
there is A in the spectrum of Mr|.#Z is such that

Y(PT,P)=A (Gy’fﬁmTlGTﬁm) (59)
for all I € N. If we multiply both sides of (59) with A (7;,) and use
A(Ty)A (G}MTI 67.,,1) = A (T+1), we get the equality
A(Tn) Y(PTiP) = A (T 41) (60)
which is valid for all / € N. This shows how it is possible to express some points in the
spectrum of M|, |.#s © & in terms of the spectrum of Mr|.Zs.
5.2. Relating M7 |.#Zg to My |4 © &; the general case

A similar reasoning as one used to derive (59) can be generalized to work even
in the general case, but due to the possible lack of eigenvectors, the proof of Proposi-
tion 5.3 uses the above arguments in a “reversed” way. However, this approach has a
disadvantage of making less clear what the central idea is. This is why we included the
discrete case as motivation.

First we need an easy result.

LEMMA 5.2. There is an isomorphism
¥ My | M ©E — M |05 4 ¢

induced by
b € My | Mg — 6700767 Ms.

We can now proceed to prove the generalization of the result in the last subsection
to the case when we may not have any non-trivial eigenvectors of M.

PROPOSITION 5.3. If \/5_oT*.M s = | then there is a dense subset M of the
spectrum of Mr| 4 |4 © & such that for every y € M there is a point A in the spec-
trum of My|A g and an integer m € N such that

y(PTeP) = A (67, TOr,m)

forall k € N.
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Proof. Consider the subspace 6;.#. Since dim.Ze > 2 and dimker6; =1,
this subspace is nonzero. By assumption, 7 = ¢, and hence Y, Py, = I, so there
exists m € N such that Py, 07.#¢ # 0. Since the projection Py, commutes with My,
we have a homomorphism

sk My | M © & — My | Py, 07 Mg

which is defined as the composition
k4 *
My | Ms © & = My |07 Mo — My | Py, 67 Mg

where W is the isomorphism from Lemma 5.2 and the second arrow is the restriction.
The homomorphism s; induces an injective continuous map

st 1 O(Mp|Py,67.4s) — 0 (Mr| | Ms ©E).

As Y.Py, =1 and ¥ is an isomorphism, given a € My | |.#s © &, we have a =0
iff sx (@) =0 for all £ € N. So the union of the ranges of all s; must be dense in
O (My| | Ms © &).

If u € o(M}|Py, 05.4) then there is . € o(Mr|Vi) such that

1 (6rTi6r) = e (67 T;6r)
and so by Proposition 3.33 there is A € My|.#s such that
W (67T;0r) = e (07 Tj07) = A (Or 1 Tj0rk+41) -
Taking y = s; (1), we have y(PT;P) = u (6;7;0r) and so
Y(PT;P) = 1 (67T;6r) = A (0741 TiOrx+1)

forall j € N. This implies the statement with m =k+1. [

Proposition 5.3 motivates the following definition:

DEFINITION 5.4. Let % be the set of all triples (A,y,m) consisting of
A€ O'(Mﬂ///g)

Y€ o(Mypp|Hs© &)

and m € NT such that
’)/(PTkP) =2 (G;MTkOT,m)

for all k € N. We say that the triples (A4,y,m) and (A',7,m’) are not equal if either
A#MN ory#Y orm#m'.
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Recall from Theorem 4.9 that if 2 € 6(Mr|.Zs) and y € o(My 4| #s © &)
then

AMTx) = T+ BrAy
Y(PTiP) = 1+ BiCy

for some Ay,Cy € R.
Next proposition shows how every triple (A,v,m) € .% gives rise to a relation
between the 7, ’s and B ’s.

PROPOSITION 5.5. For any triple (A,y,m) € F and every k € N we have
A(Tn) Y (PTiP) = A (Tpsx) - (61)
Moreover, if A (Ty) = Ty + A B and y(PT,uP) = Ty + CyBy then for all k € N

. Ttk _Alﬁm-&-k_
A - A P

(62)

when A (T,,) # 0 and

n—¥2+k=—4&mr 63)

m

when A (T,,) = 0.

Proof. We have y(PT;P) = A <9}’mTk9T7m> , SO

A (T) Y (PTiP) = A (T) A (67, TiOr.m) = A (Tnsk)
proving the first part. If A (7,,) # 0, then
A(Tn) T+ A (Tn) CyBre = A (T) Y (PTiP) = A (T k)

by (61). As A (Tk) = Ttk + A Burk, we obtain (62). When A (T,,) =0, we get the
formula from Propositions 3.33 and 4.11. [

6. Main theorem: the case |.7| > 2

The aim of this section is to show that when .% has at least two elements, then T
satisfies equation (17) in the main theorem.

Let {7} and {B:} be the sequences of real numbers associated to T that are
defined by (52) and (51). Let

T(2) =Y, 17/
j=0

and

B)=Y B,
=0
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be formal power series associated to {7} and {f}.
Let S* be the backwards shift operator, defined on power series as

Y @ = Y aa
k=0 k=0
and pick (4,y,m) € %. Then (62) and (63) can be rewritten as follows:

(1_ %) ()= - (cyz_ %) B(2). (64)

when A (T,,) # 0 and

S*m
(I— ) 7(z) = —CyB(2) (65)
Tm
otherwise.
Taking another triple (u,®,n) € % we obtain similar equalities with (A,y,m)

replaced by (u, ®,n)

Letting
m A m
Pi(z) = 1=1fry ATn) #0 Py(z) = Cr- A?ng) A(Tn) #0
1— % otherwise Cy otherwise
— L o AyZ”
Ql (Z) = I /Jn(Tn) ,U(Tn) 7& 0 , Q2(Z) — Cw u(Ty) 'LL(Tm) 7& 0 .
— i—n otherwise Co otherwise

P(S7)7(z) = —P2(S")B(2)
01(5)1(z) = —02(S")B(2).
Now let P(z) = Pi(2)02(z) — P»(2) 01 (2).

(66)

LEMMA 6.1. We have

Proof. 1f follows from (66) that
P($)Q1(57)1(2) = —P1(S)Qa2(S)B(2)
Qi(S)P(S)1(z) = —Qi(S)P2(S)B(2)
giving the first equality P(S*)B(z) =0. A similar calculation gives P(S*)7(z) =0. O

Our next goal is to show that if .# contains at least two triples, then we can choose
(A,7,m) and (U, ®,n) such that P(z) is not identically zero.

Since we will always work with only two triples at the time, we can without any re-
sulting confusion denote the polynomial corresponding to (4 v,m), (1, @,n) by P(z).
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LEMMA 6.2. If dim.#Zg = 2 then for every triple (A,y,m) € F we have A; #
C’)/.

Proof. Choose k € N such that ; # 0. Then the spectrum of T;|.#s consists
of two points, since from (55) we find that in this case, I and 7; are generators for
My |.#¢ . Now consider the function H (z) = ((Tx —z) ~'&, &) . This is a rational func-
tion with simple poles at the eigenvalues of 7;. Since for real z

H (2)={((Tr—2)%6,8)={((li—2) '€, (lr—2)"'6) >0

we see that H (z) has a zero ) between its two poles. As y is not in the spectrum
of Ty we must have (Tx — x)~'& # 0 and then from (T — )~ '&€,6) =0 we get
(Th — x) '€ L&. Now we can calculate
PTP(Ti—x)~'6 = PT(Te— %) € = P(Te— 2+ x)(Ti—x)~'&
=x(Ti—x)"'&.

Hence y is in the spectrum of PT}P|.#s S & so
x = Tk + Cyﬁk
But y is not in the spectrum of T;|.#s and therefore y # T + PrAy. As B # 0, we
get Gy #£A;. O
If dim.#¢ = 2, there is only one element in & (M4 |.#s © &). Hence for two

triples (A,y,m), (W, w,n) € % we must have y= ®.

LEMMA 6.3. Let dim.#g = 2. If there are two different triples

(A, y,m),(u,y.n) € Z,

then P(z) # 0. However, we have P(0) = 0.

Proof. First, note that since dim.Zg =2 and T is injective we can not have
A(Ty) =0 forany A € o(Mr|.#Zs) and k € N, since otherwise we will have a nonzero
u € Mg suchthat Tpu = 0 and hence 0 = (Tju,u) = HTkuH Let (A,y,m),(u,y,n) €
Z, then A(T,,) #0 and u(T,) # 0. The corresponding polynom1a1 P(z) is then of the
form

ro= (e itin) ()~ (i) (xy) - @)

Assume on the contrary that P(z) = 0. By expanding the right-hand side of (67) and
use A, # Cy and Ay # Cy, we easily see that P(z) =0 implies m =n and A; = Ay
and hence the triples are equal. The second claim follows from the fact that the constant
term on the right-hand side of (67) vanishes. [
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PROPOSITION 6.4. If the set ¥ has more than two elements, then there are two
triples (Ay,k), (U, w,m) € .F such that the polynomial P(z) is not the zero polyno-
mial. Moreover, if dim.# > 3, then there are different triples such that P (0) # 0.

Proof. We already know that if dim.#s = 2 and there are two different triples,
then the polynomial P(z) is not constantly zero. If dim.#s > 3 then by Lemma 5.1 the
C* -algebra generated by the PT;P’s restricted to .#, must have a spectrum consisting
of at least 2 different points. Proposition 5.3 now gives that there are y,w € M with
Y # o and thus also with Cy # Cy. An easy calculation gives that the constant term of
P(z) is Cy—Cq and hence P(z) #0. O

Now we can prove the main result of this section:

THEOREM 6.5. If .% has at least two elements, then there are constants
a,b,c,d € R, not all zero, and integers n,m € N, such that

al + bT, + Ty +dTy s = 0. (68)

In particular, if dim.#Zg > 3 then we may assume that a # 0.

Proof. If % has at least two elements, it follows from Proposition 6.4 that there
exist (A7,k) and (i, m,m) in .F such that the corresponding polynomial P(z) is of
the form a + bz" + cz™ +dz7"™™, where a,b,c,d € R are not all zero and n,m € NT.
As P(S*)B(z) =0 and P(S*) 7 (z) =0, we obtain that for all k € N

at+ ka+n + CThpm + di+n+m =0 (69)

aPi + bPBisyn + cBrsm +dBisnim = 0. (70)

By Theorem 4.9, these equations imply
aTy + bk + Ty + ATkl ., =0
for all k € N. Now fix k£ € N and consider
al +b(07,T,0r %) +c(07 4 TnOr k) +d(07 k Trym 1 Or1)-

Restricted to .#, we have

Nl—

1
T2 (al + b(07 ,T,0rx) + (07, TnOr i) +d(O7 4k Ttm 9;,k)) T2 s
= aTy+bTyix+ Tk +dTysmik| ., =0.

1
Since Tk2 has dense range, we must have

al + b(@;an GTJC) + C(G;,kTm OT,k) + d(e;,aner 9;,k) |///g =0.
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By Theorem 3.32, this implies that
al + 0T, + Ty +dTymlv, = 0.
As this is true for every k € N and the subspaces Vj span 7, we have
al +bT,+ cT,y+dT 4+ = 0.

If dim.Zz > 3 then by Proposition 6.4 there are (A,7y,n),(U,w,m) € F such that
P(0)=a#£0. O

COROLLARY 6.6. Forall k, j € N, the restriction T;|Vy is invertible. If dim .4 >
3, then T is invertible for all j € N, or equivalently, T has closed range.

Proof. Since T is injective, every 7; has dense range. If dim.Zs < 2 then
dimV, <2 forall k € N, so 7|V, must be invertible.

When dim.Z¢ > 3, it follows from Theorem 6.5 that there are b,c,d € R and
m,n € N* such that

I+bTy+ Ty +dT, 1 =0
(we can divide (68) by a # 0). If, say, n < m then consider
—bl — (07, Tn—nOrn) — d(07,,Tn0r ).
This is an inverse of 7,, since
T (—bI — c(6f , Tn-nOr.n) —d(6f,,Tnbrn)) = —bTy — Ty — dToim = 1.

But if 7, is invertible, then so is Tj, since T,, = T1(6;T,,—16r). O

6.1. Main theorem: the case |.7| =1

The final case to consider is when there is only one triple in ..
Take J to be a weighted shift on ¢? with the standard basis {e;;k € N}. Now for
some 1 € N and a € C consider

L=J+a(eo®e})

(recall that by ep ® e}, we denote the rank one operator x — (x,e,) eg). With respect to
the standard basis, this infinite matrix will look as follows

a 0
0
L= 0 (71)

S
(=)
o2 oo

S
)
(= eNele)

0
0
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when n =0 and

0...a 0.
ap ... 0 0 ...

L=1............... (72)
0...a, O

for a general n.

LEMMA 6.7. The operator L is half-centered and for every k € N we have that
Ly, is diagonal with respect to the standard basis {ey;k € N} .

Proof. As it was mention after Example 2.8, this is a corollary of Proposition 2.5. [

In this section, we prove the following:

THEOREM 6.8. If F has only one triple (A,y,n), then there is an orthonormal
basis {xy;k € N} of S, a wighted shift J on this basis and a € C such that

T=J+a(xo®x)).

There is an orthonormal basis v,w of € .#Z consisting of common eigenvectors
for all the Tj’s restricted to this space. Let, say, w be an eigenvector corresponding

to A. As there is only one triple, we must have T*v € V; for all k € N, otherwise the
reasoning used in subsection 4.1 would yield a different triple. Furthermore:

LEMMA 6.9. If there is only one triple (A,y,n) in .F, then Vyy; = (T"Iv) for
all jEN.

Proof. The reasoning used in the proof of Proposition 5.3 shows that the only
way we could end up with only one triple (A,7v,n) is if dim.#Zy =2 and T* 4z is a
subspace of V;,_1. This in turn gives TV} L.# for k #n—1. Hence TV, ; =V, 11
for all j € N by Proposition 3.20 and Proposition 3.25. This shows that the subspace
@0V is T -invariantand so &\, is T*-invariant. Now T*V, 41 =T*TV, =V,
and

(TViVier) = (Vi TVi) = (ViViea) = 0

for j £n+2, so V, LT* EB;’,;IO V,u. But T* restricted to @ZJ;IOVm still has just &
as its kernel and since the space EB;’,;IOV,,, has finite dimension, the dimension of the
kernel must be equal to that of the cokernel. So dimV,,; =1 and since V.| =TV,
this must also be true for V,,. Since 7" /v €V, j, the whole space must be spanned by

this vector. [

PROPOSITION 6.10. We have T"w € M.
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Proof. If m > n+1, then as T"w € X,,, we have T"w_LV,, by definition of V,,.
Also V,, = (T"v) and so

(T", T"w) = (T,v,w) = A(T,) (v,w) = 0.
The same argument shows that T"w_1V,, for | <m < n—1 since
(T"w, T"w) = (T,w,T" "w) =0
(T"v,T"w) = <Tmeo,T”_mw> =0
and the vectors 7w, T™v span V,, for 1 <m<n—1.So T"w e (@Z;Vk)L =Me. O

COROLLARY 6.11. We have Mp© & = (T"w) and T* Ms = (T" 'w).

Proof. T"w € Mg is orthogonal to & and since dim.Z =2, the subspace .# s ©
& must be generated by 7"w. The second claim now follows from

T* My =T Mg E=(NT" 'w)y=(T""w)
since 7"~ !w is an eigenvector for My by the introduction to subsection 4.1. [

With the help of these result we can now proceed to prove Theorem 6.8:

Proof. For 0 < k<n—1 take

T w
Xk =
I T*w]]
and when n < k take
Tk
X = ———.
T

Thus {xx;k € N} is an orthonormal basis for the Hilbert space .7 and by the results
above, there are constants ay,a € C such that

Txp = apXp+1
when 0 <k<n—2orn<jand
Tx,—1 = apx, + axo
(since T"w was in .#g generated by w = xp,v = x,,). If we now take J to be the shift
JxX = agxpy

then
T=J+alxy®x,). O
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The main theorem can now be proven by combining the results from sections 5

and 6:

Proof of the main theorem. When dim.Zs = 1, we refer to the remarks given

after the statement of the main theorem in section 2. When dim.Ze > 2, it follows
from Propositions 5.1 and 5.3 that |.%| > 1 and hence we can split the arguments into
the cases |.#| =1 and |.#| > 2. When |#| = 1, we get from Theorem 6.8 that this
corresponds to the second part of case /. When |#| > 2, we get (17) from Theo-
rem 6.5. Finally, when dim.#Zg > 3, the claim follows from Theorem (6.5) and Corol-
lary 6.6. U
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