
Impact of Grain Boundary Density on Oxide Scaling Revisited

Downloaded from: https://research.chalmers.se, 2025-07-14 22:49 UTC

Citation for the original published paper (version of record):
Geers, C., Panas, I. (2019). Impact of Grain Boundary Density on Oxide Scaling Revisited. Oxidation
of Metals, 91(1-2): 55-75. http://dx.doi.org/10.1007/s11085-018-9867-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Vol.:(0123456789)

Oxidation of Metals (2019) 91:55–75
https://doi.org/10.1007/s11085-018-9867-0

1 3

ORIGINAL PAPER

Impact of Grain Boundary Density on Oxide Scaling 
Revisited

Christine Geers1 · Itai Panas1

Received: 6 February 2018 / Published online: 28 August 2018 
© The Author(s) 2018

Abstract
A straightforward conceptual tool for discriminating between different oxide scaling 
processes deviating from the parabolic standard model is formulated. Grain bound-
ary diffusion-controlled oxide scaling is generalized to include lateral grains coars-
ening. Building on traditional Wagner theory, attenuation of rates of inwards grow-
ing oxides owing to the gradual loss of grain boundary density is revisited. Two 
viable cases are identified. One has the rate of grain boundary density loss to be 
independent of the rate of oxide growth, while the second case takes the two instan-
taneous rates to be equal. Simple parabolic–logarithmic and superparabolic–cubic 
expressions are arrived at for the two cases, respectively. Usefulness is demonstrated 
by applying the models to published experimental data from 1990 to date. Upon 
arrival at the superparabolic–cubic behaviour, a generic mathematical form analo-
gous to a ‘spring force’ attenuating the scale growth was identified. ‘Parabolic’, 
‘cubic’ and ‘logarithmic’ scaling emerges as limiting cases.

Keywords Oxidation kinetics · Model · Scaling · Grain boundary transport

Introduction

For several decades, the outstanding properties of oxide dispersion strengthened 
alloys have served as a vehicle for fundamental research at the forefront of industrial 
materials development of relevance to chemical engineering and energy conversion 
processes [1, 2]. The efficient generic high-temperature oxide scaling of alumina-
forming ODS alloys—i.e. slow growing and well adhering—apparently contradicts 
their complex and diverse compositions and textures. However, it should be kept in 
mind that the complexities of said class of alloys—they comprise a base metal, e.g. 
Co, Fe(Ni) or Ni(Co), a scale-forming component (Al) and commonly chromium 
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providing the third element effect [3–6]—are actually tuned to achieve the sought 
near-ideal long-term scaling property. Additional fine-tuning, mainly aiming at 
improved scale/alloy adhesion, is achieved by the so-called reactive elements—e.g. 
Y, La, Zr, Hf—often appearing as submicron oxide particles in the ODS alloy [7, 8]. 
Beneficial impact has been correlated with change in electronic structure of oxide 
grain boundaries [9], and avoidance of scale spallation due to sulphur decoration 
at alloy–oxide interface by REs acting sulphur getters in the alloy [10]. Currently, 
the origins of often near-ideal oxidation properties at high temperatures are increas-
ingly being unravelled and revisited by employing state-of-the-art analysis on the 
nanoscale in conjunction with atomistic first-principles modelling [11].

Inevitably, such emerging novel perspectives attract renewed interest in generic 
models for the transformation from early transient oxide formation to late ideal 
oxide growth kinetics in order to offer a semi-quantitative conceptual framework for 
alloys development in general. Building on Fickian diffusion, today still, the con-
temporary overall understanding of the oxidation of metals is based on the ground-
breaking works of Tammann [12] and Wagner [13]. Also the decisive impact of 
grain boundaries, constituting easy paths for ion diffusion has long been recognized 
[14–16]. A recent attempt at connecting oxide grains coarsening to the oxide scaling 
as measured by inspecting oxide scale cross sections [17, 18] has served inspiration 
to the present effort. Thus, the objective of this study is to expose generic origins of 
near-ideal oxidation properties, so as to distinguish between beneficial oxide scaling 
and corrosion. To this end, two models are derived representing two different physi-
cal realities in that a particular alloy is taken to obey either ‘superparabolic—cubic’ 
or ‘parabolic–logarithmic’ short-term–long-term oxide scaling kinetics. Experimen-
tal data, from 1990 till present, form basis for the following discussion. As a conse-
quence, no statistical analyses are provided here. It is, however, greatly encouraged, 
in conjunction with modelling, in view of the current limited predictive capacity of 
alloy development beyond empirical knowledge of the oxidation behaviour [19].

Modelling Oxide Grain Coarsening During Scale Growth

The present effort relies on a clear distinction between corrosion and oxide scale for-
mation. First and foremost, the formation of an adherent oxide scale acts to prevent 
breakaway corrosion. Also, sacrificing metal to form a barrier oxide often offers the 
alloy protection against a hostile environment. And while corrosion is often specific 
to the particular application, we understand the build-up of a protective oxide scale 
to be more generic in nature. In this spirit, below we explore to what extent grain 
boundary transport alone—as attenuated by change of grain boundary density exclu-
sively taking place at the mobile reaction zone—may suffice to describe experimen-
tally observed oxide scale growth kinetics. Thus, it is implied below that first-order 
kinetics in loss of grain boundary density alone is indeed insufficient in reproducing 
experiment, owing to unphysical limiting properties. This is in contrast to the two 
expressions at focus in the present study, emerging from second-order kinetics.
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In what follows, to accentuate novel features, our approach draws inspiration from 
Smeltzer et al. [15], Naumenko et al. [17] and Young et al. [18]. Thus, the effective 
diffusivity of oxygen ions is subdivided into lattice and grain boundary components

δGB is the width of a grain boundary and rE(t) is the lateral length of a growing 
grain. For the diffusion flux, it follows that

The first of the two fundamental assumptions of the present study is that the oxide 
scale microstructure evolution takes place exclusively at the moving oxide front. It is 
discretized according to the so-called low-gradient approximation

where X is the instantaneous scale thickness. Equation 2b may subsequently be con-
verted into a scale growth velocity by writing

where VO is the specific volume of the mobile species, such that COVO = 1. The dif-
ferential equation to solve becomes (see, for example, [11])

Let CGB =
1

rG
 be the lateral grain boundary density; then by virtue of f = 2�GB

rG
 (cf. 

Equation 1)

One approach is to take the impact of loss of grain boundary density CGB on scale 
growth to exhibit first-order kinetics, CGB(t) = CGB(0)e−kt, and hence, 
f (t) = f0e

−kt =
2�GB

ro
e−kt . In this case, Eq. 4 becomes
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from which it follows that

Now, let the grain boundary diffusion be the dominating transport channel for 
oxygen ions, i.e. DGBf ≫ DL(1 − f). Indeed, the second fundamental assumption of 
the present study is that oxide scaling owing to lattice diffusion is vanishingly small. 
This is in order to unravel the impact of grains coarsening on subparabolic limiting 
scale growth, ubiquitous to oxidation of metals. Inasmuch as Eq. 5b displays para-
bolic limiting scale growth owing to the lattice diffusion channel, in its absence, the 
first-order kinetics model

must be discarded because it predicts an unphysical constant limiting scale thickness 
for t → ∞. Here, we proceed by considering second-order kinetics dCGB

dt
= −kC2

GB
 for 

the decay of grain boundary density, as was originally proposed by Fehlner and Mott 
[16]. They obtained CGB =

C0
GB

1+C0
GB

k⋅t
=

1

r0+k⋅t
 , i.e. f = 2�GB

r0+k⋅t
 for rG(t) = r0 + k·t. Further-

more, as a consequence of DL → 0, Eq. 4 can be modified to read

At this point, our deduction bifurcates as we may have the grains coarsening to 
be either implicitly or explicitly connected to the rate of scale growth (see the “Para-
bolic–Logarithmic Oxide Growth Mode” and “Superparabolic–Cubic Oxide Growth 
Mode” sections, respectively).

Parabolic–Logarithmic Oxide Growth Mode

Let the rate of grains coarsening k be nonzero constant and independent of the 
growth rate of the oxide scale, noting that k = 0 constitutes the parabolic oxide 
growth limit. Hence, for k ≠ 0 we write

to obtain the corresponding time dependence of scale thickness
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{
2
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It follows from Eqs. 7 and 8a that

as depicted in Fig. 1.
By virtue of Eq. 1, we identify f = 2�GB

rG
 to obtain

(8b)rG = r0

(
1 +

t

t0

)
= r0 exp

[
kX2

2DGB2�GB
Δ�

RT

]

(8c)f =
2�GB

r0
exp

[
−

kX2

2DGB2�GB
Δ�

RT

]

Fig. 1  Evolution of grain width as function of scale thickness for three different diffusivities and three 
different initial grain sizes (compare Eq.  8b). The curvatures reflect the constant velocities of grains 
coarsening eventually overtaking those of scale growth
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Thus, Eqs. 8b and 8c capture the impact of an accelerated effective grains coars-
ening process, corresponding to the resulting parabolic–logarithmic scaling in 
Eq. 8a. At this point, the generic form of the decelerating impact of f  in Eq. 1 is 
highlighted. Indeed, it can be understood to attenuate the parabolic scale growth by 
adding a second term to the activation energy for diffusion, this being quadratic in 
the oxide scale thickness X

By taking this term to represent the potential energy of a classical spring, the 
parabolic–logarithmic scaling Eq. 8a may intuitively be understood to result from 
a ‘spring force’, which resists parabolic scale growth. Indeed, rapidly decelerating 
scale growth may imply a significant long-term remnant (electro-)chemical potential 
gradient across the scale, which may in turn leave the scale vulnerable to scavenging 
local (electro-)chemical diffusion processes (see, for example, Geers et al. [20]).

Moreover, we note from Eq. 8b that early into the oxidation process

Thus, we make contact with the parabolic limit, in that very early the first term in 
Eq. 9a is understood to dominate

The latter tells of oxide scale growth by grain boundary diffusion in the absence 
of grains coarsening.

Superparabolic–Cubic Oxide Growth Mode

Instead of a constant grains coarsening rate, here we assume that the instantaneous 
lateral grains coarsening velocity is proportional to the instantaneous rate of verti-
cal oxide growth, suggestive of a grain boundary-mediated oxidation process which 
consumes grain boundary density, i.e.

In what follows, we give special meaning to t0, i.e. the initial curing time tc
0
 for the 

grains coarsening that attenuates the scale growth. Also, we take α = 1 to say that its 
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RT

)]
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t
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(
tc
0
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≡ �

dX

dt

(
tc
0
+ t
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influence is absorbed by the material specific DGB2δGB. By inserting Eq. 10 into Eq. 3, 
we arrive at the corresponding time evolution of scale thickness

Linking the grains coarsening rate to that of the scale growth puts Eq. (11) on par 
with the parabolic t1∕2 growth mode, in that besides the curing time tc0 no additional 
parameters are introduced.

Characteristics of the superparabolic–cubic oxide scaling may be deduced from the 
early and late time limits of Eq. 11. Thus, for t ≪ tc0 we have the superparabolic X ∝ t

2

3 , 
i.e.

while in the limit tc
0
≪ t we obtain the cubic rate law,

i.e. X ∝ t
1

3 and independent of tc0.
Now we explore the time evolution of the effective grain size rG(t). Thus, by differ-

entiating Eq. 11 with respect to time, and for t > 0 we have

Inserting Eq. 14 into Eq. 10, we obtain
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0
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and for tc0 ≪ t, we obtain rG ∝ t
1

3 independent of tc0

It is noted from Eq. 16 that for t < tc0 the grain boundary “curing” is controlled by 
the rapid initial oxide growth rate. Thus, from Eq. 16 it is inferred that dX

dt
tc
0
(≡ r0 , 

see Eq. 10) → ∞ for t → 0. Here, contact can be made with lattice diffusion driven 
single-crystal growth (see Eq. 1) in that this suggests the existence of an initial grain 
boundary free oxide film, which initially at t < tc0 becomes increasingly fine grained 
as the oxide scale starts growing [21]. Thus, by allowing only grain boundary trans-
port, the grain boundary density is forced to initially increase owing to the retarda-
tion term in

until reaching a maximum for a critical grain size rc
G
 at t = 5tc

0

4

Subsequently, the grain boundary density decays owing to the grains coarsening 
(Eq.  17), which in turn is the reason for the limiting cubic scale growth (cf. Equa-
tion 13, see Fig. 2a). Combining Eqs. 11 and 15, we arrive at the universal result

Naively, the ratio rG
X

 can be used to explain the change in top angle θ of the pyramidal 
shaped grains which constitute the growing oxide scale [14] (see Fig. 2b). We obtain

In particular, it is noted that the top angle starts at 180° at t = 0 and also that the 
limiting ratio rG

X
(t → ∞) =

1

3
 reflects a limiting top angle of ~ 18.9°. At = 5tc

0

4
 , i.e. 

where rG = rc
G, the ratio rG∕X reaches unity, corresponding to top angle of ~ 53.13°.
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0
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)
+
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dt
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(
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3
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Finally, from Eq. 11 we have

This may be inserted into Eq. 19a to obtain

which may be employed to identify f = 2�GB

rG
 in Eq. 1. Instead, we proceed by insert-

ing Eq. 19d into Eq. 6 to obtain

(19c)
(
9DGB2�GBt

c
0

Δ�

RT

)−1∕2

X3∕2 =

√
1 +

t

tc
0

− 1

(19d)rG =
X

3

[
1 +

(
9DGB2�GBt

c
0

Δ�

RT

) 1

2

X
−

3

2

]

(19e)
dX

dt
=

Δ�

RT
⋅

6�GBDGB[
X2 +

(
9DGB2�GBt

c
0

Δ�

RT

) 1

2

X
1

2

]

Fig. 2  Superparabolic–cubic model: Generic time evolution of grain width (Eq.  15) and grain bound-
ary density with corresponding critical values for t = 1.25·tc0 indicated, i.e. where the two functions reach 
their minima and maxima, respectively. Here, 10 h initial curing time is employed. b The universal oxide 
grains top angle evolution as function of oxide scaling time is displayed, Eq. 19b. c Evolution of grain 
width (horizontal, Eq. 15) with scale growth (vertical) (cf. Equation 11)
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Subsequently, integrating this expression gives

It is gratifying to note (1) how the two central asymptotes of the superpara-
bolic–cubic model, Eqs. (12) and (13), come out clearly in Eq. 19f, as well as (2) the 
crucial role of tc0 as it controls the transition between said two asymptotes.

Results and Discussion

By comparing to the experimental literature, here we demonstrate the possible 
validity of the two fundamental assumptions—the predominance of grain bound-
ary transport and the location of grains coarsening processes to the mobile reaction 
zone, vide supra—as well as the potential usefulness of the emerging conceptual 
understanding.

Throughout, connection between scale thickness X and specific mass gain Δm is 
made according to

To this end, in the “Application of Superparabolic–Cubic Model” section we 
demonstrate the applicability of the superparabolic–cubic model

The “Application of Parabolic–Logarithmic Model” section focuses on the use-
fulness of the parabolic–logarithmic model

while the concept of effective grains coarsening is introduced in the “‘Effective’ 
Grain Boundary Density in Oxide Scaling” section in order to demonstrate the ver-
satility of the approach.

Application of Superparabolic–Cubic Model

We start out by exploring the impact of the initial curing time tc
0 on the time evolu-

tion of oxide scaling. Excellent agreement with the mass gain curve by Quadakkers 
et al. [22] is obtained for the alloy PM2000 at 1200 °C in air (Fig. 3), by setting the 

(19f)18�GBDGB

Δ�

RT
⋅ t = 2

(
9DGB2�GBt

c
0

Δ�

RT

) 1

2

X
3

2 + X3

(20)Δm = X ⋅ �(oxide)

(21)XS-C = prefactor ×
[√

t + tc
0
−
√

tc
0

]2∕3

(22)XP-L =

{
Constant × ln

[
1 +

kt

r0

]} 1

2

,
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prefactor to be 0.245 mg/cm2 in Eq.  21 for tc0 = 1 h, i.e. the scaling behaviour for 
tc0 = 0.1 h; 0.5 h; 1 h; 10 h is shown in Fig. 3.

While initial scaling depends on the initial curing time (see Eq. 12), it is noted 
that the late asymptotic form is independent of tc0 (see Eq. 13). This says that the 
prefactor in Eq. 21 is independent of the initial curing time, exhibiting only the tem-
perature dependence of the grain boundary diffusivity and width, and the chemical 
potential difference, determined by gas and alloy compositions. Extracting this pref-
actor from finite time experiments, however, requires knowledge of initial conditions 
related to sample preparation for which there is limited control. By employing tc

0
 , 

the initial conditions may be compensated for, allowing the prefactor to be extracted 
from finite time exposure experiments. Moreover, there are cases where long-term 
exposures may not even be feasible. One example is the oxide scaling on zirconium 
alloys by water, for which the barrier oxide becomes reset by repeated breakdowns, 
empirically found to follow intermittent ‘cube-root kinetics’ in line with the present 
superparabolic–cubic model [23].

The ability to analyse scaling by employing the superparabolic–cubic model 
to mass gain experiments at 1200 and 1250 °C [17] is convincingly established in 
Fig. 4. Furthermore, usefulness as analytic tool is emphasized by addressing what 
has been long known regarding the deviation from parabolic oxide growth in the alu-
mina formers, it not necessarily being a sign of transient oxide formation (compare, 
for example, [24]), and that a near-cubic time dependence may indeed be understood 
to represent an ideal scaling behaviour [22]. From that study, we determine the onset 
of superparabolic–cubic behaviour to less than 10 h into the exposure of PM2000 at 
1200 °C (see Fig. 5).

Fig. 3  Parameter sensitivity of superparabolic–cubic model is illustrated for initial curing times tc
0 = 0.1 h 

(red dashed); 0.5 h (black dashed); 1 h (full black); 10 h (full red) to compare with the experimental mass 
gain curve at 1200 °C, from [22]. Best agreement is obtained for tc0 = 1 h. Inset: illustration of common 
asymptote irrespective of choice of tc0 (cf. Equation 13) (Color figure online)
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Moving on, the potential usefulness of the superparabolic–cubic model is further 
established by revisiting the study on FeCrAlY material [18]. That study considers 
exposure temperatures at 1200, 1250 and 1300 °C, for 20%  O2 in Ar (oxidizing con-
ditions), as well as 4%  H2, 7%H2O in Ar (reducing conditions). Good agreements 
with the superparabolic–cubic scaling model are obtained in both cases (see Fig. 6a, 
b). Employing the equilibrium data of Young et al. [18] concerning oxygen activities 
at metal–oxide interface and at the oxide–gas interface, slightly modified values of 
�GBDGB as compared to that study are obtained for both the oxidizing and the reduc-
ing conditions (see Fig. 6c).

Moreover, ability to track differences in alloy composition to their scaling rates 
is demonstrated by considering the mass gain curves of FeCrAl and alloy MA 956 
at 1100  °C [1] (see Fig.  7). Agreement with experiment is obtained only for the 
superparabolic–cubic model. Indeed, while alloy MA 956 quickly enters the cubic 
asymptote, the FeCrAl apparently employs a longer initial curing time, thus extend-
ing the time spent between initial X ∝ t

2

3 and late X ∝ t
1

3 (compare Eqs.  (12), (13) 
and (19f)).

Care must be taken, however, not to base conclusions regarding scaling processes 
on agreement with one model alone, and especially so if the two incompatible mod-
els appear to describe the experiment well. One such case comprises the recent 
CoCrAl(Y) study (air, 900 °C) [25]. Here, excellent agreement with experiment is 
obtained for the superparabolic–cubic model for tc0 = 10 h (see inset in Fig. 8). For 
reference, tc0 = 1 h; 20 h are also included in Fig. 8a. The large curing time (tc0 = 10 h) 
compared to that at 1200–1300 °C (tc0 = 1 h) may be owing to the lower tempera-
ture. We note that the parabolic–logarithmic model, according to Eq.  (22), also 
provides excellent agreement for the duration of the 250  h exposure experiment 
(see Fig. 8e). Arbitrarily, for this model the rate of grains coarsening is taken to be 
1.0 nm/h throughout the presentation. At long times, however, the logarithmic func-
tion detaches from the superparabolic–cubic model as expected (see Fig. 8d). In as 

Fig. 4  Mass gain curves from [17] obtained at 1200 and 1250 °C described by the superparabolic–cubic 
model for tc0 = 1 h with prefactors 0.305 mg/cm2 and 0.387 mg/cm2, respectively
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Fig. 5  Deviation from parabolic 
model for oxide scaling on 
PM2000 at 1200 °C from [22]. 
Superparabolic–cubic model 
(red dashed). Deviation between 
model and experiment emerges 
at t < 9 h for tc

0
= 1 h ; prefac-

tor = 0.245 mg/cm2 (Color figure 
online)
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much as longer exposure times are required in order to discriminate between the 
two oxide scaling models, here, we envisage that possible transitions between grains 
coarsening modes may be observed as well, being either coupled to or decoupled 
from the rate of oxide scale growth. In view of lack of knowledge regarding the true 
scaling kinetics in this case, the models may be employed to estimate best-case and 
worst-case mass gain scenarios.

We conclude this section by considering yet another attempt at discrimi-
nating between different possible scaling behaviours, applied to MA 956—an 
FeCrAl(Y,Ti)—at 1100 °C (cf. [1], see Fig. 9). Indeed, here we find the superpara-
bolic–cubic model to agree well with experiment, while the parabolic–logarithmic 
form appears to decay too fast. These conclusions may be due to oscillations in the 

Fig. 6  Exposures in Ar–4%H2–7%  H2O as well as in Ar–20%O2 at 1200, 1250 and 1300  °C [18] are 
described, respectively, by the superparabolic–cubic model for prefactors and tc0 in parentheses, a 0.7 μm 
(0.60 h) ; 1.35 μm (0.40 h); 1.7 μm (1.10 h), and b 1.55 μm (0.05 h; 2.00 μm (0.40 h); 3.03 μm (1.4 h). c 
δGBDGB values are obtained from Eq. 11, (red symbols) by employing Δ�

RT
 data from Ref. 18 (Color figure 

online)
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mass gain curve, however. Indeed, oscillations due to fluctuations in the oxidation 
process between the two modes, i.e. Eqs. 21 and 22, cannot be ruled out. However, 
the purely parabolic model was refuted already in said study.

Application of Parabolic–Logarithmic Model

The potential usefulness of the parabolic–logarithmic model, besides being comple-
mentary to the superparabolic–cubic model, is explored by addressing three cases. 
Indeed, its general properties provide a rigorous connection between intuitively 
related effects of oxide scaling, i.e. those between stress and grains coarsening. 

Fig. 7  Comparative mass gain curves for oxidation of MA 956 and an FeCrAl at 1100  °C, from [1]. 
Superparabolic–cubic model applied to MA 956: tc0 = 0.1 h, prefactor = 0.107mg/cm2 ; FeCrAl: tc0 = 10 h, 
prefactor = 0.187mg/cm2

Fig. 8  a Oxide scaling dependent on 1 h, 10 h and 20 h initial curing times for the superparabolic–cubic 
model is shown. b Convergence of scale thicknesses irrespective of initial curing times (cf. Equation 12) 
is demonstrated. c Excellent agreement with experiment at 900  °C [25] is obtained for tc

0 = 10  h and 
prefactor 0.145 mg/cm2. d Long-term detachment of superparabolic–cubic model from parabolic–loga-
rithmic model due to different asymptotic forms is demonstrated, upper X ∝ t

1

3 and lower X ∝
√
ln (t) . 

Inset: Excellent agreement between parabolic–logarithmic model and experiment is demonstrated, 
k = 1.0 nm/h, r0 = 500 nm, constant = 1.60 mg2/cm4
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Firstly, we consider the recent CoCrAl(Y) study [15] mentioned above, which also 
provides a mass gain curve for the undoped CoCrAl alloy. In this case, excellent 
agreement is found for the parabolic–logarithmic model, while the superpara-
bolic–cubic model fails. The tc0 for the failing superparabolic–cubic model is 0.001 h. 
And in spite of early access to its cubic asymptote, it is insufficient in describing the 

Fig. 9  Comparative analysis of mass gain during oxide growth on MA 956 at 1100 °C. Top: parabolic fit 
[1]. Red dotted: superparabolic–cubic model, (tc0 = 0.1  h, prefactor = 0.105mg/cm2 ). Blue dotted: para-
bolic–logarithmic model for k = 1 nm/h, r0 = 250 nm, and constant: 0.60 mg2/cm4 (Color figure online)

Fig. 10  Comparison of mass gain curves according to parabolic–logarithmic (black line) and super-
parabolic–cubic (red dashed line) models. Inset: excellent agreement between parabolic–logarithmic 
model (black line) and experimental observation for CoCrAl at 900 °C [25] k = 1 nm/h, r0 = 17 nm con-
stant = 0.060 mg2/cm4, while the superparabolic–cubic model is shown to fail (dashed red line) (Color 
figure online)
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rapidly flattening out of the experimental curve (see Fig. 10). Clearly, this behaviour 
is easily reproduced by the parabolic–logarithmic model.

A second, possibly related issue is the observed specimen-dependent scaling in 
1-mm- and 0.3-mm-thick FeCrAl(Y,Zr) alloy samples at 1300  °C [26]. While the 
superparabolic–cubic model struggles in describing the 0.3-mm sample, perfect 
agreements are found for the parabolic–logarithmic model (see Fig.  11a). Nota-
bly, the agreements are obtained for the same initial curing times and initial grain 
widths for the two cases. In particular, the same initial mass gain derivatives tell 
of the same initial grain boundary density, as captured by the model (see Fig. 11a 
again). Given that the samples were subjected to the same exposures, these display-
ing the same experimental grain boundary diffusivities and widths are consistent 
with the notion that the difference between the two specimens should be found in 
a specimen-dependent oxygen chemical potential at the alloy–oxide interface, pos-
sibly related to Zr in the alloy. This was proposed to explain the greater mass gain 
in the 1-mm-thick specimen [26, 27]. A second possibility was that the mismatch 
in velocities of oxide grain coarsening and oxide thickness growth, assumed by the 
parabolic–logarithmic model, which would render the two systems different abili-
ties to alleviate scaling-induced stresses, was ruled out it this case [27]. On a similar 
note, thirdly, oxide scaling on coarse-grained and fine-grained PM2000 alloys was 
compared at 900 °C and 1200 °C [28]. The models developed here are not suitable 
to describe the observed scaling at 900 °C owing to prolonged irregular initial oxi-
dation. However, at 1200 °C, while the superparabolic–cubic model describes the 
fine-grained sample well, and it does less so for the coarse-grained alloy sample. In 
contrast, excellent agreements with the parabolic–logarithmic model are obtained in 
both cases (Fig. 11b).

We observe that the initial oxide grain boundary densities of the two speci-
mens come out different, i.e. smaller initial grain width for the coarse-grained alloy 

Fig. 11  a Experimental [26] comparison regarding mass gains, for 1-mm and 0.3-mm-thick specimens 
for one and the same alloy, FeCrAl(Y,Zr) at 1300  °C, modelled by the parabolic–logarithmic model 
for k = 1 nm/h, r0 = 21 nm and constants: 4.4 mg2/cm4 (1 mm); 2.15 mg2/cm4 (0.3 mm). b Comparative 
experimental investigation [28] of coarse-grained and fine-grained PM2000 alloys at 1200 °C described 
by the parabolic–logarithmic model:{coarse: k = 1  nm/h, r0 = 63  nm, 2.904  mg2/cm4 (blue dashed)}; 
{fine: k = 1  nm/h, r0 = 150  nm, 3.84  mg2/cm4 (red dashed)}; described by the superparabolic–cubic 
model:{tc

0
= 0.7h ; prefactor = 0.38  mg/cm2 (coarse: black full):{tc0 = 3  h; prefactor = 0.33  mg/cm2 (fine: 

green full)} (Color figure online)
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r0 = 63 nm as compared to the r0 = 150 nm for the fine-grained alloy. This is in turn 
reflected in higher initial mass gain rate in case of the coarse-grained alloy (see 
Fig. 11b). It is tempting to suggest preference for the parabolic–logarithmic model, 
particularly for the coarse-grained PM2000, to reflect the fact that initially, the oxide 
grains coarsening rate cannot keep up with the rate of scale growth. It is conceiv-
able that the ability to alleviate stress by allowing for formation of voids and pores 
at the moving alloy–oxide interface (cf., for example, Ref. [25]) is indeed a common 
feature when parabolic–logarithmic scaling is observed. Such scavenging processes 
would be symptomatic for the residual (electro-)chemical potential gradients owing 
to the rapid slowdown of oxide growth as represented by the effective ‘spring force’ 
attenuated oxide scaling (cf. Eqs. 3 and 8c).

‘Effective’ Grain Boundary Density in Oxide Scaling

The invaluable impact of electron microscopy in present days oxidation studies 
speaks for itself. Indeed, in the present study, grains coarsening has been employed 
as a conceptual tool for explaining thermogravimetric curves, while resorting to 
microscopy studies in the literature to provide complementary evidence for the 
claim. However, the true power of the thermogravimetric (TG) analysis is in that 
it actually monitors the oxidation process, and while microscopy tells of what has 
happened, the relevance of the images for the oxidation process is by necessity only 
implicit. The comparative study of chromia scaling of Ni25Cr at 1000 °C in dry and 
wet  N2–1%O2 [29] is particularly instructive. TG reports dramatic suppression of 
oxidation rate under humid conditions, while microscopy reports no change in grain 
size distribution. Fundamentally, transport paths may be sealed either by explicit 
grains coarsening or by the ‘clogging’ of grain boundaries. Indeed, hydrogen resid-
ing in interstitial sites in the form of hydroxide ions was suggested in [29] to restrict 
transport in the crystalline grain boundaries. And yet both grains coarsening models 
developed here are able to describe the early subparabolic signatures of the TG data 
provided in [29] (see Fig.  12a, compare Fig.  8c–e). We arrive at the understand-
ing that the continuous loss of ‘effective’ grain boundary density as reflected in the 
transport properties disagrees with a quasi-static poly-crystalline oxide microstruc-
ture. The apparent grain growth, which emerges from the TG, is taken to imply that 
easy ion diffusion paths continuously become sealed off by the hydrolysis process, 
e.g. by ‘glassy’ subnanointerfaces between grains being formed. This straightfor-
ward interpretation for wet conditions is contrasted by the dry exposures. Thus, the 
parabolic–logarithmic model cannot describe the observed ‘superparabolic’ scaling 
(see Fig. 12b). For this, only the superparabolic–cubic model is applicable (compare 
Eq. 12 (superparabolic) and Eq. 9b (parabolic)). Thus, in case of 1-mm specimen, 
10 h curing time is employed (see Fig. 12b). Hence, the ‘waist’ in the grains coarsen-
ing evolution as function of scaling ends up at 12.5 h (compare Fig. 2c and Eq. 18b). 
The impact of this comparatively large curing time in relation to the 25-h duration 
of the experiment is not insignificant. This is further accentuated in the modelling of 
dry oxidation of the 0.25-mm specimen where the tc

0
≫ t limit becomes even more 

relevant (see Fig. 12b again). Here the ‘waist’ is at 125 h, i.e. t = 1.25tc0 for tc0 = 100 h. 
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While such scaling phenomenology at early stages is commonly hidden or deemed 
inaccessible, the superparabolic–cubic model offers a semi-quantitative overall con-
textual understanding. Failing to describe even qualitatively the scaling process of 
the 0.5-mm specimen under dry conditions may point at critical phenomena also 
present at 1000  °C, and not captured by the simple model. Having said this, it is 
gratifying to note how well the phenomenological second-order kinetics approach of 
Fehlner and Mott [16] as realized in the superparabolic–cubic model is able to cap-
ture essential aspects of the underlying complexities of the chromia formers, mainly 
under wet conditions but to some extent also in dry.

Concluding Remarks

A simple, yet comprehensive approach to oxide scaling was described with empha-
sis on the impact of oxide grains coarsening on the oxidation of high-temperature 
alloys. It is based on two fundamental assumptions: Firstly, the scaling process is 
governed by grain boundary diffusion alone, and secondly, grains coarsening occurs 
exclusively at the moving oxide front. First- and second-order kinetics in loss of 
grains boundary density were considered, but in the light of said assumptions, only 
the latter was deemed physical. Expressions for oxide scaling were formulated, and 
essential aspects emanating from the lateral grains coarsening rate being connected 
to—or disconnected from—the rate of scale growth were articulated. Asymptotic 
forms of the two mutually excluding models were deduced and employed to discuss 
experimental scaling studies in the literature. The potential usefulness was illustrated 
by providing new estimated values of �GBDGB from experimental scaling experi-
ments. The term ‘effective’ grains coarsening was introduced for chromia scaling in 

Fig. 12  a Experiment from [29], wet  N2–1%O2. Full lines and dotted lines refer to the superparabolic–
cubic and the parabolic–logarithmic models, respectively. Inverted colours: red for 1  mm and black 
for 0.25-mm specimens for contrast. Parabolic–logarithmic model (full lines) for k = 1 nm/h, 0.25 mm: 
r0 = 13  nm and constants: 8  mg2/cm4; 1  mm: r0 = 23  nm and constants: 18  mg2/cm4. Superparabolic–
cubic model (dotted lines): 0.25 mm: { tc

0
= 0.1 h ; prefactor = 0.105 mg/cm2; 1 mm: {tc0 = 0.5 h; prefac-

tor = 0.138 mg/cm2}. b Experiment from [23], dry  N2–1%O2. Superparabolic–cubic model (black dotted 
lines): 0.25 mm: { tc

0
= 100 h ; prefactor = 0.71 mg/cm2; 1 mm: {tc0 = 10 h; prefactor = 0.21 mg/cm2}. Para-

bolic–logarithmic model not applicable. 0.5 mm could not be modelled (see text) (Color figure online)
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wet and dry  N2–1%O2 in order to explain subparabolic suppression of oxide growth 
in case of the former in spite of little difference in grain size distribution between the 
two. The phenomenology inherent in the superparabolic–cubic model was employed 
to articulate early scaling of chromia in dry  N2–1%O2.

Arguably, the degree of synchronization between rates of scale growth and oxide 
grains coarsening may change during scaling, early between superparabolic X ∝ t

2

3 
or parabolic X ∝ t

1

2 , and late between cubic X ∝ t
1

3 or logarithmic X ∝
√
ln (t) . Yet, 

it should be born in mind that, inasmuch as both grains coarsening models display 
late subparabolic scale growth, in the absence of scale breakdown the parabolic lat-
tice diffusion channel is expected to eventually prevail. Having said this, scavenging 
processes driven by residual (electro-)chemical potential gradients might disallow 
this limit to be reached (compare, for example, the cyclic barrier oxide breakdown 
prevalent for zirconia formers [30, 31]).

In summary, a conceptually straightforward and practical modelling approach is 
provided that allows discrimination between different oxidation mechanisms and 
the extraction of scaling kinetics information from mass gain experiments, benefit-
ing future materials development, not least by identifying deviations from the ideal. 
Moreover, the ability to connect oxide scaling kinetics with activation energies for 
diffusion offers a bridge between experiment and first-principles atomistic model 
studies, to allow the pinpointing of the decisive transport channels for future tailored 
control.
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