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ABSTRACT: This review addresses concepts, approaches, tools, and outcomes of
multiscale modeling used to design and optimize the current and next generation
rechargeable battery cells. Di�erent kinds of multiscale models are discussed and
demysti�ed with a particular emphasis on methodological aspects. The outcome is
compared both to results of other modeling strategies as well as to the vast pool of
experimental data available. Finally, the main challenges remaining and future
developments are discussed.
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1. INTRODUCTION
During the last decades, very signi�cant e�orts have been carried
out to �nd alternatives to the depleting fossil fuels resources. For
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the design of any new energy technology, the amount of energy
that can be stored/converted, the accompanying cost at all levels
of implementation, and the overall environmental impact all
constitute major concerns. Within the spectrum of devices
suggested in order to develop a more sustainable energy
ecosystem, rechargeable batteries are likely to play a very
signi�cant role as energy storage devices. Battery technology has
great potential to become competitive in terms of cost in
particular with respect to nomadic applications; it is highly
e�cient (e.g., > 90% electric e�ciency) and environmentally
benign with zero-emission and low noise in the usage stage. The
development of portable personal electronic devices and electric
vehicles (EVs) has resulted in a rapidly growing demand for
lithium-ion batteries (LIBs) with high energy density. Currently,
>10 billion cells are made annually and at much lower prices per
energy stored than previously believed possible, down by 24%
even from 2016 levels.1,2 For further market segment
penetration, for example, for heavy vehicles and large energy
storage for the electricity grid, advanced, possibly postlithium
batteries must be designed in order to achieve even higher
e�ciencies, lower production costs, little or no maintenance,
and great safety.

Since their invention, the development of rechargeable
batteries has mainly been driven by trial-and-error experimental
approaches. For example, Volta invented the �rst (non-
rechargeable) battery to store electricity in 1800, before the
electron was discovered by Thomson in 1896 (i.e., almost 100
years later).3 Being a new technology with a high potential for
further development, modern rechargeable batteries (hereafter,
referred to as batteries) saw a relatively fast penetration in the
market without the need for a deep theoretical understanding of
their operation principles. In stark contrast, today, when
signi�cant cost reductions and performance improvements are
required, the situation is rapidly changing and the development
of physical theories to guide and to rationalize the design is
urgently needed.

A theory is a supposition or a set of ideas intended to explain
something, especially on the basis of general principles
independent of what is to be explained.4�6 Physical theories
aim to explain experimental observations. In the battery �eld,
they usually take the form of mathematical models constituted
by a set of (generally coupled) mathematical equations.
Mathematical models (hereafter called models) are the natural
choice to achieve a greater fundamental understanding of
existing designs and to predict properties and performance of
new designs. The advantage is a comparatively limited cost as

compared to extensive experimental investigations, which is why
modeling can catalyze innovation and technology breakthroughs
and ultimately reduce the time-to-market of new designs. In the
battery �eld, mathematical models can be useful for the
discovery and use of new materials/combinations thereof.

In this review, we address modern battery cells (i.e., we
disregard Pb-acid, NiMH, or NiCd technologies). The physical
system here addressed (i.e., the battery cell) is centrally made of
a negative and a positive electrode, separated by an electrolyte,
the latter often contained in a membrane (separator). The
negative and positive electrodes are where the electrochemical
reactions take place. For example, in the case of a LIB, the
electrodes are porous composites fabricated from particle-based
laminates comprising mixtures of materials with various sizes
and physicochemical properties. Usually, the active materials,
�1�10 �m particle size, and the electronically conductive
additives (e.g., carbon particles), 50�100 nm size, are held
together by an organic polymer binder (e.g., polyvinylidene
�uoride, PVdF) and altogether deposited on a current collector
(e.g., Cu) (Figure 1). The porous electrodes and the separator
are both �lled with the electrolyte, often an organic solvent
based liquid, which is responsible for the cell internal ion
transport between the electrodes, needed to match/balance the
electrons transported in the outer circuit. Similar electrode
textures can be found for metal, metal�sulfur, and metal�air
batteries.

Over the last 40 years both the models describing properties
of materials in general and the models describing battery
operation principles have been considerably improved, to
become faster, more accurate, and predictive of materials,
mechanisms, and processes at various length and timescales.
Examples of typical battery models include (i) electronic models
for simulating atomistic structures and properties, providing
fundamental insights into the processes governing local
properties of electrolytes as well as energy densities and
stabilities of active materials; (ii) atomistic models such as
molecular dynamics (MD) for the simulation of structure and
dynamics of electrolytes and active materials, to address ionic
transport, defect formations, and evolution in the active
materials, or models based on stochastic and kinetic Monte
Carlo (kMC) methods for the simulation of electrochemical
reactions at active material/electrolyte interfaces; (iii) meso-
scopic models based on kMC, discrete element method (DEM),
and coarse-grained MD (CGMD), for simulating particles self-
organization during the fabrication of composite electrodes; and
(iv) a range of continuum models, for example those based on

Figure 1. Schematic representation of a LIB cell.
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lattice Boltzmann techniques to investigate the wettability
properties of porous electrodes, phase �eld methods for
simulation of phase separation in active materials, and full cell
models supported on coupled sets of partial di�erential
equations (PDEs) addressing spatiotemporally varying quanti-
ties, such as concentration of species, temperature, and stress/
strain.

Within the realm of battery modeling, some of these models
have already been the subject of numerous comprehensive
review papers.7�19

Due to the complexity of materials employed and the
operation principles of a modern battery cell, it is often
disadvantageous to stick to a single modeling method: to
adequately model the battery materials and processes, a
combination of at least two of these methods is frequently
needed, which hence leads to the application of multiscale
modeling (MSM) approaches.6,9,20

This review has three major objectives. (i) To review the latest
progress within MSM, illustrated with examples for battery
materials and processes, including also the level of components
and cells. Some success stories of concrete added value to battery
R&D are also provided. (ii) To demystify modeling of battery
cells and make the bene�ts of MSM accessible and under-
standable for nonspecialists who often perceive modeling as a
self-standing, more or less academic activity without clear
connection to real experiments; this perception is, among
others, re�ected in the title of this review paper. MSM strategies
are therefore described with a particular emphasis on
connections to experiments (both input parameters needed
and output obtained are of interest for experimentalists and
engineers). (iii) To identify opportunities and challenges of
MSM to advance several battery technologies, present and
future.

We do acknowledge that some previous battery MSM reviews
do exist, but they are far from extensive and do not cover the
MSM methodology. In this review, our aim is for readers to get a
di�erent perspective to the whole area as we consistently
introduce and evaluate a new categorization of MSM which by
itself makes this review di�erent and more systematic (in terms
of the MSM approach and not merely in terms of subject (e.g.,
anode, cathode, as usually done).
1.1. Multiscale Complexity in Batteries

At the functional level, the structural, textural, and composi-
tional complexity of the electrodes renders the rate-determining
processes of a battery cell during charge and discharge to change.
They will depend on the active ion (e.g., Li+ or Na+)
concentration in the bulk of the electrolyte but also at the
electrode active material surface and inside the active material, as
well as depend on the potential drop between the active material
and the bulk electrolyte. For example, in a LIB, the lithium ion
(de)intercalation takes place at the nanoscale in the active
material and the electrochemistry strongly depends on both its
chemistry and structure. Charge, mass, and heat transport as well
as mechanical stresses are important from the materials up to the
cell level. The timescales vary from subnanoseconds (electro-
chemical reactions) to seconds (transport) up to hours
(electrode compositional changes), and days or even months
(structural and chemical degradation). All these phenomena and
associated mechanisms are strongly and nonlinearly coupled
(i.e., processes at the nano and microscale in�uence the overall
battery behavior) (Figure 2).

The development of a proper understanding of the relation-
ship between these multiple-scale mechanisms constitutes the
key to foster the innovation in terms of materials, components,
and/or battery cell operation strategies. In view of this
complexity, the system under investigation cannot be fully
understood using reductionist approaches which assume that
the system is made of the simple addition of its parts. For
example, the cell performance is not necessarily an addition of
phenomena taking place in its individual materials; locally
correct descriptions using only one level may lead to erroneous
or at least inaccurate predictions. A more complete under-
standing can only result by viewing the system as a whole, where
e�ects are correlated, then through an holistic viewpoint. In
modeling, such holistic approaches crystallize as “multi-scale
models” (i.e., using both parametrization and/or mathematical
descriptions to capture the interplay of mechanisms occurring at
multiple spatiotemporal scales in a single material or component
or combinations thereof). MSM aims to considerably reduce the
empirical assumptions by explicitly describing mechanisms in
scales neglected in simpler models.
1.2. Multiscale Modeling (MSM)
In the following, we will follow the standardized terminology
established at the European level21 and promoted by the
European Materials Modeling Council (EMMC).23 This
standarization, being endorsed by several European academic
institutions and companies, aims at improving exchanges among
experts in the materials modeling �eld, to foster the under-
standing between the industry, the software developers, and the
scienti�c communities. Such standards can also facilitate the
interoperability between models and databases.

In accordance with these standards, MSM refer to multi-
equation mathematical models (i.e., models describing a system
by a set of interconnected models applied at di�erent length
scales). They have a hierarchical structure; the solution variables
of a system of equations de�ned in a lower hierarchy domain
(e.g., an active material particle of an electrode) have a �ner
spatial resolution than those at a higher hierarchy (e.g., the
whole electrode). Consequently, small length-scale phenomena
and quantities are evaluated at the corresponding small-scale
geometry and the output subsequently homogenized using a
coarser spatial resolution, to evaluate properties at larger scales.
The overall resulting model architecture separates domains, the
characteristic length-scale of each of these domains being
“segregated” (the scales can be clearly “distinguished”).

MSM is hence inherently di�erent to stand-alone models
(Figure 3a) where the input is provided by the user and the
output is not used by any other model. There are di�erent
�avours of MSM, which are de�ned in the following three
categories.21 (1) Multiscale models based on sequential linking
(MSMSL): these models imply a sequential solution of the
governing equations of two or more models, where the

Figure 2. Multiscale character of a battery cell.
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processed output22 of one model is used as an input for the
following model (i.e., one-way dependency) (Figure 3b). A
typical example is deriving and using a classical atomistic force-
�eld (FF) for a MD simulation based on electronic structure
calculations. (2) Multiscale models based on iterative coupling
(MSMIC): these models rely on an iterative solution of the
(segregated) governing equations of two or more models (each
of them for a unique spatial scale). For two spatial scales the
processed output of the �rst model is used as input for the
second model and vice versa. Each of these models has its own
processed output, and the iterative coupling leads to a closed
loop data stream (Figure 3c). The numerical solution requires a
number of iterations to eventually reach convergence. An
example is using a kMC model resolving a chemical reaction
kinetics at an interface from the chemical species concentrations
resolved with a continuum model describing these species
transport along a porous electrode (the reaction kinetics act as a
sink/source term for the PDE describing the transport). (3)

Multiscale models based on tight coupling (MSMTC): these
models consist of the concurrent solution of the governing
equations of two or more physics-based models (each of them
relevant at a single length scale) where the physics equation(s)
and materials’ relations of each model are collected and solved as
a single system of equations (Figure 3d). The models’
interdependency is expressed through physical quantities
appearing in more than one equation. The tight coupling leads
to one single raw or processed output for all models. A typical
example is using a continuum model describing electrochemical
reactions and transport mechanisms by temperature-dependent
parameters at the porous electrode scale coupled with a
continuum model describing thermal management in the cell
scale.

Furthermore, the mathematical descriptions in a MSM can be
performed within a single simulation paradigm (e.g., only on a
continuum level) or carried out using di�erent simulation

Figure 3. Work�ows of (a) stand-alone models, (b) multiscale models based on sequential linking (MSMSL), (c) multiscale models based on iterative
coupling (MSMIC), and (d) multiscale models based on tight coupling (MSMTC). “PE” refers to “physical equation” (mathematical equation based
on a fundamental physics theory which de�nes the relations between physics quantities of an entity) and “MR” to material relation (materials speci�c
equation providing a value for a parameter in the physics equation).21
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paradigms (e.g., a discrete model coupled with a continuum level
model).2,6

1.3. Software for Multiscale Modeling and Identi�ability

Governing equations in MSM are frequently nonlinear and
coupled PDEs needed to be solved temporally and spatially in
one and/or two and/or three dimensions.

MSM methods used to investigate battery materials include
ab initio Molecular Dynamics (MSMIC approach), ReaxFF
(MSMSL approach), and COSMO (MSMSL approach). Such
methods are available in softwares such as Gaussian,24

GAMESS,25 SIESTA,26 and COSMO-RS.27 At the component
and cell level, MSMIC and MSMTC methods have been
developed within software such as Matlab,28 Fluent,29

COMSOL,30,31 or even combinations of those software. Some
of these utilize �nite element solvers, making it possible to model
complex geometries. Other commercial alternatives which exist
can o�er a single and integrated solution for LIB simulations, for
example CD-adapco’s STAR-CCM+32 and its Battery Simu-
lation Module and Battery Design Studio.32 Similar tools have
been achieved by other research institutes developing in-house
software for three-dimensional (3D)-simulations of LIBs.33 In
order to carry out reliable simulations, the numerical solver
needs to be properly chosen or designed in view of the problem
one wants to solve. Besides the choice, often limited, of
numerical solvers and spatial meshing capabilities of commercial
software, numerous groups have developed their in house
numerical solvers (e.g., PETSc,34 LIMEX,35 or FiPy36).

It is also possible to imagine the combination through
computational work�ows of simulation packages dealing with
di�erent scales and di�erent simulation paradigms within a
MSMSL approach. For instance, electronic structure calcu-
lations performed with �rst-principles softwares such as VASP,37

CRYSTAL,38 Wien2k,39 ADF,40 Gaussian,24 BigDFT,41�43 and
NWChem44 can be combined with the most frequently used
MD software of today such as GROMACS,45 LAMMPS,46

AMBER,47 CHARMM,48 and DL_POLY.49 In such a case,
establishing work�ows for automatic data �ows between models
is very important.50 Several middleware platforms allowing this
are available, including KNIME,51 AIIDA,52 ECCE,53 and
UNICORE,54 and can be used with parallelized programs55

Work�ows within the MSMSL approach have been developed
for LIBs56 and interfaced with scripts devoted to automatic
parameter sensitivity analysis and cell design optimization.

Identi�ability (i.e., whether parameters can be uniquely
retrieved from input-output data) is a crucial aspect of multiscale
models.57�60 This can result in structurally nonidenti�able
model parameters and in limited data and/or bad data quality.
Altered experimental design or model reduction, such as
linearization,61 are the main remedies. Until recently,62�67 due
to computational restrictions, there were no signi�cant e�orts
made to develop e�cient techniques for estimating parameters
for multiscale battery models, but Boovaragavan et al. did report
on a numerical approach for real-time parameter estimation
using a reformulated LIB model.68

In the following, we discuss examples of MSM, with particular
emphasis on battery applications, in this order, for active
materials, interfaces, components (composite electrodes and
separators), and cells. In the case of active materials, due to the
large extent/complexity of existing possible approaches,
examples are sorted by materials families. The following
sections, respectively devoted to interfaces, components, and

cells, are sorted by methodology type, including examples of
applications.

2. ACTIVE MATERIALS
The knowledge of the materials properties or especially their
atomistic structure gained through modelling can be the starting
point for the engineering of optimized active materials.
Quantum chemical models based on electronic theories that
do not rely on any parameters are often referred to as �rst-
principles (or ab initio) techniques. They play a signi�cant role
by suggesting guidelines to improve well-known active materials
or even in helping the discovery of some brand-new ones, with
speci�c functionality. Such ab initio methods were used very
successfully in recent years for the description of, for example,
bulk materials, metal organic frameworks, and molecular
entities... Density Functional Theory (DFT)69,70 is based on
the Hohenberg�Kohn theorem which states that ground-state
energy is uniquely de�ned by the electron density. In this
formalism, the real system made of many interacting electrons is
replaced by a set of noninteracting particles generating the same
density that the real system of interacting particles would
generate. The formulation is then simpli�ed: instead of explicitly
including the real potential of many interacting electrons, the
Kohn�Sham equation contains a local e�ective (�ctitious)
external potential of these noninteracting particles. Compared to
higher level ab initio methods based on the complex many-
electron wave function, DFT computational costs are thus
relatively low. In practice, the properties of a many-electron
system are determined by using functionals, which are functions
of the spatially dependent electron density. They also need to
model the electron exchange, the correlation energy terms, and
the di�erence between the kinetic energy of the �ctitious
noninteracting system and the real one. The use of an iterative
self-consistent approach based on the variational principe allows
for solving the corresponding equations. DFT calculations
constitute nowadays a standard tool for the accurate description
of the individual atomic and molecular processes in many areas.

Predicting physical observables with reasonable accuracy and
relatively low computational cost for a large set of systems by
calling to DFT even using local or semilocal approximations for
the unknown exchange correlation energy [e.g., the local density
approximation (LDA)70 or the generalized gradient approx-
imation (GGA)]71,72 let it become popular. In the speci�c �eld
of battery devices, it is nowadays very well-established that many
key properties can be reachable by making use of this
computational tool including the structural and energetic
characteristics related to point defects, the estimation of
equilibrium voltages,73,74 the activation energy for atomic
jumps, etc. DFT+U methods can be used for open-shell
transition metal compounds, U referring to an on-site Coulomb
interaction parameter derived either self-consistently or by
�tting to experimental data. Use of a suited U term might be
critical for getting reliable results, and one known limitation is
that U values able to reproduce certain material properties may
fail to account for other features. Similarly, di�erent polymorphs
may need to be modeled with di�erent U-values. Zhou et al.75

demonstrated that DFT+U greatly improves predicted lithiation
potentials using self-consistently calculated U-values. Apart from
the widespread use of DFT+U, it can be outlined that the theory
based on the Koopmans’ condition represents a signi�cant step
toward the correction of electron self-interaction in electronic
structure theories (which can be applied to any local, semilocal,
or hybrid density-functional approximation).76 Standard
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implementations of DFT is devised to describe correctly
strongly bound molecules as well as solids but is not suited to
account for long-range van der Waals attractions (vdW), which
are related to mutually induced and correlated dipole mo-
ments77 and can be relevant for both electrodes made of layered
inorganic compounds and organic crystalline matrices charac-
terized by �-stacking. Contrary to the Hartree�Fock model,
which does not consider electron correlation e�ects, DFT
calculations should, in principle, give the exact description of
ground state energy, including the vdW energy, if the true
functional is known. However, practical implementations
relying on either LDA or GGA fail to reproduce the physics of
vdW interactions at large separations with little or no overlap of
atomic electron densities.78 As a result, DFT calculations usually
overestimate the lattice parameters along the stacking direction
for organic crystals or layered materials.79,80 Recently, a number
of semiempirical approaches have been taken to incorporate
correction schemes for London-type dispersive interactions into
DFT.81�88 A great interest of �rst-principles calculations lies in
the possibility to get access to electronic structure features,
which are sometimes crucial to unravel mechanisms, the
computation thus serving as a tool to probe what happens at
the scale of atoms and chemical bonding. Beyond the
examination of dispersion curves and density of states,89 other
concepts relying for instance on the topology of the electron
density as implemented by Bader through the quantum theory of
atoms in molecules and crystals90,91 or also the electron
localization function92 can be investigated to shed light on the
phenomena related to chemical bonds, including, for instance,
atomic charges/volumes and critical points, which provide
rigorous and quantitative information especially on bonds.93

For applications in materials science, in general, and notably
for LIBs, the DFT calculations along with the above-mentioned
post-treatments present an invaluable interest, as they can
deepen the understanding of mechanisms at the atomic/
bonding scale and thus act as a kind of microscope able to
unravel the various structure�property relationships. In the
speci�c �eld of battery devices, it is nowadays very well-
established that many key properties can be reachable by making
use of this computational tool including, for example, the
structural and energetic characteristics related to point defects,
the estimation of equilibrium voltages, the activation energy for
atomic jumps, etc. There is indeed a plethora of investigations
having used �rst-principles calculations to describe the crystal
structures, the redox potentials, the ion mobility, the possible
phase transformation mechanisms, and the structural stability
changes of electrochemical systems. All of these properties are
key features to the development of advanced high-energy, high-
power, low-cost electrochemical systems. However, despite the
large scope of applications and the important extent of
information that are reachable from “�rst-principles” quantum
mechanics calculations by themselves, some shortcomings
might occur as soon as one tries to simulate large macroscopic
systems at an atomic level. Many problems at the leading edge of
materials science involve collective phenomena. Such processes
may occur over a range of time and length scales which are either
intrinsically di�cult to capture solely from quantum chemistry
simulation or even intractable from the current computing
resources. Indeed, being computationally very demanding, the
simulations using ab initio methods are limited to a small
number (i.e., a few hundred) of atoms and short simulation
times in the range of a few picoseconds. In order to close this
“reality gap” and make most e�cient use of current computing

capabilities for real materials problems, we must therefore
continue to make further methodological developments, in
particular the connection of di�erent time and length scales
through the coupling of various modeling methodologies. In the
context of batteries modeling, one shall also take into account
the dependence on the local temperature of many processes,
including, for example, the intercalation rate or degradation
e�ects, the thermal behavior of the systems having a very
signi�cant impact on the initiation of aging processes and thus
on their lifetime. Additionally, treating the electrode as a
homogeneous component might be unsuited to get insight into
actual features or properties related to the electrode real
microstructure. A successful cutting-edge computational strat-
egy has therefore to guarantee that newly developed simulation
tools are able to take into account all these parameters and
speci�c conditions. Beyond thermodynamic quantities, which
give the opportunity for instance to get an estimation of
intercalation voltage, a myriad of kinetic phenomena occurs in
both electrodes and electrolytes (Figure 4).

One of the properties for which MSM may be of relevance
corresponds in particular to the migration of lithium from one
site to another, which can be seen as an activated process with an
associated free energy barrier. The unit steps of ionic conduction
occur in the nanometer length scale and picosecond timescale.
Being cheaper computational methods because of their
dependence to empirical or �tted potentials, classical MD and
kMC simulations can be used to probe the di�usion pathway
and gain information on mobile carriers (e.g., vacancies or
interstitials) on a larger length scale in order to be consistent
with experimental observation. The kMC method is a variant of
the Monte Carlo (MC) method and enables one to carry out
dynamical simulations of stochastic and/or thermally activated
processes because time is also updated during the simu-
lation.95�98 When combined with a spatial coarse-graining
procedure, this additionally leads to a method of bridging length
scales. More precisely, one of the possible ways of getting
properties for battery materials is to perform the following series
of calculations99 (Figure 5): (i) �rst-principles electronic
structure calculations in order to extract the activation energy
barriers, (ii) local cluster expansion calculations, which will give
access, in any con�guration corresponding to partially
disordered states, to the activation barrier for migration,99,100

and (iii) kMC simulation that enables the numerical calculation
of the di�usion coe�cients by explicit stochastic simulations of
the migration of a collection of ions within a host.

In atomic-scale processes, nudged elastic band (NEB)
method,101 which corresponds to an e�cient algorithm for the

Figure 4. A variety of kinetic phenomena, including Li di�usion and
�rst-order phase transformations involving nucleation and interface
migration, occur within individual electrode particles during each
charge and discharge cycle of a Li-ion battery. Reproduced from ref 94.
Copyright 2013 American Chemical Society.
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computation of transition-state energies, can be used to
determine the maximum energy along the lowest energy
pathways between two neighboring atomic sites. The
introduction of phase-�eld modeling can lead to an accurate
prediction of the phase transitions both in individual electrode
particles and multiparticle systems representing entire electro-
des.

Another way to gain insight into lithium ion di�usion through
simulations is by calling to the ab initio molecular dynamics
(AIMD) technique in view of investigating the inherent
microscopic di�usion mechanisms. In this method, the atomic
forces originating from quantum mechanics treatments are
injected in order to propagate the atoms in the system by
following the laws of classical mechanics (i.e., the motions of the

Figure 5. Computation approach integrated by �rst-principles calculation, cluster expansion, and MC simulation. Reproduced from ref 102. Copyright
from IOP Publishing.

Figure 6. Important crystal structures and Li hop mechanisms in common intercalation compounds. Many intercalation compound chemistries have
either (a) a layered crystal structure (with an ABAB or ABC stacking of a close-packed anion sublattice) or (b) a spinel crystal structure characterized
by a three-dimensional interstitial network for Li ions. (c and d) Di�usion in these crystal structures is often mediated by vacancy clusters (divacancies
in the layered form and triple and divacancies in the spinel form) if Li occupies octahedral sites. Reproduced from ref 94. Copyright 2013 American
Chemical Society.
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atoms are computed by applying Newton’s second law to the
atomic coordinates). Due to the signi�cantly higher computa-
tional cost of AIMD simulations compared to classical MD
investigations, these calculations are often limited to a small
system size of a few hundred atoms and are suitable for short-
time-scale phenomena (�10�100 ps). Gathering reliable
statistics, which require hundreds to thousands of trajectories
is thus more time-consuming compared to classical MD, but
examples of applications of AIMD to materials modeling
abound. In conditions of elevated temperatures, in which the
extent of required trajectories are lower, the di�usivity can be

easily estimated, whereas an extrapolation may then be used to
get an insight of the values characterizing lower temperatures.

Combining �rst-principles, phase �eld and �nite element
calculations were also applied to active materials as will be
exempli�ed and can cover processes occurring on various
dimensions, from atomic- to mesoscale. Such methodology
provides information about thermodynamic and kinetic proper-
ties, together with strain development during phase separation.
2.1. Layered AMO2 Materials

Layered compounds (e.g., LiTiS2, LiCoO2, LiNiO2, etc.) with an
anion close-packed lattice where layers have a structure of

Figure 7. (i) Schematic diagram of phase transition during deintercalation from (a) O3-LiCoO2 and (b) O2-LiCoO2. Blue octahedrons represent
CoO6, red balls indicate oxide ions, and yellow balls represent lithium ions. (ii) Ordered (a) O6-Li1/3CoO2 and (b, c) O2-Li1/4CoO2 phases found to
be stable at room temperature by �rst-principles calculations. The lattice denotes the lithium sites within a Li plane, and the �lled circles correspond to
Li ions. For the (b, c) O2 host, the un�lled small circle denotes the projection of the Li sites of an adjacent Li plane. For the (a) O6 host, the lithium
positions of the two adjacent layers are di�erent: the projection of one is represented by the small un�lled circle, and the projection of the other is
represented by the large un�lled circle. Reproduced from ref 105. Copyright 2003 American Chemical Society. Reproduced with permission from ref
106. Copyright 2012 Royal Society of Chemistry.
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