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ABSTRACT
Much research effort has recently been devoted to securing Indus-
trial Control Systems (ICS) in response to the increasing number
of adverse incidents targeting nation-wide critical infrastructures.
Leveraging the static and regular nature of the behavior of control
systems, various data-driven methods that monitor the process-
level network have been proposed as a defensive measure. Although
these methods have been evaluated through offline analysis of ICS-
related datasets, in absence of documented live experiments in real
environments, a complete and global understanding of the applica-
bility and efficiency of process-level monitoring is still lacking.

In this work, we describe our experience of running a fully
fledged intrusion detection system in an operational paper fac-
tory for 75 days. We discuss the nuts and bolts of running such
systems in real environments and underline several practical chal-
lenges in meeting ICS-specific requirements. This work essentially
aims at bridging the gap between ICS intrusion detection research
and practice, and empirically validating the increasingly adopted
data-driven approach to process-level monitoring.
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1 INTRODUCTION
Industrial Control Systems (ICS), often found in critical infrastruc-
tures, monitor and operate industrial processes including man-
ufacturing, gas and power distribution, and transportation. The
increasing connectivity of ICS to corporate networks and the Inter-
net is rendering these systems vulnerable to cyber attacks capable
of causing damage to physical processes, often in safety-critical fa-
cilities [1, 6, 15, 16]. Recent studies have shown that, by monitoring
the physical process behavior, it is possible to detect sophisticated
attacks that have semantic objectives and target the operation of
control systems at the physical layer. The key property that enables
this approach is the regular dynamics that ICS constantly exhibit
owing to the static and cyclic nature of their behavior. Accordingly,
various data-driven methods have been proposed in the literature
that essentially establish a baseline for the normal behavior based
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on historical process data and then monitor for deviations attribut-
able to malicious manipulation at the process level [2–4, 8, 19, 20].
These methods have been evaluated through simulations and of-
fline experiments on data extracted from real systems. Simulation
platforms (e.g., the Tennessee-Eastman process [5]) and physical
testbeds (e.g., the SWaT testbed [9]) allow for crafting attacks and
evaluating the detection capabilities of the proposed methods un-
der various attack scenarios. Using datasets extracted from real
systems (e.g., pipeline SCADA systems [12] and water treatment
plants [8]) adds some degree of realism to the evaluation. However,
in absence of documented live experiments in real environments, a
complete and global understanding of the applicability and efficiency
of process-level monitoring is still lacking. In particular, such experi-
ments would shed light on matters pertaining to potential artifacts
and peculiarities that may hinder a seamless execution of these
methods in practice.

In this work, we consider a Process-Aware Stealthy-Attack De-
tection mechanism (PASAD) recently proposed by Aoudi et al. [2],
build a complete system around it, and deploy a prototype in an
operational paper factory. Then, we describe our experience of
running the prototype for 75 days, and highlight some technical
challenges and practical aspects of live process-level monitoring
for intrusions in ICS. Finally, we propose a set of guidelines and
recommendations for both security researchers and practitioners
who may consider designing or deploying IDS solutions for control
systems. The purpose of this work is in large part to bridge the
existing simulation-based evaluation efforts with the real world by
creating a roadmap characterizing potential hurdles to be expected
when bringing the systems into a real environment.

After reviewing related work in Section 2, we discuss the chal-
lenges we encountered in Section 3 and present our system design
in Section 4. We describe the environments where we tested our
system in Section 5 and discuss the lessons learned in Section 6.
Finally, we conclude this work in Section 7.

2 RELATEDWORK
The research problem of detecting attacks on control systems by
monitoring the process-level network using data-driven methods
has gained increasing attention over the last few years. The pro-
posed approaches have different characteristics (e.g., whether they
are model-based or model-free, the type of process variables they



monitor, the techniques they use to learn from historical data, etc).
However, they share the common idea that, owing to the static and
regular behavior control systems exhibit over time, it is possible
to define the normal behavior from historical data, and then detect
misbehaviors that are deviants from the norm.

The data-driven methods proposed in the literature are based on
various techniques including state-space model identification [20],
auto-regression [8], singular spectrum analysis [2], machine learn-
ing [7, 12], and data mining [13]. These methods have been evalu-
ated through (i) simulation of, e.g., a chemical process (Tennessee-
Eastman) [5], electric power flow (MATPOWER) [21], and water
distribution piping systems (EPANET) [18]; (ii) physical testbeds,
including water boilers [8] and the SWaT testbed [9]; and (iii) offline
experiments on data extracted from real ICS, such as water purifi-
cation plants [8], water distribution plants [2], and gas pipeline
systems [7].

In this paper, we investigate the applicability and deployability of
process-level intrusion detection systems adopting the data-driven
approach in a real environment. We build a complete IDS prototype
and run a live experiment in an operational paper factory with
the aim of scrutinizing the real-time operation of such systems in
practice in order to provide useful guidelines and best practices for
both ICS security researchers and practitioners.

3 CHALLENGES
There is a clear difference between testing a process-level IDS so-
lution using a testbed and moving the system to a less controlled
real environment. In a testbed setting, it is deceptively easy to run
experiments, since the testing environment is controlled, where the
system performance is fully observable. Challenges arise when the
task is to deploy a stable and resilient prototype in an uncontrolled
and undiscovered environment. In this section, we summarize the
four main challenges that accompanied the design and implemen-
tation of our system.

Challenge A: Unknown Environment

ICS are complex systems involving mainly proprietary software and
hardware with models and specifications that vary for each envi-
ronment. Due to the limited knowledge that IT security researchers
are expected to have about the process, data-driven methods that
learn the process behavior from historical data are favoured over
specification-based methods that attempt to fit a model to the target
control system. Unfortunately, however, model-free methods suf-
fer from certain drawbacks. For instance, it is not trivial to decide
which sensors to monitor in plants awash with sensors. Further-
more, there is no easy way of knowing what time frame is long
enough for training on historical data to capture the sensor sig-
nal. As a case in point, the sensor data that we used for training
was collected from the real environment over a period of 8 days,
which turned out to be too short to capture a whole period of the
signal, as we observed during the detection phase of the experiment.

Challenge B: Performance & Footprint

From a security perspective, installing an IDS on a stand-alone

device and connecting it to the process-level network is generally a
plausible reasoning. However, since ICS control physical processes
where attacks can lead to physical damage in a short period of time,
it is important that the IDS achieves real-time protection, as well
as high memory efficiency for various reasons including, but not
limited to, cost, scale of deployment in distributed environments,
and deployment on existing ICS components. Hence, the challenge
here is to design an IDS with a low memory footprint so that it can
be installed on limited-resource hardware, and with fast enough
processing capabilities to make real-time decisions.

Challenge C: System Stability

As stated in Challenge B, running the IDS on cheap limited-resource
hardware is a favorable approach, however, this comes along with
some challenges pertaining to the stability of the system. In partic-
ular, the IDS needs to be robust enough to handle sudden crashes,
packet loss, and issues that may arise from bad memory manage-
ment. In this regard, logging mechanisms can help identify the
roots of such problems for troubleshooting. However, in order to
remove the burden from ICS staff to maintain yet another system, it
is desirable to automate the procedure for handling such incidents
by achieving system stability and resilience against unexpected
failures. For instance, during the design phase, we had to account
for the case where the IDS stops receiving sensor values, either due
to a system crash or because of dropped packets, by running the
detection component as a service and scheduling automatic restarts.

Challenge D: Trust & Data Access

At the preliminary stage, the IDS requires data for training and
determining the parameters. Due to the proprietary nature of ICS,
it is quite difficult to get process data out of these environments
to process in a university lab. Interestingly, it turns out that it is
easier to get the prototype into the environment to perform the
training without exporting data from the facility. Also, it is worth
mentioning that it is not necessarily easy to find people with the
knowledge needed to run a network dump or set up a mirror port
on a router. Either they are OT technicians with little knowledge
about monitoring network traffic and extracting data, or they are IT
technicians with limited access to the process. Furthermore, trust
issues entailed lack of online access to our prototype, which we
had to compensate for by backing up process data and logs to a
USB drive, and asking ICS staff to communicate the most recent
backup to us every once in a while.

4 SYSTEM DESIGN
Our system consists of two main components: PASAD and Midbro.
PASAD has recently been proposed by Aoudi et al. [2] as a process-
level attack detection technique that monitors solely raw sensor
measurements. As PASAD is specification-agnostic, the choice of
this method helps us resolve Challenge A since we are dealing
with an unknown environment and have little knowledge about
the dynamics of the system we are monitoring.

During real-time operation, PASAD requires sensor data to be
served on the fly as soon as they are available. To this end, we



built the Midbro component, which lies at the core of our system.
Midbro captures network traffic, extracts relevant process data, and
serves them to PASAD through a dynamic buffering mechanism
that ensures a timely and reliable delivery.

In the following, we describe PASAD andMidbro, thenwe discuss
the choice of suitable hardware for the prototype.

4.1 PASAD
PASAD [2] is a model-free process-level detection mechanism that
continuously monitors sensor measurements in ICS to check if the
system operation is drifting from historical normal behavior. The
method takes as input an observed time series of sensor readings
and works in two phases: an offline learning phase and an online
detection phase. Initially, by leveraging the static and regular nature
of control systems, the normal behavior is mathematically defined
through analysis of historical process data without the need to
create a model of the underlying physical process. To detect attacks,
PASAD then measures the degree to which present sensor observa-
tions conform with the estimated dynamics. The method has been
validated using various datasets and has been shown capable of
detecting sophisticated stealthy attacks that cause rather subtle
structural changes in the sensor signal. In the following, we present
a brief overview of PASAD to make this paper self-contained. The
reader may refer to [2] for a thorough treatment of the underlying
theory, basic steps, and parameters setting.

PASAD uses a time-series analysis technique known as singular
spectrum analysis to extract signal information representing the de-
terministic behavior of the control system, purely from noisy sensor
measurements. More specifically, a time series of raw sensor mea-
surements T = x1,x2, · · · ,xN ,xN+1, · · · is initially embedded in a
vector space. Afterwards, during a learning phase, a signal subspace
is identified through a mathematical procedure, onto which train-
ing vectors are projected. The projected vectors occupy a bounded
region in this subspace and thereby form a cluster. During a detec-
tion phase, a sliding window composes a new test vector at every
iteration containing the most recent sensor measurement, and the
distance between the test vector and the centroid of the cluster is
computed. Under attack conditions, the computed distance is pre-
sumed to increase, signaling that the physical process is departing
from the normal state. Following is a formal description of the two
phases of PASAD.

4.1.1 Learning Phase. In the learning phase, an initial subseries
of T of length N is unfolded into the column vectors of a tra-
jectory matrix X = [x1 : x2 : · · · : xK ] by forming K L-lagged vec-
tors xi = (xi ,xi+1, · · · ,xi+L−1)

T , where L is called the lag param-
eter, 1 ≤ i ≤ K , and K = N − L + 1. The singular value de-
composition of X is performed to obtain an orthonormal set of
L eigenvectors u1, u2, · · · , uL of the covariance matrix XXT . A ma-
trix U = [u1 : u2 : · · · : ur ] is then formed, whose columns are the
r < L leading eigenvectors, where r is the so-called statistical di-
mension. The training vectors xi , 1 ≤ i ≤ K , are then projected
onto the signal subspace spanned by the column vectors of U, and
the centroid of the cluster they form is computed as c̃ = UT c, where
c is the sample mean of the training vectors.

Figure 1: An overviewMidbro’s main components. Communication
with external systems is depicted by dotted shapes.

4.1.2 Detection Phase. In the detection phase, a departure score
is computed, at every iteration, for the most recent lagged vector
xj , j > K . This is done by computing the squared Euclidean distance
between the test vector xj and the centroid c̃ as D j = | |c̃ − UT xj | |2.
Finally, an alarm is generated whenever D j crosses a prespecified
threshold. The authors apply what they refer to as the isometry trick
to speed up computations during the necessarily real-time detec-
tion phase. Hence, the detection procedure is quite fast, requiring a
single matrix multiplication for every distance computation.

We perform the offline training in MATLAB, using sensor data
extracted from the real environment. The output of this procedure
that will be used in the detection phase consists of the matrix
U, the centroid c̃, and the free parameters N ,L, and r . Based on
our C implementation of the detection component of PASAD, the
memory footprint turned out to be rather small, where only 160KB
of memory is needed on average to store the L most recent sensor
values and the variables from the learning phase.

4.2 Midbro
We built Midbro to extend PASAD into a complete and deployable
system.1 It comprises two subsystems: (i) a network capturing engine
that captures and processes network traffic; and (ii) a buffering
mechanism that intermediately stores register values and serves
them to PASAD. The system is connected in a pipeline workflow
as depicted in Figure 1.

4.2.1 Network Capturing Engine. The capturing subsystem listens
to a network interface and provides a framework for capturing and
parsing incoming packets. For a particular register on a particular
machine, the packet payloads are filtered out, and corresponding
events that hold the extracted register content are created. To cap-
ture and parse network traffic, Midbro utilizes the network analysis
framework Bro [14]. Bro is built from the ground up to be flexible,
providing a versatile and powerful scripting engine that allows for
extending the framework to support new protocols. It works on
three different layers as illustrated in Figure 2. Initially, the libpcap
library is responsible for capturing packets from the network inter-
face. The captured packets are then handled by the event engine
that parses the packets and generates corresponding events. Finally,
these events are handled by policy scripts, which we implemented
using the custom Bro scripting language. The policy scripts can
access data extracted by the event engine, trigger warnings, write
to a file, and even generate new events.

1Available at https://github.com/lindhe/midbro

https://github.com/lindhe/midbro


Network

libpcap

Event Engine

Policy Scripts

Broccoli

Bro

(1) (2)

(3)

Figure 2: The different layers of Bro. Events generated by the Bro
core for the parsed traffic are handled by our policy script (1), which
performs the transaction matching and generates new events (2),
which in turn are handled by Midbro using the Broccoli library (3).

The machines we monitor in our experiments communicate
using the Modbus protocol described in Section 5.1, which is sup-
ported by Bro. After the events for requests and responses generated
by Bro for the different function calls are handled by the policy
script, they are inspected to identify the relevant registers from
which the actual sensor values are subsequently extracted.

4.2.2 Buffering Mechanism. The register values that come along
with the events are placed in a buffer, where they are held until
they are requested by PASAD, which uses function calls to interface
with the buffering subsystem. Since Bro’s policy-script engine is
single-threaded, it is imperative that the most recent register value
is released promptly after it has been extracted from a captured
Modbus packet. However, as PASAD may be busy with other tasks
at any given time, it may not be feasible to collect values directly
from the capturing engine. Instead, values are sent via the Bro event
engine to a FIFO buffer, which in turn serves the values to the IDS
as soon as the latter is ready to receive new data.

Evidently, though, one would run into the same problem if the
buffer in turn was single-threaded. Therefore, we implemented
the buffering engine with two threads: one producer thread and
one consumer thread. At one end, the producer thread constantly
listens to the socket where Bro events are sent. As soon as a new
event arrives at that socket, the sensor value is extracted from
the event and then added to the tail of a queue. At the other end,
the consumer thread performs the task of popping values from
the queue and serving them to PASAD upon request. In order to
ensure data integrity, the threads are synchronized using a binary
semaphore, which verifies that the same data is not accessed by
both threads at the same time. In addition, counting semaphores
are used to keep track of the available space on the buffer, blocking
the consumer if it tries to pop a value from an empty buffer.

To handle the situation where the buffer becomes full, we chose
to implement a head-drop policy, where the oldest value in the
buffer is dropped before inserting a new one. This has the advantage
of always serving the most recent values to PASAD, rather than
causing new values to be delayed (or dropped) in favour of older
values in the buffer.

The buffering mechanism is subscribed to the Bro events via
Broccoli—the Bro client communications library—as shown in Fig-
ure 1, which allows for easy interaction between Bro scripts and
the native code. The communication between Midbro and PASAD
is enabled by a request-response based API, where function calls
are used to request a number of new sensor values from the buffer.

4.3 Choice of Hardware
With the software components in place, we needed to decide on a
suitable hardware platform for the prototype. Ultimately, taking
into account the resource constraints in ICS, a process-level IDS
software for control systems should be designed to work on limited-
resource hardware, such as programmable logic controllers (PLCs),
without exhausting their resources in terms of processing time and
memory usage. For our prototype, we aimed at easily accessible
and affordable hardware. Broadly speaking, running the IDS on a
small single-board computer is very practical, since it makes on-site
installation easy and out-of-the-way for the ICS staff.

The recent release of the Raspberry Pi 3+ brought a Gigabit Eth-
ernet and a higher clocked processor than previous generations,
thereby making it more suitable for use cases like network analysis,
and a good choice for the prototype. The Odroid platform, which
also features a high-performance processor and a Gigabit Ether-
net NIC, could as well serve the purpose of our design. The more
expensive Odroid-UX4 and Odroid-C2 models, which have 2 GB
of RAM (compared to 1 GB for the Raspberry Pi) and more cores,
were excluded as possible targets since we aimed at maintaining a
small memory footprint, and we would hardly benefit from more
than 2 cores. The cheapest Odroid-C1+model is quite similar to the
Raspberry Pi 3+ in terms of performance, but much less available
and widespread. We therefore settled on the Raspberry Pi, which is
widely used and has an active community behind it.

Additionally, the Raspbian distribution is a relatively lightweight
and easy-to-deploy OS, and comes pre-packaged with both Bro
(bro) and the communications library Broccoli (libbroccoli-dev)
in the official repositories, which is a particularly desirable feature
for such experiments.

5 EXPERIMENTS
The central purpose of this work is to explore the challenges of
bringing a research IDS prototype into a real environment. Evalu-
ating the detection capability of attacks on ICS is out of the scope
of this paper.

Before deployment in the real environment, we wanted to verify
that our prototype is stable enough and that corner cases, which
might prove costly to treat at a later stage, are addressed beforehand.
Therefore, we set up a testbed locally in a controlled environment
to run the necessary tests.

In this section, we begin with a description of the prevalent
Modbus protocol. Then, we describe both the controlled experiment
performed in a university lab and the live experiment performed in
the real environment, and discuss performance results. In Section 6,
we show that although the controlled experiment was valuable
and contributed to a more stable system, the real environment still
introduced unforeseen artifacts.



5.1 Modbus Communication
The Modbus network protocol [10] provides read and write access
to data in a network. The protocol variant encountered in our exper-
iments is theModbus TCP/IP [11], which is used for communication
using the TCP/IP architecture. A node in a Modbus network may
provide access to different types of data: coils, discrete inputs, hold-
ing registers and input registers, identified by a function code. Coils
and discrete inputs, typically used for configuration and calcula-
tions, store one bit each, while input and holding registers store
16 bits each, can only be read, and are typically used for sensor
measurements. A function call is initiated by a request from one
node (client) in the network to another node (server), such that
the latter reacts to the request with a response, typically stating
the success and the result of the function call. As the IDS monitors
sensor measurements, we are only interested in continuous values.
Therefore, coils and discrete inputs are disregarded in our design.

When multiple registers need to be accessed by a function, both
the address of the first register and the number of registers are
specified. However, responses to a read request do not contain
the address of the register that was read. Therefore, in order to
extract all the necessary data, information about both requests and
responses should be used.

Each register is assigned an address between 0 and 65535, which
is specific to the server that manages the register. To identify a
register on a Modbus node, both the register type and the address
are needed. The addressing of nodes in Modbus TCP/IP is done
using IP addresses.

Each node in the network can act both as a client and as a server.
Also, it is possible for a client to issue several requests to the same
server simultaneously without waiting for responses. Requests
and responses are matched using a Transaction ID (TID), which is
unique to each client-server pair.

5.2 Controlled Experiment: Local Testbed
For the controlled experiment, we set up a local testbed in a uni-
versity lab. Using a network switch with a port-mirroring feature,
we set up a host that replays previously recorded Modbus traffic
onto the network.

The data used for this experiment consists of network traffic
captured from equipment inside an operational water distribution
plant. The 105GB Modbus/TCP traffic capture was recorded over a
period of 106 days.

The systemwhere the captured data originates fromhas aHuman-
Machine Interface (HMI), which operators use to monitor process
variables transmitted from different substations (e.g., pressure or
water level in a tank) or to issue commands to substations when
necessary to control the industrial process. In total, there are 24
connected hosts in the network, two of which are Modbus masters
and the rest are slaves. The control server where the HMI is located
is responsible for relaying commands to every slave PLC in the
network. In addition, there are three communication interfaces
used to send Modbus commands across the network to the slave
devices.

One notable distinction between the live environment and this
local testbed is that we are in control of the network traffic data rate.
As a result, we could induce traffic interruptions by pausing the data

replay, in order to reliably emulate the event of traffic disruption
(e.g., downtime due to factory maintenance). Furthermore, with the
local testbed, we could monitor the network capturing and data
analysis in real time. This was a valuable resource that helped us
confirm that the system did indeed work as intended, and could
handle data interruptions and sudden system restarts.

Another important reason for running a controlled experiment
before deployment in the real world is to observe the effect of long-
term use. While the core functionality of the system might seem
to work properly during shorter tests, there could be issues with
the code or system setup that might lead to a crash after a longer
time of capturing and data analysis. Therefore, before launching
the live experiment, we let our system run for over a weekend in
the controlled environment, and encountered no issues.

5.3 Live Experiment: The Paper Factory
We conducted the live experiment in an operational paper factory
in Sweden. The main product of the factory is produced from paper
pulp, which is fed into the paper production line depicted in Figure 3,
and undergoes several procedures until it becomes paper.

We focus on monitoring the sensors responsible for reading the
water content of the paper surface. These sensors are placed on an
ABB NP1200 control frame, shown in Figure 4, at the end of the
production line.

Figure 3: The paper production line, where (1) marks the control
frame from which we gather data; (2) marks the dilution water
valves controlled according to a feedback loop from the control
frame sensors; (3) marks the steam-filled barrels used to dry the pa-
per; and (4) marks the final paper roll.

The control frame communicates the sensor data via an ABB I867
Modbus interface to the ABB PM866 controller. The Modbus inter-
face has network monitoring capabilities, and represents the entry
point for us to observe the sensor values. Our system is connected
via Ethernet to a switch, which in turn provides a connection to
the Modbus interface.

The Modbus TCP/IP packets sent from the control frame hold
register data from every new sensor reading since the last trans-
mission. Many sensors report 32-bit float values, which are stored
in two 16-bit Modbus registers using the IEEE-754 binary32 for-
mat [22]. The stream of packets typically contains hundreds or even
thousands of register values.

We deployed our prototype and let it run for 75 days without
any intervention, except for extracting data regularly to track the
system stability and performance.

5.4 Discussion & Results Overview
We now discuss the results of the live experiment in terms of stabil-
ity and performance of our system through analysis of data gathered
throughout the deployment period.



Figure 4: The ABB NP1200 control frame fromwhich we gather sen-
sor readings.

The raw sensor measurements and the corresponding departure
scores computed by PASAD are shown in Figure 5. Since this was
an attack-free experiment, we expected to see a stable detection
behavior, which was indeed the case. Training was performed on
sensor measurements spanning a period of 8 days. To determine
the alarm threshold, as recommended in [2], we ran the IDS for
a validation period on an initial subseries (highlighted in blue)
spanning 15 days of normal operation, and then set the threshold to
a value that is slightly higher than the maximum distance attained.
Based on this selection, as shown in Figure 5, no false alarms were
observed during the remaining testing period.

A curious fact that is worth pointing out is the small gaps that
can be observed in the sensor readings, indicated by the red vertical
bars in Figure 5. In an attempt to investigate this lack of sensor data,
we compared the corresponding time intervals with the downtime
logs that were provided to us by our contact at the facility, only
to arrive at a match and conclude that the data silence was due
to downtime in the factory. Interestingly, the interruptions were
handled gracefully by PASAD, which did not exhibit any strange be-
haviors during these periods, a fact that contributed to the stability
of our system during real-time operation.

Additionally, wemonitored the system performance to determine
whether the choice of hardware was adequate and to troubleshoot
any potential problems. The system performance measurements
shown in Figure 6 correspond to CPU and memory usage. The
CPU usage was particularly important to monitor, since packets are
likely to be dropped had the usage sustained a maximum activity
for long periods. Conveniently, the CPU usage maintained a level
of 50% and lower, except for momentary spikes to 100%, indicating
the likelihood that there have been no notable packet drops due
to insufficient system resources. Furthermore, the memory usage
shows a stable behavior throughout the experiment. Note that the
sharp drops in allocatedmemory, specifically on April 26th andMay
23rd , match with the more significant downtimes at the factory.

Figure 5: PASAD detection results showing a stable behavior.

Figure 6: Performance results in terms of CPU and memory usage.

6 LESSONS LEARNED: GUIDELINES &
RECOMMENDATIONS

In this section, we express the knowledge we gained from the expe-
rience of running a process-level IDS in a real environment in the
form of a set of guidelines that we recommend security researchers
and practitioners to consider when designing or deploying IDS
solutions for ICS.

6.1 Process Knowledge
We learned that, in a real environment, even a process-agnostic IDS
is not truly plug-and-play. There are several practical considera-
tions when deploying a prototype in a real ICS that should not be
overlooked and which are not compensated for by using a model-
free approach. For example, it is likely that multiple machines will
communicate over the same network, requiring knowledge from
both OT and IT personnel in order to identify relevant machines for
monitoring. This is further complicated by the fact that each ma-
chine might employ hundreds of sensors. Although we had reasons
to suspect this would be the situation already during the controlled
experiment with the data from the water plant, it became most
evident once we were on site. The control frame we were receiving
data from has hundreds of sensors, and each sensor may require
more than a single register. Specifically, there were in excess of
1,300 registers from a single machine to keep track of. After dis-
cussions with our contact person from the factory, we settled on
monitoring a single register that we knew would hold data relevant



to the process. Knowing which registers are of relevance requires
in-depth understanding of the OT environment, beyond what can
be expected from IT professionals. However, automated data char-
acterization and classification techniques as proposed in [8] may
contribute to making this part of the deployment less cumbersome.

6.2 Signal Data Disruptions
There are two points that we wish to emphasize when it comes
to (unexpected) disruptions to the analyzed signal. First, it is not
intolerable to drop values occasionally. We already knew this was
the case for minor interruptions during the controlled experiment,
but during the real-world experiment, there was a period of roughly
18 hours, where no data was received due to scheduled maintenance
at the factory, and as can been seen in Figure 5, the situation was
handled gracefully by PASAD.

Second, it is not trivial to distinguish between a crashed network
capturing process and an actual interruption of the process data
stream, and that is not a major issue either. Our prototype is built
to assume the worst case scenario (i.e., crashed network capturing),
in which case it reboots if it detects no new values within the past
30 minutes, in an attempt to recover. To the best of our knowledge,
we had at no point a system reboot because of a crashed process;
the downtimes were only due to maintenance stops at the factory.
A positive consequence of liberally restarting the system is that the
need for manual restarts is reduced. During conversations with the
factory staff, this seemed to be an important point to consider.

6.3 Modbus Parsing
Bro turned out to be a useful and convenient framework for the
task of capturing and extracting Modbus data. It took us only a
few weeks to build the necessary scripts for the network capturing
subsystem. The initial worry was that Bro might not be fast enough
to keep up with the stream of signal data in an industrial applica-
tion. But that turned out not to be the case in both the controlled
experiment and the live experiment, where the data rate was too
slow to saturate our system.

One major downside of Bro, however, is that it is single-threaded.
Therefore, implementing advanced data analysis techniques directly
using Bro scripts might not be advisable. Instead, we suggest having
an external solution to do the analysis, as we did with the buffering
mechanism. Maintaining as little work as possible in Bro is a fairly
good strategy, since Bro needs to get back to handling new incoming
data packets as soon as possible.We have shown that a pretty simple
buffering engine goes a long way toward overcoming performance
issues caused by the fact that Bro is single-threaded. Not only does
a buffer help with bursts of traffic, but it also provides an elegant
way of interacting with other processes, especially on hardware
with several cores, without the need to block the Bro thread.

An alternative to Bro could have been Snort [17], which is a
prominent network analysis tool. Compared to Bro, Snort lays
more emphasis on intrusion detection and prevention, rather than
being a general framework. But since it is open source, it could
most likely be extended to perform most of the tasks we used Bro
for. One of the main reasons we favoured Bro over Snort is that
we found it easier to develop the code we needed in Bro scripting
language.

Finally, one noteworthy caveat is that Bro does not match corre-
sponding requests and responses for the Modbus protocol. To work
around this, the transaction ID specified in the Modbus headers can
be inspected. Also, as it is possible for one client to send multiple
requests without waiting for the responses, it is not sufficient to
only store the last request in a connection. Instead, a table of re-
quests indexed by their transaction IDs in the connection object
should be maintained.

6.4 Buffering
Using a buffering mechanism proved quite beneficial, because even
when the average data rate is slower than what the IDS can handle,
new values might appear in bursts, which can temporarily outpace
the IDS. A sufficiently large buffer is likely to mitigate this effect
by allowing the IDS to work asynchronously when handling the
sensor readings. Thus, by having new values added to the tail of
the queue, the rate of incoming packets would trump the rate of
the IDS, ensuring that the most recent value available is served.

Whenever the consumer thread can not keep up with the data
rate on the network, the buffer will fill up. Once the buffer is full,
unless PASAD (or any other IDS for that matter) starts to consume
at least at the same rate as new values are produced, the buffer
will need to drop values. Since real-time performance is of essence,
we consider that adopting the head-drop policy as mentioned in
Section 4.2.2, where the oldest packets are dropped, is advantageous
because it would ensure that the consumer can always be served
the most up-to-date data.

7 CONCLUSION
Although research on intrusion detection in the context of classical
corporate IT networks goes back a long way, the fundamentally
different nature of ICS has led researchers to take more viable ap-
proaches by leveraging distinctive ICS properties, such as their
tendency to have static topologies and regular traffic at the process
level. Several data-driven methods that capture the normal behavior
of the physical process from historical data and then monitor for
deviations therefrom have been proposed and investigated. How-
ever, the evaluation of these methods seems to have been restricted
to simulations and offline analysis of relevant datasets. In this work,
we take the evaluation of process-level monitoring a step further by
running a fully fledged prototype in a real environment to examine
the feasibility of the proposed methods in real-world settings. We
reported lessons learned from a live experiment in an operational
paper factory lasting 75 days and proposed a set of guidelines and
best practices for both security researchers and practitioners who
may consider deploying such solutions in real environments.
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