
Block-Diagonal and LT Codes for Distributed Computing With Straggling
Servers

Downloaded from: https://research.chalmers.se, 2024-03-13 08:27 UTC

Citation for the original published paper (version of record):
Severinson, A., Graell i Amat, A., Rosnes, E. (2019). Block-Diagonal and LT Codes for Distributed
Computing With Straggling Servers. IEEE Transactions on Communications, 67(3): 1739-1753.
http://dx.doi.org/10.1109/TCOMM.2018.2877391

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

1

Block-Diagonal and LT Codes for Distributed
Computing With Straggling Servers

Albin Severinson, Student Member, IEEE, Alexandre Graell i Amat, Senior Member, IEEE,
and Eirik Rosnes, Senior Member, IEEE

Abstract—We propose two coded schemes for the distributed
computing problem of multiplying a matrix by a set of vectors.
The first scheme is based on partitioning the matrix into
submatrices and applying maximum distance separable (MDS)
codes to each submatrix. For this scheme, we prove that up to
a given number of partitions the communication load and the
computational delay (not including the encoding and decoding
delay) are identical to those of the scheme recently proposed by
Li et al., based on a single, long MDS code. However, due to
the use of shorter MDS codes, our scheme yields a significantly
lower overall computational delay when the delay incurred by
encoding and decoding is also considered. We further propose
a second coded scheme based on Luby Transform (LT) codes
under inactivation decoding. Interestingly, LT codes may reduce
the delay over the partitioned scheme at the expense of an
increased communication load. We also consider distributed
computing under a deadline and show numerically that the
proposed schemes outperform other schemes in the literature,
with the LT code-based scheme yielding the best performance
for the scenarios considered.

Index Terms—Block-diagonal coding, computational delay,
decoding delay, distributed computing, Luby Transform codes,
machine learning algorithms, maximum distance separable codes,
straggling servers.

I. INTRODUCTION

Distributed computing systems have emerged as one of the
most effective ways of solving increasingly complex computa-
tional problems, such as those in large-scale machine learning
and data analytics [1]–[3]. These systems, referred to as
“warehouse-scale computers” (WSCs) [1], may be composed
of thousands of relatively homogeneous hardware and software
components. Achieving high availability and efficiency for
applications running on WSCs is a major challenge. One of the
main reasons is the large number of components that may ex-
perience transient or permanent failures [3]. As a result, several

This work was presented in part at the IEEE Information Theory Workshop
(ITW), Kaohsiung, Taiwan, November 2017, and it was published in part in
“Coding for Distributed Computing: Investigating and improving upon coding
theoretical frameworks for distributed computing,” MSc. thesis, Chalmers
University of Technology, June 2017. This work was funded by the Swedish
Research Council under grant 2016-04253 and the Research Council of
Norway under grant 240985/F20.

Albin Severinson was with the Department of Electrical Engineering,
Chalmers University of Technology, SE-41296 Gothenburg, Sweden. He is
now with Simula UiB and the Department of Informatics at the University of
Bergen, N-5020 Bergen, Norway (email: albin@severinson.org).

Alexandre Graell i Amat is with the Department of Electrical Engineering,
Chalmers University of Technology, SE-41296 Gothenburg, Sweden (email:
alexandre.graell@chalmers.se).

Eirik Rosnes is with Simula UiB, N-5020 Bergen, Norway (email:
eirikrosnes@simula.no).

distributed computing frameworks have been proposed [4]–[6].
In particular, MapReduce [4] has gained significant attention
as a means of effectively utilizing large computing clusters.
For example, Google routinely performs computations over
several thousands of servers using MapReduce [4]. Among
the challenges brought on by distributed computing systems,
the problems of straggling servers and bandwidth scarcity have
recently received significant attention. The straggler problem
is a synchronization problem characterized by the fact that a
distributed computing task must wait for the slowest server
to complete its computation, which may cause large delays
[4]. On the other hand, distributed computing tasks typically
require that data is moved between servers during the com-
putation, the so-called data shuffling, which is a challenge in
bandwidth-constrained networks.

Coding for distributed computing to reduce the computa-
tional delay and the communication load between servers has
recently been considered in [7], [8]. In [7], a structure of
repeated computation tasks across servers was proposed, en-
abling coded multicast opportunities that significantly reduce
the required bandwidth to shuffle the results. In [8], the authors
showed that maximum distance separable (MDS) codes can be
applied to a linear computation task (e.g., multiplying a vector
with a matrix) to alleviate the effects of straggling servers
and reduce the computational delay. In [9], a unified coding
framework was presented and a fundamental tradeoff between
computational delay and communication load was identified.
The ideas of [7], [8] can be seen as particular instances of the
framework in [9], corresponding to the minimization of the
communication load and the computational delay, respectively.
The code proposed in [9] is an MDS code of code length
proportional to the number of rows of the matrix to be
multiplied, which may be very large in practice. For example,
Google performs matrix-vector multiplications with matrices
of dimension of the order of 1010 × 1010 when ranking the
importance of websites [10]. In [7]–[9], the computational
delay incurred by the encoding and decoding is not consid-
ered. However, the encoding and decoding may incur a high
computational delay for large matrices.

Coding has previously been applied to several related prob-
lems in distributed computing. For example, the scheme in [8]
has been extended to distributed matrix-matrix multiplication
where both matrices are too large to be stored at one server
[11], [12]. Whereas the schemes in [8], [11] are based on
MDS codes, the scheme in [12] is based on a novel coding
scheme that exploits the algebraic properties of matrix-matrix
multiplication over a finite field to reduce the computational

2

delay. In [13], it was shown that introducing sparsity in a
structured manner during encoding can speed up computing
dot products between long vectors. Distributed computing over
heterogeneous clusters has been considered in [14].

In this paper, we propose two coding schemes for the
problem of multiplying a matrix by a set of vectors. The
first is a block-diagonal coding (BDC) scheme equivalent to
partitioning the matrix and applying smaller MDS codes to
each submatrix separately (we originally introduced the BDC
scheme in [15]). The storage design for the BDC scheme can
be cast as an integer optimization problem, whose computation
scales exponentially with the problem size. We propose a
heuristic solver for efficiently solving the optimization prob-
lem, and a branch-and-bound approach for improving on the
resulting solution iteratively. Furthermore, we prove that up to
a certain level of partitioning the BDC scheme has identical
computational delay (as defined in [9]) and communication
load to those of the scheme in [9]. Interestingly, when the
delay incurred by encoding and decoding is taken into account,
the proposed scheme achieves an overall computational delay
significantly lower than that of the scheme in [9]. We further
propose a second coding scheme based on Luby Transform
(LT) codes [16] under inactivation decoding [17], which in
some scenarios achieves a lower computational delay than that
of the BDC scheme at the expense of a higher communication
load. We show that for the LT code-based scheme it is
possible to trade an increase in communication load for a
lower computational delay. We finally consider distributed
computing under a deadline, where we are interested in
completing a computation within some computational delay,
and show numerically that both the BDC and the LT code-
based schemes significantly increase the probability of meeting
a deadline over the scheme in [9]. In particular, the LT code-
based scheme achieves the highest probability of meeting a
deadline for the scenarios considered.

II. SYSTEM MODEL AND PRELIMINARIES

We consider the distributed matrix multiplication problem,
i.e., the problem of multiplying a set of vectors with a
matrix. In particular, given an m × n matrix A ∈ Fm×n

2l

and N vectors x1, . . . ,xN ∈ Fn2l , where F2l is an extension
field of characteristic 2, we want to compute the N vectors
y1 = Ax1, . . . ,yN = AxN . The computation is performed in
a distributed fashion using K servers, S1, . . . , SK . Each server
is responsible for multiplying ηm matrix rows by the vectors
x1, . . . ,xN , for some 1

K ≤ η ≤ 1. We refer to η as the fraction
of rows stored at each server and we assume that η is selected
such that ηm is an integer. Prior to computing y1, . . . ,yN , A
is encoded by an r×m encoding matrix Ψ = [Ψi,j], resulting
in the coded matrix C = ΨA, of size r × n, i.e., the rows
of A are encoded using an (r,m) linear code with r ≥ m.
This encoding is carried out in a distributed manner over the K
servers and is used to alleviate the straggler problem. We allow
assigning each row of the coded matrix C to several servers
to enable coded multicasting, a strategy used to address the
bandwidth scarcity problem. Let

q = K
m

r
,

where we assume that r divides Km and hence q is an integer.
The r coded rows of C, c1, . . . , cr, are divided into

(
K
ηq

)
disjoint batches, each containing r/

(
K
ηq

)
coded rows. Each

batch is assigned to ηq servers. Correspondingly, a batch B is
labeled by a unique set T ⊂ {S1, . . . , SK}, of size |T | = ηq,
denoting the subset of servers that store that batch. We write
BT to denote the batch stored at the unique set of servers T .
Server Sk, k = 1, . . . ,K, stores the coded rows of BT if and
only if Sk ∈ T .

A. Probabilistic Runtime Model

We assume that running a computation on a single server
takes a random amount of time, which is denoted by the
random variable H , according to the shifted-exponential cu-
mulative probability distribution function (CDF)

FH(h;σ) =

{
1− e−(hσ−1), for h ≥ σ
0, otherwise

,

where σ is a parameter used to scale the distribution. Denote
by σA and σM the number of time units required to complete
one addition and one multiplication (over F2l), respectively,
over a single server. Let σ be the weighted sum of the
number of additions and multiplications required to complete
the computation, where the weighting coefficients are σA and
σM, respectively. As in [18], we assume that σA is in O(l

64)
and σM in O(l log2 l). Furthermore, we assume that the hidden
coefficients are comparable and will thus not consider them.
With some abuse of language, we refer to the parameter
σ associated with some computation as its computational
complexity. For example, the complexity (number of time
units) of computing the inner product of two length-n vectors
is σ = (n − 1)σA + nσM as it requires performing n − 1
additions and n multiplications. The shift of the shifted-
exponential distribution should be interpreted as the minimum
amount of time the computation can be completed in. The tail
of the distribution accounts for transient disturbances that are
at the root of the straggler problem. These include transmission
and queuing delays during initialization as well as contention
for the local disk and slow-downs due to higher priority
tasks being assigned to the same server [19]. The complexity
of a computation σ affects both the shift and the tail of
the distribution since the probability of transient behavior
occurring increases with the amount of time the computation is
running. In the results section we also consider a model where
σ only affects the shift. The shifted-exponential distribution
was proposed as a model for the latency of file queries from
cloud storage systems in [20] and was subsequently used to
model computational delay in [8], [9].

When an algorithm is split into K parallel subtasks that
are run across K servers, we denote the runtime of the
subtask running on server Sk by Hk. As in [8], we assume
that H1, . . . ,HK are independent and identically distributed
random variables with CDF FH(Kh;σ). For i = 1, . . . ,K,
we denote the i-th order statistic by H(i), i.e., the i-th
smallest random variable of H1, . . . ,HK . The runtime of the
i-th fastest server to complete its subtask is thus given by

3

H(i), which is a Gamma distributed random variable with
expectation and variance given by [21]

µ(σ,K, i) , E
[
H(i)

]
= σ

1 +

K∑
j=K−i+1

1

j

 ,

Var
[
H(i)

]
= σ2

K∑
j=K−i+1

1

j2
.

We parameterize the Gamma distribution by its inverse scale
factor a and its shape parameter b. We give these in terms of
the distribution mean and variance as [22]

a =
E[H(i)]− σ
Var[H(i)]

and b =

(
E[H(i)]− σ

)2
Var[H(i)]

.

Denote by FH(i)
(h(i);σ,K) the CDF of H(i). It is given by

[22]

FH(i)
(h(i);σ,K) =

{
γ(b,a(h(i)−σ))

Γ(b) , for h(i) ≥ σ
0, otherwise

,

where Γ denotes the Gamma function and γ the lower incom-
plete Gamma function,

Γ(b) =

∫ ∞
0

xb−1e−x dx and γ(b, ah) =

∫ ah

0

xb−1e−x dx.

We remark that FH(i)
(h(i);σ,K) is the probability of a

computation finishing prior to some deadline t = h(i).

B. Distributed Computing Model

We consider the coded computing framework introduced in
[9], which extends the MapReduce framework [4]. The overall
computation proceeds in three phases, the map, shuffle, and
reduce phases, which are augmented to make use of the coded
multicasting strategy proposed in [7] to address the bandwidth
scarcity problem and the coded scheme proposed in [8] to
alleviate the straggler problem. Furthermore, we consider the
delay incurred by the encoding of A that takes place before
the start of the map phase. We refer to this as the encoding
phase. Also, we assume that the matrices A and Ψ as well as
the input vectors x1, . . . ,xN are known to all servers at the
start of the computation. The overall computation proceeds in
the following manner.

1) Encoding Phase: In the encoding phase, the coded
matrix C is computed from A and Ψ in a distributed fashion.
Specifically, denote by R(S) the set of indices of rows of C
that are assigned to server S and denote by Ψ(S) the matrix
consisting of the rows of Ψ with indices from R(S). Then,
server S computes the coded rows it needs by multiplying
Ψ(S) by A. Note that since we assign each coded row to ηq
servers, each row of C is computed separately by ηq servers.
We define the computational delay of the encoding phase as
its average runtime per source row and vector y, i.e.,

Dencode =
ηq

mN
µ
(σencode

K
,K,K

)
,

where σencode is the complexity of the encoding. During the
encoding process, the rows of Ψ are multiplied by the columns

Fig. 1. Servers (yellow boxes) finish their respective subtasks in random
order.

of A. Therefore, the complexity scales with the product of the
number of nonzero elements of Ψ and the number of columns
of A. Specifically,

σencode = |{(i, j) : Ψi,j 6= 0}|n (σA + σM)− nσA.

Alternatively, we compute C by performing a decoding
operation on A. In this case σencode is the decoding com-
plexity (see Section IV-B). Furthermore, since the decoding
algorithms are designed to decode the entire codeword, each
server has to compute all rows of C. Using this strategy the
encoding delay is

Dencode =
K

mN
µ
(σencode

K
,K,K

)
.

For each case we choose the strategy that minimizes the delay.
2) Map Phase: In the map phase, we compute in a dis-

tributed fashion coded intermediate values, which will be later
used to obtain vectors y1, . . . ,yN . Server S multiplies the
input vectors xj , j = 1, . . . , N , by all the coded rows of
matrix C it stores, i.e., it computes

Z(S)
j = {cxj : c ∈ {BT : S ∈ T }}, j = 1, . . . , N.

The map phase terminates when a set of servers G ⊆
{S1, . . . , SK} that collectively store enough values to decode
the output vectors have finished their map computations. We
denote the cardinality of G by g. The (r,m) linear code
proposed in [9] is an MDS code for which y1, . . . ,yN can
be obtained from any subset of q servers, i.e., g = q. We
illustrate the completion of subtasks in Fig. 1.

We define the computational delay of the map phase as its
average runtime per source row and vector y, i.e.,

Dmap =
1

mN
µ
(σmap

K
,K, g

)
,

where σmap = KηmN ((n− 1)σA + nσM), as all K servers
compute ηm inner products, each requiring n − 1 additions
and n multiplications, for each of the N input vectors. In [9],
Dmap is referred to simply as the computational delay.

After the map phase, the computation of y1, . . . ,yN pro-
ceeds using only the servers in G. We denote by Q ⊆ G the set
of the first q servers to complete the map phase. Each of the
q servers in Q is responsible to compute N/q of the vectors
y1, . . . ,yN . Let WS be the set containing the indices of the
vectors y1, . . . ,yN that server S ∈ Q is responsible for. The
remaining servers in G assist the servers in Q in the shuffle
phase.

3) Shuffle Phase: In the shuffle phase, intermediate values
calculated in the map phase are exchanged between servers in
G until all servers in Q hold enough values to compute the
vectors they are responsible for. As in [9], we allow creating
and multicasting coded messages that are simultaneously use-
ful for multiple servers. Furthermore, as in [8], we denote by

4

φ(j) the ratio between the communication load of unicasting
the same message to each of j recipients and multicasting that
message to j recipients. For example, if the communication
load of multicasting a message to j recipients and unicasting
a message to a single recipient is the same, we have φ(j) = j.
On the other hand, if the communication load of multicasting a
message to j recipients is equal to that of unicasting that same
message to each recipient, φ(j) = 1. The total communication
load of a multicast message is then given by j

φ(j) . The shuffle
phase proceeds in three steps as follows.

1) Coded messages composed of several intermediate val-
ues are multicasted among the servers in Q.

2) Intermediate values are unicasted among the servers in
Q.

3) Any intermediate values still missing from servers in Q
are unicasted from the remaining servers in G, i.e., from
the servers in G \ Q.

For a subset of servers S ⊂ Q and S ∈ Q \ S, we denote
the set of intermediate values needed by server S and known
exclusively by the servers in S by V(S)

S . More formally,

V(S)
S , {cxj : j ∈ WS and c ∈ {BT : T ∩ Q = S}}.

We transmit coded multicasts only between the servers in
Q, and each coded message is simultaneously sent to multiple
servers. We denote by

sq , inf

s :

ηq∑
j=s

αj ≤ 1− η

 , αj ,

(
q−1
j

)(
K−q
ηq−j

)
q
K

(
K
ηq

) , (1)

the smallest number of recipients of a coded message [9]. We
remark that mαj is the total number of coded values delivered
to each server via the coded multicast messages with exactly j
recipients. More specifically, for each j ∈ {ηq, ηq−1, . . . , sq},
and every subset S ⊆ Q of size j + 1, the shuffle phase
proceeds as follows.

1) For each S ∈ S, we evenly and arbitrarily split V(S)
S\S

into j disjoint segments, V(S)
S\S = {V(S)

S\S,S̃ : S̃ ∈ S \S},
and associate the segment V(S)

S\S,S̃ to server S̃.

2) Server S̃ ∈ S multicasts the bit-wise modulo-2 sum of
all the segments associated to it in S. More precisely, it
multicasts ⊕S∈S\S̃ V

(S)

S\S,S̃ to the other servers in S \ S̃,
where ⊕ denotes the modulo-2 sum operator.

By construction, exactly one value that each coded message
is composed of is unknown to each recipient. The other values
have been computed locally by the recipient. More precisely,
for every pair of servers S, S̃ ∈ S, since server S has computed
locally the segments V(S′)

S\S′,S̃
for all S′ ∈ S \ {S̃, S}, it can

cancel them from the message sent by server S̃, and recover
the intended segment. We finish the shuffle phase by either
unicasting any remaining needed values until all servers in
Q hold enough intermediate values to decode successfully, or
by repeating the above two steps for j = sq − 1. We refer to
these alternatives as shuffling strategy 1 and 2, respectively. We
always select the strategy achieving the lowest communication
load. If any server in Q still needs more intermediate values

at this point, they are unicasted from other servers in G. This
may happen only if a non-MDS code is used. We remark that
it may be possible to opportunistically create additional coded
multicasting opportunities by exploiting the remaining g − q
servers in G.

Definition 1. The communication load, denoted by L, is the
number of unicasts and multicasts (weighted by their cost
relative to a unicast) per source row and vector y exchanged
during the shuffle phase. Specifically, each unicasted message
increases L by 1

mN , and each message multicasted to j

recipients increases L by j
mNφ(j) .

The communication load after completing the shuffle phase
is given in [9]. If the shuffle phase finishes by unicasting the
remaining needed values (strategy 1), the communication load
after completing the multicast phase is

ηq∑
j=sq

αj
φ(j)

.

If instead steps 1) and 2) are repeated for j = sq−1 (strategy
2), the communication load is

ηq∑
j=sq−1

αj
φ(j)

.

For the scheme in [9], the total communication load is

LMDS = min

 ηq∑
j=sq

αj
φ(j)

+ 1− η −
ηq∑
j=sq

αj ,

ηq∑
j=sq−1

αj
φ(j)

 ,

(2)
where 1 − η −∑ηq

j=sq
αj is the communication load due to

unicasting the remaining needed values.
4) Reduce Phase: Finally, in the reduce phase, the vectors

y1, . . . ,yN are computed. More specifically, server S ∈ Q
uses the locally computed sets Z(S)

1 , . . . ,Z(S)
N and the re-

ceived messages to compute the vectors yj , ∀j ∈ WS . The
computational delay of the reduce phase is its average runtime
per source row and output vector y, i.e.,

Dreduce =
1

mN
µ

(
σreduce

q
, q, q

)
,

where σreduce is the computational complexity (see Sec-
tion II-A) of the reduce phase.

Definition 2. The overall computational delay, D, is the sum
of the encoding, map, and reduce phase delays, i.e., D =
Dencode +Dmap +Dreduce.

C. Previously Proposed Coded Computing Schemes

Here we formally define the uncoded scheme (UC) and
the coded computing schemes of [7]–[9] (which we refer
to as the straggler coding (SC), coded MapReduce (CMR),
and unified scheme, respectively) in terms of the model
above. Specifically, to make a fair comparison with our coded
computing scheme with parameters K, q, m, and η, we define
the corresponding uncoded, CMR, SC, and unified schemes.
When referring to the system parameters of a given scheme,
we will write the scheme acronym in the subscript. We only

5

explicitly mention the parameters that differ. The number of
servers K is unchanged for all schemes considered.

The uncoded scheme uses no erasure coding and no coded
multicasting and has parameters ηUC = 1

K and qUC = K,
implying ηUCqUC = 1. Furthermore, the encoding matrix ΨUC

is the m×m identity matrix and the coded matrix isCUC = A.
The CMR scheme [7] uses only coded multicasting, i.e.,

CCMR = A and qCMR = K. Furthermore, the fraction of rows
stored at each server is ηCMR = ηq

K . We remark that there is
no reduce delay for this scheme, i.e., Dreduce = 0.

The SC scheme [8] uses an erasure code but no coded
multicasting. For the corresponding SC scheme, the code rate
is unchanged, i.e., qSC = q, and the fraction of rows stored at
each server is ηSC = 1

qSC
. The encoding matrix ΨSC of the SC

scheme is obtained by splitting the rows of A into qSC equally
tall submatrices A1, . . . ,AqSC

and applying a (K, qSC) MDS
code to the elements of each submatrix, thereby creating K
coded submatrices C1, . . . ,CK . The coded matrix CSC is the
concatenation of C1, . . . ,CK , i.e.,

CSC =

C1

...
CK

 .

The unified scheme [9] uses both an erasure code and coded
multicasting and has parameters ηunified = η and qunified =
q. Furthermore, the encoding matrix of the unified scheme,
Ψunified, is an (r,m) MDS code encoding matrix.

III. BLOCK-DIAGONAL CODING

In this section, we introduce a BDC scheme for the problem
of multiplying a matrix by a set of vectors. For large matrices,
the encoding and decoding complexity of the proposed scheme
is significantly lower than that of the scheme in [9], leading
to a lower overall computational delay, as will be shown in
Section VII. Specifically, the scheme is based on a block-
diagonal encoding matrix of the form

ΨBDC =

ψ1

. . .
ψT

 ,
where ψ1, . . . ,ψT are r

T ×m
T encoding matrices of an (rT ,

m
T)

MDS code, for some integer T that divides m and r. Note that
the encoding given by ΨBDC amounts to partitioning the rows
of A into T disjoint submatrices A1, . . . ,AT and encoding
each submatrix separately. We refer to an encoding ΨBDC with
T disjoint submatrices as a T -partitioned scheme, and to the
submatrix of C = ΨBDCA corresponding to ψi as the i-th
partition. We remark that all submatrices can be encoded using
the same encoding matrix, i.e., ψi = ψ, i = 1, . . . , T , reduc-
ing the storage requirements, and encoding/decoding can be
performed in parallel if many servers are available. Notably, by
keeping the ratio m

T constant, the decoding complexity scales
linearly with m. We further remark that the case ΨBDC = ψ
(i.e., the number of partitions is T = 1) corresponds to
the scheme in [9], which we will sometimes refer to as the
unpartitioned scheme. We illustrate the BDC scheme with
T = 3 partitions in Fig. 2.

C = ΨBDCA = ψ2

ψ1

ψ3

A2

A3

A1

= ψ2A2

ψ1A1

ψ3A3

Fig. 2. BDC scheme with T = 3 partitions.

A. Assignment of Coded Rows to Batches

For a block-diagonal encoding matrix ΨBDC, we denote by
c

(t)
i , t = 1, . . . , T and i = 1, . . . , r/T , the i-th coded row of
C within partition t. For example, c(2)

1 denotes the first coded
row of the second partition. As described in Section II, the
coded rows are divided into

(
K
ηq

)
disjoint batches. To formally

describe the assignment of coded rows to batches we use a(
K
ηq

)
× T integer matrix P = [pi,j], where pi,j is the number

of rows from partition j that are stored in batch i. In the
sequel, P will be referred to as the assignment matrix. Note
that, due to the MDS property, any set of m/T rows of a
partition is sufficient to decode the partition. Thus, without loss
of generality, we consider a sequential assignment of rows of
a partition into batches. More precisely, when first assigning a
row of partition t to a batch, we pick c(t)

1 . Next time a row of
partition t is assigned to a batch we pick c(t)

2 , and so on. In this
manner, each coded row is assigned to a unique batch exactly
once. The rows of P are labeled by the subset of servers the
corresponding batch is stored at, and the columns are labeled
by their partition indices. For convenience, we refer to the pair
(ΨBDC,P) as the storage design. The assignment matrix P
must satisfy the following conditions.

1) The entries of each row of P must sum up to the batch
size, i.e.,

T∑
j=1

pi,j =
r(
K
ηq

) , 1 ≤ i ≤
(
K

ηq

)
.

2) The entries of each column of P must sum up to the
number of rows per partition, i.e.,

(Kηq)∑
i=1

pi,j =
r

T
, 1 ≤ j ≤ T.

We clarify the assignment of coded rows to batches and the
coded computing scheme in the following example.

Example 1 (m = 20, N = 4, K = 6, q = 4, η = 1/2,
T = 5). For these parameters, there are r/T = 6 coded rows
per partition, of which m/T = 4 are sufficient for decoding,
and

(
K
ηq

)
= 15 batches, each containing r/

(
K
ηq

)
= 2 coded

rows. We construct the storage design shown in Fig. 3 with

6

c
(1)
1 c

(1)
3 c

(1)
5 c

(2)
1 c

(2)
3

c
(1)
2 c

(1)
4 c

(1)
6 c

(2)
2 c

(2)
4

Server S1

c
(1)
1 c

(2)
5 c

(3)
1 c

(3)
3 c

(3)
5

c
(1)
2 c

(2)
6 c

(3)
2 c

(3)
4 c

(3)
6

Server S2

c
(1)
3 c

(2)
5 c

(4)
1 c

(4)
3 c

(4)
5

c
(1)
4 c

(2)
6 c

(4)
2 c

(4)
4 c

(4)
6

Server S3

c
(1)
5 c

(3)
1 c

(4)
1 c

(5)
1 c

(5)
3

c
(1)
6 c

(3)
2 c

(4)
2 c

(5)
2 c

(5)
4

Server S4

c
(2)
1 c

(3)
3 c

(4)
3 c

(5)
1 c

(5)
5

c
(2)
2 c

(3)
4 c

(4)
4 c

(5)
2 c

(5)
6

Server S5

c
(2)
3 c

(3)
5 c

(4)
5 c

(5)
3 c

(5)
5

c
(2)
4 c

(3)
6 c

(4)
6 c

(5)
4 c

(5)
6

Server S6

Fig. 3. Storage design for m = 20, N = 4, K = 6, q = 4, η = 1/2, and
T = 5.(
K
ηq

)
× T = 15× 5 assignment matrix

P =

1 2 3 4 5

(S1, S2) 2 0 0 0 0
(S1, S3) 2 0 0 0 0
(S1, S4) 2 0 0 0 0
(S1, S5) 0 2 0 0 0

...
...

(S4, S6) 0 0 0 0 2
(S5, S6) 0 0 0 0 2

, (3)

where rows are labeled by the subset of servers the batch is
stored at, and columns are labeled by the partition index. In
this case rows c(1)

1 and c(1)
2 are assigned to batch 1, c(1)

3

and c(1)
4 are assigned to batch 2, and so on. For this storage

design, any g = 4 servers collectively store at least 4 coded
rows from each partition. However, some servers store more
rows than needed to decode some partitions, suggesting that
this storage design is suboptimal.

Assume that G = {S1, S2, S3, S4} is the set of g = 4
servers that finish their map computations first. Also, assign
vector yi to server Si, i = 1, 2, 3, 4. We illustrate the coded
shuffling scheme for S = {S1, S2, S3} in Fig. 4. Server
S1 multicasts c(1)

1 x3⊕ c(1)
3 x2 to S2 and S3. Since S2 and

S3 can cancel c(1)
1 x3 and c(1)

3 x2, respectively, both servers
receive one needed intermediate value. Similarly, S2 multicasts
c

(1)
2 x3⊕ c(2)

5 x1, while S3 multicasts c(1)
4 x2⊕ c(2)

6 x1. This
process is repeated for S = {S2, S3, S4}, S = {S1, S3, S4},
and S = {S1, S2, S4}. After the shuffle phase, we have sent
12 multicast messages and 30 unicast messages, resulting in
a communication load of (12 + 30)/20/4 = 0.525, a 50%
increase from the load of the unpartitioned scheme (0.35,
given by (2)). In this case, S1 received additional intermediate
values from partition 2, despite already storing enough, further
indicating that the assignment in (3) is suboptimal.

IV. PERFORMANCE OF THE BLOCK-DIAGONAL CODING

In this section, we analyze the impact of partitioning on
the performance. We also prove that we can partition up
to the batch size, i.e., T = r/

(
K
ηq

)
, without increasing the

communication load and the computational delay of the map
phase with respect to the original scheme in [9].

A. Communication Load

For the unpartitioned scheme of [9], G = Q, and the
number of remaining values that need to be unicasted after
the multicast phase is constant regardless which subset Q

c
(1)
1 c

(1)
3 c

(1)
5 c

(2)
1 c

(2)
3

c
(1)
2 c

(1)
4 c

(1)
6 c

(2)
2 c

(2)
4

Server S1

c
(1)
1 x3 ⊕ c

(1)
3 x2

c
(1)
1 c

(2)
5 c

(3)
1 c

(3)
3 c

(3)
5

c
(1)
2 c

(2)
6 c

(3)
2 c

(3)
4 c

(3)
6

Server S2

c
(1)
2 x3 ⊕ c

(2)
5 x1

c
(1)
3 c

(2)
5 c

(4)
1 c

(4)
3 c

(4)
5

c
(1)
4 c

(2)
6 c

(4)
2 c

(4)
4 c

(4)
6

Server S3

c
(1)
4 x2 ⊕ c

(2)
6 x1

Fig. 4. Multicasting coded values between servers S1, S2, and S3.

of servers finish first their map computations. However, for
the BDC (partitioned) scheme, both g and the number of
remaining unicasts may vary.

For a given assignment matrix P and a specific Q, we
denote by U

(S)
Q (P) the number of remaining values needed

after the multicast phase by server S ∈ Q, and by

UQ(P) ,
∑
S∈Q

U
(S)
Q (P) (4)

the total number of remaining values needed by the servers in
Q. Note that both U (S)

Q (P) and UQ(P) depend on the strategy
used to finish the shuffle phase (see Section II-B3). We remark
that all sets Q are equally likely. Let Qq denote the superset
of all sets Q. Furthermore, we denote by LQ(P) the average
communication load of the messages that are unicasted after
the multicasting step (see Section II-B3), i.e.,

LQ(P) ,
1

mN

1

|Qq|
∑
Q∈Qq

UQ(P). (5)

When needed we write L
(1)
Q (P) and L

(2)
Q (P), where the

superscript denotes the strategy used to finish the shuffle phase.
For a given storage design (ΨBDC,P), the communication
load of the BDC scheme is given by

LBDC(ΨBDC,P) =

min

 ηq∑
j=sq

αj
φ(j)

+ L
(1)
Q (P),

ηq∑
j=sq−1

αj
φ(j)

+ L
(2)
Q (P)

 .
(6)

Note that the load due to the multicast phase is independent
of the level of partitioning. Furthermore, for the unpartitioned
scheme L(2)

Q = 0 by design.

We first explain how U
(S)
Q is evaluated. Let u(S)

Q be a
vector of length T , where the t-th element is the number
of intermediate values from partition t stored by server S
at the end of the multicast phase. Furthermore, each row
of P corresponds to a batch, and coded multicasting is
made possible by storing each batch at multiple servers. The
intermediate values transmitted during the multicast phase thus
correspond to rows of P . The vector u(S)

Q is then computed
by adding some set of rows of P . The indices of the rows to
add depend on Q and S (see Section II-B3).

7

We denote by
(
u

(S)
Q

)
t

the t-th element of the vector u(S)
Q .

The number of values U (S)
Q is given by adding the number of

intermediate values still needed for each partition, i.e.,

U
(S)
Q =

T∑
t=1

max
(m
T
−
(
u

(S)
Q

)
t
, 0
)
. (7)

Its sum over all S ∈ Q gives UQ(P) (see (4)). Averaging
UQ(P) over all Q and normalizing yields LQ(P) (see (5)).

Example 2 (Computing u(S)
Q). We consider the same sys-

tem as in Example 1. We again assume that G = Q =
{S1, S2, S3, S4} is the set of g = q = 4 servers that finish their
map computations first. During the multicast phase server S1

receives the intermediate values in V(S1)
S\S1

for all sets S of
cardinality j + 1 = 3 (see Section II-B3). In this case, we
perform coded multicasting within the sets

• S = {S1, S2, S3}, V(S1)
S\S1

= {c(2)
5 x1, c

(2)
6 x1},

• S = {S1, S2, S4}, V(S1)
S\S1

= {c(3)
1 x1, c

(3)
2 x1},

• S = {S1, S3, S4}, V(S1)
S\S1

= {c(4)
1 x1, c

(4)
2 x1}.

Note that V(S1)
{S2,S3} contains the intermediate values com-

puted from the coded rows stored in the batch that labels the
6-th row of the assignment matrix P . In the same manner,
V(S1)
{S2,S4} and V(S1)

{S3,S4} correspond to rows 7 and 10 of P ,
respectively. Furthermore, prior to the shuffle phase server S1

stores the batches corresponding to rows 1 to 5 of P . Thus,
u

(S1)
{S1,S2,S3,S4} is equal to the sum of rows 1, 2, 3, 4, 5, 6, 7,

and 10 of P . In this case, u(S1)
{S1,S2,S3,S4} = (6, 6, 2, 2, 0), and

S1 needs 8 more intermediate values, i.e., U (S1)
{S1,S2,S3,S4} = 8.

Computing u(S)
Q for arbitrary Q and S then corresponds to

summing the rows of P corresponding to batches either stored
by server S prior to the shuffle phase or received by S in the
multicast phase. The row indices are computed as explained
in Section II-B3.

For a given ΨBDC, the assignment of rows into batches can
be formulated as an optimization problem, where one would
like to minimize LBDC(ΨBDC,P) over all assignments P .
More precisely, the optimization problem is

min
P∈P

LBDC(ΨBDC,P),

where P is the set of all assignments P . This is a computation-
ally complex problem, since both the complexity of evaluating
the performance of a given assignment and the number of
assignments scale exponentially in the problem size (there
are q

(
K
q

)
vectors u(S)

Q). We address the optimization of the
assignment matrix P in Section V.

B. Computational Delay

We consider the delay incurred by the encoding, map, and
reduce phases (see Definition 2). As in [9], we do not consider
the delay incurred by the shuffle phase as the computations
it requires are simple in comparison. Note that in [9] only
Dmap is considered, i.e., D = Dmap. However, one should not
neglect the computational delay incurred by the encoding and

reduce phases. Thus, we consider the overall computational
delay

D = Dencode +Dmap +Dreduce.

The encoding delay Dencode is a function of the number of
nonzero elements of ΨBDC. As there are at most m

T nonzero
elements in each row of a block-diagonal encoding matrix, for
an encoding scheme with T partitions we have

σencode,BDC ≤
m

T
rnσM +

(m
T
− 1
)
rnσA. (8)

The reduce phase consists of decoding the N output vectors
and hence the delay it incurs depends on the underlying code
and decoding algorithm. We assume that each partition is
encoded using a Reed-Solomon (RS) code and is decoded
using either the Berlekamp-Massey (BM) algorithm or the
FFT-based algorithm proposed in [23], whichever yields the
lowest complexity. To the best of our knowledge the algorithm
proposed in [23] is the lowest complexity algorithm for decod-
ing long RS codes. We measure the decoding complexity by its
associated shifted-exponential parameter σ (see Section II-A).

The number of field additions and multiplications required
to decode an (r/T,m/T) RS code using the BM algorithm
is (r/T) (ξ(r/T)− 1) and (r/T)2ξ, respectively, where ξ is
the fraction of erased symbols [24]. With ξ upper bounded by
1 − q

K (the map phase terminates when a fraction of at least
q
K symbols from each partition is available), the complexity
of decoding the T partitions for all N output vectors is upper
bounded as

σBM
reduce,BDC ≤ N

(
σA

(
r2(1− q

K)

T
− r
)

+ σM

r2(1− q
K)

T

)
.

(9)
On the other hand, the FFT-based algorithm has complexity
O(r log r) [23]. We estimate the number of additions and mul-
tiplications required for a given code length r by fitting a curve
of the form a + br log2(cr), where (a, b, c) are coefficients,
to empiric results derived from the authors’ implementation
of the algorithm. For additions the resulting parameters are
(2, 8.5, 0.867) and for multiplications they are (2, 1, 4). The
resulting curves diverge negligibly at the measured points. The
total decoding complexity for the FFT-based algorithm is

σFFT
reduce,BDC = NTσA

(
2 +

8.5r

T
log2 (0.867r/T)

)
+NTσM

(
2 +

r

T
log2 (4r/T)

)
.

(10)

The encoding and decoding complexity of the unified scheme
in [9] is given by evaluating (8) and either (9) or (10)
(whichever gives the lowest complexity), respectively, for
T = 1. For the BDC scheme, by choosing T close to r we can
thus significantly lower the delay of the encoding and reduce
phases. On the other hand, the scheme in [8] uses codes of
length proportional to the number of servers K. The encoding
and decoding complexity of the SC scheme in [8] is thus given
by evaluating (8) and either (9) or (10) for T = m

q .

C. Lossless Partitioning

Theorem 1. For T ≤ r/
(
K
ηq

)
, there exists an assignment

matrix P such that the communication load and the com-

8

putational delay of the map phase are equal to those of the
unpartitioned scheme.

Proof: The computational delay of the map phase is equal
to that of the unpartitioned scheme if any q servers hold
enough coded rows to decode all partitions. For T = r/

(
K
ηq

)
we let P be a

(
K
ηq

)
× T all-ones matrix and show that it has

this property by repeating the argument from [9, Sec. IV.B]
for each partition. In this case, any set of q servers collectively
store ηqm

T rows from each partition, and since each coded row
is stored by at most ηq servers, any q servers collectively store
at least ηqm

ηqT = m
T unique coded rows from each partition.

The computational delay of the map phase is thus unchanged
from the unpartitioned scheme. The communication load is
unchanged if U (S)

Q is equal to that of the unpartitioned scheme
for all Q and S. The number of values needed U

(S)
Q is

computed from u
(S)
Q (see (7)), which is the sum of l rows

of P , for some integer l. For the all-ones assignment matrix,
because all rows of P are identical, we have

U
(S)
Q = T max

(m
T
− l, 0

)
= max (m− T l, 0) ,

which is the number of remaining values for the unpartitioned
scheme.

Next, we consider the case where T < r/
(
K
ηq

)
. First,

consider the case T = r/
(
K
ηq

)
− j, for some integer j,

0 ≤ j < r

2(Kηq)
. We first set all entries of P equal to 1. At

this point, the total number of unique rows of C per partition
stored by any set of q servers is at least

m

r/
(
K
ηq

) =
m

r/
(
K
ηq

)
− j

r/
(
K
ηq

)
− j

r/
(
K
ηq

) =
m

T

r/
(
K
ηq

)
− j

r/
(
K
ηq

) . (11)

The number of coded rows per partition that are not yet as-
signed is given by r/T multiplied by the fraction of partitions
removed j

r/(Kηq)
, i.e.,

1

T

rj

r/
(
K
ηq

) =
1

T

mK
q j

r/
(
K
ηq

) . (12)

We assign these rows to batches such that an equal number
of coded rows is assigned to each of the K servers, which is
always possible due to the limitations imposed by the system
model. Any set of q servers will thus store a fraction q/K
of these rows. The total number of unique coded rows per
partition stored among any set of q servers is then lower
bounded by the sum of (12) weighted by q/K and (11), i.e.,

m

T

(
r/
(
K
ηq

)
− j

r/
(
K
ηq

) +

K
q j

r/
(
K
ηq

) q
K

)
=
m

T
,

showing that it is possible to decode all partitions using the
coded rows stored over any set of q servers.

The communication load is unchanged with respect to the
case where the number of partitions is r/

(
K
ηq

)
if and only if no

server receives rows it does not need in the multicast phase.
Due to decreasing the number of partitions from r/

(
K
ηq

)
to

T = r/
(
K
ηq

)
−j, we increase the number of coded rows needed

to decode each partition by

m

T
− m

r/
(
K
ηq

) =
1

T

mj

r/
(
K
ηq

) . (13)

Furthermore, reducing the number of partitions increases the
number of coded rows per partition stored among any set of
q servers (see (12) and the following text) by

1

T

mj

r/
(
K
ηq

) . (14)

Note that the number of additional rows needed to decode each
partition (see (13)) is greater than or equal to the number of
additional rows stored among the q servers (see (14)). It is
thus impossible that too many coded rows are delivered for
any partition.

Second, we consider the case T =
r/(Kηq)−j

i , where j is
chosen as for the first case above and where i is a positive
integer. Now, we first set all elements of P to i. At this point
the number of unique rows of C per partition stored by any set
of q servers is given by (11) multiplied by a factor i (since we
set each element of P to i instead of one). Furthermore, the
number of coded rows per partition that are not yet assigned
is given by (12). Therefore, by using the same strategy as
for i = 1 and assigning the remaining rows to batches such
that an equal number of rows is assigned to each of the K
servers, we are guaranteed that the communication load and
the computational delay are unchanged also in this case.

V. ASSIGNMENT SOLVERS

For T ≤ r/
(
K
ηq

)
partitions, we can choose the assignment

matrix P as described in the proof of Theorem 1. For the
case where T > r/

(
K
ηq

)
, we propose two solvers for the

problem of assigning rows into batches: a heuristic solver that
is fast even for large problem instances, and a hybrid solver
combining the heuristic solver with a branch-and-bound solver.
The branch-and-bound solver produces an optimal assignment
but is significantly slower, hence it can be used as stand-
alone only for small problem instances. We use a dynamic
programming approach to speed up the branch-and-bound
solver by caching u(S)

Q for all S and Q ∈ Qq . We index each
cached u(S)

Q by the batches it is computed from. Whenever
U

(S)
Q drops to 0 due to assigning a row to a batch, we remove

the corresponding u(S)
Q from the index. We also store a vector

of length T with the i-th entry giving the number of vectors
u

(S)
Q that miss intermediate values from the i-th partition.

Specifically, the i-th element of this vector is the number of
vectors u(S)

Q for which the i-th element is less than m
T . This

allows us to efficiently assess the impact on LQ(P) due to
assigning a row to some batch. Since u(S)

Q is of length T and
because the cardinality of Q and Qq is q and

(
K
q

)
, respectively,

the memory required to keep this index scales as O
(
Tq
(
K
q

))
and is thus only an option for small problem instances.

For all solvers, we first label the batches lexiographically
and then optimize LBDC in (6). For example, for ηq = 2, we
label the first batch by S1, S2, the second by S1, S3, and so

9

Algorithm 1: Heuristic Assignment
Input : P , d, K, T , and ηq
for 0 ≤ a < d

(
K
ηq

)
do

i← ba/dc+ 1
j ← (a mod T) + 1
pi,j ← pi,j + 1

end
return P

on. The solvers are available under the Apache 2.0 license
[25]. We remark that choosing P is similar to the problem of
designing the coded matrices stored by each server in [12].

A. Heuristic Solver

The heuristic solver is inspired by the assignment matrices
created by the branch-and-bound solver for small instances. It
creates an assignment matrix P in two steps. We first set each
entry of P to

Y ,

⌊
r(

K
ηq

)
· T

⌋
,

thus assigning the first
(
K
ηq

)
Y rows of each partition to batches

such that each batch is assigned Y T rows. Let d = r/
(
K
ηq

)
−

Y T be the number of rows that still need to be assigned to
each batch. The r/T −

(
K
ηq

)
Y rows per partition not assigned

yet are assigned in the second step as shown in Algorithm 1.
Interestingly, for T ≤ r/

(
K
ηq

)
the heuristic solver creates an

assignment matrix satisfying the requirements outlined in the
proof of Theorem 1. In the special case of T = r/

(
K
ηq

)
, the

all-ones matrix is produced.

B. Branch-and-Bound Solver

The branch-and-bound solver finds an optimal solution by
recursively branching at each batch for which there is more
than one possible assignment and considering all options. The
solver is initially given an empty assignment matrix, i.e., an
all-zeros

(
K
ηq

)
× T matrix. For each branch, we lower bound

the value of the objective function of any assignment in that
branch and only investigate branches with possibly better
assignments. The branch-and-bound operations given below
are repeated until there are no more potentially better solutions
to consider.

1) Branch: For the first row of P with remaining assign-
ments, branch on every available assignment for that row.
More precisely, find the smallest index i of a row of the
assignment matrix P whose entries do not sum up to the batch
size, i.e.,

T∑
j=1

pi,j <
r(
K
ηq

) .
For row i, branch on incrementing the element pi,j by 1 for
all columns (with index j) such that their entries do not sum
up to the number of coded rows per partition, i.e.,

(Kηq)∑
i=1

pi,j <
r

T
.

2) Bound: We use a dynamic programming approach to
lower bound LBDC for a subtree. Specifically, for each row i

and column j of P , we store the number of vectors u(S)
Q that

are indexed by row i and where the j-th element satisfies(
m

T
−
(
u

(S)
Q

)
j

)
> 0.

Assigning a coded row to a batch can at most reduce LBDC

by 1/ (mN |Qq|) for each u(S)
Q indexed by that batch. We

compute the bound by assuming that no u(S)
Q will be removed

from the index for any subsequent assignment.

C. Hybrid Solver

The branch-and-bound solver can only be used by itself
for small instances. However, it can be used to complete a
partial assignment matrix, i.e., a matrix P for which not all
rows have entries that sum up to the batch size. The branch-
and-bound solver then completes the assignment optimally.
We first find a candidate solution using the heuristic solver
and then iteratively improve it using the branch-and-bound
solver. In particular, we decrement by 1 a random set of entries
of P and then use the branch-and-bound solver to reassign
the corresponding rows optimally. We repeat this process until
the average improvement between iterations drops below some
threshold.

VI. LUBY TRANSFORM CODES

In this section, we consider LT codes [16] for use in
distributed computing. Specifically, we consider a distributed
computing system where Ψ is an LT code encoding matrix,
denoted by ΨLT, of fixed rate m

r . As explained in Section II,
we divide the r coded rows of C = ΨLTA into

(
K
ηq

)
disjoint

batches, each of which is stored at a unique subset of size ηq
of the K servers. For this scheme, due to the random nature
of LT codes, we can assign coded rows to batches randomly.
The distributed computation is carried out as explained in
Section II-B, i.e., we wait for the fastest g ≥ q servers
to complete their respective computations in the map phase,
perform coded multicasting during the shuffle phase, and carry
out the decoding of the N output vectors in the reduce phase.

Let Ω denote the degree distribution and Ω(d) the proba-
bility of degree d. Also, let Ω̄ be the average degree. Then,
each row of the encoding matrix ΨLT is constructed in the
following manner. Uniformly at random select d unique entries
of the row, where d is drawn from the distribution Ω. For each
of these d entries, assign to it a nonzero element selected
uniformly at random from F2l . Specifically, we consider the
case where Ω is the robust Soliton distribution parameterized
by M and δ, where M is the location of the spike of the robust
component and δ is a parameter for tuning the decoding failure
probability for a given M [16].

A. Inactivation Decoding

We assume that decoding is performed using inactivation
decoding [17]. Inactivation decoding is an efficient maximum
likelihood decoding algorithm that combines iterative decod-
ing with optimal decoding in a two-step fashion and is widely

10

used in practice. As suggested in [17], we assume that the
optimal decoding phase is performed by Gaussian elimination.
In particular, iterative decoding is used until the ripple is
empty, i.e., until there are no coded symbols of degree 1,
at which point an input symbol is inactivated. The iterative
decoder is then restarted to produce a solution in terms of
the inactivated symbol. This procedure is repeated until all
input symbols are either decoded or inactivated. Note that the
value of some input symbols may be expressed in terms of the
values of the inactivated symbols at this point. Finally, optimal
decoding of the inactivated symbols is performed via Gaussian
elimination, and the decoded values are back-substituted into
the decoded input symbols that depend on them. The decoding
schedule has a large performance impact. Our implementation
follows the recommendations in [17]. It is important to tune the
parameters M and δ to minimize the number of inactivations.

Due to the nature of LT codes, we need to collect m(1 + ε)
intermediate values for each vector y before decoding. We
refer to ε as the overhead. Under inactivation decoding, and
for a given overhead ε, the probability of decoding failure with
an overhead of at most ε, denoted by Pf(ε), is lower bounded
by [26]

Pf(ε) ≥
m∑
i=1

(−1)i+1

(
m

i

)(m∑
d=1

Ω(d)

(
m−i
d

)(
m
d

))m(1+ε)

. (15)

Note that Pf(ε) is the CDF for the random variable “decoding
is not possible at a given overhead ε.” Furthermore, the lower
bound (15) well approximates the failure probability for an
overhead slightly larger than ε = 0. Denote by FDS(ε) the
probability of decoding being possible at an overhead of at
most ε. It follows that

FDS(ε) = 1− Pf(ε).

We find the decoding success probability density function
(PDF) by numerically differentiating FDS(ε).

B. Code Design

We design LT codes for a minimum overhead εmin, i.e., we
collect at least m(1 + εmin) coded symbols from the servers
before attempting to decode, and a target failure probability
Pf,target = Pf(εmin). We remark that increasing εmin and
Pf,target leads to a lower average degree Ω̄, and thus to less
complex encoding and decoding and subsequently to a lower
computational delay for encoding and decoding. The tradeoff
is that the communication load increases as more intermediate
values need to be transferred over the network on average.
Furthermore, increasing εmin and Pf,target may increase the
average number of servers g required to decode. We thus need
to balance the computational delay of the encoding and reduce
phases against that of the map phase to achieve a low overall
computational delay. Furthermore, waiting for more than g = q
servers typically increases the overall computational delay
by more than what is saved by the less complex encoding
and decoding given by the larger εmin and Pf,target. We thus
choose εmin and Pf,target such that decoding is possible with
high probability using the number of coded rows stored at

any set of q servers. Note that the overhead ε required for
decoding may be larger than εmin. We take this into account by
numerically integrating the decoding success PDF multiplied
by the performance of the scheme as a function of the overhead
ε.

For a given εmin and Pf,target, we find a pair (M, δ) that min-
imizes the decoding complexity (see Section VI-C) under the
constraint that Pf(εmin) ≈ Pf,target. Essentially, we minimize
the computational delay of the reduce phase for a fixed delay
of the map phase. We remark that LT codes with low decoding
complexity have a low average degree Ω̄, and thus also low
encoding complexity. Note that for a given M , decreasing δ
lowers the failure probability, but also increases the decoding
complexity. We find good pairs (M, δ) by selecting through
binary search the largest M such that there exists a δ for which
the lower bound on Pf(εmin) in (15) is approximately equal to
Pf,target. This heuristic produces codes with complexity very
close to those found using basin-hopping [27] combined with
the Powell optimization method [28].

C. Computational Delay

There are on average Ω̄ nonzero entries in each row of the
LT code encoding matrix. The LT code encoding complexity
is thus given by

σencode,LT = Ω̄rnσM + (Ω̄− 1)rnσA.

We simulate the complexity of the decoding σreduce,LT. Fur-
thermore, we assume that the decoding complexity depends
only on εmin, i.e., we evaluate the decoding complexity only
at ε = εmin, and simulate the number of servers g required for
a given overhead ε.

D. Communication Load

The coded multicasting scheme (see Section II-B3) is de-
signed for the case where we need m intermediate values per
vector y. Here, we tune it for the case where we instead need
at least m(1 + εmin) intermediate values by increasing the
number of coded multicast messages sent. Note that the coded
multicasting scheme is greedy in the sense that it starts by
multicasting coded messages to the largest possible number of
recipients and then gradually lowers the number of recipients.
Specifically, we perform the shuffle phase with (see (1))

sq,LT , inf

s :

ηq∑
j=s

αj ≤ (1 + εmin)− η

 .

The communication load of the LT code-based scheme for a
given ε ≥ εmin is then given by

LLT = min

 ηq∑
j=sq,LT

αj
φ(j)

+ (1 + ε)− η −
ηq∑

j=sq,LT

αj ,

ηq∑
j=sq,LT−1

αj
φ(j)

+ max

(1 + ε)− η −
ηq∑

j=sq,LT−1

αj , 0

 .

11

0.5

0.6

0.7

0.8

0.9

1

1.1
L

101 102 103
0.5

1

1.5

2

2.5

3

3.5

4

T

D

BDC, Heuristic LT
LT, Partitioned CMR
SC Unified

Fig. 5. The tradeoff between partitioning and performance for m = 6000,
n = 6000, K = 9, q = 6, N = 6000, and η = 1/3.

E. Partitioning of the LT Code-Based Scheme

We can apply partitioning to the LT code-based scheme in
the same manner as for the BDC scheme. Specifically, we
consider a block-diagonal encoding matrix ΨBDC−LT, where
the blocks ψ1, . . . ,ψT are LT code encoding matrices. In
particular, we consider the case where the number of parti-
tions T is equal to the partitioning limit of Theorem 1, i.e.,
T = r/

(
K
ηq

)
. In this case the all-ones assignment matrix P

introduced in the proof of Theorem 1 is a valid matrix. By
using this assignment matrix and identical encoding matrices
for each of the partitions, i.e., ψi = ψ, i = 1, . . . , T ,
the encoding and decoding complexity of each partition is
identical regardless of which set of servers G first completes
the map phase. Furthermore, by the same argument as in the
proof of Theorem 1, we are guaranteed that if any partition can
be decoded using the coded rows stored at the set of servers
G, all other partitions can also be decoded.

VII. NUMERICAL RESULTS

We present numerical results for the proposed BDC and
LT code-based schemes and compare them with the schemes
in [7]–[9]. Furthermore, we compare the performance of the
BDC scheme with assignment P produced by the heuristic
and hybrid solvers. We also evaluate the performance of the
LT code-based scheme for different Pf,target and εmin. For each
plot, the field size is equal to one more than the largest number
of coded rows considered for that plot, r + 1, rounded up to
the closest power of 2. The results, except those in Fig. 12, are
normalized by the performance of the uncoded scheme. Unless
stated otherwise, the assignment P is given by the heuristic
solver. As in [9], we assume that φ(j) = j.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

L

BDC, Heuristic LT LT, Partitioned
CMR SC Unified

101 102
0.5

1

1.5

2

2.5

K
D

Fig. 6. Performance dependence on system size for ηq = 2, n = m/100,
ηm = 2000, code rate m/r = 2/3, and N = 500q vectors.

A. Coded Computing Comparison

In Fig. 5, we depict the communication load L (see Def-
inition 1) and the computational delay D (see Definition 2)
as a function of the number of partitions, T . The system
parameters are m = 6000, n = 6000, K = 9, q = 6,
N = 6000, and η = 1/3. The parameters of the CMR
and SC schemes are qCMR = 9, ηCMR = 2

9 , and ηSC = 1
6 .

The minimum overhead for the LT code-based scheme is
εmin = 0.3 and its target failure probability is Pf,target = 0.1.
For up to r/

(
K
ηq

)
= 250 partitions (marked by the vertical

dotted line), the BDC scheme does not incur any loss in Dmap

and communication load with respect to the unified scheme
(see Theorem 1). Furthermore, the BDC scheme yields about a
2% lower delay compared to the unified scheme for T = 1000.
The delay of the LT code-based scheme is slightly worse than
that of the BDC scheme, and the load is about 65% higher (for
T = 250). Partitioning the LT code-based scheme increases the
communication load and reduces the computational delay by
about 0.5%. We remark that the number of partitions for the LT
code-based scheme is fixed at r/

(
K
ηq

)
. For heavy partitioning

of the BDC scheme, a tradeoff between partitioning level,
communication load, and map phase delay is observed. For
example, with 3000 partitions (the maximum possible), there is
about a 10% increase in communication load over the unified
scheme. Note that the gain in computational delay saturates,
thus there is no reason to partition beyond a given level. The
load of the SC scheme is about twice that of our proposed
schemes and the delay is about half. Finally, the delay of
the BDC and the LT code-based scheme is about 25% lower
compared to the CMR scheme for T > 100.

In Fig. 6, we plot the performance for a constant ηq = 2,
n = m/100, ηm = 2000, code rate m/r = 2/3, and
N = 500q vectors as a function of the number of servers, K.
The ratio m/n is motivated by machine learning applications,

12

0.4

0.5

0.6

0.7

0.8

0.9

1
L

BDC, Heuristic LT
LT, Partitioned Unified

101 102
0

5

10

15

20

25

K

D

Fig. 7. Performance dependence on system size with constant complexity of
the map phase per server, m/r = 2/3, ηq = 2, n = m/100, and N = n.

where the number of rows and columns often represent the
number of samples and features, respectively. Note that the
number of arithmetic operations performed by each server
in the map phase increases with K. We choose the number
of partitions T that minimizes the delay under the constraint
that the communication load is at most 1% higher compared
to the unified scheme. The parameters of the LT code-based
scheme are εmin = 0.335 and Pf,target = 0.1. The results shown
are averages over 1000 randomly generated realizations of G.
Our proposed BDC scheme outperforms the unified scheme
in terms of computational delay by between about 25% (for
K = 6) and 10% (for K = 201). Furthermore, the delay
of both the BDC and LT code-based schemes are about 50%
lower than that of the CMR scheme for K = 201. For K = 6
the computational delay of the unpartitioned and partitioned
LT code-based schemes is about 5% higher and 8% lower
compared to the BDC scheme, respectively. For K = 201 the
delay of the LT code-based scheme is about 1% lower than
that of the BDC scheme. However, the communication load
is about 45% higher. Finally, the communication load of the
BDC scheme is between about 42% (for K = 6) and 66%
(for K = 201) of that of the SC scheme.

In Fig. 7, we show the performance for code rate m/r =
2/3, ηq = 2, and a fixed workload per server as a func-
tion of K. Specifically, we fix the number of additions and
multiplications computed by each server in the map phase
to 108 (±5% to find valid parameters) and scale m,n,N
with K. The number of rows m of A takes values between
12600 and 59800, and we let n = m/100 and N = n. The
number of partitions T is selected in the same way as for
Fig. 6. The results shown are averages over 1000 randomly
generated realizations of G. The computational delay of the
unified scheme is about a factor 20 higher than that of the
BDC scheme for K = 300. The computational delay of the
partitioned LT code-based scheme is similar to that of the BDC

0.5

0.6

0.7

0.8

0.9

1

L BDC, Heuristic LT (0.3, 10−1)

LT (0.3, 10−3) LT (0.37, 10−1)

LT (0.37, 10−3)

103 104
2

2.05

2.1

2.15

2.2

2.25

2.3

n

D
Fig. 8. Performance dependence on the number of columns n of A for
m = 2400, K = 9, q = 6, N = 60, T = 240, and η = 1/3. The parameters
of the LT code-based scheme are given in the legend as (εmin, Pf,target).

scheme, while the delay of the unpartitioned LT code-based
scheme is about 60% higher. Furthermore, the communication
load of the LT code-based scheme is about 45% higher
compared to those of the unified and BDC schemes.

In Fig. 8, we plot the performance of the BDC and LT
code-based schemes as a function of the number of columns
n. The system parameters are m = 2400, K = 9, q = 6,
N = 60, T = 240, and η = 1/3. The communication load of
the LT code-based scheme depends primarily on the minimum
overhead εmin and the computational delay primarily on the
target failure probability Pf,target. We remark that a higher
Pf,target allows for using codes with lower average degree and
thus less complex encoding and decoding. For n = 20000,
the computational delay of the LT code-based scheme with
Pf,target = 0.1 is about 1.5% lower than that of the BDC
scheme. For Pf,target = 0.001, the computational delay is
about 3% and 1.5% higher than that of the BDC scheme when
εmin = 0.3 and εmin = 0.37, respectively. On the other hand,
the communication load of the LT code-based scheme with
εmin = 0.3 and εmin = 0.37 is about 41% and 44% higher
than that of the BDC scheme, respectively.

B. Assignment Solver Comparison

In Figs. 9 and 10, we plot the performance of the BDC
scheme with assignment P given by the heuristic and the
hybrid solver. We also give the average performance over
100 random assignments. The vertical dotted line marks the
partitioning limit of Theorem 1. The parameters in Figs. 9 and
10 are identical to those in Figs. 5 and 6, respectively.

In Fig. 9, we plot the performance as a function of the
number of partitions, T . For T less than about 200, the
performance for all solvers is identical. On the other hand, for
T > 200 both the computational delay and the communication
load are reduced with P from the heuristic solver over the

13

0.5

0.52

0.54

0.56

0.58

0.6
L

BDC, Heuristic
BDC, Hybrid
BDC, Random

101 102 103
1.5

2

2.5

3

3.5

4

T

D

Fig. 9. Solver performance as a function of partitioning for m = 6000,
n = 6000, K = 9, q = 6, N = 6000, and η = 1/3.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

L

BDC, Heuristic
BDC, Random

101 102
0.5

1

1.5

2

2.5

K

D

Fig. 10. Solver performance as a function of system size for ηq = 2, n =
m/100, ηm = 2000, code rate m/r = 2/3, and N = 500q vectors.

random assignments (about 5% for load and 47% for delay
at T = 3000). A further improvement in communication load
can be achieved using the hybrid solver, but at the expense of
a possibly larger computational delay.

In Fig. 10, we plot the performance as a function of the
number of servers, K. The results shown are averages over
1000 randomly generated realizations of G. For K = 6, the
communication load of the heuristic solver is about 5% lower
than that of the random assignments, but for K = 201 the
difference is negligible. In terms of computational delay, the

2 2.5 3 3.5 4 4.5 5 5.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D

L

BDC, Heuristic, 1%

BDC, Heuristic, 10%
LT, Partitioned
Unified

Fig. 11. The tradeoff between communication load and computational delay
for K = 14, m = 50000± 3%, n = 500, N = 840, and η = 1/2.

heuristic solver outperforms the random assignments by about
18% and 3% for K = 9 and K = 201, respectively. The
hybrid solver is too computationally complex for use with the
largest systems considered.

C. Tradeoff Between Communication Load and Computa-
tional Delay

In Fig. 11, we show the tradeoff between communication
load and computational delay. The parameters are K = 14,
m = 50000 (±3% to find valid parameters), n = 500,
N = 840, and η = 1/2. Note that the code rate is decreasing
toward the bottom of the plot. We select the number of
partitions T that minimizes the delay while the load is at
most 1% or 10% higher compared to the unified scheme.
Allowing a 10% increased load gives up to about 7% lower
delay compared to allowing a 1% increase. For the topmost
data point of the BDC and unified schemes the encoding
complexity dominates, and there is no reason to operate at
this point since both the delay and load can be reduced.
The parameters of the partitioned LT code-based scheme are
εmin = 0.3 and Pf,target = 10−1. For the data point with
minimum computational delay, the LT code-based scheme
yields about 15% lower delay at the expense of about a
30% higher load compared to the BDC scheme. Finally, the
computational delay of the BDC scheme is between about 47%
and 4% lower compared to the unified scheme for the topmost
and bottommost data points, respectively.

D. Computational Delay Deadlines

In Fig. 12, we plot the probability of a computation not
finishing before a deadline t, i.e., the probability of the
computational delay being larger than t. As in [29], we plot
the complement of the CDF of the delay in logarithmic scale.

14

2,500 3,000 3,500 4,000 4,500 5,000
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

t

P
r(
D
el
ay

>
t)

BDC, Heuristic
LT
Unified
Uncoded

Fig. 12. The probability of a computation not finishing before a deadline t
for K = 201, q = 134, m = 134000, n = 1340, N = 67000 vectors, T =
6700 partitions, code rate m/r = 2/3, εmin = 0.335, and Pf,target = 10−9.

On the horizontal axis, we show the deadline t. The system
parameters are K = 201, q = 134, m = 134000, n = 1340,
N = 67000 vectors, T = 6700 partitions, and code rate
m/r = 2/3. The parameters for the LT code-based scheme
are εmin = 0.335 and Pf,target = 10−9. The results are due
to simulations. In particular, we simulate the decoding failure
probability of LT codes for various t and extrapolate from
these points under the assumption that the decoding failure
probability is Gamma distributed. The fitted values deviate
negligibly from the simulated values.

When the deadline is t = 3500, the probability of exceeding
the deadline is about 0.4 for the unified and uncoded schemes.
For the BDC scheme the probability is only about 7 · 10−3.
The probability is slightly lower for the LT code-based scheme,
about 4 · 10−3. If we instead consider a deadline t = 4000,
the probability of exceeding the deadline is about 10−3 and
0.15 for the unified and uncoded schemes, respectively. For
the BDC scheme the probability of exceeding the deadline is
about 9 · 10−8, i.e., 4 orders of magnitude lower compared
to the unified scheme. The LT code-based scheme further
improves the performance with a probability of exceeding the
deadline of about 3 · 10−8. We remark that for the data point
with minimum delay in Fig. 11, the LT code-based scheme
has a significant advantage over the BDC scheme in terms of
meeting a short deadline.

E. Alternative Runtime Distribution

Here, we consider a runtime distribution with CDF

FH(h;σ) =

{
1− e−(h−σ)/β , for h ≥ σ
0, otherwise

,

where σ is the shift and β is a parameter that scales the
tail of the distribution, i.e., it differs from the one considered
previously by that the scale of the tail may be different from

101 102
20

21

22

23

24

25

K

D

BDC, Heuristic, ω = 0
Unified, ω = 0
BDC, Heuristic, ω = 1
Unified, ω = 1
BDC, Heuristic, ω = 10
Unified, ω = 10
BDC, Heuristic, ω = 100
Unified, ω = 100

Fig. 13. Computational delay as a function of system size for varying scale of
the tail of the runtime distribution. The system parameters and communication
load are identical to those in Fig. 7.

the shift. It is equal to the previously considered distribution
if β = σ. This model has been used to model distributed
computing in, e.g., [30]. Under this model we assume that the
reduce delay of the uncoded scheme follows the distribution
above with parameters β and σUC,reduce = 0 since each
server has to assemble the final output from the intermediate
results regardless coding is used or not. We assume that the
encoding delay of the uncoded scheme is zero. Denote by σc

the computational complexity of matrix-vector multiplication
for the BDC and unified schemes. We let β = ωσc for
ω = 0, 1, 10, 100. In Fig. 13, we plot the computational delay
normalized by that of the uncoded scheme. The system pa-
rameters (and thus also the communication load) are identical
to those in Fig. 7.

We observe the greatest gain of the BDC scheme over the
unified scheme for small ω since the benefits of straggler
coding are small compared to the added delay due to encoding
and decoding, which is significant for the unified scheme. For
larger ω the benefits of straggler coding are larger while the
delay due to encoding and decoding remains constant. Hence,
the performance of both schemes converge. However, even for
ω = 100 the delay of the unified scheme is about 33% higher
than that of the BDC scheme for the largest system considered
(K = 300). We remark that for the example considered in [30]
the parameters β = σ = 1, i.e., ω = 1, are used.

VIII. CONCLUSION

We introduced two coding schemes for distributed matrix
multiplication. One is based on partitioning the matrix into
submatrices and encoding each submatrix separately using
MDS codes. The other is based on LT codes. Compared to
the earlier scheme in [9] and to the CMR scheme in [7], both
proposed schemes yield a significantly lower overall compu-
tational delay. For instance, for a matrix of size 59800× 598,

15

the BDC scheme reduces the computational delay by about a
factor 20 over the scheme in [9] with about a 1% increase in
communication load. The LT code-based scheme may reduce
the computational delay further at the expense of a higher
communication load. For example, for a matrix with about
50000 rows, the computational delay of the LT code-based
scheme is about 15% lower than that of the BDC scheme with
a communication load that is about 30% higher. Finally, we
have shown that the proposed coding schemes significantly
increase the probability of a computation finishing within a
deadline. The LT code-based scheme may be the best choice
in situations where high reliability is needed due to its ability
to decrease the computational delay at the expense of the
communication load.

ACKNOWLEDGMENT

The authors would like to thank Dr. Francisco Lázaro
and Dr. Gianluigi Liva for fruitful discussions and insightful
comments on LT codes.

REFERENCES

[1] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool Publishers, 2009.

[2] C. L. P. Chen and C.-Y. Zhang, “Data-intensive applications, chal-
lenges, techniques and technologies: A survey on big data,” Information
Sciences, vol. 275, pp. 314–347, Aug. 2014.

[3] L. A. Barroso, “Warehouse-scale computing: The machinery that runs
the cloud,” in Frontiers of Engineering: Reports on Leading-Edge
Engineering from the 2010 Symposium. Washington, DC: The National
Academies Press, 2011, pp. 15–19.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Proc. Conf. Symp. Operating Systems Design &
Implementation, San Francisco, CA, Dec. 2004, p. 10.

[5] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache Spark: A unified engine
for big data processing,” Communications of the ACM, vol. 59, no. 11,
pp. 56–65, Nov. 2016.

[6] R. Ranjan, “Streaming big data processing in datacenter clouds,” IEEE
Cloud Computing, vol. 1, no. 1, pp. 78–83, May 2014.

[7] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
in Proc. Allerton Conf. Commun., Control, and Computing, Monticello,
IL, Sep./Oct. 2015, pp. 964–971.

[8] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[9] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.
Work. Network Coding and Appl., Washington, DC, Dec. 2016.

[10] H. Ishii and R. Tempo, “The PageRank problem, multiagent consensus,
and web aggregation: A systems and control viewpoint,” IEEE Control
Systems Mag., vol. 34, no. 3, pp. 34–53, Jun. 2014.

[11] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE Int. Symp. Inf. Theory, Aachen, Germany,
Jun. 2017, pp. 2418–2422.

[12] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
an optimal design for high-dimensional coded matrix multiplication,” in
Proc. Advances Neural Inf. Processing Systems, Long Beach, CA, Dec.
2017, pp. 4403–4413.

[13] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing large
linear transforms distributedly using coded short dot products,” in
Proc. Advances Neural Inf. Processing Systems, Barcelona, Spain, Dec.
2016, pp. 2100–2108.

[14] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr,
“Coded computation over heterogeneous clusters,” in Proc. IEEE
Int. Symp. Inf. Theory, Aachen, Germany, Jun. 2017, pp. 2408–2412.

[15] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal
coding for distributed computing with straggling servers,” in Proc. IEEE
Inf. Theory Work., Kaohsiung, Taiwan, Nov. 2017, pp. 464–468.

[16] M. Luby, “LT codes,” in Proc. IEEE Symp. Foundations Computer
Science, Vancouver, BC, Canada, Nov. 2002, pp. 271–280.

[17] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Min-
der, “RaptorQ Forward Error Correction Scheme for Object Delivery,”
Internet Requests for Comments, RFC Editor, RFC 6330, Aug. 2011.

[18] J. Edmonds and M. Luby, “Erasure codes with a hierarchical bundle
structure,” IEEE Trans. Inf. Theory, 2017, to appear.

[19] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
Proc. European Conf. Computer Systems, Bordeaux, France, Apr. 2015.

[20] G. Liang and U. C. Kozat, “TOFEC: Achieving optimal throughput-
delay trade-off of cloud storage using erasure codes,” in Proc. IEEE
Conf. Computer Commun., Toronto, ON, Canada, Apr./May 2014, pp.
826–834.

[21] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in
Order Statistics, 2nd ed. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2008.

[22] C. Walck, “Hand-book on statistical distributions for experimentalists,”
Particle Physics Group, University of Stockholm, Sweden, Tech. Rep.
SUF-PFY/96-01, Sep. 2007. [Online]. Available: http://staff.fysik.su.se/
∼walck/suf9601.pdf

[23] S.-J. Lin, T. Y. Al-Naffouri, Y. S. Han, and W.-H. Chung, “Novel
polynomial basis with fast Fourier transform and its application to Reed-
Solomon erasure codes,” IEEE Trans. Inf. Theory, vol. 62, no. 11, pp.
6284–6299, Nov. 2016.

[24] G. Garrammone, “On decoding complexity of Reed-Solomon codes on
the packet erasure channel,” IEEE Commun. Lett., vol. 17, no. 4, pp.
773–776, Apr. 2013.

[25] A. Severinson, “Coded Computing Tools,” Aug. 2018. [Online].
Available: https://doi.org/10.5281/zenodo.1400313

[26] B. Schotsch, G. Garrammone, and P. Vary, “Analysis of LT codes over
finite fields under optimal erasure decoding,” IEEE Commun. Lett.,
vol. 17, no. 9, pp. 1826–1829, Sep. 2013.

[27] D. J. Wales and J. P. K. Doye, “Global optimization by basin-hopping
and the lowest energy structures of Lennard-Jones clusters containing
up to 110 atoms,” J. Phys. Chem. A, vol. 101, no. 28, pp. 5111–5116,
Jul. 1997.

[28] M. J. D. Powell, “An efficient method for finding the minimum of
a function of several variables without calculating derivatives,” The
Computer Journal, vol. 7, no. 2, pp. 155–162, Jan. 1964.

[29] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for par-
allel and distributed computing within a deadline,” in Proc. IEEE
Int. Symp. Inf. Theory, Aachen, Germany, Jun. 2017, pp. 2403–2407.

[30] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 43, no. 3, pp. 7–11, Dec. 2015.

http://staff.fysik.su.se/~walck/suf9601.pdf
http://staff.fysik.su.se/~walck/suf9601.pdf
https://doi.org/10.5281/zenodo.1400313

	Introduction
	System Model and Preliminaries
	Probabilistic Runtime Model
	Distributed Computing Model
	Encoding Phase
	Map Phase
	Shuffle Phase
	Reduce Phase

	Previously Proposed Coded Computing Schemes

	Block-Diagonal Coding
	Assignment of Coded Rows to Batches

	Performance of the Block-Diagonal Coding
	Communication Load
	Computational Delay
	Lossless Partitioning

	Assignment Solvers
	Heuristic Solver
	Branch-and-Bound Solver
	Branch
	Bound

	Hybrid Solver

	Luby Transform Codes
	Inactivation Decoding
	Code Design
	Computational Delay
	Communication Load
	Partitioning of the LT Code-Based Scheme

	Numerical Results
	Coded Computing Comparison
	Assignment Solver Comparison
	Tradeoff Between Communication Load and Computational Delay
	Computational Delay Deadlines
	Alternative Runtime Distribution

	Conclusion
	References

