General method for atomistic spin-lattice dynamics with first-principles accuracy
Artikel i vetenskaplig tidskrift, 2019

We present a computationally efficient and general first-principles based method for spin-lattice simulations for solids and clusters. The method is based on a coupling of atomistic spin dynamics and molecular dynamics simulations, expressed through a spin-lattice Hamiltonian, where the bilinear magnetic term is expanded up to second order in displacement. The effect of first-order spin-lattice coupling on the magnon and phonon dispersion in bcc Fe is reported as an example, and we observe good agreement with previous simulations. We also illustrate the coupled spin-lattice dynamics method on a more conceptual level, by exploring dissipation-free spin and lattice motion of small magnetic clusters (a dimer, trimer, and tetramer). The method discussed here opens the door for a quantitative description and understanding of the microscopic origin of many fundamental phenomena of contemporary interest, such as ultrafast demagnetization, magnetocalorics, and spincaloritronics.

Författare

Johan Hellsvik

NORDITA

Kungliga Tekniska Högskolan (KTH)

Danny Thonig

Uppsala universitet

Klas Modin

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Diana Iusan

Uppsala universitet

Anders Bergman

Uppsala universitet

Olle Eriksson

Örebro universitet

Uppsala universitet

Lars Bergqvist

Kungliga Tekniska Högskolan (KTH)

Anna Delin

Kungliga Tekniska Högskolan (KTH)

Uppsala universitet

PHYSICAL REVIEW B

2469-9950 (ISSN) 2469-9969 (eISSN)

Vol. 99 10 104302

Ämneskategorier

Annan fysik

Teoretisk kemi

Den kondenserade materiens fysik

DOI

10.1103/PhysRevB.99.104302

Mer information

Senast uppdaterat

2019-04-08