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Abstract: Run-length code based distribution matching (DM) for probabilistic shaping is 

combined with a uniformalizer to realize low-complexity fixed-length DM. The proposed method 

is 0.4 dB better than previous low-complexity DM methods. 
OCIS codes: (060.4510) Optical Communications; (060.4080) Modulation  

 

1. Introduction 

A number of schemes for probabilistic constellation shaping have been investigated to approach the Shannon 

capacity. Probabilistic amplitude shaping [1] with arithmetic coding-based constant-composition distribution 

matching (CCDM) [2] is one of the state-of-the-art techniques in the optical communication field, due to its 

asymptotically optimal performance and fixed-length to fixed-length (f2f) conversion feature. Turbo coding with 

many-to-one mapping with iterative demodulation also shows very good performance [3]. On the other hand, both 

these schemes are complex when implemented in hardware for high-throughput optical communication systems. For 

the techniques in [1,2], a bit-wise distribution matching (DM) and its superposition will relax the complexity issue 

somewhat [4–6]. The simplest implementation of bit-wise DM by arithmetic coding, which would be an m-out-of-n 

code [7], requires two multipliers per bit with high-precision arithmetics (≥ 12 bits quantization [7,8]). Significantly 

less complex shaping techniques can be found in [6,9], but with more limited performance improvements. Thus, it is 

still desirable to realize DMs with a better tradeoff between performance and complexity. 

Arithmetic coding is a well-known entropy code that originally was used for data compression. There are simple 

arithmetic coding families like [10], but it is not known if they can be applied to an f2f-DM. Recently, stream DM 

has been proposed [8], which switches several variable-length output codebook tables to realize quasi-f2f-DM 

without multiplications. However, easier compression techniques than arithmetic coding could be an alternative 

candidate. In this paper, we extend our previous shaping scheme in [6] by introducing a new bit-wise DM, which 

uses a mapper based on run-length coding (RL mapper). Regular run-length codes are impractical, since their output 

length vary with the input data, i.e., they are not f2f.  As we will show, however, an f2f-DM can be realized by 

employing distribution unifomalizers, which makes the number of marks and spaces per unit block exactly the same 

in each input bit lane to the RL mapper. The proposed DM is bounded in length because of the uniformalization 

feature, so error propagation due to residual errors after forward error correction (FEC) decoding will be prevented. 

2.  The proposed DM technique and uniformalization 

The DM in this paper is an extended version of the previous work in [6], which was based on a bit-level DM [4,5] 

and low-complexity bit-wise DMs [6]. In this paper, we introduce a bit-wise DM with improved performance 

relative to [6]. To save space, here we explain only our new bit-wise DM in detail. It is based on run-length 

decompression, which can realize f2f conversion with limited-length buffering by using distribution uniformalizers 

(UFLs). The schematic of the bit-wise DM is shown in Fig. 1. Binary uniform (at infinite length) input bits are 

demultiplexed to K parallel bit lanes. Each UFL makes the mark ratio exactly 1/2 at the output (at a finite length), 

which will be explained later. The RL mapper converts a fixed number K of parallel input bits to variable-length 

output words. An example of RL mapping is shown in Tab. 1, where the number of input bit lanes K is 3. The 

Tab. 1.  An example of a RL mapper for K=3. 

Input bits 

b1b2b3 

Input 

symbol 

Output 

bits 

Output 

length 

000 0 1 1 

001 1 01 2 

… … … … 

110 6 0000001 7 

111 7 00000000 8 

 

Run-

length

mapper

UFL

UFL

UFL

Uniform input bits

of bit-level j

(number of bits 

per block: Ni)

Nonuni. output bits

of bit-level j

(number of bits

per block: Ns)

b1

b2

bK

Mark ratio of each UFL output equals exactly 1/2 per block
 

Fig. 1.  Schematic of the proposed bit-wise DM. UFL: uniformalizer. 



number of consecutive spaces in the output word is 

given by the input word interpreted as an integer, so 

the output word length varies from 1 to 2K. All cases 

can be distinguished by just reading from the head of 

the received bits. The input bits to the RL mapper in 

each bit lane is completely uniform during a block. It 

can be shown that this makes the average output 

block length, per K input bits, exactly (1+2K)/2, thus 

ensuring an f2f mapping of bits. 

The rate loss (output entropy minus information 

rate) as a function of output entropy is shown in Fig. 

2. For comparison, the schemes of [6] are also shown. 

The rate loss of the permutation mapper and the bit 

scramble mapper are far from the ideal case, 

especially at entropies in the range 0.3–0.8, because 

of the simplicity and limited output block length Ns ≤ 

64, limited number of marks (2) for the permutation mapper, and limited number of bit scramble patterns (8). 

However, the RL mapper is much closer to the ideal performance. For high entropies, 0.8–1, bit scramble mappers 

are preferred. 

Fig. 3 shows how the proposed UFL works. For given integers K, L, and M, a block of Ni = K[(L–1)(M–1)+1] 

input bits is first demultiplexed into K parallell lanes. In each lane, the bits are further divided into M–1 subblocks of 

L–1 bits each, except the first that has L bits. For the first subblock, we just count the number of marks. For the 

remaining subblocks, we either flip all bits in the subblock or not. The flip information is carried by 1 bit per 

subblock. By doing so, the total difference between the number of marks and spaces will be bounded within ±L bits. 

An Mth subblock is therefore appended, consisting of a mark-count sequence to clean up the residual mark–space 

difference, making it zero over the entire block of LM output bits. Finally, the output bits are RL-mapped as 

described above and multiplexed into a single output block of Ns = L×M×(1+2K)/2 bits. The error propagation in the 

distribution dematching will thus be limited to Ns bits even if the FEC decoder fails to correct some errors. 

Fig. 4 shows 10 examples of the offset of the output block length after the RL mapper without (a) and with (b) 

distribution uniformalization, where K=6, L=128, and M=16. The offset after subblock i is defined as the cumulative 

output block length minus the target length of L×i×(1+2K)/2. The offsets diverge significantly without 

uniformalization in Fig. 4(a), but settles to zero with it in Fig. 4(b). 

3.  Parameters of the run-length mappers and performance results 

Tab. 2 summarizes the parameters of the studied run-length mappers with uniformalizers. For simplicity, we define 

only four RL mappers, realized by look-up tables with 2K entries. The parameters were chosen so that Ns is the same 

in all four cases.  

The simulated constellation gain as a function of modulation and shaping spectral efficiency is shown in Fig. 5 

for 2m–ary pulse amplitude modulation, where m = 2, 3, 4, or 5. We chose m–1 bit-wise DMs from the four RL 

mappers in Tab. 2, the twelve bit scramble mappers [6], no DM, and no information (e.g. all bits zero) shown in Fig. 

2. The performance of the previous low-complexity DM [6] (permutation mapper and bit scramble mapper in Fig. 2) 

is also shown for comparison. The constellation gain G of probabilistically shaped signals depends on the FEC code 

rate Rc [6], so we calculated it at Rc = 1 and 5/6 in Figs. 5 (a) and (b), resp. There are (m–1)18 cases, and the best 
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Fig. 3.  Bit-wise DM block structure and 

uniformalization processing 

Fig. 4.  Offset of the output block length of the RL mapper (a) without and (b) with 

distribution uniformalizer. 
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Fig. 2.  Rate loss vs. output entropy of low-complexity bit-wise f2f-DMs. 

 



combination is shown at each (discretized) spectral 

efficiency. We observed performance dips at 3, 5, 7, 

and 9 b/s/Hz/pol. for the scheme in [6], but we see 

no similar dips for the proposed scheme. The 

maximum improvement over [6] is around 0.5 dB at 

such spectral efficiencies even when we take the 

code rate into account (then performance with 

stronger shaping becomes lower).  

We also simulated the required signal-to-noise ratio (SNR) gap from the Shannon capacity on the Gaussian 

channel. As the information rate, we evaluated the rate 2Rmax–(1–Rc)2m, where Rmax and m are the rate per one 

dimensions without FEC coding and the number of bits per one dimension, resp. We used the DVB-S2 low-density 

parity-check soft-decision FEC codes [11] having code rates from 2/3, 3/4, 5/6, and 9/10 with 20 decoding 

iterations, and an outer hard-decision FEC code [12] with a code rate of 0.9922. The error-free (10–15) threshold for 

the outer FEC code is at a bit-error rate (BER) of 5×10–5 [12]. The results are shown in Fig. 6. We chose 6 cases 

from Fig. 5 for the proposed RL mapping with bit scramble mapping with 2Rmax = 2.59, 3.32, 4.56, 4.89, 5.32, 6.20, 

6.44, 6.92, 7.22, 8.44, and 9.16 b/s/Hz. For comparison, uniform 4, 8, 16, 32, 64, 128, 256, and 1024-QAM, CCDM 

[2] based 64-QAM with Ns = 1024, and the previous low-complexity f2f-DMs [6] are also shown (each of them is 

degraded around 0.2 dB compared to [6] due to the evaluation at the post-FEC BER of 10–15 instead of 10–3 in [6]). 

Soft-decision FEC code rates for the shaped signals are > (m–1)/m. While CCDM shows the best performance at the 

expense of significant complexity, the proposed DM shows around 0.4 dB (at around 2, 4, 6, and 8 b/s/Hz/pol.) 

better performance than [6] for spectral efficiencies from 1 to 9 b/s/Hz/pol.  

4.  Conclusion  

We proposed a new bit-wise f2f-DM scheme with a variable-length output run-length mapper and distribution 

uniformalizers for probabilistically constellation shaping with significantly less complexity than arithmetic coding 

schemes. It does not require any multipliers. It is similar to stream processing, but is terminated periodically by the 

uniformalizer, thereby avoiding error propagation if the FEC decoder misconverges. It realizes at maximum 0.4 dB 

better performance (lower required SNR) than a previous low-complexity f2f-DM technique.  
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Fig. 5.  Constellation gain as a function of modulation and shaping 

spectral efficiency by low-complexity DMs. Gray allows show 

improvement over [6]. 

Fig. 6.  SNR gap from the Shannon limit at the post-FEC BER of  

10–15 with inner soft and outer hard-decision concatenation FEC 

codes. 

 

Tab. 2.  Parameters of RL mappers with distribution uniformalizers. 

# Ni L M K Ns 
Info. 
rate 

Entropy 

1 71997 143 170 3 109395 0.6581 0.7107 

2 50580 110 117 4 109395 0.4624 0.5008 

3 32345 78 85 5 109395 0.2957 0.3223 

4 19506 51 66 6 109395 0.1783 0.1958 

 


