

Repeatability and reproducibility of longitudinal relaxation rate in 12 small-animal MRI systems

Downloaded from: https://research.chalmers.se, 2024-04-19 00:41 UTC

Citation for the original published paper (version of record):

Waterton, J., Hines, C., Hockings, P. et al (2019). Repeatability and reproducibility of longitudinal relaxation rate in 12 small-animal MRI systems. Magnetic Resonance Imaging, 59: 121-129. http://dx.doi.org/10.1016/j.mri.2019.03.008

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library

Contents lists available at ScienceDirect

Magnetic Resonance Imaging

journal homepage: www.elsevier.com/locate/mri

Original contribution

Repeatability and reproducibility of longitudinal relaxation rate in 12 smallanimal MRI systems

John C. Waterton^{a,b,*}, Catherine D.G. Hines^c, Paul D. Hockings^{d,e}, Iina Laitinen^f, Sabina Ziemian^g, Simon Campbell^h, Michael Gottschalkⁱ, Claudia Green^g, Michael Haase^h, Katja Hassemer^{f,1}, Hans-Paul Juretschke^{f,2}, Sascha Koehler^j, William Lloyd^b, Yanping Luo^k, Irma Mahmutovic Persson^l, James P.B. O'Connor^m, Lars E. Olsson^l, Kashmira Pindoria^h, Jurgen E. Schneiderⁿ, Steven Sourbron^o, Denise Steinmann^f, Klaus Strobel^j, Sirisha Tadimalla^o, Irvin Tehⁿ, Andor Veltien^p, Xiaomeng Zhang^k, Gunnar Schütz^g

Manchester Academic Health Sciences Centre, MANCHESTER M13 9PL, United Kingdom

- ^d Antaros Medical, BioVenture Hub, 43183 Mölndal, Sweden
- ^e MedTech West, Chalmers University of Technology, Gothenburg, Sweden
- ^f Sanofi-Aventis Deutschland GmbH, R&D TIM Bioimaging Germany, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
- ⁸ Bayer AG, Research and Development, Pharmaceuticals, MR and CT Contrast Media Research, Müllerstraße 178, D-13353 Berlin, Germany
- h In-Vivo Bioimaging UK, RD Platform Technology & Science, GSK Medicines Research Centre, Gunnels Wood Road, STEVENAGE, Hertfordshire, SG1 2NY, United
- Kingdom

- ^j Bruker BioSpin MRI GmbH, Rudolf-Plank-Straße 23, D-76275 Ettlingen, Germany
- ^k iSAT Discovery, Abbvie, 1 North Waukegan Road, North Chicago, IL, 60064-1802, United States of America
- ¹Department of Translational Sciences, Medical Radiation Physics, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
- ^m Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, MANCHESTER M20 4BX, United Kingdom
- ⁿ Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
- ° Leeds Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, LIGHT Labs, Clarendon Way, LEEDS LS2 9JT, United Kingdom
- ^p Radboud university medical center, Radiology (766), P.O.Box 9101, 6500, HB, Nijmegen, the Netherlands

E-mail addresses: john.waterton@bioxydyn.com (J.C. Waterton), catherine.hines@merck.com (C.D.G. Hines),

paul.hockings@antarosmedical.com (P.D. Hockings), iina.laitinen@sanofi.com (I. Laitinen), sabina.ziemian@bayer.com (S. Ziemian),

simon.x.campbell@gsk.com (S. Campbell), michael.gottschalk@med.lu.se (M. Gottschalk), claudia.green@bayer.com (C. Green),

michael.v.haase@gsk.com (M. Haase), katja.hassemer@sanofi.com (K. Hassemer), Sascha.Koehler@bruker.com (S. Koehler),

william.lloyd@manchester.ac.uk (W. Lloyd), yanping.luo@abbvie.com (Y. Luo), irma.mahmutovic_persson@med.lu.se (I. Mahmutovic Persson),

james.o'connor@manchester.ac.uk (J.P.B. O'Connor), lars_e.olsson@med.lu.se (L.E. Olsson), kashmira.2.pindoria@gsk.com (K. Pindoria),

J.E.Schneider@leeds.ac.uk (J.E. Schneider), S.Sourbron@leeds.ac.uk (S. Sourbron), denise.steinmann@sanofi.com (D. Steinmann),

- ¹ (formerly Katja Hoffmann)
- ² former address.

https://doi.org/10.1016/j.mri.2019.03.008

Received 5 July 2018; Received in revised form 29 January 2019; Accepted 8 March 2019

0730-725X/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

^a Bioxydyn Ltd, Manchester Science Park, Rutherford House, Pencroft Way, MANCHESTER M15 6SZ, United Kingdom

^b Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester,

^c Merck & Co., Inc., West Point, PA, United States of America

ⁱ Lund University BioImaging Center, Klinikgatan 32, SE-222-42 Lund, Sweden

Abbreviations: Av, Avance; B₀, applied magnetic field; CoV, coefficient of variation; DNE, dynamic no enhancement; FISP, fast steady-state free-precession; ICH GCP, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use Harmonised Tripartite Guideline for Good Clinical Practice; PV, ParaVision; R_1 , longitudinal relaxation rate; r_1 , longitudinal relaxativity; rms, root-mean-square; SNR, signal-to-noise ratio; T_1 , longitudinal relaxation time; T1W, T_1 -weighted; T_2 , transverse relaxation time

^{*} Corresponding author at: Bioxydyn Ltd, Manchester Science Park, Rutherford House, Pencroft Way MANCHESTER M15 6SZ, United Kingdom.

Klaus.Strobel@bruker.com (K. Strobel), S.Tadimalla@leeds.ac.uk (S. Tadimalla), I.Teh@leeds.ac.uk (I. Teh), Andor.Veltien@radboudumc.nl (A. Veltien), xiaomeng.zhang@abbvie.com (X. Zhang), gunnar.schuetz@bayer.com (G. Schütz).

ARTICLE INFO

Keywords: MRI Hardware stability Biomarker Relaxation time Phantom Reproducibility Error propagation

ABSTRACT

Background: Many translational MR biomarkers derive from measurements of the water proton longitudinal relaxation rate R_1 , but evidence for between-site reproducibility of R_1 in small-animal MRI is lacking. *Objective:* To assess R_1 repeatability and multi-site reproducibility in phantoms for preclinical MRI.

Methods: R_1 was measured by saturation recovery in 2% agarose phantoms with five nickel chloride concentrations in 12 magnets at 5 field strengths in 11 centres on two different occasions within 1–13 days. R_1 was analysed in three different regions of interest, giving 360 measurements in total. Root-mean-square repeatability and reproducibility coefficients of variation (CoV) were calculated. Propagation of reproducibility errors into 21 translational MR measurements and biomarkers was estimated. Relaxivities were calculated. Dynamic signal stability was also measured.

Results: CoV for day-to-day repeatability (N = 180 regions of interest) was 2.34% and for between-centre reproducibility (N = 9 centres) was 1.43%. Mostly, these do not propagate to biologically significant between-centre error, although a few R_1 -based MR biomarkers were found to be quite sensitive even to such small errors in R_1 , notably in myocardial fibrosis, in white matter, and in oxygen-enhanced MRI. The relaxivity of aqueous Ni²⁺ in 2% agarose varied between 0.66 s⁻¹ mM⁻¹ at 3 T and 0.94 s⁻¹ mM⁻¹ at 11.7T.

Interpretation: While several factors affect the reproducibility of R_1 -based MR biomarkers measured preclinically, between-centre propagation of errors arising from intrinsic equipment irreproducibility should in most cases be small. However, in a few specific cases exceptional efforts might be required to ensure R_1 -reproducibility.

1. Introduction

Many useful MR biomarkers derive from measurements of the water proton longitudinal relaxation time T_1 , or alternatively the relaxation rate $R_1 = T_1^{-1}$. Errors in R_1 [1] are common, will propagate, and may damage the reproducibility and accuracy of the resulting MR biomarkers. Although considerable effort has been devoted to measuring and assuring the accuracy of R_1 in clinical MR [2–5] systems, there is little evidence for the cross-site reproducibility of R_1 measurements in MR systems designed for small-animal research. The lack of standardisation in preclinical imaging has been recognised as an important problem [6,7] which in the worst case could invalidate the findings from animal studies, or confound meta-analyses and translation.

Reproducibility in a valid phantom is an important and ethical prerequisite for reproducible values in vivo. Poor technical validation has been a major impediment to clinical translation of MR biomarkers [8]. An ideal R_1 phantom should be traceable [2]; resist biological, chemical and physical deterioration; perform effectively over a range of temperatures convenient and relevant for the users; cover the parameter range expected in subsequent studies; not exhibit physiologically unrepresentative MR characteristics such as radiation damping, convection, unphysiologic T2, excessive self-diffusion, off-resonance chemical shifts, standing waves, or abrupt boundaries; interrogate the entire volume subsequently to be occupied by body parts being imaged; have dimensions suitable for the subject subsequently to be imaged (in this case rats and mice); be convenient for the intended users; and be cost-effective for the intended users. To meet these criteria, nickel agarose phantoms following the design of Christoffersson et al. [9] were used.

Two distinct general approaches to MR standardisation have previously been employed. In the first, which we term "centrally-led", a central organisation, often independent of the participating sites, is accountable for overall measurement accuracy and reproducibility. They mandate the phantom and acquisition protocol and analyse centrally. They may perform set-up and training at each participating site, instruct sites to repeat aberrant measurements, or even expel sites who cannot achieve the required accuracy. Centrally-led standardisation is common in clinical trials performed to ICH GCP [10,11], or where the MR measurement is regulated as a companion diagnostic [12]. In the second approach, which we term "institution-led", each investigator is accountable for measurement accuracy in their own centre. They are responsible for their own acquisition and analysis, and for compliance with any guidelines for their chosen phantom. "Institution-led" standardisation is common in academic research and in single-centre studies. Although we expect "centrally-led" standardisation to provide better reproducibility than "institution-led" standardisation, in this work we modelled "institution-led" standardisation as this is more representative of practice in preclinical MR. The study was performed within an international consortium of imaging centres participating in the validation of imaging biomarkers [13], and developing reliable preclinical MR assays which would give comparable results in different laboratories. The aim of this work was to assess the repeatability and reproducibility of R_1 in a realistic rodent MR protocol. Simple simulations were performed in order to compare the likely propagation of reproducibility errors into a broad range of R_1 -derived MR biomarkers.

2. Materials and methods

2.1. Preclinical phantom

Batches of 2% agarose with nickel chloride concentrations respectively of 0.50, 1.04, 2.02, 4.08 and 8.05 mM, with 0.05% sodium azide, were prepared centrally in Berlin and used to create identical phantoms (Supplementary Fig. S3.1) which were distributed to the participating laboratories. The phantoms were prepared and authenticated (supplementary material S3) in July 2017, shipped in August 2017, and the measurements were performed between December 2017 and February 2018.

2.2. MR methods

Thirteen centres involved in an international consortium for the validation of imaging biomarkers for drug safety assessment [13] were invited to participate. Where centres had access to more than one MR system, they were invited to submit data from multiple MR systems. Eleven centres agreed to participate, one of which (G) provided data from two different magnets (G1 and G2): in the analyses, G1 and G2 were treated as if from two different centres. Details of the 12 MR systems are given in Table 1. Eleven of the 12 MR systems (all except B) were in laboratories which regularly and routinely measure MR biomarkers in rodents, intending to translate their findings to create diagnostics or therapeutics to improve human health. Although the use of any particular manufacturer's equipment was not mandated, all participating centres elected to employ Bruker Avance/ParaVision systems. An "institution-led" approach to standardisation was adopted. Pilot studies were performed only in centres B and G. No site training was performed, no quality control was imposed, nor were sites permitted to repeat their measurements to eliminate apparent outliers. Region-of-

Table 1

Equipment used. All equipment was manufactured by Bruker (Rheinstetten, Germany) using Avance (Av) spectrometers and ParaVision (PV) acquisition and analysis software except: (a) Magnet from the companies which formerly traded as Varian, Magnex or Agilent; (b) Transmitter-Receiver from Rapid MR International, Columbus OH USA or Rimpar, Germany.

Centre	B ₀ /T	Spectrometer	Gradient strength/mT·m ^{-1} (model)	Radiofrequency transmitter/receiver volume coil (i.d./mm)	Software
А	7 ^a	Pharmascan 70/16 US Av III	375 (B-GA9S)	Quadrature 300 MHz (38) ^b	PV 6.0
В	3	Biospec 3 T Av IIIHD	900 (B-GA105S HP)	Quadrature 128 MHz (60)	PV 6.0.1
С	7	Biospec 70/20 USR Av IIIHD	660 (B-GA12S HP)	Quadrature 300 MHz (86)	PV 6.0.1
D	4.7	Biospec 47/20 USR Av IIIHD	660 (B-GA12S HP)	Quadrature 200 MHz (72)	PV 6.0.1
E	7	Biospec 70/30 USR Av II	440 (B-GA12S)	Single channel 300 MHz (72)	PV 6.0.1
F	7 ^a	Biospec 70/20 Av I	400 (B-GA12)	Single channel 300 MHz (72)	PV 5.1
G1	7	Biospec 70/30 USR Av III	300 (B-GA12)	Quadrature 300 MHz (90) ^b	PV 6.0.1
G2	4.7	Biospec 47/40 Av III	200 (B-GA12S)	Quadrature 200 MHz (90) ^b	PV 6.0.1
Н	4.7	Pharmascan 47/16 Av III	300 (B-G9S)	Single channel 200 MHz (60)	PV 5.1
J	4.7	Biospec 47/40 USR Av II	660 (B-GA12S HP)	Quadrature 200 MHz (72)	PV 6.0.1
К	9.4 ^a	Biospec 94/30 Av III	670 (B-GA 12S HP)	Quadrature 400 MHz (87)	PV 6.0.1
L	11.7	Biospec 117/16 USR Av III	750 (B-GA 9S)	Quadrature 500 MHz (72)	PV 6.0.1

Interest (RoI) definition and T_1 calculation were performed locally.

Centres were asked to measure R_1 by saturation recovery using a standard RARE sequence. (Additional measurements using an investigational fast steady-state free-precession (FISP) sequence designed for the consortium's *in vivo* needs will be reported elsewhere). In an attempt to provide temperature stability and minimise susceptibility artefacts, each phantom was embedded in a cucumber (Supplementary Figs. S3.2 and S3.3). Centres were instructed to "allow the five cucumbered phantoms to come to thermal equilibrium in the magnet bore...[and] measure the temperature of the cucumber flesh in several places and verify thermal equilibrium has been reached." The temperature of the cucumber flesh around the phantom was measured before and after each acquisition. The entire protocol was run in each centre on two separate days, mean 2.7 days apart (range 1–13).

In ParaVision, the standard RARE T_1 saturation-recovery measurement method "T1map_RARE protocol" (Rat/Head/Relaxometry) was invoked. All images were coronal with 58×58 mm field of view, 128×128 matrix, with a $\pi/2$ for 1.16 mm slice selection followed by a π train with RARE factor 8, effective echo time 30 ms, echo spacing 7.5 ms. Signal averaging was not employed and 5 dummy scans were used. Saturation recovery experiments used repetition times TR of 5500, 2000, 1200, 750, 500, 300, 200 and 100 ms giving a scan time of 169 s, not including the dummy scans. Next, a "dynamic-no-enhancement" (DNE) stability series to simulate dynamic contrast-enhanced MRI was run for 5 min (approximately 34 images) with repeated acquisition using the same parameters but with TR fixed at 500 ms.

2.3. Analyses

Each centre conducted measurements independently and was blinded to findings from the other centres until their own results had been submitted. At each centre, T_1 values were obtained using a 2-parameter fit in ParaVision from circular 25 mm² RoIs, *i.e.* 29 µl volumes, approximately 120 voxels, at three RoI positions. These were: at the isocentre; radially at the edge of the phantom 10 mm from isocentre; and axially at the end of the phantom 12–20 mm from isocentre, denoted respectively by (X,Y,Z) = (0,0,0), (10,0,0) and (0,0,12) mm. The 2-parameter fit assumed zero longitudinal magnetisation at the mid-point of the eighth echo. The resulting T_1 values and standard deviation DNE signal for (X,Y,Z) = (0,0,0), were submitted to the core lab in Manchester for further analysis.

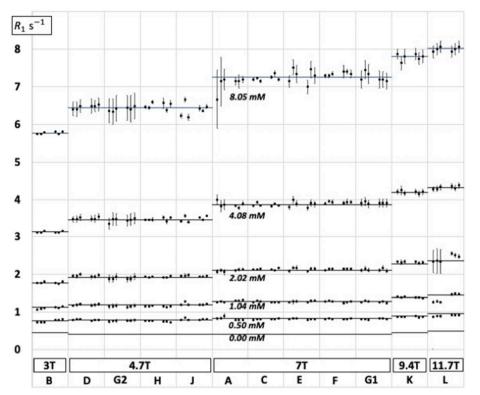
At the core lab, root-mean-square (rms) within-centre R_1 repeatabilities and between-centre reproducibilities were calculated using Microsoft Excel. Each calculation was performed both using absolute units (*i.e.* standard deviations with units s⁻¹), and using coefficients of variation (CoV, dimensionless, presented as percentages). This was done because absolute R_1 units (s⁻¹) propagate to absolute concentration of relaxive substance and in some instances to absolute biomarker value, while coefficients of variation may be more relevant when biomarker change is considered. Post-hoc tests of significance were made for "effect of day" using Student's *t*-test, and for "effect of RoI position" by analysis of variance. No correction for multiple comparisons was made but p < 0.01 was considered significant. For each centre, weighted mean R_1 values were calculated for each of the five phantoms:

$$R_{1} = \left(\sum_{d=1,2} \sum_{\text{RoI}=0,X,Z} (w_{d,\text{RoI}} \times R_{1,d,\text{RoI}})\right) / \left(\sum_{d=1,2} \sum_{\text{RoI}=0,X,Z} w_{d,\text{RoI}}\right)$$

where $R_{1,d,Rol}$ are the R_1 values for each of the two days in each of the three RoIs, and $w_{d,Rol}$ are the corresponding weights, derived from the T_1 fit in ParaVision:

$$w = (\text{fitted slope/SD of fit})^2$$

These weighted mean R_1 values were then used to obtain relaxivities by linear regression:


$$R_{\rm I}/{\rm s}^{-1} = r_{\rm I,B_0} \times [\rm Ni] + R_{\rm I,[\rm Ni]=0,B_0} + \varepsilon$$
⁽¹⁾

where $r_{1, B_0}/s^{-1} \cdot \text{mM}^{-1}$ is the longitudinal relaxivity of aqueous Ni²⁺ in 2% agarose at field B₀, $R_{1, [Ni]=0, B_0}/s^{-1}$ is the longitudinal relaxation rate of 2% agarose at field B₀, and ε is a normally-distributed error term assumed to subsume *inter alia* any temperature effects.

2.4. Cross-validation

Our "institution-led" study design required each centre to derive its own T_1 values. Since centres elected to use the proprietary ParaVision software, a small supplementary study was also performed using an alternative analysis to verify values. Data from one centre were reanalysed. Centre A's data were considered a good test set because they submitted data with both high and low fit errors. For each of the 10 RARE data sets (5 phantoms × 2 days), and for the same three RoIs used in the primary analysis, signal mean and standard deviation were retrieved for each TR value. R_1 was calculated using "R" [14] using four expressions of the form:

For three-parameter fits, Minf, M0 and R1 were fitted, while for two-parameter fits M0 was set to zero. For weighted fits, each RoI value

Fig. 1. R_1 measurements (logarithmic axis) for each of centres A–L. Each centre made measurements on five 2% agarose phantoms with different Ni²⁺ concentrations. The six horizontal lines represent R_1 values calculated from the field-dependent relaxivities as explained in Table 2. There are two groups of three data points for each phantom at each centre representing, respectively, days 1 and 2, and RoIs (X,Y,Z) = (0,0,0), (10,0,0) and (0,0,12). Error bars are T_1 fit errors from ParaVision.

y was weighted by w, the inverse of the variance in y, while for unweighted fits w was set to unity. For each of the 30 data sets, each of the four estimates of R_1 from "R", R_1^{R} , was compared with the reciprocal T_1 from Paravision, R_1^{PV} . In each of the four cases:

mean difference =
$$\frac{1}{30} \sum \frac{R_1^{PV} - R_1^R}{(R_1^R + R_1^{PV})/2} \times 100\%$$
 (2)

2.5. Illustrative simulations

Error propagation associated with two standard deviations of R_1 reproducibility was estimated for a range of derived measurements and biomarkers, using representative relaxivities and other parameters from the literature. This is conservative as it does not fully eliminate repeatability error. Three general cases were considered: firstly, native R_1 (or T_1) used as a biomarker; secondly, concentration of endogenous or exogenous paramagnetic substance used as biomarker; and thirdly, biomarkers derived from compartmental models. For Dynamic Contrast-Enhanced (DCE) MRI, the error in precontrast R_1 was propagated into the biomarkers for four preclinical case-studies. Representative 'true' values of kinetic parameters, pre-contrast R_1 values, and appropriate tracer kinetic models were chosen from literature to estimate contrast agent concentration uptake in each tissue type. Simulation parameters are provided in Supplementary Material.

3. Results

Each centre was requested to submit 30 R_1 measurements (5 phantoms × 3 locations × 2 days), the results of 10 DNE runs (5 phantoms × 2 days), and the 10 associated temperature measurements (5 phantoms × 2 days). The quality of the exponential fits for the 8 TR values was generally good, although in 15/360 cases the fit error was worse than 5% (9 cases in centre G2, 3 cases in centre A and 3 cases in centre L) (see Fig. 1). All these outliers were included in the analysis and not eliminated. One centre (J) did not provide DNE or temperature measurements in a suitable format, so its results were omitted from any

analyses that needed those data. For the other centres, temperatures were recorded to \pm 0.1 °C: the mean was 19.3 °C (SD 1.3), the mean deviation in temperature between day 1 and day 2 was 0.65 °C, and the worst deviation 5 °C (centre B, 0.5 mM phantom).

3.1. Longitudinal relaxation rates and relaxivities

Fig. 1 depicts the individual R_1 data, and Table 2 provides mean values. Fig. 2 shows the field dependence of r_1 from this work, with additional data points added from the literature [3,9,15,16].

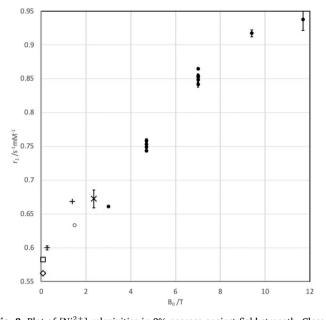

3.2. Repeatability, reproducibility and linearity

Table 3 shows repeatability and reproducibility. Day-to-day repeatability ranged from $0.025 \, \text{s}^{-1}$ (centre D) to $0.097 \, \text{s}^{-1}$ (centre A): day-to-day repeatability CoV ranged from 0.76% (centre F) to 5.48% (centre L). In exploratory analysis, the day-to-day repeatability of 2.34% was not markedly improved either if measurements were

Table 2

Relaxation rates R_1 and relaxivities r_1 . At each centre R_1 (measured) represents the weighted mean of the six measurements (2 days × 3 positions), while R_1 (fitted, 0.00 mM) and r_1 are respectively the intercept and slope of a linear regression of R_1 against [Ni²⁺]. At 4.7 T and 7 T, where measurements were made at multiple centres, the SD is also given.

	3.0 T	4.7 T (SD) N = 4	7.0 T (SD) N = 5	9.4 T	11.7 T
R_1 (measured)/s ⁻¹					
0.50 mM	0.768	0.779 (0.023)	0.808 (0.012)	0.866	0.898
1.04 mM	1.123	1.171 (0.023)	1.276 (0.012)	1.385	1.386
2.02 mM	1.782	1.934 (0.026)	2.131 (0.013)	2.330	2.518
4.08 mM	3.126	3.474 (0.019)	3.881 (0.037)	4.189	4.313
8.05 mM	5.762	6.443 (0.038)	7.248 (0.065)	7.808	8.002
R_1 (fitted)/s ⁻¹					
0.00 mM	0.438	0.404 (0.027)	0.394 (0.006)	0.438	0.481
Relaxivity r_1/s^{-1} mM ⁻¹	0.661	0.751 (0.006)	0.852 (0.009)	0.917	0.938

Fig. 2. Plot of $[Ni^{2+}]$ relaxivities in 2% agarose against field strength. Closed circles: this work, 19.36 ± 1.20 °C. Open circle: data from initial 15 T characterization of the phantom materials (see supplementary material), 21.5 °C. Standard error of fit is shown, although for B₀ between 15 T and 7 T the standard errors of between 0.19% and 0.48% are not evident as they are smaller than the size of the symbol. Other symbols: estimated from literature. +, parameter c_1 in [3], 22 °C. –, estimated, with standard error, from Fig. 1 in [9], 22 °C. ×, estimated, with standard error, from Fig. 2 in [16], 19 °C and 22 °C respectively.

Table 3

Repeatability and reproducibility. CoV: coefficient of variation; rms: root mean square. The DNE row shows signal stability for a "dynamic-no-enhancement" (DNE) run of T_1 -weighted (T1W) acquisitions.

	Number of	Number of	rms error	
	centres	measurements aggregated	Absolute	CoV
Repeatability				
R_1 fit error	12	360	$0.105 \mathrm{s}^{-1}$	1.87%
R_1 day-to-day	12	180 imes 2	$0.056 \mathrm{s}^{-1}$	2.34%
R_1 isocentre vs. off-centre	12	120×3	$0.059 \mathrm{s}^{-1}$	2.22%
DNE T1W signal Reproducibility	11	110×34	-	0.84%
R_1 centre-centre	9	45	$0.031 \mathrm{s}^{-1}$	1.43%
R ₁ centre-centre (isocentre only)	9	45	$0.064 \mathrm{s}^{-1}$	1.56%
Relaxivity centre-centre	9	9	$0.008 s^{-1} m M^{-1}$	0.83%

restricted to the isocentre (2.22%), or if measurements with > 1 °C difference in temperature between day 1 and day 2 were excluded (2.05%). No evidence was seen for field dependence of repeatability. For day-to-day repeatability, 2 centres (B, L) showed a statistically significant effect of day, and 4 centres (D, E, G2, K) showed a statistically significant effect of RoI position. Dynamic (DNE) signal stability CoV varied between 0.30% (centre C) and 2.1% (centre L), and in exploratory analyses was not found to be associated with B₀, nor with repeatability, nor with the *T*₁ fit error. Between-centre reproducibility of *R*₁ was measured for the 5 phantoms at both 4.7 T and 7 T. Least reproducible, on a CoV basis, was the 0.5 mM phantom at 4.7 T (2.94%, N = 4 centres) or, on an absolute units basis, the 8 mM phantom at 7 T (0.065 s⁻¹, N = 5 centres). In exploratory analysis, reproducibility was not improved if measurements were restricted to the isocentre (all-RoIs

rms reproducibility was 0.031 s^{-1} or 1.4% while isocentre rms reproducibility was 0.064 s^{-1} or 1.6%).

A measure of the linearity of R_1 as a biomarker over the range 0.8–8 s⁻¹ was obtained from the relaxivity Eq. (1): the rms standard error of r_{1,B_0} was 0.6% (range 0.2% in centre B, to 1.7% in centre L, N = 12 centres).

3.3. Comparison of analysis algorithms

 R_1 values for centre A derived from two-parameter fits performed in "R" and in Paravision were close: mean differences were 0.024% for an unweighted fit and 0.26% for a weighted fit. When three-parameter fits performed in "R" were compared with two-parameter fits performed Paravision, disagreement was greater: 1.67% for an unweighted fit and 1.74% for a weighted fit. Bland-Altman style plots are provided in Supplementary Fig. S5.

3.4. Illustrative propagation to irreproducibility in biomarker values

Illustrative between-centre irreproducibility expected from two standard deviations of the observed R_1 reproducibility for a range of derived measurements and biomarkers are given in Table 4.

For measurements of concentration of substance, the propagated irreproducibility naturally varies with relaxivity, while for "derived" biomarkers the propagated irreproducibilities were generally $\leq 10\%$.

4. Discussion

In this work we addressed the repeatability and reproducibility of R1 in MR systems designed and employed for translational in vivo research. We prefer to work with R_1 rather than T_1 , since from a metrology perspective [17], R_1 is a ratio variable while T_1 is merely an interval variable. No single method for measuring R_1 is optimal for all *in* vivo studies. The most accurate methods (e.g. inversion recovery with long TR and short TE readout) are neither fast nor efficient. In vivo studies involve complex tradeoffs between accuracy, speed, spatial resolution, field of view, need for fat suppression, sensitivity to inflow, sensitivity to motion artefact, biexponential decay, and other confounding behaviours of tissue magnetisation such as T_2 and magnetisation transfer. Moreover, even after a specific method is chosen, errors can be very sensitive to pulse sequence parameters such as choice of delays and nutation angles, spoiling and refocussing strategies, mis-set pulses and so on. In this study we elected to use a RARE saturation recovery technique covering the entire field of view, as this is fairly robust and efficient: our findings may not be directly translatable to other commonly used techniques such as Variable Flip Angle [1,18,19] or Look-Locker [1,20,21] which are vulnerable to different confounds, or even to other saturation-recovery techniques with different pulse sequence parameters.

4.1. Repeatability and reproducibility

Previous work in preclinical MR systems has addressed the betweencentre reproducibility of apparent diffusion coefficients [22] and volumetrics [23], but there is little evidence on relaxation rates. Clinical MR systems are designed, maintained and operated under Medical Device regulations, but these engineering and regulatory constraints do not apply to preclinical systems, so their reproducibility might differ from clinical reproducibility.

Repeatability [24,25] (ISO 3534:2:3.3.5) refers to the similarity between measurements over a short interval made using the same test object in the same equipment operated by the same investigator. Repeatability is particularly important when the same MR biomarker is measured on successive occasions in the same human or animal, for example before and after treatment. Repeatability depends on signal-tonoise ratio and on factors such as motion artefact, for which phantoms

Table 4

Propagation of errors using Table 3 reproducibility, with plausible or representative values for a range of important measurements and biomarkers. Actual error propagation varies widely between applications: the values here should therefore be regarded as indicative, but not as a substitute for a thorough analysis of error propagation in any particular setting.

Measurement or biomarker	Reproducibility error propagated from 2SD of R_1	Notes
Native R_1 (or T_1)	0.062s ⁻¹	
Tissue temperature	1.6–4.6°C	а
Contrast agents		
Small non-protein-bound agents e.g. gadoterate, gadopentetate, gadobutrol, relaxivities 3–11s ⁻¹ mM ⁻¹ [62–67].	6–21µM	
Gadobutrol in plasma at 9.4T [65], relaxivity $4.7s^{-1}$ mM ⁻¹	13µM	
Gadoxetate, relaxivity [68] 5–17s ⁻¹ mM ⁻¹	4–12µM	
Ferumoxytol iron oxide nanoparticles, relaxivity [69] of 20s ⁻¹ (mM Fe) ⁻¹ at 1.5 T, monodisperse particle weight of 750kDa [70].	3μM (Fe) or 0.2nM (particles)	b
Investigational folate dendrimer contrast agent with relaxivity $[57]$ 1646s ⁻¹ mM ⁻¹	38nM	с
Other substances		
Deoxyhaemoglobin monomer, relaxivity [56] 0.008s ⁻¹ mM ⁻¹	7.8mM	d
Tempol (investigational radioprotectant), relaxivity [71] 0.2s ¹ mM ¹	0.3mM	e
Dissolved dioxygen, relaxivity [72] 0.1-0.3s ⁻¹ mM ⁻¹	160–470mmHg	f
Derived biomarkers		
Transfer constant K ^{trans} for gadopentetate in rodent glioma, extended Tofts model [73–75]	0.004min ⁻¹ (8%)	g,h
Extracellular extravascular fraction v_e in rodent glioma, extended Tofts model [73–75]	0.024 (10%)	g
Plasma fraction v_p in rodent glioma, extended Tofts model [73–75]	0.0016 (10%)	g
Transfer constant K_i for gadopentetate in transient ischaemia model, Patlak analysis [73,76,77]	0.0002ml.g ⁻¹ s ⁻¹ (5%)	g
Plasma fraction v_p , transient ischaemia model, Patlak analysis [73,76,77]	0.0008 (5%)	g
Flow F _p , normal rodent lung, model-free deconvolution [73,78,79]	0.03min ⁻¹ (8%)	g
Plasma fraction v_p , normal rodent lung, model-free deconvolution [73,78,79]	0.04 (10%)	g
Normal hepatocyte transporter uptake rate constant k_1 for gadoxetate, 2-compartment liver model [73,80–82]	0.0013mM.s ⁻¹ (4%)	g,i
Normal hepatocyte transporter efflux rate constant k_2 for gadoxetate, 2-compartment liver model [73,80–82]	0.0001s ⁻¹ (2%)	g
Extracellular extravascular fraction v_e , 2-compartment liver model [73,80–82]	0.016 (7%)	g
Albumin concentration	24µM (~5%)	j
Extracellular matrix Fixed Charge Density	8mM (~4%)	k

Notes:

^a Published data [53–55] suggest temperature dependence of tissue R_1 in the range 0.013–0.0 39 s⁻¹/°C.

^b Note that this figure reflects longitudinal relaxivity: transverse relaxivity for this agent is higher so may provide better sensitivity. The particle molarity is only correct if monodispersity is assumed.

^c This very high relaxivity is per dendrimer molecule, not per Gd.

^d The physiologic range is up to $17.5 \text{ g} \text{dL}^{-1}$ (11 mM).

^e Tempol has been given topically at 400 mM to humans [83] and i.p. at 1.45 mmol/kg to mice [84]. Blood levels reached 3 µM in humans and 3.5 mM in mice.

^f The physiologic range is 0–100 mmHg in normoxia, 0–600 mmHg in hyperoxia, > 1000 mmHg with hyperbaric oxygen.

^g See supplementary material

^h Typically drops in K^{trans} of > 20% are pharmacologically significant [59]

ⁱ A drop in k_1 of 78%–96% was toxicologically significant [80]

^j For an albumin concentration of around 500 µM, based on Eq. (13) and parameters from Fig. 1 in [85]. The physiologic and pathophysiologic range is approximately 450–750 µM.

^k Using Eq. (3) and cartilage data from Fig. 2 in [86] These authors state "...assuming a 10% decrease in T_1 is measurable...we would expect to be sensitive to a change in FCD from a normal of -0.2 to -0.16 M, the sort of change one would expect to see relatively early in a degenerative process".

do not model in vivo studies. Reproducibility [24,25] (ISO 3534:2:3.3.10) refers to the similarity between measurements made using test objects in different equipment operated by different investigators. Reproducibility is particularly important when an MR biomarker is measured once in each individual, for example in making a treatment decision in personalised healthcare. The ultimate motivation of this project is to use MR biomarkers to indicate a harmful effect of a drug, in settings where pre-treatment measurements might be unavailable, so reproducibility is the important metric. More generally, it is important to demonstrate reproducibility for multiple animal studies in different laboratories [26] to address the perceived "reproducibility crisis" [27] in translational medicine [28]. In this work, relevant values of R_1 reproducibility and repeatability were small, and there was no obvious factor (such as temperature, B_0 , R_1 , or centre) that made any one set of measurements worse. Indeed, the error in the exponential fit of signal intensity against TR was numerically the largest error. Several between-centre studies of T_1 or R_1 reproducibility have been published for clinical equipment [4,5,29,30]: our CoV of 1.43% compares favourably with CoVs recently reported for inversion recovery phantom protocols in clinical systems of 5.5%-8.2% [29].

The relaxivity of $Ni(H_2O)_6^{2+}$ arises because two of the 3d nickel orbitals are half-filled, creating a high-spin triplet state with two unpaired electrons. At lower fields, below 1 T, populations of the three

electron spin states are almost independent of B_0 , as the Zeeman splittings are dominated by spin-orbit coupling (zero field splitting) and not by the applied field B_0 . Above 2 T, the Zeeman splittings increase linearly with B_0 . The relaxivity occurs through proton-electron dipolar mechanisms, with the relevant spectral density being the longitudinal relaxation rate $R_{1,e}$ of the nickel electrons [31]. At low B_0 , $R_{1,e}$ depends on fluctuations of the zero field splitting which are independent of B_0 , and previous investigators, working at relatively low fields, reported little field dependence for nickel agarose water proton T_1 values [15]. However our data, taken together with previous work (Fig. 2), clearly show a modest increase in relaxivity over the range 0.1–11.7 T.

4.2. Implications for translational research

Repeatability errors (same subject, same device) have previously been extensively studied. Good repeatability in phantoms is a necessary, but not sufficient, condition for good repeatability *in vivo*, because phantoms seldom model physiologic variability. However reproducibility errors (between centres) are much less studied, but are critically important in translating from single-centre to multi-centre use. Since physiologic variability is largely absorbed in the repeatability error, phantoms can be very informative about reproducibility.

Water proton T_1 was arguably the first MR biomarker [32–36].

Native T_1 has been reported as a biomarker *inter alia* in cardiac diseases [37,38], liver diseases [35,39,40], neurology [41], oncology [34,42], in the placenta [43] and in the lung [44–46]. Clinically significant R_1 differences (Table 4) usually exceed the expected irreproducibility reported in Table 3. For example: in liver fibrosis $0.1-0.2 \text{ s}^{-1}$ or 10-20% [35,39,40]; in manganese neurotoxicology 0.06 s^{-1} or 7% [47]; in chronic obstructive pulmonary disease 0.1 s^{-1} or 10% [44] were clinically significant. In preclinical tumour models, differences of 15–20% were biologically significant [34]. Notably, however, in myocardial fibrosis, differences as small as $0.02-0.03 \text{ s}^{-1}$ or 2-3% may be clinically significant [48,49] and in multiple sclerosis normal-appearing white matter differences of 0.025 s^{-1} or 2% may be clinically significant [50], so translational animal studies of these conditions may require exceptional efforts to ensure T_1 measurements can be validated and qualified for decision-making for these specific indications.

A second class of imaging biomarkers attaches a specific interpretation of the observed longitudinal relaxation, for example in arterial spin labelling [51,52] or in MR thermometry [53–55]. Thirdly, R_1 is commonly used to determine the spatially resolved in vivo concentration of an exogenous or endogenous paramagnetic substance of known relaxivity. Relaxivity can be field-, tissue- and temperaturedependent, and varies over many orders of magnitude between relaxive substances: from $< 10^{-2} \text{ s}^{-1} \text{ mM}^{-1}$ for deoxyhaemoglobin monomer [56] to $> 10^3 \text{ s}^{-1} \text{ mM}^{-1}$ reported for certain investigational polymetallated contrast agents [57]. R_1 errors propagate to low micromolar errors in typical gadolinium- or manganese-based contrast agents. However, propagation of errors may be more significant for techniques based on lower-relaxivity substances. For example in oxygen-enhanced MRI, which measures hyperoxia-induced changes in deoxyhaemoglobin and dissolved oxygen concentration via change in R_1 [45,58], meticulous standardisation is warranted. From Table 4, error propagation might also be important for studies of therapeutic nitroxyls and perhaps for thermometry.

Finally, there are many biomarkers derived indirectly from contrast agent concentration, using a physiologic model. These include measures of perfusion and permeability in tumours, infarcts, synovitis or lung disease; myocardial extracellular volume, cartilage fixed charge density in osteoarthritis, and liver transporter function in toxicology. All biomarkers are also measured in animal models, often aiming to assist the design and interpretation of clinical studies, so it is important to understand the validity of these measurements in preclinical systems. Table 4 includes a representative selection of such MR biomarkers, with simple assessments of how instrumentation-derived irreproducibility in R_1 might propagate. For example, the measured between-centre uncertainty in precontrast R_1 translates to at most 10% between-centre uncertainty in the biomarkers derived from DCE-MRI (Table 4). This error is smaller than the typical day-to-day repeatability error, and in itself would have little effect on the interpretation of change in parameters such as K^{trans} , because treatment effects are typically much > 10% [59].

A realistic assessment of propagation of errors is complex and beyond the scope of this work. In particular, in compartmental models, reproducibility errors and repeatability errors are not completely independent. We omitted from consideration terms which primarily affect repeatability, such as error cancellation with post-contrast R_1 , additional R_1 errors that arise in the presence of contrast agent (e.g. signal saturation, limited water exchange), and in vivo effects (e.g. inflow, breathing motion, bolus dispersion, partial volume). Nevertheless, Table 4 provides comparative order-of magnitude assessments to highlight cases in which the variance seen in our study might be important. With this caveat, in myocardial fibrosis, in normal-appearing multiple sclerosis white mater, and in oxygen-enhanced MRI, R1-based MR biomarkers would be quite sensitive even to such small errors in R_1 unless additional acquisition and analysis methods are designed to reduce the impact of error propagation. An example of this is the use of dynamic time series in OE-MRI that determine $\Delta R_1(t)$ by referencing the time-varying signal to a baseline R_1 measurement, thereby reducing the degrees of freedom in the measurement and subsequent error propagation [60]. Similar approaches have been common in DCE-MRI for many years.

4.3. Study limitations

- (1) This study was performed using only one vendor's equipment, Bruker Avance I, II or III systems running Paravision 5 or 6, representing a typical range of equipment for preclinical MR biomarker research at the time when the study was performed (2017–18). The findings may not be translatable to other vendors' equipment.
- (2) Only one pulse sequence (saturation recovery with RARE readout) was employed. This was chosen [61] in a compromise between accuracy and speed. However the assumption of zero longitudinal magnetisation at the mid-point of the eighth echo may be invalid if B₁ is imperfect, and the findings may not be translatable to other sequences with different B₁ sensitivity.
- (3) The accuracy of our data was not verified using an external standard, such as spectroscopic inversion-recovery.
- (4) A common problem for MR phantoms is temperature dependence. In addition to ambient room temperature, heat is imparted to the phantom from the shims during the working day, from the pulsed gradients, and directly from radiofrequency power deposited by the pulse. Data at 1.5 T [4] and 2.35 T [15] show R_1 temperature dependencies in the range -1.3%/°C to +0.7%/°C; data at 0.08 T [16] show an r_1 temperature dependence of $0.006 \text{ s}^{-1} \text{ mM}^{-1}$ /°C. Although temperatures were measured in this study, no direct measurement was made of the agarose temperature itself during MR data acquisition, and exploratory analyses did not reveal temperature as a confound.
- (5) In order to address the question of reproducibility in normal academic practice, our study modelled "institution-led" standardisation. No site training was performed, no quality control was imposed, nor were sites permitted to repeat their measurements to eliminate apparent outliers. We did not verify that all scanners were performing optimally, and indeed SNR estimated from the DNE runs did not show the anticipated variation with B_0 or coil design. RoIs and T_1 calculations were performed locally. Possibly, "centrally-led" standardisation rigorously imposed by a core lab might further improve reproducibility.
- (6) No phantom study can fully model the *in vivo* measurement. Nevertheless, a well-designed phantom study sets a lower limit on the error to be expected from measurements in living animals.

4.4. Conclusions

Using nickel agarose phantoms in typical preclinical MR systems, R_1 exhibited adequate reproducibility for most purposes. Reproducibility (and repeatability) of $< 0.06 \text{ s}^{-1}$ and < 2.4% was readily achieved. These small technical (instrumentation-derived) errors in R_1 measurement mostly do not contribute biologically significant errors into R_1 -based MR biomarkers. However, in a small number of very demanding applications, such as myocardial fibrosis, white mater, or oxygen-enhanced MRI, the accuracy of R_1 -based MR biomarkers would be quite sensitive even to such small errors in R_1 , therefore in these cases further work may be needed to adequately standardise R_1 data acquisition and analysis.

Conflicts of interest

CG, GS and SZ are employees of Bayer AG, a for-profit company providing MR contrast agents. PDH is an employee at Antaros Medical, a for-profit company providing MR biomarker services. SK and KS are employees of Bruker BioSpin MRI GmbH, a for-profit company which is the manufacturer of the MR systems used in the study. JCW receives compensation from Bioxydyn Ltd., a for-profit company providing MR biomarker services.

Acknowledgements

The research leading to these results received funding from the Innovative Medicines Initiatives 2 Joint Undertaking under grant agreement No 116106 (IB4SD-TRISTAN). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA. This work was also supported by the CRUK and EPSRC *Cancer Imaging Centre in Cambridge and Manchester* funding to The University of Manchester (grant C8742/A18097). The MRI scanner at the University of Manchester is supported by the UK BBSRC (BB/F011350/1).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mri.2019.03.008.

References

- [1] Stikov N, Boudreau M, Levesque IR, Tardif CL, Barral JK, Pike GB. On the accuracy of T₁ mapping: searching for common ground. Magn Reson Med 2015;73:514–22. https://doi.org/10.1002/mrm.25135.
- [2] Keenan KE, Ainslie M, Barker AJ, Boss MA, Cecil KM, Charles C, et al. Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magn Reson Med 2018;79:48–61. https://doi.org/10.1002/mrm.26982.
- [3] Captur G, Gatehouse P, Keenan KE, Heslinga FG, Bruehl R, Prothmann M, et al. A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance - the T1 mapping and ECV standardization in cardiovascular magnetic resonance (T1MES) program. J Cardiovasc Magn Reson 2016;18:1–20. https://doi.org/10. 1186/s12968-016-0280-z.
- [4] Vassiliou VS, Heng EL, Gatehouse PD, Donovan J, Raphael CE, Giri S, et al. Magnetic resonance imaging phantoms for quality-control of myocardial T1 and ECV mapping: specific formulation, long-term stability and variation with heart rate and temperature. J Cardiovasc Magn Reson 2016;18:1–12. https://doi.org/10. 1186/s12968-016-0275-9.
- [5] Lerski RA, McRobbie DW, Straughan K, Walker PM, de Certaines JD, Bernard AM. V. Multi-center trial with protocols and prototype test objects for the assessment of MRI equipment. Magn Reson Imaging 1988;6:201–14. https://doi.org/10.1016/ 0730-725X(88)90451-1.
- [6] Mannheim JG, Kara F, Doorduin J, Fuchs K, Reischl G, Liang S, et al. Standardization of small animal imaging—current status and future prospects. Mol Imaging Biol 2018;20:716–31. https://doi.org/10.1007/s11307-017-1126-2.
- [7] Osborne DR, Kuntner C, Berr S, Stout D. Guidance for efficient small animal imaging quality control. Mol Imaging Biol 2017;19:485–98. https://doi.org/10.1007/ s11307-016-1012-3.
- [8] O'Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 2017;14:169–86. https://doi.org/10.1038/nrclinonc.2016.162.
- [9] Christoffersson JO, Olsson LE, Sjöberg S. Nickel-doped agarose gel phantoms in MR imaging. Acta Radiol 1991;32:426–31. https://doi.org/10.3109/ 02841859109177599
- [10] International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH harmonised tripartite guideline: guideline for good clinical practice E6(R1). https://www.ich.org/fileadmin/ Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R1_Guideline.pdf; 1996, Accessed date: 1 November 2018.
- [11] Waterton JC, Ho M, Nordenmark LH, Jenkins M, DiCarlo J, Guillard G, et al. Repeatability and response to therapy of dynamic contrast-enhanced magnetic resonance imaging biomarkers in rheumatoid arthritis in a large multicentre trial setting. Eur Radiol 2017;27:3662–8. https://doi.org/10.1007/s00330-017-4736-9.
- [12] ResonanceHealth. FerriScan*-R2-MRI measurement of liver Iron concentration. <u>http://www.resonancehealth.com/images/files/FerriScan/FerriScan Fact Sheet</u> <u>Mar 2015.pdf</u>; 2015 (accessed November 1, 2018).
- [13] TRISTAN. Translational imaging in drug safety assessment 2017. www.imi-tristan. eu, Accessed date: 1 May 2018.
- [14] R_Core_Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computinghttps://www.R-project.org/, Accessed date: 1 November 2018.
- [15] Kraft KA, Fatouros PP, Clarke GD, Kishore PRS. An MRI phantom material for quantitative relaxometry. Magn Reson Med 1987;5:555–62. https://doi.org/10. 1002/mrm.1910050606.
- [16] Howe FA. Relaxation times in paramagnetically doped agarose gels as a function of temperature and ion concentration. Magn Reson Imaging 1988;6:263–70. https:// doi.org/10.1016/0730-725X(88)90400-6.
- [17] Sullivan DC, Obuchowski NA, Kessler LG, Raunig DL, Gatsonis C, Huang EP, et al.

Metrology standards for quantitative imaging biomarkers. Radiology 2015;277:813–25. https://doi.org/10.1148/radiol.2015142202.

- [18] Christensen KA, Grant DM, Schulman EM, Walling C. Optimal determination of relaxation times of fourier transform nuclear magnetic resonance. Determination of spin-lattice relaxation times in chemically polarized species. J Phys Chem 1974;78:1971–7. https://doi.org/10.1021/j100612a022.
- [19] Kingsley PB. Methods of measuring spin-lattice (T₁) relaxation times: an annotated bibliography. Concepts Magn Reson 1999;11:243–76. https://doi.org/10.1002/ (SICI)1099-0534(1999)11:4 < 243::AID-CMR5 > 3.3.CO;2-3.
- [20] Look DC, Locker DR. Nuclear spin-lattice relaxation measurements by tone-burst modulation. Phys Rev Lett 1968;20:987–9. https://doi.org/10.1103/PhysRevLett. 20.987.
- [21] Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolutionT1 mapping of the heart. Magn Reson Med 2004;52:141–6. https://doi.org/10.1002/mrm.20110.
- [22] Doblas S, Almeida GS, Blé FX, Garteiser P, Hoff BA, McIntyre DJO, et al. Apparent diffusion coefficient is highly reproducible on preclinical imaging systems: evidence from a seven-center multivendor study. J Magn Reson Imaging 2015;42:1759–64.
- [23] Lee YC, Fullerton GD, Baiu C, Lescrenier MG, Goins BA. Preclinical multimodality phantom design for quality assurance of tumor size measurement. BMC Med Phys 2011;11(1). https://doi.org/10.1186/1756-6649-11-1.
- [24] QIBA Technical Performance Working Group. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res 2015;24:27–67. https://doi.org/10.1177/0962280214537344.
- [25] ISO. Statistics vocabulary and symbols. Part 2: Applied statistics. ISO 3534–2. vol. 3. 2006. p. 125.
- [26] Voelkl B, Vogt L, Sena ES, Würbel H. Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol 2018;16:e2003693https://doi.org/10.1371/journal.pbio.2003693.
- [27] Baker M, Penny D. Is there a reproducibility crisis? Nature 2016;533:452–4. https://doi.org/10.1038/533452A.
- [28] Goodman SN, Fanelli D, Ioannidis JPA. What does research reproducibility mean? Sci Transl Med 2016;8:341ps12. https://doi.org/10.1126/scitranslmed.aaf5027.
- [29] Bane O, Hectors SJ, Wagner M, Arlinghaus LL, Aryal MP, Cao Y, et al. Accuracy, repeatability, and interplatform reproducibility of T < ce:inf > 1 < /ce:inf > quantification methods used for DCE-MRI: results from a multicenter phantom study. Magn Reson Med 2018;79:2564–75. https://doi.org/10.1002/mrm.26903.
- [30] Jerome NP, Orton MR, Parkes HG, Winfield JM, Boss MA, Leach MO, et al. Development of a temperature-controlled phantom for magnetic resonance quality assurance of diffusion, dynamic, and relaxometry measurements. Med Phys 2016;43:2998–3007. https://doi.org/10.1118/1.4948997.
- [31] Helm L. Relaxivity in paramagnetic systems: theory and mechanisms. Prog Nucl Magn Reson Spectrosc 2006;49:45–64. https://doi.org/10.1016/J.PNMRS.2006. 03.003.
- [32] Damadian R. Tumor detection by nuclear magnetic resonance. Science 1971;171:1151–3. https://doi.org/10.1126/science.171.3976.1151.
- [33] Runge VM, Clanton JA, Smith FW, Hutchison J, Mallard J, Partain CL, et al. Nuclear magnetic resonance of iron and copper disease states. AJR Am J Roentgenol 1983;141:943–8. https://doi.org/10.2214/ajr.141.5.943.
- [34] McSheehy PMJ, Weidensteiner C, Cannet C, Ferretti S, Laurent D, Ruetz S, et al. Quantified tumor T1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability. Clin Cancer Res 2010;16:212–25. https://doi. org/10.1158/1078-0432.CCR-09-0686.
- [35] Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 2014;60:69–77. https://doi.org/10.1016/j.jhep.2013.09.002.
- [36] Doyle FH, Gore JC, Pennock JM. Relaxation rate enhancement observed in vivo by NMR imaging. J Comput Assist Tomogr 1981;5:295–6.
- [37] Bulluck H, Maestrini V, Rosmini S, Abdel-Gadir A, Treibel TA, Castelletti S, et al. Myocardial T1 mapping. Circ J 2015;79:487–94. https://doi.org/10.1253/circj.CJ-15-0054.
- [38] Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR working Group of the European Society of cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92https://doi.org/10.1186/1532-429X-15-92.
- [39] Heye T, Yang S-R, Bock M, Brost S, Weigand K, Longerich T, et al. MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol 2012;22:1224–32. https://doi.org/10.1007/s00330-012-2378-5.
- [40] Kim KA, Park MS, Kim IS, Kiefer B, Chung WS, Kim MJ, et al. Quantitative evaluation of liver cirrhosis using T1 relaxation time with 3 tesla MRI before and after oxygen inhalation. J Magn Reson Imaging 2012;36:405–10. https://doi.org/10. 1002/jmri.23620.
- [41] Deoni SCL. Magnetic resonance relaxation and quantitative measurement in the brain. Methods Mol Biol 2011;711:65–108. https://doi.org/10.1007/978-1-61737-992-5_4.
- [42] O'Connor JPB, Carano RAD, Clamp AR, Ross J, Ho CCK, Jackson A, et al. Quantifying antivascular effects of monoclonal antibodies to vascular endothelial growth factor: insights from imaging. Clin Cancer Res 2009;15:6674–82. https:// doi.org/10.1158/1078-0432.CCR-09-0731.
- [43] Wright C, Morris DM, Baker PN, Crocker IP, Gowland PA, Parker GJ, et al. Magnetic resonance imaging relaxation time measurements of the placenta at 1.5T. Placenta 2011;32:1010–5. https://doi.org/10.1016/j.placenta.2011.07.008.
- [44] Alamidi DF, Morgan AR, Hubbard Cristinacce PL, Nordenmark LH, Hockings PD, Lagerstrand KM, et al. COPD patients have short lung magnetic resonance T1

relaxation time. COPD J Chronic Obstr Pulm Dis 2016;13:153-9. https://doi.org/ 10.3109/15412555.2015.1048851.

- [45] Zurek M, Johansson E, Risse F, Alamidi D, Olsson LE, Hockings PD. Accurate T1 mapping for oxygen-enhanced MRI in the mouse lung using a segmented inversionrecovery ultrashort echo-time sequence. Magn Reson Med 2014;71:2180–5. https://doi.org/10.1002/mrm.24876.
- [46] Alamidi DF, Kindvall SSI, Hubbard Cristinacce PL, McGrath DM, Young SS, Naish JH, et al. T1 relaxation time in lungs of asymptomatic smokers. PLoS One 2016:11. https://doi.org/10.1371/journal.pone.0149760.
- [47] Bowler RM, Yeh CL, Adams SW, Ward EJ, Ma RE, Dharmadhikari S, et al. Association of MRI T1 relaxation time with neuropsychological test performance in manganese- exposed welders. Neurotoxicology 2018;64:19–29. https://doi.org/10. 1016/j.neuro.2017.05.010.
- [48] Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human noncontrast T1 values and correlation with histology in diffuse fibrosis. Heart 2013;99:932–7. https://doi.org/10.1136/heartjnl-2012-303052.
- [49] Nakamori S, Bui AH, Jang J, El-Rewaidy HA, Kato S, Ngo LH, et al. Increased myocardial native T 1 relaxation time in patients with nonischemic dilated cardiomyopathy with complex ventricular arrhythmia. J Magn Reson Imaging 2017;47:779–86. https://doi.org/10.1002/jmri.25811.
- [50] Steenwijk MD, Vrenken H, Jonkman LE, Daams M, Geurts JJ, Barkhof F, et al. Highresolution T1-relaxation time mapping displays subtle, clinically relevant, gray matter damage in long-standing multiple sclerosis. Mult Scler J 2016;22:1279–88. https://doi.org/10.1177/1352458515615953.
- [51] Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015;73:102–16. https://doi. org/10.1002/mrm.25197.
- [52] Petersen ET, Mouridsen K, Golay X. The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 2010;49:104–13. https://doi.org/10.1016/j.neuroimage.2009.07.068.
- [53] Matsumoto R, Oshio K, Jolesz FA. Monitoring of laser- and freezing-induced ablation in the liver with T1-weighted MR imaging. J Magn Reson Imaging 1992;2:555–62. https://doi.org/10.1002/jmri.1880020513.
- [54] Rieke V, Pauly KB. MR thermometry. J Magn Reson Imaging 2008;27:376–90. https://doi.org/10.1002/jmri.21265.
- [55] Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA. MR temperature mapping of focused ultrasound surgery. Magn Reson Med 1994;31:628–36. https://doi.org/10.1002/mrm.1910310608.
- [56] Hales PW, Kirkham FJ, Clark CA. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength. J Cereb Blood Flow Metab 2016;36:370–4. https://doi.org/10. 1177/0271678X15605856.
- [57] Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC. Specific targeting of folatedendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA 2001;12:104–13. https://doi.org/10.1016/ \$1352-8661(01)00106-5.
- [58] Linnik IV, Scott MLJ, Holliday KF, Woodhouse N, Waterton JC, O'Connor JPB, et al. Noninvasive tumor hypoxia measurement using magnetic resonance imaging in murine U87 glioma xenografts and in patients with glioblastoma. Magn Reson Med 2014;71:1854–62. https://doi.org/10.1002/mrm.24826.
- [59] O'Connor JPB, Jackson A, Parker GJM, Roberts C, Jayson GC. Dynamic contrastenhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 2012;9:167–77. https://doi.org/10.1038/nrclinonc.2012.2.
- [60] Morgan AR, Parker GJM, Roberts C, Buonaccorsi GA, Maguire NC, Hubbard Cristinacce PL, et al. Feasibility assessment of using oxygen-enhanced magnetic resonance imaging for evaluating the effect of pharmacological treatment in COPD. Eur J Radiol 2014;83:2093–101. https://doi.org/10.1016/j.ejrad.2014.08.004.
- [61] Kingsley PB. Signal intensities and T₁ calculations in multiple-Echo sequences with imperfect pulses. Concepts Magn Reson 1999;11:29–49. https://doi.org/10.1002/ (SICI)1099-0534(1999)11:1<29::AID-CMR2>3.0.CO;2-M.
- [62] Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, et al. 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 2016;33:1–28. https://doi.org/10.1007/s12325-015-0275-4.
- [63] De Leön-Rodríguez LM, Martins AF, Pinho MC, Rofsky NM, Sherry AD. Basic MR relaxation mechanisms and contrast agent design. J Magn Reson Imaging 2015;42:545–65. https://doi.org/10.1002/jmri.24787.
- [64] Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005;40:715–24. https://doi.org/10.1097/01.rli. 0000184756.66360.d3.
- [65] Fries P, Müller A, Seidel R, Robert P, Denda G, Menger MD, et al. P03277-a new approach to achieve high-contrast enhancement: initial results of an experimental extracellular gadolinium-based magnetic resonance contrast agent. Invest Radiol

2015;50:835-42. https://doi.org/10.1097/RLI.00000000000192.

- [66] Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, et al. Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41:213–21. https://doi.org/10.1097/01.rli.0000197668. 44926.f7.
- [67] Shen Y, Goerner FL, Snyder C, Morelli JN, Hao D, Hu D, et al. T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T. Invest Radiol 2015;50:330–8. https://doi.org/10.1097/RLI. 00000000000132.
- [68] Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, Negishi C, Weinmann HJ, Speck U. Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 1992;183:59–64. https://doi.org/10.1148/ radiology.183.1.1549695.
- [69] Knobloch G, Colgan T, Wiens CN, Wang X, Schubert T, Hernando D, et al. Relaxivity of ferumoxytol at 1.5 T and 3.0 T. Invest Radiol 2017;53:257–63. https://doi.org/ 10.1097/RLI.00000000000434.
- [70] Food and Drug Administration of the United States of America. FERAHEME® (ferumoxytol injection), for intravenous use. HIGHLIGHTS OF PRESCRIBING INFORMATION. http://www.feraheme.com/pdfs/Feraheme-Prescribing-Information.pdf; 2009, Accessed date: 19 February 2018.
- [71] Hyodo F, Matsumoto S, Devasahayam N, Dharmaraj C, Subramanian S, Mitchell JB, et al. Pulsed EPR imaging of nitroxides in mice. J Magn Reson 2009;197:181–5. https://doi.org/10.1016/j.jmr.2008.12.018.
- [72] Hausser R, Noack F. Kernmagnetische Relaxation und Korrelation im System Wasser -Sauerstoff. Z Naturforschg 1965;20:1668–75.
- [73] McGrath DM, Bradley DP, Tessier JL, Lacey T, Taylor CJ, Parker GJM. Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magn Reson Med 2009;61:1173–84. https://doi.org/10.1002/ mrm.21959.
- [74] Larsson C, Kleppestø M, Grothe I, Vardal J, Bjørnerud A. T₁ in high-grade glioma and the influence of different measurement strategies on parameter estimations in DCE-MRI. J Magn Reson Imaging 2015;42:97–104. https://doi.org/10.1002/jmri. 24772.
- [75] Chwang WB, Jain R, Bagher-Ebadian H, Nejad-Davarani SP, Iskander ASM, VanSlooten A, et al. Measurement of rat brain tumor kinetics using an intravascular MR contrast agent and DCE-MRI nested model selection. J Magn Reson Imaging 2014;40:1223–9. https://doi.org/10.1002/jmri.24469.
- [76] Abo-Ramadan U, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, et al. Post-ischemic leakiness of the blood-brain barrier: a quantitative and systematic assessment by Patlak plots. Exp Neurol 2009;219:328–33. https://doi.org/ 10.1016/j.expneurol.2009.06.002.
- [77] Merali Z, Huang K, Mikulis D, Silver F, Kassner A. Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS One 2017;12:e0171558https://doi. org/10.1371/journal.pone.0171558.
- [78] Jakob PM, Hillenbrand CM, Wang T, Schultz G, Hahn D, Haase A. Rapid quantitative lung ¹H T₁ mapping. J Magn Reson Imaging 2001;14:795–9. https://doi.org/ 10.1002/jmri.10024.
- [79] Mistry NN, Qi Y, Hedlund LW, Johnson GA. Ventilation/perfusion imaging in a rat model of airway obstruction. Magn Reson Med 2010;63:728–35. https://doi.org/ 10.1002/mrm.22221.
- [80] Ulloa JL, Stahl S, Yates J, Woodhouse N, Kenna JG, Jones HB, et al. Assessment of gadoxetate DCE-MRI as a biomarker of hepatobiliary transporter inhibition. NMR Biomed 2013;26:1258–70. https://doi.org/10.1002/nbm.2946.
- [81] Karageorgis A, Lenhard S, Yerby B, Forsgren M, Liachenko S, et al. A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function. PLoS One 2018:e0197213. https://doi.org/ 10.1371/journal.pone.0197213.
- [82] Chow AM, Gao DS, Fan SJ, Qiao Z, Lee FY, Yang J, et al. Measurement of liver T1 and T2 relaxation times in an experimental mouse model of liver fibrosis. J Magn Reson Imaging 2012;36:152–8. https://doi.org/10.1002/jmri.23606.
- [83] Metz JM, Smith D, Mick R, Lustig R, Mitchell J, Cherakuri M, et al. A phase I study of topical tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res 2004;10:6411–7. https://doi.org/10.1158/1078-0432. CCR-04-0658.
- [84] Hahn SM, Tochner Z, Krishna CM, Glass J, Wilson L, Samuni A, et al. Tempol, a stable free radical, is a novel murine radiation protector. Cancer Res 1992;52:1750–3.
- [85] Richardson OC, Bane O, Scott MLJ, Tanner SF, Waterton JC, Sourbron SP, et al. Gadofosveset-based biomarker of tissue albumin concentration: technical validation in vitro and feasibility in vivo. Magn Reson Med 2015;73:244–53. https://doi.org/ 10.1002/mrm.25128.
- [86] Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 1996;36:665–73. https://doi.org/10.1002/mrm.1910360504.