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A B S T R A C T

Background: Many translational MR biomarkers derive from measurements of the water proton longitudinal
relaxation rate R1, but evidence for between-site reproducibility of R1 in small-animal MRI is lacking.
Objective: To assess R1 repeatability and multi-site reproducibility in phantoms for preclinical MRI.
Methods: R1 was measured by saturation recovery in 2% agarose phantoms with five nickel chloride con-
centrations in 12 magnets at 5 field strengths in 11 centres on two different occasions within 1–13 days. R1 was
analysed in three different regions of interest, giving 360 measurements in total. Root-mean-square repeatability
and reproducibility coefficients of variation (CoV) were calculated. Propagation of reproducibility errors into 21
translational MR measurements and biomarkers was estimated. Relaxivities were calculated. Dynamic signal
stability was also measured.
Results: CoV for day-to-day repeatability (N=180 regions of interest) was 2.34% and for between-centre re-
producibility (N=9 centres) was 1.43%. Mostly, these do not propagate to biologically significant between-
centre error, although a few R1-based MR biomarkers were found to be quite sensitive even to such small errors
in R1, notably in myocardial fibrosis, in white matter, and in oxygen-enhanced MRI. The relaxivity of aqueous
Ni2+ in 2% agarose varied between 0.66 s−1mM−1 at 3 T and 0.94 s−1mM−1 at 11.7T.
Interpretation: While several factors affect the reproducibility of R1-based MR biomarkers measured pre-
clinically, between-centre propagation of errors arising from intrinsic equipment irreproducibility should in
most cases be small. However, in a few specific cases exceptional efforts might be required to ensure R1-re-
producibility.

1. Introduction

Many useful MR biomarkers derive from measurements of the water
proton longitudinal relaxation time T1, or alternatively the relaxation
rate R1≡ T1−1. Errors in R1 [1] are common, will propagate, and may
damage the reproducibility and accuracy of the resulting MR bio-
markers. Although considerable effort has been devoted to measuring
and assuring the accuracy of R1 in clinical MR [2–5] systems, there is
little evidence for the cross-site reproducibility of R1 measurements in
MR systems designed for small-animal research. The lack of standar-
disation in preclinical imaging has been recognised as an important
problem [6,7] which in the worst case could invalidate the findings
from animal studies, or confound meta-analyses and translation.

Reproducibility in a valid phantom is an important and ethical
prerequisite for reproducible values in vivo. Poor technical validation
has been a major impediment to clinical translation of MR biomarkers
[8]. An ideal R1 phantom should be traceable [2]; resist biological,
chemical and physical deterioration; perform effectively over a range of
temperatures convenient and relevant for the users; cover the para-
meter range expected in subsequent studies; not exhibit physiologically
unrepresentative MR characteristics such as radiation damping, con-
vection, unphysiologic T2, excessive self-diffusion, off-resonance che-
mical shifts, standing waves, or abrupt boundaries; interrogate the
entire volume subsequently to be occupied by body parts being imaged;
have dimensions suitable for the subject subsequently to be imaged (in
this case rats and mice); be convenient for the intended users; and be
cost-effective for the intended users. To meet these criteria, nickel
agarose phantoms following the design of Christoffersson et al. [9] were
used.

Two distinct general approaches to MR standardisation have pre-
viously been employed. In the first, which we term “centrally-led”, a
central organisation, often independent of the participating sites, is
accountable for overall measurement accuracy and reproducibility.
They mandate the phantom and acquisition protocol and analyse cen-
trally. They may perform set-up and training at each participating site,
instruct sites to repeat aberrant measurements, or even expel sites who
cannot achieve the required accuracy. Centrally-led standardisation is
common in clinical trials performed to ICH GCP [10,11], or where the
MR measurement is regulated as a companion diagnostic [12]. In the
second approach, which we term “institution-led”, each investigator is
accountable for measurement accuracy in their own centre. They are
responsible for their own acquisition and analysis, and for compliance
with any guidelines for their chosen phantom. “Institution-led” stan-
dardisation is common in academic research and in single-centre

studies. Although we expect “centrally-led” standardisation to provide
better reproducibility than “institution-led” standardisation, in this
work we modelled “institution-led” standardisation as this is more re-
presentative of practice in preclinical MR. The study was performed
within an international consortium of imaging centres participating in
the validation of imaging biomarkers [13], and developing reliable
preclinical MR assays which would give comparable results in different
laboratories. The aim of this work was to assess the repeatability and
reproducibility of R1 in a realistic rodent MR protocol. Simple simula-
tions were performed in order to compare the likely propagation of
reproducibility errors into a broad range of R1-derived MR biomarkers.

2. Materials and methods

2.1. Preclinical phantom

Batches of 2% agarose with nickel chloride concentrations respec-
tively of 0.50, 1.04, 2.02, 4.08 and 8.05mM, with 0.05% sodium azide,
were prepared centrally in Berlin and used to create identical phantoms
(Supplementary Fig. S3.1) which were distributed to the participating
laboratories. The phantoms were prepared and authenticated (supple-
mentary material S3) in July 2017, shipped in August 2017, and the
measurements were performed between December 2017 and February
2018.

2.2. MR methods

Thirteen centres involved in an international consortium for the
validation of imaging biomarkers for drug safety assessment [13] were
invited to participate. Where centres had access to more than one MR
system, they were invited to submit data from multiple MR systems.
Eleven centres agreed to participate, one of which (G) provided data
from two different magnets (G1 and G2): in the analyses, G1 and G2
were treated as if from two different centres. Details of the 12 MR
systems are given in Table 1. Eleven of the 12 MR systems (all except B)
were in laboratories which regularly and routinely measure MR bio-
markers in rodents, intending to translate their findings to create di-
agnostics or therapeutics to improve human health. Although the use of
any particular manufacturer's equipment was not mandated, all parti-
cipating centres elected to employ Bruker Avance/ParaVision systems.
An “institution-led” approach to standardisation was adopted. Pilot
studies were performed only in centres B and G. No site training was
performed, no quality control was imposed, nor were sites permitted to
repeat their measurements to eliminate apparent outliers. Region-of-
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Interest (RoI) definition and T1 calculation were performed locally.
Centres were asked to measure R1 by saturation recovery using a

standard RARE sequence. (Additional measurements using an in-
vestigational fast steady-state free-precession (FISP) sequence designed
for the consortium's in vivo needs will be reported elsewhere). In an
attempt to provide temperature stability and minimise susceptibility
artefacts, each phantom was embedded in a cucumber (Supplementary
Figs. S3.2 and S3.3). Centres were instructed to “allow the five cu-
cumbered phantoms to come to thermal equilibrium in the magnet
bore…[and] measure the temperature of the cucumber flesh in several
places and verify thermal equilibrium has been reached.” The tem-
perature of the cucumber flesh around the phantom was measured
before and after each acquisition. The entire protocol was run in each
centre on two separate days, mean 2.7 days apart (range 1–13).

In ParaVision, the standard RARE T1 saturation-recovery measure-
ment method “T1map_RARE protocol” (Rat/Head/Relaxometry) was
invoked. All images were coronal with 58×58mm field of view,
128×128 matrix, with a π/2 for 1.16mm slice selection followed by a
π train with RARE factor 8, effective echo time 30ms, echo spacing
7.5 ms. Signal averaging was not employed and 5 dummy scans were
used. Saturation recovery experiments used repetition times TR of
5500, 2000, 1200, 750, 500, 300, 200 and 100ms giving a scan time of
169 s, not including the dummy scans. Next, a “dynamic-no-enhance-
ment” (DNE) stability series to simulate dynamic contrast-enhanced
MRI was run for 5min (approximately 34 images) with repeated ac-
quisition using the same parameters but with TR fixed at 500ms.

2.3. Analyses

Each centre conducted measurements independently and was
blinded to findings from the other centres until their own results had
been submitted. At each centre, T1 values were obtained using a 2-
parameter fit in ParaVision from circular 25mm2 RoIs, i.e. 29 μl vo-
lumes, approximately 120 voxels, at three RoI positions. These were: at
the isocentre; radially at the edge of the phantom 10mm from iso-
centre; and axially at the end of the phantom 12–20mm from isocentre,
denoted respectively by (X,Y,Z)= (0,0,0), (10,0,0) and (0,0,12) mm.
The 2-parameter fit assumed zero longitudinal magnetisation at the
mid-point of the eighth echo. The resulting T1 values and standard
deviation of the fit for each RoI, together with the mean and standard
deviation DNE signal for (X,Y,Z)= (0,0,0), were submitted to the core
lab in Manchester for further analysis.

At the core lab, root-mean-square (rms) within-centre R1 repeat-
abilities and between-centre reproducibilities were calculated using
Microsoft Excel. Each calculation was performed both using absolute
units (i.e. standard deviations with units s−1), and using coefficients of
variation (CoV, dimensionless, presented as percentages). This was
done because absolute R1 units (s−1) propagate to absolute

concentration of relaxive substance and in some instances to absolute
biomarker value, while coefficients of variation may be more relevant
when biomarker change is considered. Post-hoc tests of significance
were made for “effect of day” using Student's t-test, and for “effect of
RoI position” by analysis of variance. No correction for multiple com-
parisons was made but p < 0.01 was considered significant. For each
centre, weighted mean R1 values were calculated for each of the five
phantoms:

R w R w( ) /1
d 1,2 RoI 0,X,Z

d,RoI 1,d,RoI
d 1,2 RoI 0,X,Z

d,RoI= ×
= = = =

where R1,d,RoI are the R1 values for each of the two days in each of the
three RoIs, and wd,RoI are the corresponding weights, derived from the
T1 fit in ParaVision:

w (fitted slope/SD of fit)2=

These weighted mean R1 values were then used to obtain relaxiv-
ities by linear regression:

R r R/s [Ni]1
1

1,B 1,[Ni] 0,B0 0= × + += (1)

where r1, B0/s
−1 ∙ mM−1 is the longitudinal relaxivity of aqueous Ni2+

in 2% agarose at field B0, R1, [Ni]=0, B0/s
−1 is the longitudinal relaxation

rate of 2% agarose at field B0, and ε is a normally-distributed error term
assumed to subsume inter alia any temperature effects.

2.4. Cross-validation

Our “institution-led” study design required each centre to derive its
own T1 values. Since centres elected to use the proprietary ParaVision
software, a small supplementary study was also performed using an
alternative analysis to verify values. Data from one centre were re-
analysed. Centre A's data were considered a good test set because they
submitted data with both high and low fit errors. For each of the 10
RARE data sets (5 phantoms×2 days), and for the same three RoIs
used in the primary analysis, signal mean and standard deviation were
retrieved for each TR value. R1 was calculated using “R” [14] using four
expressions of the form:

model nls(y[, i]~I(Minf (Minf M0) exp( R1 (TR
0.06))), weights (w[, i]) )

<
= …

For three-parameter fits, Minf, M0 and R1 were fitted, while for
two-parameter fits M0 was set to zero. For weighted fits, each RoI value

Table 1
Equipment used. All equipment was manufactured by Bruker (Rheinstetten, Germany) using Avance (Av) spectrometers and ParaVision (PV) acquisition and analysis
software except: (a) Magnet from the companies which formerly traded as Varian, Magnex or Agilent; (b) Transmitter-Receiver from Rapid MR International,
Columbus OH USA or Rimpar, Germany.

Centre B0/T Spectrometer Gradient strength/mT∙m−1 (model) Radiofrequency transmitter/receiver volume coil (i.d./mm) Software

A 7a Pharmascan 70/16 US Av III 375 (B-GA9S) Quadrature 300MHz (38)b PV 6.0
B 3 Biospec 3 T Av IIIHD 900 (B-GA105S HP) Quadrature 128MHz (60) PV 6.0.1
C 7 Biospec 70/20 USR Av IIIHD 660 (B-GA12S HP) Quadrature 300MHz (86) PV 6.0.1
D 4.7 Biospec 47/20 USR Av IIIHD 660 (B-GA12S HP) Quadrature 200MHz (72) PV 6.0.1
E 7 Biospec 70/30 USR Av II 440 (B-GA12S) Single channel 300MHz (72) PV 6.0.1
F 7a Biospec 70/20 Av I 400 (B-GA12) Single channel 300MHz (72) PV 5.1
G1 7 Biospec 70/30 USR Av III 300 (B-GA12) Quadrature 300MHz (90)b PV 6.0.1
G2 4.7 Biospec 47/40 Av III 200 (B-GA12S) Quadrature 200MHz (90)b PV 6.0.1
H 4.7 Pharmascan 47/16 Av III 300 (B-G9S) Single channel 200MHz (60) PV 5.1
J 4.7 Biospec 47/40 USR Av II 660 (B-GA12S HP) Quadrature 200MHz (72) PV 6.0.1
K 9.4a Biospec 94/30 Av III 670 (B-GA 12S HP) Quadrature 400MHz (87) PV 6.0.1
L 11.7 Biospec 117/16 USR Av III 750 (B-GA 9S) Quadrature 500MHz (72) PV 6.0.1
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y was weighted by w, the inverse of the variance in y, while for un-
weighted fits w was set to unity. For each of the 30 data sets, each of the
four estimates of R1 from “R”, R1R, was compared with the reciprocal T1
from Paravision, R1PV. In each of the four cases:

R R
R R

mean difference 1
30 ( )/2

100%
PV R

R PV
1 1

1 1
=

+
×

(2)

2.5. Illustrative simulations

Error propagation associated with two standard deviations of R1
reproducibility was estimated for a range of derived measurements and
biomarkers, using representative relaxivities and other parameters from
the literature. This is conservative as it does not fully eliminate re-
peatability error. Three general cases were considered: firstly, native R1
(or T1) used as a biomarker; secondly, concentration of endogenous or
exogenous paramagnetic substance used as biomarker; and thirdly,
biomarkers derived from compartmental models. For Dynamic
Contrast-Enhanced (DCE) MRI, the error in precontrast R1 was propa-
gated into the biomarkers for four preclinical case-studies.
Representative ‘true’ values of kinetic parameters, pre-contrast R1 va-
lues, and appropriate tracer kinetic models were chosen from literature
to estimate contrast agent concentration uptake in each tissue type.
Simulation parameters are provided in Supplementary Material.

3. Results

Each centre was requested to submit 30 R1 measurements (5
phantoms× 3 locations× 2 days), the results of 10 DNE runs (5
phantoms× 2 days), and the 10 associated temperature measurements
(5 phantoms× 2 days). The quality of the exponential fits for the 8 TR
values was generally good, although in 15/360 cases the fit error was
worse than 5% (9 cases in centre G2, 3 cases in centre A and 3 cases in
centre L) (see Fig. 1). All these outliers were included in the analysis
and not eliminated. One centre (J) did not provide DNE or temperature
measurements in a suitable format, so its results were omitted from any

analyses that needed those data. For the other centres, temperatures
were recorded to±0 .1 °C: the mean was 19.3 °C (SD 1.3), the mean
deviation in temperature between day 1 and day 2 was 0.65 °C, and the
worst deviation 5 °C (centre B, 0.5mM phantom).

3.1. Longitudinal relaxation rates and relaxivities

Fig. 1 depicts the individual R1 data, and Table 2 provides mean
values. Fig. 2 shows the field dependence of r1 from this work, with
additional data points added from the literature [3,9,15,16].

3.2. Repeatability, reproducibility and linearity

Table 3 shows repeatability and reproducibility. Day-to-day re-
peatability ranged from 0.025 s−1 (centre D) to 0.097 s−1 (centre A):
day-to-day repeatability CoV ranged from 0.76% (centre F) to 5.48%
(centre L). In exploratory analysis, the day-to-day repeatability of
2.34% was not markedly improved either if measurements were

Fig. 1. R1 measurements (logarithmic axis) for each
of centres A–L. Each centre made measurements on
five 2% agarose phantoms with different Ni2+ con-
centrations. The six horizontal lines represent R1
values calculated from the field-dependent relaxiv-
ities as explained in Table 2. There are two groups of
three data points for each phantom at each centre
representing, respectively, days 1 and 2, and RoIs
(X,Y,Z)= (0,0,0), (10,0,0) and (0,0,12). Error bars
are T1 fit errors from ParaVision.

Table 2
Relaxation rates R1 and relaxivities r1. At each centre R1 (measured) represents
the weighted mean of the six measurements (2 days×3 positions), while R1
(fitted, 0.00mM) and r1 are respectively the intercept and slope of a linear
regression of R1 against [Ni2+]. At 4.7 T and 7 T, where measurements were
made at multiple centres, the SD is also given.

3.0 T 4.7 T (SD)
N=4

7.0 T (SD)
N=5

9.4 T 11.7 T

R1 (measured)/s−1

0.50mM 0.768 0.779 (0.023) 0.808 (0.012) 0.866 0.898
1.04mM 1.123 1.171 (0.023) 1.276 (0.012) 1.385 1.386
2.02mM 1.782 1.934 (0.026) 2.131 (0.013) 2.330 2.518
4.08mM 3.126 3.474 (0.019) 3.881 (0.037) 4.189 4.313
8.05mM 5.762 6.443 (0.038) 7.248 (0.065) 7.808 8.002

R1 (fitted)/s−1

0.00mM 0.438 0.404 (0.027) 0.394 (0.006) 0.438 0.481
Relaxivity r1/s−1mM−1 0.661 0.751 (0.006) 0.852 (0.009) 0.917 0.938
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restricted to the isocentre (2.22%), or if measurements with> 1 °C
difference in temperature between day 1 and day 2 were excluded
(2.05%). No evidence was seen for field dependence of repeatability.
For day-to-day repeatability, 2 centres (B, L) showed a statistically
significant effect of day, and 4 centres (D, E, G2, K) showed a statisti-
cally significant effect of RoI position. Dynamic (DNE) signal stability
CoV varied between 0.30% (centre C) and 2.1% (centre L), and in ex-
ploratory analyses was not found to be associated with B0, nor with
repeatability, nor with the T1 fit error. Between-centre reproducibility
of R1 was measured for the 5 phantoms at both 4.7 T and 7 T. Least
reproducible, on a CoV basis, was the 0.5 mM phantom at 4.7 T (2.94%,
N=4 centres) or, on an absolute units basis, the 8mM phantom at 7 T
(0.065 s−1, N=5 centres). In exploratory analysis, reproducibility was
not improved if measurements were restricted to the isocentre (all-RoIs

rms reproducibility was 0.031 s−1 or 1.4% while isocentre rms re-
producibility was 0.064 s−1 or 1.6%).

A measure of the linearity of R1 as a biomarker over the range
0.8–8 s−1 was obtained from the relaxivity Eq. (1): the rms standard
error of r1,B0 was 0.6% (range 0.2% in centre B, to 1.7% in centre L,
N=12 centres).

3.3. Comparison of analysis algorithms

R1 values for centre A derived from two-parameter fits performed in
“R” and in Paravision were close: mean differences were 0.024% for an
unweighted fit and 0.26% for a weighted fit. When three-parameter fits
performed in “R” were compared with two-parameter fits performed
Paravision, disagreement was greater: 1.67% for an unweighted fit and
1.74% for a weighted fit. Bland-Altman style plots are provided in
Supplementary Fig. S5.

3.4. Illustrative propagation to irreproducibility in biomarker values

Illustrative between-centre irreproducibility expected from two
standard deviations of the observed R1 reproducibility for a range of
derived measurements and biomarkers are given in Table 4.

For measurements of concentration of substance, the propagated
irreproducibility naturally varies with relaxivity, while for “derived”
biomarkers the propagated irreproducibilities were generally ≤10%.

4. Discussion

In this work we addressed the repeatability and reproducibility of
R1 in MR systems designed and employed for translational in vivo re-
search. We prefer to work with R1 rather than T1, since from a me-
trology perspective [17], R1 is a ratio variable while T1 is merely an
interval variable. No single method for measuring R1 is optimal for all in
vivo studies. The most accurate methods (e.g. inversion recovery with
long TR and short TE readout) are neither fast nor efficient. In vivo
studies involve complex tradeoffs between accuracy, speed, spatial re-
solution, field of view, need for fat suppression, sensitivity to inflow,
sensitivity to motion artefact, biexponential decay, and other con-
founding behaviours of tissue magnetisation such as T2 and magneti-
sation transfer. Moreover, even after a specific method is chosen, errors
can be very sensitive to pulse sequence parameters such as choice of
delays and nutation angles, spoiling and refocussing strategies, mis-set
pulses and so on. In this study we elected to use a RARE saturation
recovery technique covering the entire field of view, as this is fairly
robust and efficient: our findings may not be directly translatable to
other commonly used techniques such as Variable Flip Angle [1,18,19]
or Look-Locker [1,20,21] which are vulnerable to different confounds,
or even to other saturation-recovery techniques with different pulse
sequence parameters.

4.1. Repeatability and reproducibility

Previous work in preclinical MR systems has addressed the between-
centre reproducibility of apparent diffusion coefficients [22] and vo-
lumetrics [23], but there is little evidence on relaxation rates. Clinical
MR systems are designed, maintained and operated under Medical
Device regulations, but these engineering and regulatory constraints do
not apply to preclinical systems, so their reproducibility might differ
from clinical reproducibility.

Repeatability [24,25] (ISO 3534:2:3.3.5) refers to the similarity
between measurements over a short interval made using the same test
object in the same equipment operated by the same investigator. Re-
peatability is particularly important when the same MR biomarker is
measured on successive occasions in the same human or animal, for
example before and after treatment. Repeatability depends on signal-to-
noise ratio and on factors such as motion artefact, for which phantoms

Fig. 2. Plot of [Ni2+] relaxivities in 2% agarose against field strength. Closed
circles: this work, 19.36 ± 1.20 °C. Open circle: data from initial 1 5 T char-
acterization of the phantom materials (see supplementary material), 21.5 °C.
Standard error of fit is shown, although for B0 between 1 5 T and 7 T the
standard errors of between 0.19% and 0.48% are not evident as they are smaller
than the size of the symbol. Other symbols: estimated from literature. +,
parameter c1 in [3], 22 °C. −, estimated, with standard error, from Fig. 1 in [9],
22 °C. ×, estimated, with standard error, from Fig. 4 in [15], 20 °C. ◇, ◻︎,
estimated from Fig. 2 in [16], 19 °C and 22 °C respectively.

Table 3
Repeatability and reproducibility. CoV: coefficient of variation; rms: root mean
square. The DNE row shows signal stability for a “dynamic-no-enhancement”
(DNE) run of T1-weighted (T1W) acquisitions.

Number of
centres

Number of
measurements
aggregated

rms error

Absolute CoV

Repeatability
R1 fit error 12 360 0.105 s−1 1.87%
R1 day-to-day 12 180×2 0.056 s−1 2.34%
R1 isocentre vs.
off-centre

12 120×3 0.059 s−1 2.22%

DNE T1W signal 11 110×34 – 0.84%
Reproducibility
R1 centre-centre 9 45 0.031 s−1 1.43%
R1 centre-centre
(isocentre
only)

9 45 0.064 s−1 1.56%

Relaxivity
centre-centre

9 9 0.008 s−1mM−1 0.83%
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do not model in vivo studies. Reproducibility [24,25] (ISO
3534:2:3.3.10) refers to the similarity between measurements made
using test objects in different equipment operated by different in-
vestigators. Reproducibility is particularly important when an MR
biomarker is measured once in each individual, for example in making a
treatment decision in personalised healthcare. The ultimate motivation
of this project is to use MR biomarkers to indicate a harmful effect of a
drug, in settings where pre-treatment measurements might be un-
available, so reproducibility is the important metric. More generally, it
is important to demonstrate reproducibility for multiple animal studies
in different laboratories [26] to address the perceived “reproducibility
crisis” [27] in translational medicine [28]. In this work, relevant values
of R1 reproducibility and repeatability were small, and there was no
obvious factor (such as temperature, B0, R1, or centre) that made any
one set of measurements worse. Indeed, the error in the exponential fit
of signal intensity against TR was numerically the largest error. Several
between-centre studies of T1 or R1 reproducibility have been published
for clinical equipment [4,5,29,30]: our CoV of 1.43% compares fa-
vourably with CoVs recently reported for inversion recovery phantom
protocols in clinical systems of 5.5%–8.2% [29].

The relaxivity of Ni(H2O)62+ arises because two of the 3d nickel
orbitals are half-filled, creating a high-spin triplet state with two un-
paired electrons. At lower fields, below 1 T, populations of the three

electron spin states are almost independent of B0, as the Zeeman
splittings are dominated by spin-orbit coupling (zero field splitting) and
not by the applied field B0. Above 2 T, the Zeeman splittings increase
linearly with B0. The relaxivity occurs through proton-electron dipolar
mechanisms, with the relevant spectral density being the longitudinal
relaxation rate R1,e of the nickel electrons [31]. At low B0, R1,e depends
on fluctuations of the zero field splitting which are independent of B0,
and previous investigators, working at relatively low fields, reported
little field dependence for nickel agarose water proton T1 values [15].
However our data, taken together with previous work (Fig. 2), clearly
show a modest increase in relaxivity over the range 0.1–11.7 T.

4.2. Implications for translational research

Repeatability errors (same subject, same device) have previously
been extensively studied. Good repeatability in phantoms is a neces-
sary, but not sufficient, condition for good repeatability in vivo, because
phantoms seldom model physiologic variability. However reproduci-
bility errors (between centres) are much less studied, but are critically
important in translating from single-centre to multi-centre use. Since
physiologic variability is largely absorbed in the repeatability error,
phantoms can be very informative about reproducibility.

Water proton T1 was arguably the first MR biomarker [32–36].

Table 4
Propagation of errors using Table 3 reproducibility, with plausible or representative values for a range of important measurements and biomarkers. Actual error
propagation varies widely between applications: the values here should therefore be regarded as indicative, but not as a substitute for a thorough analysis of error
propagation in any particular setting.

Measurement or biomarker Reproducibility error propagated from 2SD of R1 Notes

Native R1 (or T1) 0.062s-1

Tissue temperature 1.6–4.6°C a

Contrast agents
Small non-protein-bound agents e.g. gadoterate, gadopentetate, gadobutrol, relaxivities 3–11s-1mM-1 [62–67]. 6–21μM
Gadobutrol in plasma at 9.4T [65], relaxivity 4.7s-1mM-1 13μM
Gadoxetate, relaxivity [68] 5–17s-1mM-1 4–12μM
Ferumoxytol iron oxide nanoparticles, relaxivity [69] of 20s-1(mM Fe)-1 at 1.5 T, monodisperse particle weight of
750kDa [70].

3μM (Fe) or 0.2nM (particles) b

Investigational folate dendrimer contrast agent with relaxivity [57] 1646s-1mM-1 38nM c

Other substances
Deoxyhaemoglobin monomer, relaxivity [56] 0.008s-1mM-1 7.8mM d

Tempol (investigational radioprotectant), relaxivity [71] 0.2s-1mM-1 0.3mM e

Dissolved dioxygen, relaxivity [72] 0.1-0.3s-1mM-1 160–470mmHg f

Derived biomarkers
Transfer constant Ktrans for gadopentetate in rodent glioma, extended Tofts model [73–75] 0.004min-1 (8%) g,h

Extracellular extravascular fraction ve in rodent glioma, extended Tofts model [73–75] 0.024 (10%) g

Plasma fraction vp in rodent glioma, extended Tofts model [73–75] 0.0016 (10%) g

Transfer constant Ki for gadopentetate in transient ischaemia model, Patlak analysis [73,76,77] 0.0002ml.g-1s-1 (5%) g

Plasma fraction vp, transient ischaemia model, Patlak analysis [73,76,77] 0.0008 (5%) g

Flow Fp, normal rodent lung, model-free deconvolution [73,78,79] 0.03min-1 (8%) g

Plasma fraction vp, normal rodent lung, model-free deconvolution [73,78,79] 0.04 (10%) g

Normal hepatocyte transporter uptake rate constant k1 for gadoxetate, 2-compartment liver model [73,80–82] 0.0013mM.s-1 (4%) g,i

Normal hepatocyte transporter efflux rate constant k2 for gadoxetate, 2-compartment liver model [73,80–82] 0.0001s-1 (2%) g

Extracellular extravascular fraction ve, 2-compartment liver model [73,80–82] 0.016 (7%) g

Albumin concentration 24μM (~5%) j

Extracellular matrix Fixed Charge Density 8mM (~4%) k

Notes:
a Published data [53–55] suggest temperature dependence of tissue R1 in the range 0.013–0.0 39 s−1/°C.
b Note that this figure reflects longitudinal relaxivity: transverse relaxivity for this agent is higher so may provide better sensitivity. The particle molarity is only

correct if monodispersity is assumed.
c This very high relaxivity is per dendrimer molecule, not per Gd.
d The physiologic range is up to 17.5 g∙dL−1 (11mM).
e Tempol has been given topically at 400mM to humans [83] and i.p. at 1.45mmol/kg to mice [84]. Blood levels reached 3 μM in humans and 3.5mM in mice.
f The physiologic range is 0–100mmHg in normoxia, 0–600mmHg in hyperoxia,> 1000mmHg with hyperbaric oxygen.
g See supplementary material
h Typically drops in Ktrans of> 20% are pharmacologically significant [59]
i A drop in k1 of 78%–96% was toxicologically significant [80]
j For an albumin concentration of around 500 μM, based on Eq. (13) and parameters from Fig. 1 in [85]. The physiologic and pathophysiologic range is ap-

proximately 450–750 μM.
k Using Eq. (3) and cartilage data from Fig. 2 in [86] These authors state “…assuming a 10% decrease in T1 is measurable…we would expect to be sensitive to a

change in FCD from a normal of −0.2 to −0.16M, the sort of change one would expect to see relatively early in a degenerative process”.
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Native T1 has been reported as a biomarker inter alia in cardiac diseases
[37,38], liver diseases [35,39,40], neurology [41], oncology [34,42], in
the placenta [43] and in the lung [44–46]. Clinically significant R1
differences (Table 4) usually exceed the expected irreproducibility re-
ported in Table 3. For example: in liver fibrosis 0.1–0.2 s−1 or 10–20%
[35,39,40]; in manganese neurotoxicology 0.06 s−1 or 7% [47]; in
chronic obstructive pulmonary disease 0.1 s−1 or 10% [44] were
clinically significant. In preclinical tumour models, differences of
15–20% were biologically significant [34]. Notably, however, in myo-
cardial fibrosis, differences as small as 0.02–0.03 s−1 or 2–3% may be
clinically significant [48,49] and in multiple sclerosis normal-appearing
white matter differences of 0.025 s−1 or 2% may be clinically sig-
nificant [50], so translational animal studies of these conditions may
require exceptional efforts to ensure T1 measurements can be validated
and qualified for decision-making for these specific indications.

A second class of imaging biomarkers attaches a specific inter-
pretation of the observed longitudinal relaxation, for example in ar-
terial spin labelling [51,52] or in MR thermometry [53–55]. Thirdly, R1
is commonly used to determine the spatially resolved in vivo con-
centration of an exogenous or endogenous paramagnetic substance of
known relaxivity. Relaxivity can be field-, tissue- and temperature-
dependent, and varies over many orders of magnitude between relaxive
substances: from<10−2 s−1mM−1 for deoxyhaemoglobin monomer
[56] to>103 s−1mM−1 reported for certain investigational poly-
metallated contrast agents [57]. R1 errors propagate to low micromolar
errors in typical gadolinium- or manganese-based contrast agents.
However, propagation of errors may be more significant for techniques
based on lower-relaxivity substances. For example in oxygen-enhanced
MRI, which measures hyperoxia-induced changes in deoxyhaemoglobin
and dissolved oxygen concentration via change in R1 [45,58], meticu-
lous standardisation is warranted. From Table 4, error propagation
might also be important for studies of therapeutic nitroxyls and perhaps
for thermometry.

Finally, there are many biomarkers derived indirectly from contrast
agent concentration, using a physiologic model. These include mea-
sures of perfusion and permeability in tumours, infarcts, synovitis or
lung disease; myocardial extracellular volume, cartilage fixed charge
density in osteoarthritis, and liver transporter function in toxicology.
All biomarkers are also measured in animal models, often aiming to
assist the design and interpretation of clinical studies, so it is important
to understand the validity of these measurements in preclinical systems.
Table 4 includes a representative selection of such MR biomarkers, with
simple assessments of how instrumentation-derived irreproducibility in
R1 might propagate. For example, the measured between-centre un-
certainty in precontrast R1 translates to at most 10% between-centre
uncertainty in the biomarkers derived from DCE-MRI (Table 4). This
error is smaller than the typical day-to-day repeatability error, and in
itself would have little effect on the interpretation of change in para-
meters such as Ktrans, because treatment effects are typically much>
10% [59].

A realistic assessment of propagation of errors is complex and be-
yond the scope of this work. In particular, in compartmental models,
reproducibility errors and repeatability errors are not completely in-
dependent. We omitted from consideration terms which primarily affect
repeatability, such as error cancellation with post-contrast R1, addi-
tional R1 errors that arise in the presence of contrast agent (e.g. signal
saturation, limited water exchange), and in vivo effects (e.g. inflow,
breathing motion, bolus dispersion, partial volume). Nevertheless,
Table 4 provides comparative order-of magnitude assessments to
highlight cases in which the variance seen in our study might be im-
portant. With this caveat, in myocardial fibrosis, in normal-appearing
multiple sclerosis white mater, and in oxygen-enhanced MRI, R1-based
MR biomarkers would be quite sensitive even to such small errors in R1
unless additional acquisition and analysis methods are designed to re-
duce the impact of error propagation. An example of this is the use of
dynamic time series in OE-MRI that determine ∆R1(t) by referencing the

time-varying signal to a baseline R1 measurement, thereby reducing the
degrees of freedom in the measurement and subsequent error propa-
gation [60]. Similar approaches have been common in DCE-MRI for
many years.

4.3. Study limitations

(1) This study was performed using only one vendor's equipment,
Bruker Avance I, II or III systems running Paravision 5 or 6, re-
presenting a typical range of equipment for preclinical MR bio-
marker research at the time when the study was performed
(2017–18). The findings may not be translatable to other vendors'
equipment.

(2) Only one pulse sequence (saturation recovery with RARE readout)
was employed. This was chosen [61] in a compromise between
accuracy and speed. However the assumption of zero longitudinal
magnetisation at the mid-point of the eighth echo may be invalid if
B1 is imperfect, and the findings may not be translatable to other
sequences with different B1 sensitivity.

(3) The accuracy of our data was not verified using an external stan-
dard, such as spectroscopic inversion-recovery.

(4) A common problem for MR phantoms is temperature dependence.
In addition to ambient room temperature, heat is imparted to the
phantom from the shims during the working day, from the pulsed
gradients, and directly from radiofrequency power deposited by the
pulse. Data at 1.5 T [4] and 2.35 T [15] show R1 temperature de-
pendencies in the range −1.3%/°C to +0.7%/°C; data at 0. 08 T
[16] show an r1 temperature dependence of 0.006 s−1mM−1/°C.
Although temperatures were measured in this study, no direct
measurement was made of the agarose temperature itself during
MR data acquisition, and exploratory analyses did not reveal tem-
perature as a confound.

(5) In order to address the question of reproducibility in normal aca-
demic practice, our study modelled “institution-led” standardisa-
tion. No site training was performed, no quality control was im-
posed, nor were sites permitted to repeat their measurements to
eliminate apparent outliers. We did not verify that all scanners were
performing optimally, and indeed SNR estimated from the DNE
runs did not show the anticipated variation with B0 or coil design.
RoIs and T1 calculations were performed locally. Possibly, “cen-
trally-led” standardisation rigorously imposed by a core lab might
further improve reproducibility.

(6) No phantom study can fully model the in vivo measurement.
Nevertheless, a well-designed phantom study sets a lower limit on
the error to be expected from measurements in living animals.

4.4. Conclusions

Using nickel agarose phantoms in typical preclinical MR systems, R1
exhibited adequate reproducibility for most purposes. Reproducibility
(and repeatability) of< 0.06 s−1 and < 2.4% was readily achieved.
These small technical (instrumentation-derived) errors in R1 measure-
ment mostly do not contribute biologically significant errors into R1-
based MR biomarkers. However, in a small number of very demanding
applications, such as myocardial fibrosis, white mater, or oxygen-en-
hanced MRI, the accuracy of R1-based MR biomarkers would be quite
sensitive even to such small errors in R1, therefore in these cases further
work may be needed to adequately standardise R1 data acquisition and
analysis.
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