Effects on metal resource use from reusing laptops - A comparison of impact assessment methods
Hampus André, Maria Ljunggren Söderman and Anders Nordelöf

Introduction
- Case study based on a Swedish IT resale company acquiring used but largely functional laptops from companies and reselling to public sector, private users and companies abroad.
- Circular Economy (CE) measures based on extended use, such as reuse, tend to reduce scarce metal losses in two principal ways compared to conventional alternatives:
 - through extending the use of products that can be reused
 - through collecting products that are deemed non-reusable at inspection and sending them to recycling, thereby increasing collection rates (Ljunggren Söderman & André, 2018)
- Metal resource use/depletion/consumption results are considerably dependent on the choice of life cycle impact assessment (LCIA) method (e.g. Finnveden et al., 2016; Peters & Weil, 2016; Rigamonti et al., 2016, Renbech et al., 2014).
- Hence, fruitful to study the effects of reuse using several complementary LCIA methods

Research question
- How does the application of different LCIA methods for metal resource use influence interpretations of reuse of laptops, as mediated by a resale company?

Methodology
- Comparative life cycle assessment (LCA) between:
 - New laptop alternative: new production (every three years)
 - Second-hand laptop alternative (70 % of laptops collected by reuse company used for additional three years)

Results & Discussions
- Some metals noticeable in all methods: gold, copper and tin
- Others notably important but only in some methods: tantalum, indium, palladium, platinum
- Relevant metals from some perspectives could be overlooked if only using one LCIA-method.
- Gold important across all methods
 - More in methods based on average crustal concentration (CML-UR and EPS)
 - Less in exergy and reserve-based approaches (CML-RB, CML-ER, EcoSc)
- Indium important in reserve-based methods
 - Due to being a by-product metal
 - Not particularly scarce in average crustal concentration
 - Tantalum important in exergy and reserve-based methods
 - High exergy demand for metals with low deposit concentrations
 - Not particularly scarce in average crustal concentration
- Targeting gold, silver, copper in WEEE: Recycling reduces significant share of metal resource depletion

Conclusions
- Major reduction from use extension
 - About 41% due to doubled lifetime of 70% of sourced laptops
- Additional reduction from steering flows into recycling depending on LCIA method
 - Especially important according to some LCIA-methods (varying between 1-9% reduction compared to new laptops) which characterise metals that are functionally recycled as important (typically methods using average crustal concentrations) and negligible in others (typically reserve-based methods)
- The metals benefitting most from reuse are functionally recycled metals (silver, gold, copper, palladium, tin and nickel)
- The reuse company’s routine of steering flows into recycling decreases their losses in addition to use extension.
- Advisable to use complementary methods to minimise risks of overlooking relevant metal resource use aspects when studying circular economy measures applied to electronic products

Table 1. LCIA methods used, problem perceptions, indicator approach (Steen 2006, Sonderegger et al., 2017) and type of data used to derive characterisation factors.

<table>
<thead>
<tr>
<th>LCIA methods used</th>
<th>Environmental problem perception of metal resource use</th>
<th>Indicator approach</th>
<th>Type of data for calculation of characterisation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative energy demand (CEcX) (Böckh, 2006)</td>
<td>Energy poses limit</td>
<td>Exergy</td>
<td>Deposit</td>
</tr>
<tr>
<td>CML ultimate reserves (UR) (Van Oers et al., 2002)</td>
<td>Scarcity of metals Metal depletion</td>
<td>Use to resource</td>
<td>Average crustal concentrations</td>
</tr>
<tr>
<td>CML/reserve base (RB) & economic reserves (ER) (Van Oers et al., 2002)</td>
<td>Scarcity of metals Metal depletion</td>
<td>Use to resource</td>
<td>Reserves</td>
</tr>
<tr>
<td>Ecological scarcity method (EcoSc) (Frischknecht, 2013)</td>
<td>Scarcity of metals Metal depletion</td>
<td>Use to resource</td>
<td>Reserves</td>
</tr>
<tr>
<td>Environmental Priority Strategies (EPS) (Steen, 1999)</td>
<td>(Sustainable) mining cost poses limit</td>
<td>Increased future environmental impacts or costs of mining and material production due to decreasing ore grades</td>
<td>Average crustal concentrations</td>
</tr>
<tr>
<td>ReCiPe midpoint (Goedkoop M., 2009)</td>
<td>Mining cost poses limit</td>
<td>Increased future environmental impacts or costs of mining and material production due to decreasing ore grades</td>
<td>Deposit</td>
</tr>
</tbody>
</table>

Figure 2. Metal resource use impacts: the reuse alternative compared to the new laptop alternative (%) with five impact assessment methods of which one has three versions. Metals with >1.5% contribution with at least two methods or >4% with at least one method are displayed individually. Others include 20 metals such as aluminium, iron, nickel and rare earth elements.

References:
Frischknecht, R. & Müller, R. (2013). Swiss LCA factors 2013 according to the methodology of the 2005 Swiss study, results and their application in the German Batts database.
Söderman, R., & André, 2018) and type of data used to derive characterisation factors.

Figure 1. Flowcharts of: a) new laptop alternative, b) second-hand laptop alternative and c) EoL treatment.