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ARTICLE

Interlayer exciton dynamics in van der Waals
heterostructures
Simon Ovesen 1, Samuel Brem 1, Christopher Linderälv1, Mikael Kuisma1,2, Tobias Korn3, Paul Erhart 1,

Malte Selig4 & Ermin Malic1

Atomically thin transition metal dichalcogenides can be stacked to van der Waals hetero-

structures enabling the design of new materials with tailored properties. The strong Coulomb

interaction gives rise to interlayer excitons, where electrons and holes are spatially separated

in different layers. In this work, we reveal the time- and momentum-dependent elementary

processes behind the formation, thermalization and photoemission of interlayer excitons for

the exemplary MoSe2–WSe2 heterostructure. We identify tunneling of holes from MoSe2 to

WSe2 on a ps timescale as the crucial process for interlayer exciton formation. We also

predict a drastic reduction of the formation time as a function of the interlayer energy offset

suggesting that interlayer excitons can be externally tuned. Finally, we explain the experi-

mental observation of a dominant photoluminescence from interlayer excitons despite the

vanishingly small oscillator strength as a consequence of huge interlayer exciton occupations

at low temperatures.
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A direct band gap in the optical range, efficient electron-
light coupling and a remarkably strong Coulomb inter-
action make transition metal dichalcogenides (TMDs)

highly interesting materials for both fundamental research and
technological applications1–6. Tightly bound excitons, quasi-
particles of Coulomb-bound electron-hole pairs, dominate the
optical response of these materials7–14. They have binding ener-
gies that are one to two orders of magnitude larger than in
conventional materials15,16. As a result, excitonic features are
stable at room temperature and dominate the optical response
and non-equilibrium dynamics in TMDs. Besides regular bright
excitons, TMDs also exhibit a variety of optically forbidden dark
excitons17–24, which cannot be addressed optically due to the
required momentum transfer or spin flip. The fascinating exciton
physics becomes even richer, when considering that atomically
thin materials can be vertically stacked to form Van der Waals
(vdW) heterostructures1. In these systems the strong Coulomb
interaction gives rise to interlayer excitons, where the involved
electrons and holes are located in different layers (Fig. 1)25–29.
After optical excitation of a regular intralayer exciton (IaX), the
hole can tunnel to the other layer forming an interlayer exciton
(IeX). Due to an offset in the alignment of the monolayer
band structures (type II heterostructures), these interlayer exci-
tons lie energetically below the excitons confined within one
layer29 (Fig. 1). Depending on spin and momentum of the sta-
tes involved, interlayer excitons can be either bright or dark.
VdW heterostructures present an emerging field of research, as
evidenced by an increasing number of studies, in
particular demonstrating the appearance of interlayer excitons in
photoluminescence (PL) spectra25,26,28,30–39. In the low-
temperature regime, a pronounced additional resonance is
observed at an energy below the intralayer excitons of the single
layers26,27,33,40,41. The PL intensity of this low-energy peak is
very pronounced compared to the intralayer exciton in the weak
excitation regime. This behavior can be traced back to
formation of interlayer excitons that due to their spectral position
are highly occupied. Furthermore, in time-resolved PL
measurements a spectrally narrow resonance was observed
exhibiting lifetimes of tens to hundreds of nanose-
conds26,27,33,40,41. Theoretical studies of vdW heterostructures
have so far been primarily restricted to static observables, such
as screening42, excitonic binding energies29, and lattice
mismatch effects35. Microscopic insights into the ultrafast
dynamics of interlayer excitons have remained literally in the
dark yet.

In this work, we present a comprehensive microscopic
study of the ultrafast kinetics of excitons in vdW
heterostructures, in particular revealing the elementary time-
resolved and energy-resolved processes behind the
formation, thermalization and decay of interlayer excitons. We
predict the binding energy of 150 meV for the energetically
lowest interlayer excitonic state in the exemplary MoSe2–WSe2
heterostructure, as well as a significant reduction of
intralayer binding energies by about 30% due to the
increased screening within a heterostructure. Moreover, we shed
light on the exciton dynamics demonstrating that excited inter-
layer excitons are formed via hole tunneling on a picosecond
timescale, followed by a phonon-driven relaxation to the ground
state on a femtosecond timescale. The radiative interlayer
recombination is by orders of magnitude slower reflecting the
small oscillator strength of spatially separated excitons. Finally,
we provide a microscopic explanation for the recently performed
time-resolved photoluminescence experiments demonstrating the
surprisingly dominant contribution of interlayer excitons at low
temperatures.

Results
Theoretical approach. We investigate the exemplary
MoSe2–WSe2 heterostructure on a typical SiO2 substrate. To
bring the system into a non-equilibrium, we apply a laser pulse at
the energy resonant to the 1s exciton of the MoSe2 layer. We
restrict the study to 1s excitons consisting of Coulomb-bound
electrons and holes located at the K point of the Brillouin zone.

To provide microscopic access to the dynamics of the coupled
excitons, phonons and photons, we apply the density matrix
formalism43–46 and derive the luminescence Bloch equations
explicitly including excitonic effects9,44. The emitted lumines-
cence intensity Iω(t) is obtained from the temporal change of the
photon density and reads44,47.

IωðtÞ / ω
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Here, Mlh le
0 is the optical matrix element for excitons that are

composed of electrons in layer le and holes in layer lh. The index 0
indicates that only excitons with vanishing center-of-mass
momentum Q= 0 contribute to PL. While the optical matrix
element can be obtained analytically using a tight-binding
approach for TMD monolayers and adjusting the coupling
strength to experimentally measured absorption9,22, first-
principle calculations have been performed to determine the
coupling for interlayer excitons. The Lorentzian Lγ accounts for
energy conservation, i.e., an exciton decays into a photon with the
same energy. We calculate on a microscopic level the components
of the dephasing rate γ stemming from exciton-phonon and
exciton-photon interactions22,48. At lower temperatures disorder-
induced dephasing becomes important and has been accounted
for phenomenologically by using the full width at half maximum
(FWHM) values measured in ref. 27.

The PL strength is determined by the excitonic polarization
Plh le
Q ðtÞ reflecting the optically driven coherence (often referred to

as coherent excitons43,44) and by the exciton occupation Nlh le
Q

describing the formation and thermalization of incoherent
excitons induced by a non-radiative decay of the excitonic
polarization. Equations of motion for Plh le

Q ðtÞ and Nlh le
Q are derived
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Fig. 1 Formation of interlayer excitons. After optically exciting a coherent
intralayer exciton (IaX, red oval), incoherent excitons are formed assisted
by emission and absorption of phonons. Hole tunneling subsequently
converts these into incoherent interlayer excitons (IeX, blue oval). After
exciton and thermalization through scattering with phonons, most excitons
occupy the energetically lowest interlayer excitonic state EIeX with
vanishing center-of mass-momentum. Both IaX and IeX decay radiatively
resulting in photoluminescence (PL). The investigated type II
heterostructure shows an interlayer energy offset ΔE
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in the low density regime taking into account exciton-photon
coupling giving rise to a spontaneous radiative decay of excitons
as well as exciton-phonon coupling allowing for a relaxation of
the excited hot exciton distribution into a thermal equilibrium.
Furthermore, we take into account the tunneling of carriers
between layers. This process is included via the tunneling
Hamilton operator HT ¼ P

a;b T
abaybab, where a, b are compound

indices containing layer, band and momentum of the electron.
The coupling element T is given by the overlap integral 〈Ψa|VT|
Ψb〉 of Bloch waves Ψ with the interlayer potential VT. The
appearing spatial overlap of the wavefunctions from different
layers is obtained from density functional theory calculations that
have been carried out using the gpaw package49. More details on
the calculation of the tunneling matrix element can be found in
the methods section. Finally, applying the Heisenberg equation of
motion, we obtain the luminescence Bloch equations for the
excitonic polarization Plh le

Q ðtÞ and the incoherent exciton occupa-

tion Nlh le
Q , see Eqs. (2) and (3) in the methods section. Numerical

solution of this coupled set of differential equations provides
microscopic access to time-resolved and momentum-resolved
formation, relaxation, and radiative decay dynamics of intralayer
and interlayer excitons. It allows us to calculate the photo-
luminescence of heterostructures as a function of time and
energy.

Excitonic band structure. The excitonic eigenenergies and wave
functions are obtained by solving the Wannier equation9,43,46

(Equation (1) in the methods section). To obtain the interaction
potential between charge carriers in a heterostructure, we gen-
eralize the widely used Keldysh potential for the monolayer
case9,50. We solve the Poisson equation for two aligned

homogeneous slabs (Supplementary Fig. 1 and Supplementary
Note 1 for more details). The obtained excitonic band structure
and the corresponding excitonic wave functions are shown in
Fig. 2 for the three energetically lowest excitonic states (1s, 2s, 3s)
for intralayer and interlayer excitons. Here, the electronic band
alignment has been extracted from PL measurements26,27. We
find that the interlayer exciton is the energetically lowest state at
1.39 eV, while the intralayer excitons lie at 1.65 eV (MoSe2) and
1.75 eV (WSe2), Fig. 2. The resulting excitonic binding energies
are displayed in Table 1. As expected, the binding energy for
interlayer excitons is reduced (150 meV for 1s) compared to the
value for intralayer excitons (205 meV for MoSe2 and 177 eV for
WSe2), however it is still much larger than the thermal energy.
Thus, interlayer excitons are expected to be stable at room tem-
perature and significantly contribute to the PL. Our calculations
also reveal that the binding energy of intralayer excitons is con-
siderably reduced by roughly 30% when the monolayers are
stacked into a heterostructure (Table 1). This is due to an
increased screening of the Coulomb potential. These results are
consistent with previous theoretical studies based on DFT
calculations29,37.

Exciton dynamics. Solving the luminescence Bloch equations
(the Methods section) we can resolve the dynamics of intralayer
and interlayer excitons. Figure 3a shows the temporal evolution of
exciton densities, i.e., momentum-integrated exciton occupations
n ¼ P

Q NQ, at the exemplary temperature of 77 K (Supple-
mentary Fig. 3 and Supplementary Note 3 for 4 K and room
temperature). The system is excited by a 100 fs long Gaussian
pulse centered at 0.5 ps and a frequency resonant to the intralayer
1s exciton of the MoSe2 layer. We find that the optically excited
coherent excitons (dashed red line in Fig. 3) decay on a timescale
of hundreds of femtoseconds due to radiative emission and
exciton-phonon scattering. The latter leads to the formation of
incoherent intralayer excitons (IaX) through the so-called
polarization-to-population transfer23,43,51,52. After about 10 ps,
these intralayer excitons are completely transferred to interlayer
excitons (IeX). This occurs through tunneling between energeti-
cally resonant states of the two layers and results in a transfer of
holes to the WSe2 layer (Fig. 1). The subsequent phonon-induced
relaxation of holes in the WSe2 layer to the valence band max-
imum effectively traps the holes within that layer, since tunneling
back to MoSe2 is energetically forbidden. The resulting interlayer
excitons have lifetimes orders of magnitudes longer than the
intralayer excitons, since recombination mechanisms are sup-
pressed due to the spatial separation of Coulomb-bound electrons
and holes. We predict an interlayer exciton lifetime in the range
of hundreds of microseconds at 77 K. Experimentally measured
sub-nanosecond values27 suggest that the investigated radiative
decay is not the dominant channel, but rather non-radiative
decay e.g., induced by disorder might play the crucial role.

To provide the microscopic background of the exciton
formation and thermalization process, we now show the time-
resolved and energy-resolved dynamics of incoherent intralayer
and interlayer excitons. Figure 4a illustrates how 1s intralayer
excitons (IaX) are created in the MoSe2 layer after optical
excitation at 0.5 ps. The process is followed by a phonon-assisted
thermalization and tunneling-driven depletion of these excitons.
The main features of these dynamics are illustrated in
representative snapshots along the energy axis at fixed times
(Fig. 4b). At 0.6 ps, a significant number of excitons is still located
in the MoSe2 layer. The distribution is in a strong non-
equilibrium due to the efficient polarization-to-population
transfer, i.e., the excitonic polarization is converted into
incoherent exciton occupations with non-vanishing center-of-
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Fig. 2 Exciton band structure. Energetically lowest excitonic states (1s, 2s,
3s) for MoSe2 (a) and WSe2 (c) intralayer excitons and the corresponding
MoSe2-WSe2 (b) interlayer exciton, respectively. The corresponding
excitonic wave functions are shown in Supplementary Fig. 2 and
Supplementary Note 2

Table 1 Excitonic binding energies for the MoSe2-WSe2
heterostructure on an SiO2 substrate (vacuum)

Excitonic binding energies (meV)

Heterostructure Monolayer

MoSe2 WSe2 MoSe2-
WSe2

MoSe2 WSe2

1s 205 (317) 177 (271) 150 (246) 298 (489) 255 (447)
2s 74 (153) 56 (124) 58 (128) 99 (230) 73 (192)
3s 39 (98) 28 (76) 31 (82) 49 (132) 33 (110)

Solving the Wannier equation we have full access to all excitonic states. The binding energy of
the 1s interlayer exciton is smaller than for the intralayer excitons. For higher states the
difference becomes smaller. The binding energy of intralayer excitons is significantly reduced
due to the increased screening within the heterostructure
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mass momentum. This is the origin of the observed peaks (green
line in Fig. 4b) corresponding to the position of intersections of
exciton and phonon dispersion. After the coherence has decayed
(1 ps), the occupation starts to thermalize into a Boltzmann
distribution (blue line). The occupation within the light cone
centered around the exciton dispersion minimum E0= 1.65 eV is
lowered as a result of radiative recombination. Furthermore,
tunneling of holes to the WSe2 layer causes a considerable decay
of the intralayer exciton occupation (black line). Finally, the
temporal evolution of the exciton occupation at a fixed energy
corresponding to the 1s resonance of intralayer excitons (1.65 eV)
is shown in Fig. 4c. This occupation represents the optically active
exciton with vanishing center-of-mass momentum. We see how
intralayer excitons are created already during the optical
excitation and how they decay on a ps timescale due to tunneling
of holes into the neighboring WSe2 layer.

Figure 5a illustrates the corresponding dynamics of interlayer
excitons (IeX). They first emerge at E= E0 corresponding to the
energy of intralayer excitons in MoSe2. The exciton population
generated at this discrete energy consequently relaxes to the band
minimum of the interlayer dispersion mostly by emitting LO and
TO phonons in MoSe2, which have approximately a constant
energy of 36 meV. This yields a cascade-like redistribution of
excitons through intermediate energy levels after a series of
optical phonon emissions. The slow interaction with acoustic
phonons, which provide a continuous range of energies, leads to a
smoothing of the occupation distribution, but on a much larger
time-scale. The energy conserving nature of the tunneling
interaction eventually forces the entire system into a single
Boltzmann-like distribution as can be seen in Fig. 5b, spanning
over both intralayer and interlayer excitonic states.

Figure 5c is analogous to Fig. 4c, and depicts the temporal
evolution of interlayer excitons at fixed energies. The green curve
first shows how the interlayer exciton occupation at the energy
1.65 eV resonant to the intralayer exciton rises with its intralayer
counterpart. Driven by scattering with phonons, excitons then
accumulate at the minimum of the dispersion at 1.39 eV (orange
curve).

It should be noted that the exciton-phonon scattering has an
important effect on the effective tunneling rate. Since the
tunneling interaction is symmetric, the effective interlayer
tunneling rate is quenched by back-tunneling from energy-
allowed states. On a short timescale, the impact is mostly
determined by the rate of the phonon-induced down-scattering
(Fig. 5). As the Boltzmann distribution is formed (Fig. 5b), the
temperature starts becoming an important factor. The spectral
width of the IeX distribution increases at enhanced temperatures,
leading to more excitons available for back-tunneling. Never-
theless, for the investigated heterostructure the change in
temperature has still a relatively small effect on the IeX formation
time τ. We find a reduction of τ by approximately 200 fs from 4 K
to 200 K, after which it remains nearly constant up to room
temperature (Fig. 3b).

The interlayer energy offset ΔE in type II heterostructures
(Fig. 1) turns out to be a crucial quantity for the IeX formation
time. For the investigated MoSe2–WSe2 heterostructure, the offset
reads 315 meV and results in an IeX formation time τ= 2.61 ps at
room temperature. The latter is defined as the elapsed time
between the pump pulse maximum and the IeX density reaching
1 − e−1 of its maximum value. Increasing (decreasing) the offset
by 100 meV, the formation time becomes considerably enhanced
to τ= 4.91 ps (reduced to τ= 0.69 ps). This behavior can be
ascribed to the reduced (enhanced) tunneling rate reflecting the
increased (decreased) momentum transfer, as the interlayer
energy offset ΔE becomes larger (smaller). To put it in other
words, the spectral overlap of the wavefunctions of the involved

states in different layers is highly sensitive to ΔE. The larger the
overlap (small ΔE), the more efficient is the tunneling and the
faster is the formation time. The disorder-assisted momentum
transfer function (Methods) also decreases with increasing ΔE.
For this reason tunneling to the higher excitonic states might be
non-negligible considering their lower binding energies, and will
have to be addressed in a future study.
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A modification of the interlayer energy offset could be e.g.,
achieved by introducing a doping of a single layer26 suggesting
that the IeX formation time in heterostructures can be externally
tuned. Furthermore, the interlayer wavefunction overlap and the
tunneling rate could be tuned by modifying the substrate-induced
screening. The smaller the dielectric constant, the stronger is the
Coulomb interaction and the broader are the excitonic wavefunc-
tions in the reciprocal space resulting in a more efficient
tunneling. Finally, different layer stackings can also have a
significant effect on the tunneling rate, as demonstrated by ref. 38

predicting formation times ranging from ps to sub-ps timescales.

Photoluminescence. The exciton dynamics discussed above
determines the light emission from the heterostructure. Figure 6a
shows the time-resolved and energy-resolved PL spectrum at the
exemplary temperature of 77 K in (Supplementary Fig. 4 and
Supplementary Note 3 for 4 and 300 K). We find that in the first
few ps, the emission from intralayer excitons (IaX) at 1.65 eV
clearly dominates the PL. However, after approximately 41 ps, the
contribution of interlayer excitons becomes pronounced. To
better understand the underlying processes, we show again
snapshots at fixed times and energies in Fig. 6b, c, respectively.
The emission stemming from the intralayer exciton at 1.65 eV
(red line in Fig. 6c) shows a maximum PL intensity in the first
hundreds of femtoseconds originating from the efficient coherent
emission (radiative decay of polarization on a fs timescale). The
following slower decay on a time scale of tens of ps reflects the
decrease of intralayer excitons due to hole tunneling to the WSe2
layer. In this time, interlayer excitons are formed (solid blue line
in Fig. 6c). After approximately 41 ps, the contribution of the
interlayer exciton surpasses the emission from the intralayer
exciton. Snapshots of the energy-dependent PL along these
characteristic times further demonstrate by far most pronounced

coherent IaX emission (orange line, 0.6 ps), the reduced emission
due to incoherent IaX (red, 1 ps), equal IaX and IeX emission
(blue, 41 ps), and finally the dominant IeX emission (purple, 65
ps).

After 60 ps an equilibrium situation is reached that is
characterized by a constant IaX–IeX intensity ratio of approxi-
mately 100 (dashed lines in Fig. 6c). This is determined by the
ratio of the square of the corresponding optical matrix elements |
MIeX|2/|MIaX|2 and exciton occupations NIeX

0 =N IaX
0 within the

light cone. Since the occupations are described by a Boltzmann
distribution in equilibrium, we can explicitly calculate the
temperature, at which the PL ratio is 1. We find that the
interlayer exciton emission dominates until approximately 200 K.
Above this temperature, the thermal occupation of energetically
higher intralayer excitons increases and considering the sig-
nificantly larger optical matrix element for intralayer emission,
the intralayer peak exceeds the emission from the interlayer
exciton.

A recent DFT study37 on MoSe2/WSe2 heterostructures
suggests that the interlayer coupling might shift the Λ valley
below the K valley in both layers, giving rise to a momentum
mismatch between the lowest conduction and the highest valence
band in the heterostructure. The resulting enhanced occupation
of momentum-forbidden dark interlayer excitons and their
impact on luminescence spectra (e.g., via phonon-assisted
recombination) is of particular interest for future studies. In
particular, for tungsten-based heterostructures the inclusion of
other high-symmetry points of the Brillouin zone is expected to
be important to capture the entire interlayer exciton
dynamics41,53,54

Discussion
In conclusion, we have presented a microscopic view on the
dynamics of inter- and intralayer excitons in van der Waals
heterostructures. Solving the Wannier equation, we report a
binding energy of 150 meV for the interlayer exciton as well as a
clear 30% reduction of the binding energy of the intralayer
excitons due to the enhanced screening within a heterostructure.
Solving the luminescence Bloch equations, we reveal the time-
resolved and energy-resolved processes behind the formation,
thermalization, and decay of interlayer excitons. We predict that
tunneling of holes from the optically excited into the neighboring
layer is the dominant formation channel occurring on a picose-
cond timescale. We demonstrate the crucial role of phonons in
both their formation and subsequent relaxation dynamics. Fur-
thermore, we suggest a possibility to externally tune the forma-
tion time of interlayer excitons by changing the interlayer energy
offset in the type II heterostructure. Finally, we show that
although the light emission from interlayer excitons is strongly
quenched due to the spatial separation of charge carriers, they
actually dominate the photoluminescence spectrum of hetero-
structures at temperatures below 200 K. The gained insights will
trigger new experimental studies on van der Waals hetero-
structures. In particular, the predicted formation dynamics of
interlayer excitons can be experimentally addressed by pumping
and probing the intralayer exciton transition in different layers,
where a clear bleaching is expected due to the efficient interlayer
tunneling.

Methods
Binding energies. To model the interlayer exciton dynamics in heterostructures,

we derive the luminescence Bloch equations for the excitonic polarization Plh le
Q ðtÞ ¼

P
q φ
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Fig. 5 Energy-resolved and time-resolved interlayer exciton dynamics.
Temporal evolution of the interlayer exciton (IeX) occupation N at 77 K
after resonant excitation of the MoSe2 monolayer. a The surface plot shows
N as a function of time and energy, while b, c illustrate exemplary snapshots
along energy and time axes (corresponding to dashed lines in a),
respectively. After appearing around E0 from interlayer tunneling, the
interlayer excitons relax through phonon scattering
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hole pair correlations44. Here, we have introduced φq as excitonic wavefunctions in
momentum space, vðyÞ; cðyÞ as operators for annihilation (creation) of valence- and
conduction band electrons as well as relative q and center-of-mass momenta Q
with the coefficients α=me/(mh+me) and β=mh/(mh+me) describing the
relative electron and hole masses.

To obtain the excitonic binding energies and wave functions, we solve the
Wannier equation9,43,46

�h2q2

2μlh le
φlh le
q �

X
k

Vlh le
k�qφ

lh le
k ¼ Elh le

b φlh le
q ; ð1Þ

where μ is the reduced mass, Eb the excitonic binding energy, and Vlh le
k the

Coulomb matrix element for the electron-hole interaction. Solving the Poisson
equation for two aligned homogeneous slabs, we obtain an effective 2D Coulomb

potential Vlh le
k ¼ e20

kε0ε
lh le ðkÞ with a dielectric function εlh le ðkÞ, depending on the

momentum transfer k and the overall composition of the heterostructure,
Supplementary Note 1 for more details.

Dynamics. Equations of motion for the exciton polarization and the exciton
occupations are derived taking into account all relevant interaction mechanisms in
the low density regime. The carrier-phonon matrix elements are taken from DFT
calculations55 and are treated in analogy to refs. 22,23,52. The interaction
mechanism that distinguishes the exciton dynamics in a vdW heterostructure from
the dynamics in a bare TMD monolayer is the tunneling of carriers between layers.
This process is included via the tunneling Hamilton operator HT ¼ P

a;b T
abaybab ,

where a, b are compound indices containing layer, band and momentum of the
electron. The coupling element T is given by the overlap integral 〈Ψa|VT|Ψb〉 of
Bloch waves Ψ with the interlayer potential VT. The latter can be separated into an
out-of-plane component Vz and an in-plane disorder potential Vρ

56. The first is
given by a step function, which is only non-zero within the region between the two
layers and its value was fixed to 5 eV corresponding to the ionization energy of
TMD monolayers57,58. The tunneling matrix element can then be expressed as Tab

= Vρ(|kb− ka|)Vz 〈ua|ub〉uc, where u are the lattice-periodic parts of the Bloch
waves, which are integrated over one unit cell (uc). This integral was obtained from
density functional theory calculations, yielding an overlap of approximately 1 × 10
−2. The calculations were carried out using the gpaw package49. The wave function
was expanded on a grid and exchange-correlation effects were represented using
the PBE exchange-correlation functional59. The details behind this process are
written in Supplementary Note 4. Finally, the Fourier transform of the in-plane

component of the disorder potential reads56 Vρðjkb � kajÞ ¼
ffiffiffi
π

p
LC= 1þ jkb�ka j2L2C

2

� �3
4
with LC as the correlation length. It has been set to 1 nm in

accordance with the excitonic Bohr radius60, an approximation that applies for
short-range disorder61,62.

Applying the Heisenberg equation of motion, we obtain the luminescence Bloch
equations for vdW heterostructures

_Pα ¼ 1
i�h
EαPα þ iΩα � γαr þ

1
2

X
β

ΓαβP

0
@

1
APα; ð2Þ

_Nα ¼
X
β

ΓβαP Pβ

���
���
2
þΓαβT ΔNαβ

� �
� 2γαrNα;0 þ N scatt

α ; ð3Þ

where the excitonic compound indices α, β contain center of mass momentum and
electron/hole layers. The dynamics of the exciton polarization Pα(t) is determined
by the Rabi frequency Ωα containing the driving optical pump pulse and the decay
processes stemming from radiative damping γαr

� 	
and exciton-phonon interaction

ΓαβP

� �
. The latter has been obtained by truncating the electron-phonon interaction

by a second order Born-Markov approximation44,46, giving rise to energy-
dependent scattering rates. Those incorporate all exciton-phonon scattering
channels, i.e., all energy allowed exciton transitions, weighted by the excitonic
scattering cross-sections, electron-phonon couplings and the occupations of
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Fig. 6 Time-resolved and energy-resolved photoluminescence. PL of the investigated heterostructure at 77 K plotted a over time and energy (logarithmic)
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intralayer (IaX) exciton resonance, respectively. The solid lines in c represent the signals stemming from the interlayer or intralayer emission only, while
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involved phonon modes. The dynamics of the incoherent exciton occupation Nα(t)
is determined by formation processes driven by phonon-assisted decay of the
excitonic polarization, the radiative decay, and exciton-phonon scattering Nscatt

α

� 	
driving the excited system towards an equilibrium Boltzmann distribution23,52.
Note that that radiative decay scales with Nα,0=NαδQ,0, where only states within
the light cone with a nearly zero center-of-mass momentum Q= 0 can contribute.

Finally, ΓαβT describes resonant tunneling between different layers. It depends on the
occupation difference (ΔNαβ=Nβ−Nα) of the involved excitonic states and causes
the formation of interlayer excitons. It was obtained by applying the same

methodology as for ΓαβP . The explicit form of the scattering rates is given in
Supplementary Note 5.

Code availability. The code used to calculate the findings of this study is available
from the corresponding author upon request.

Data availability
The data that supports the findings of this study is available from the corresponding
author upon request.
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