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ABSTRACT

We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD 219666
(M? = 0.92± 0.03 M�, R? = 1.03± 0.03 R�, τ? = 10± 2 Gyr). With a mass of Mb = 16.6±1.3 M⊕, a radius of Rb = 4.71±0.17 R⊕, and an
orbital period of Porb ' 6 days, HD 219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet
Survey Satellite (TESS) observed HD 219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events,
equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with the
High Accuracy Radial velocity Planet Searcher (HARPS) at ESO 3.6 m. We used the co-added HARPS spectrum to derive the host star
fundamental parameters (Teff = 5527± 65 K, log g? = 4.40± 0.11 (cgs), [Fe/H] = 0.04± 0.04 dex, log R′HK =−5.07± 0.03), as well as the
abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation
by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen
content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.

Key words. planets and satellites: detection – planets and satellites: fundamental parameters – techniques: radial velocities –
stars: fundamental parameters – techniques: photometric – planets and satellites: individual: HD 219666 b

1. Introduction

Following the success of the Kepler space mission (Borucki
2016), in April 2018 NASA launched a new satellite, the Tran-
siting Exoplanet Survey Satellite (TESS, Ricker et al. 2015). By
performing a full-sky survey, TESS is expected to detect approx-
imately 10 000 transiting exoplanets (TEPs; Barclay et al. 2018;
Huang et al. 2018a). Most interestingly, nearly 1000 of them will
orbit host stars with magnitudes V . 10 (as of November 2018
there are 56 known TEPs around stars with V < 10, only 13 of
which have masses <20 M⊕, according to the NASA exoplanet
archive1). Bright host stars are suitable for precise radial-velocity
(RV) measurements that can lead to planet mass determina-
tions down to a few Earth masses, and to estimates of the
planet bulk density for TEPs. In-transit precise RVs also allow
us to measure the planet orbital obliquity through the observa-
tion of the Rossiter-McLaughlin effect (see, e.g. Triaud 2017).
High-signal-to-noise ratio (S/N) number spectra are very much
needed for transmission spectroscopy studies aimed at the

? Based on observations made with the 3.6 m-ESO telescope at
La Silla observatory under ESO programmes IDs 1102.C-0923 (PI:
Gandolfi) and 1102.C-0249 (PI: Armstrong).
1 https://exoplanetarchive.ipac.caltech.edu/

detection of atomic and molecular species, and the characteri-
sation of the thermal structure of planet atmospheres (Snellen
et al. 2010; Bean et al. 2013).

TESS has a field of view of 24◦ × 96◦, and will cover almost
the full sky in 26 Sectors, each monitored for about 27 days.
Full frame images (FFIs) are registered every 30 min, while for a
selected sample of bright targets (∼16 000 per Sector) pixel sub-
arrays are saved with a two-minute cadence. The first TESS data
set of FFIs from Sectors 1 and 2 was released on December 6,
2018, and the TESS Science Office, supported by the Payload
Operations Centre at MIT, had already issued TESS data alerts
for a number of transiting planet-host star candidates, the so-
called TESS objects of interest (TOIs). Preliminary two-minute
cadence light curves and target pixel files (Twicken et al. 2018)
are made publicly available for download at the MAST web site2.

Several TESS confirmed planets have already been
announced: π Mensae c (TOI-144), a super-Earth orbiting a
V = 5.65 mag G0 V star (Huang et al. 2018b; Gandolfi et al.
2018); HD 1397 b (TOI-120), a warm giant planet around a
V = 7.8 mag sub-giant star (Brahm et al. 2018; Nielsen et al.
2019); HD 2685 b (TOI-135), a hot-Jupiter hosted by an early
2 Mikulski Archive for Space Telescopes, https://archive.
stsci.edu/prepds/tess-data-alerts/

Article published by EDP Sciences A165, page 1 of 11

https://www.aanda.org
https://doi.org/10.1051/0004-6361/201834853
https://exoplanetarchive.ipac.caltech.edu/
https://archive.stsci.edu/prepds/tess-data-alerts/
https://archive.stsci.edu/prepds/tess-data-alerts/
http://www.edpsciences.org


A&A 623, A165 (2019)

Table 1. Main identifiers, coordinates, parallax, and optical and infrared
magnitudes of HD 219666.

Parameter Value Source

HD 219666
TIC ID 266980320 TIC
TOI ID 118 TESS Alerts
Gaia DR2 ID 6492940453524576128 Gaia DR2a

RA (J2000) 23h 18m 13.630s Gaia DR2a

Dec (J2000) −56◦ 54′ 14.036′′ Gaia DR2a

µRA (mas yr−1) 313.918 ± 0.039 Gaia DR2a

µDec (mas yr−1) −20.177 ± 0.043 Gaia DR2a

π (mas) 10.590± 0.028 Gaia DR2a

BT 10.785± 0.027 Tycho-2b

VT 9.897± 0.018 Tycho-2b

G 9.6496± 0.0002 Gaia DR2a

GBP 10.0349± 0.0009 Gaia DR2a

GRP 9.1331± 0.0008 Gaia DR2a

J 8.557± 0.020 2MASSc

H 8.254± 0.042 2MASSc

Ks 8.158± 0.033 2MASSc

W1(3.35 µm) 8.080± 0.023 WISEd

W2(4.6 µm) 8.138± 0.020 WISEd

W3(11.6 µm) 8.100± 0.021 WISEd

W4(22.1 µm) 8.250± 0.288 WISEd

Notes. (a)Gaia Collaborations (2018). (b)Høg et al. (2000). (c)Cutri et al.
(2003). (d)Cutri et al. (2013).

F-type star (Jones et al. 2019); and an ultra-short-period
Earth-like planet around the M-dwarf star LHS 3844 (TOI-136;
Vanderspek et al. 2019). Here we report on the detection and
mass determination of a Neptune-like planet (Mb ' 16.6 M⊕,
Rb ' 4.7 R⊕) on a Porb ' 6 day orbit around the bright (V = 9.9)
G7 V star HD 219666 (TOI-118; Tables 1 and 2).

The work presented here is part of the ongoing RV follow-up
effort carried out by two teams, namely the KESPRINT con-
sortium (see, e.g. Johnson et al. 2016; Van Eylen et al. 2016;
Dai et al. 2017; Gandolfi et al. 2017; Barragán et al. 2018;
Prieto-Arranz et al. 2018) and the NCORES consortium (see,
e.g. Armstrong et al. 2015; Lillo-Box et al. 2016; Barros et al.
2017; Lam et al. 2018; Santerne et al. 2018). Both teams were
recently awarded two large programs with the High Accuracy
Radial velocity Planet Searcher (HARPS) spectrograph at the
ESO-3.6 m telescope to follow up TESS transiting planet can-
didates. The two consortia have joined forces to make better use
of the instrument, optimise the scientific return of the available
observing time, and tackle more ambitious planet detections and
characterisations.

This paper is organised as follows. Section 2 describes the
TESS photometric data, our custom light-curve extraction and
assessment of the light contamination factor. Section 3 reports
on our spectroscopic follow-up observations, which were used
to confirm the planetary nature of the transiting companion, and
to derive the fundamental parameters and metal abundances of
the host star (Sect. 4). The joint analysis of transit light curves
and RV data is described in Sect. 5. Finally we discuss our results
in Sect. 6.

2. TESS photometry

HD 219666 was observed by TESS in Sector 1 (CCD #2 of
Camera #2) and falls in a region of the sky that will not be

Table 2. Fundamental parameters and elemental abundances of
HD 219666.

Parameter Value

Star mass M? (M�) 0.92± 0.03
Star radius R? (R�) 1.03± 0.03
Effective Temperature Teff (K) 5527± 65
Surface gravity log g? (cgs) 4.40± 0.11
Iron abundance [Fe/H] (dex) 0.04± 0.04
Project. rot. vel. v sin i? (km s−1) 2.2± 0.8
Micro-turb. vel. vmic (km s−1) 0.9± 0.1
Macro-turb. vel. vmac (km s−1) 2.8± 0.9
Ca II activity indicator log R

′
HK −5.07± 0.03

Age τ? (Gyr) 10± 2
Lithium abundance A(Li) <0.40

[C I/H] 0.074± 0.065
[O I/H] 0.043± 0.148
[Na I/H] 0.090± 0.044
[Mg I/H] 0.152± 0.049
[Al I/H] 0.196± 0.041
[Si I/H] 0.085± 0.035
[Ca I/H] 0.041± 0.073
[Sc II/H] 0.103± 0.050
[Ti I/H] 0.149± 0.073
[Ti II/H] 0.097± 0.055
[Cr I/H] 0.057± 0.055
[Ni I/H] 0.058± 0.034
[Cu I/H] 0.148± 0.051
[Zn I/H] 0.098± 0.038
[Sr I/H] -0.034± 0.105
[Y II/H] -0.057± 0.057
[Zr II/H] 0.027± 0.073
[Ba II/H] -0.058± 0.043
[Ce II/H] 0.071± 0.063
[Nd II/H] 0.118± 0.068
[S I/H] 0.070± 0.081

further visited by TESS. Sector 1 was monitored continuously
for ∼27.9 days, from 2018-07-25 (BJDTDB = 2458325.29953) to
2018-08-22 (BJDTDB = 2458353.17886), with only a 1.14 day gap
(from BJDTDB = 2458338.52472 to BJDTDB = 2458339.66500)
when the satellite was repointed for data downlink. In addition,
between BJDTDB = 2458347 and BJDTDB = 2458350, the TESS
light curve shows a higher noise level caused by the space-
craft pointing instabilities. The corresponding data-points were
masked out and not included in the analysis presented in this
paper.

2.1. Custom light-curve preparation

To check that the SPOC aperture is indeed an optimal choice, we
extracted a series of light curves from the pixel data using con-
tiguous sets of pixels centred on HD 219666. We first computed
the 50th–95th percentiles (in 1% steps) of the median image, and
then selected pixels with median counts above each percentile
value to form each aperture. We then computed the 6.5 h com-
bined differential photometric precision (CDPP; Christiansen
et al. 2012) of the light curve resulting from each of these aper-
tures, and we found that the aperture that minimised the CDPP
was slightly larger than the SPOC aperture shown in Fig. 1. How-
ever, we opted to use the PDCSAP light curve produced from
the SPOC aperture, which has lower levels of systematic noise
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Fig. 1. 5′ × 5′ archival image taken in 1980 from the SERCJ survey,
with the SPOC photometric aperture overplotted in blue (TESS pixel
size is 21′′), and the positions of Gaia DR2 sources (J2015.5) within 2′
of HD 219666 indicated by circles. HD 219666 is in red, nearby sources
contributing more than 1% of their flux to the aperture are in orange
(see Sect. 2.2), and other sources are in green.

as a result of the processing performed by the SPOC pipeline
(Ricker & Vanderspek 2018).

The median-normalised light curve that we used in our
analysis is shown in Fig. 2.

2.2. Limits on photometric contamination

To investigate the possibility of contaminating flux from nearby
stars within the SPOC photometric aperture, we compared the
Gaia DR2 (Gaia Collaborations 2018) sources with the aperture
and an archival image of HD 219666 from the SERC-J survey3.
To do so, we executed a query centred on the coordinates of
HD 219666 from the TESS Input Catalog4 (TIC; Stassun et al.
2018) using a search radius of 3′. The archival image, taken in
1980, shows HD 219666 to be offset from its current position by
∼4.8′′. The proper motion is not sufficient to completely rule out
chance alignment with a background source, but such an align-
ment with a bright source is qualitatively unlikely. We also note
the non-detection by Gaia of any other sources within ∼30′′ of
HD 219666. Figure 1 shows Gaia DR2 source positions over-
plotted on the archival image, along with the SPOC photometric
aperture. Using a 2D Gaussian profile with a FWHM of ∼25′′
to approximate the TESS point spread function (PSF), and a
negligible difference between the GRP and T bandpasses, we
found that the transit depth of HD 219666 should be diluted by no
more than 0.1%, even considering partial flux contributions from
nearby stars outside the aperture. Furthermore, we found that
HD 219666 is the only star in or near the aperture that is bright
enough to be the source of the transit signal, given the observed
depth and assuming a maximum eclipse depth of 100%.

3. HARPS observations

We acquired 21 high-resolution (R≈ 115 000) spectra of
HD 219666 with the HARPS spectrograph (Mayor et al. 2003)
3 Available at http://archive.stsci.edu/cgi-bin/dss_form
4 Available at https://mast.stsci.edu/portal/Mashup/
Clients/Mast/Portal.html

mounted at the ESO-3.6 m telescope of La Silla observatory
(Chile). The observations were performed between 02 October
and 05 November 2018 UTC, as part of the large observing
programmes 1102.C-0923 (PI: Gandolfi) and 1102.C-0249 (PI:
Armstrong). We reduced the data using the dedicated HARPS
Data Reduction Software (DRS) and extracted the RVs by
cross-correlating the echelle spectra with a G2 numerical mask
(Baranne et al. 1996; Pepe et al. 2002; Lovis & Pepe 2007).
Table 3 lists the HARPS RVs and their uncertainties, along with
the BIS and FWHM of the cross-correlation function (CCF),
the Ca II H and K Mount-Wilson S-index, and S/N per pixel at
5500 Å.

The generalised Lomb-Scargle (GLS; Zechmeister & Kürster
2009) periodogram of the HARPS RV measurements (Fig. 3,
first panel) shows a significant peak at the frequency of the tran-
sit signal ( f1 = 0.166 d−1; vertical dashed red line), with a false
alarm probability5 (FAP) lower than 0.1 % (horizontal dashed
blue line). The peak has no counterpart in the periodograms of
the activity indicators, as shown in the second, third, and fourth
panels of Fig. 3. This provides strong evidence that the signal
detected in our Doppler data is induced by an orbiting com-
panion and confirms the presence of the transiting planet with
a period of about 6 days. The periodogram of the RV measure-
ments shows additional peaks symmetrically distributed to the
left and right of the dominant frequency. We interpreted these
peaks as aliases of the orbital frequency, as shown by the posi-
tion of the peaks in the periodogram of the window function
(Fig. 3, fifth panel).

4. Stellar fundamental parameters

The determination of the stellar parameters from the spectrum of
the host star is crucial in order to derive the planetary parameters
from transit and RV data. The three most important planetary
parameters are the mass, Mb, the radius Rb, and the age τb, all
of them only derivable with knowledge of the same parameters
for the host star, M?, R?, and τ?. Therefore, we have used two
independent methods in order to determine the stellar parameters
with the highest degree of confidence available today. To this
aim, we used the co-added HARPS spectrum, which has a S/N
per pixel of ∼300 at 5500 Å.

In one of the methods, we used version 5.22 of the Spec-
troscopy made easy (SME) code (Valenti & Piskunov 1996;
Valenti & Fischer 2005; Piskunov & Valenti 2017). The SME
code calculates synthetic spectra, using a grid of stellar mod-
els and a set of initial (assumed) fundamental stellar parameters
and fits the result to the observed high-resolution spectrum with
a chi-square minimisation procedure. The code contains a large
library of different 1D and 3D model grids. In our analysis of the
co-added HD 219666 HARPS spectrum, we used the ATLAS12
model atmosphere grid (Kurucz 2013). This is a set of 1D mod-
els applicable to solar-like stars. The observed spectral features
that we fit are sensitive to the different photospheric parameters,
including the effective temperature Teff , metallicity [M/H], sur-
face gravity log g?, micro- and macro-turbulent velocities vmic
and vmac, and the projected rotational velocity v sin i?. In order to
minimise the number of free parameters we adopted the calibra-
tion equation of Bruntt et al. (2010) to estimate vmic and we fitted
many isolated and unblended metal lines to determine v sin i?.

We used several different observed spectral features as indi-
cators of each fundamental stellar parameter. The Teff was

5 Computed following the Monte Carlo bootstrap method described in
Kuerster et al. (1997).
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Fig. 2. TESS light curve of HD 219666. The red arrows point to the four planet-transit occurrences.

Table 3. HARPS RV measurements of HD 219666.

BJDa
TDB RV σRV BIS FWHM S -index σS−index Texp S/Nb

−2450000 (km s−1) (km s−1) (km s−1) (km s−1) (s)

8394.521096 −20.0909 0.0008 −0.0274 6.9061 0.154 0.001 1200 87.9
8394.641680 −20.0939 0.0009 −0.0281 6.9033 0.152 0.002 1200 85.7
8396.644285 −20.1024 0.0012 −0.0242 6.9048 0.144 0.003 1200 62.5
8396.756848 −20.1029 0.0011 −0.0267 6.9081 0.147 0.003 1200 72.4
8397.501496 −20.1066 0.0016 −0.0274 6.9102 0.143 0.004 1500 50.9
8397.710686 −20.1027 0.0014 −0.0253 6.9070 0.144 0.003 1200 54.2
8398.571357 −20.0984 0.0011 −0.0278 6.9130 0.148 0.002 1200 67.3
8398.671630 −20.0968 0.0011 −0.0264 6.9103 0.144 0.002 1200 70.3
8399.513841 −20.0951 0.0015 −0.0316 6.9114 0.148 0.004 1200 53.4
8401.643664 −20.0975 0.0016 −0.0280 6.9094 0.161 0.006 1200 51.8
8404.619501 −20.1005 0.0013 −0.0295 6.9103 0.145 0.003 1200 59.9
8406.554873 −20.0890 0.0017 −0.0282 6.9095 0.146 0.004 1200 47.3
8406.657043 −20.0905 0.0014 −0.0225 6.9092 0.140 0.003 1200 58.1
8407.538610 −20.1001 0.0013 −0.0242 6.9058 0.144 0.003 1200 58.0
8407.618837 −20.0963 0.0010 −0.0274 6.9078 0.150 0.002 1200 78.3
8408.519940 −20.1033 0.0014 −0.0304 6.9129 0.153 0.003 1200 55.6
8408.668982 −20.1005 0.0012 −0.0285 6.9096 0.145 0.003 1200 64.8
8424.508079 −20.0910 0.0007 −0.0263 6.9102 0.153 0.001 1200 108.7
8424.760122 −20.0922 0.0010 −0.0262 6.9148 0.144 0.003 1200 84.8
8426.505548 −20.1016 0.0008 −0.0236 6.9117 0.153 0.001 1200 86.6
8427.693940 −20.1020 0.0009 −0.0267 6.9079 0.152 0.002 1200 89.2

Notes. (a)Barycentric Julian dates are given in barycentric dynamical time. (b)S/N per pixel at 5500 Å.

primarily determined by fitting the wings of Balmer lines, which
for solar-type stars are almost totally dependent on the tempera-
ture and weakly dependent on gravity and metallicity (Fuhrmann
et al. 1993). The surface gravity log g? was determined by fitting
the line profiles of the Ca I lines at 6102, 6122, 6162, and 6439 Å,
and the profiles of the Mg I triplet at 5160–5185 Å. Results were
then checked by fitting also the line wings of the sodium doublet
at 5896 and 5890 Å using a sodium abundance determined from
a number of fainter lines. In this case all three ions provided the
same value for log g?. Using this method we derived an effective
temperature Teff = 5450± 70 K, surface gravity log g? = 4.35±

0.06 (cgs), iron content of [Fe/H] = +0.06± 0.03 dex, calcium
content of [Ca/H] = 0.12± 0.05 dex, magnesium [Mg/H] = 0.18±
0.10 dex, and sodium [Na/H] = 0.15± 0.01 dex. The vmic used
was 0.9± 0.1 km s−1, and we found v sin i? = 2.2± 0.8 km s−1 and
vmac = 2.8± 0.9 km s−1.

In an independent analysis, stellar atmospheric parameters
(Teff , log g?, vmic, and [Fe/H]) and respective error bars were
derived using the methodology described in Sousa (2014) and
Santos et al. (2013). Briefly, we made use of the equivalent
widths (EWs) of 224 Fe I and 35 Fe II lines, as measured
in the combined HARPS spectrum of HD 219666 using the
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Fig. 3. Generalised Lomb-Scargle periodogram of the HARPS RVs
(first panel), the CCF BIS and FWHM (second and third panels,
respectively), the Ca II H and K S-index (fourth panel), and of the
window function (fifth panel). The vertical dashed red line marks the
frequency of the transit signal. The horizontal dashed blue line marks
the FAP = 0.1% level.

ARES v2 code6 (Sousa et al. 2015), and we assumed ioni-
sation and excitation equilibrium. The process makes use of
a grid of ATLAS model atmospheres (Kurucz 1993) and the
radiative-transfer code MOOG (Sneden 1973). This method pro-
vides effective temperatures in excellent agreement with values

6 The last version of the ARES code (ARES v2) can be downloaded at
http://www.astro.up.pt/~sousasag/ares

derived using the infrared flux method that are independent of
the derived surface gravity. The resulting values are Teff = 5527±
25 K, log g? = 4.34 ± 0.04 (cgs), vmic = 0.90± 0.04 km s−1, and
[Fe/H] = 0.04± 0.02 dex. The surface gravity corrected for the
systematic effects discussed in Mortier et al. (2013) has a value
of log g? = 4.40 ± 0.04 (cgs).

The two sets of spectroscopic parameters obtained using the
two independent methods described above are in good agree-
ment. While we have no reason to prefer one method over the
other, in the following analyses we adopted the values derived
using the EW method. We stress that the quoted uncertain-
ties are internal error bars that do not account for the choice
of spectral lines and/or atmospheric models. Following Sousa
et al. (2011), we accounted for systematic effects by quadratically
adding 60 K, 0.1 (cgs), and 0.04 dex to the nominal uncer-
tainty of the effective temperature, surface gravity, and iron
content, respectively. The adopted values of Teff = 5527± 65 K,
log g? = 4.40± 0.11 (cgs), and [Fe/H] = 0.04± 0.04 dex are listed
in Table 2.

Stellar abundances of the elements were also derived using
the same tools and models as for stellar parameter determination,
as well as using the classical curve-of-growth analysis method,
assuming local thermodynamic equilibrium (LTE). Although the
EWs of the spectral lines were automatically measured with
ARES, for the elements with only two or three lines available we
performed careful visual inspection of the EWs. For the deriva-
tion of chemical abundances of refractory elements we closely
followed the methods described in Adibekyan et al. (2012, 2015)
and Delgado Mena et al. (2017). Abundances of the volatile ele-
ments O and C were derived following the method of Delgado
Mena et al. (2010) and Bertran de Lis et al. (2015). Since the two
spectral lines of oxygen are usually weak and the 6300.3 Å line
is blended with Ni and CN lines, the EWs of these lines were
manually measured with the task splot in IRAF. We noticed
that for several individual spectra of the star, the 6300 Å region
was contaminated by the telluric [OI] emission line. We excluded
these contaminated spectra when measuring the EW of the stel-
lar oxygen line at 6300.3 Å. Lithium and sulfur abundances were
derived by performing spectral synthesis with MOOG (Delgado
Mena et al. 2014). The final abundances of the elements are
presented in Table 2. It is worth noting that the abundances of
Na, Mg, and Ca derived with this EW method are in agreement
with the abundances obtained with the spectral fitting method.
Perhaps it is also interesting to note that the star seems to be
enhanced in several α elements (Mg, Si, Ti) and show under-
abundance of some heavy elements (e.g. Ba and Y). Such a
chemical composition is typical for the so-called high-α metal-
rich stars first discovered by Adibekyan et al. (2011, 2013). The
origin of this population is not yet fully clear, but most probably
these stars are migrators from the inner Galaxy (Adibekyan et al.
2011; Anders et al. 2018).

We derived the stellar radius (R?) combining the Tycho BT,
VT magnitudes, the Gaia G, GBP, GRP photometry, and 2MASS J,
H, Ks magnitudes (see Table 1) with our spectroscopic param-
eters (Teff , log g?, [Fe/H]; see Table 2) and the Gaia’ parallax
(10.590± 0.028 mas, Gaia Collaborations 2018, see Table 2).
We corrected the Gaia G photometry for the magnitude depen-
dent offset using Eq. (3) from Casagrande & VandenBerg (2018),
and adopted a minimum uncertainty of 0.01 mag for the Gaia
magnitudes to account for additional systematic uncertainties in
the Gaia photometry. We added 0.06 mas to the nominal Gaia’s
parallax to account for the systematic offset found by Stassun
& Torres (2018), Riess et al. (2018), and Zinn et al. (2018).
Following the method described in Gandolfi et al. (2008), we
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Table 4. HD 219666 system parameters.

Parameter Priora Derived value

Model parameters of HD 219666 b
Orbital period Porb,b (days) U[6.00, 6.08] 6.03607+0.00064

−0.00063
Transit epoch T0,b (BJDTDB −2 450 000) U[8329.10, 8329.30] 8329.1996± 0.0012
Scaled semi-major axis ab/R? N[14.39, 0.30] 13.27 ± 0.39
Planet-to-star radius ratio Rb/R? U[0, 0.1] 0.04192 ± 0.00083
Impact parameter bb U[0, 1] 0.0+0.0

−0.0√
e sinω? F [0] 0√
e cosω? F [0] 0

Radial velocity semi-amplitude variation K? (m s−1) U[0, 10] 6.17 ± 0.46

Additional model parameters
Parameterized limb-darkening coefficient q1 N[0.34, 0.1] 0.33 ± 0.10
Parameterized limb-darkening coefficient q2 N[0.23, 0.1] 0.20 ± 0.10
Systemic velocity γHARPS (km s−1) U[−20.30,−19.9] −20.0976 ± 0.0004
RV jitter term σHARPS (m s−1) U[0, 100] 1.04+0.48

−0.47

Derived parameters of HD 219666 b
Planet mass Mb (M⊕) · · · 16.6 ± 1.3
Planet radius Rb (R⊕) · · · 4.71 ± 0.17
Planet mean density ρb (g cm−3) · · · 0.87+0.12

−0.11

Semi-major axis of the planetary orbit ab (AU) · · · 0.06356 ± 0.00265
Orbit eccentricity eb · · · 0 (fixed)
Orbit inclination ib (deg) · · · 86.38 ± 0.15
Equilibrium temperatureb Teq, b (K) · · · 1073 ± 20
Transit duration τ14, b (h) · · · 2.158 ± 0.034

Notes. (a)U[a, b] refers to uniform priors between a and b, and F [a] to a fixed a value. (b)Assuming zero albedo and uniform redistribution of heat.

found that the reddening along the line of sight to the star is con-
sistent with zero and did not correct the apparent magnitudes.
The bolometric correction for each band-pass was computed
using the routine from Casagrande & VandenBerg (2018). We
determined a stellar radius of R? = 1.03± 0.03 R�.

We used the BAyesian STellar Algorithm (BASTA, Silva
Aguirre et al. 2015) to determine a stellar mass of
M∗ = 0.92± 0.03 M� and an age of τ? = 10± 2 Gyr by fitting the
stellar radius R∗, effective temperature Teff and iron abundance
[Fe/H] to a large, finely-sampled grid of GARSTEC stellar models
(Weiss & Schlattl 2008).

From the Ca II H and K S-index values provided by
the HARPS DRS, we calculated log R

′
HK =−5.07± 0.03 (Lovis

et al. 2011). Using the activity-rotation empirical relationships
reported in Noyes et al. (1984) and Mamajek & Hillenbrand
(2008), we derived a stellar rotation period of Prot = 34± 6 and
37± 4 days respectively, which are in good mutual agreement.
An upper limit to Prot of 22+13

−6 days can be inferred from the
stellar radius and v sin i? , which is compatible with good align-
ment between the stellar rotation axis and the planetary orbital
axis. We note that the 27.9 day duration of the TESS observa-
tions is not long enough to attempt a reliable estimation of the
photometric stellar rotational period.

5. Joint analysis of the transit and Doppler data

We performed a joint fit to the TESS light curve (Sect. 2) and
the 21 HARPS measurements (Sect. 3) using the code pyaneti
(Barragán et al. 2019). The code uses a Bayesian approach for
the model parameter estimations, and samples the posteriors via
Markov chain Monte Carlo (MCMC) methods.

We selected 10 h of photometric data-points centred around
each of the four transits observed by TESS and flattened
the four segments using a second-order polynomial fitted to
the out-of-transit data. We fitted the transit light curves using the
limb-darkened quadratic model of Mandel & Agol (2002). We
set Gaussian priors on the limb-darkening coefficients adopting
the theoretical values predicted by Claret (2017) along with a
conservative error bar of 0.1 for both the linear and the quadratic
limb-darkening term. The transit light curve poorly constrains
the scaled semi-major axis (a/R?). We therefore set a Gaussian
prior on a/R? using the orbital period and the derived stellar
parameters (Sect. 4) via Kepler’s third law.

The RV model consists of a Keplerian equation. Following
Anderson et al. (2011), we fitted for

√
e sinω? and

√
e cosω?,

where e is the eccentricity and ω? is the argument of periastron.
We also fitted for an RV jitter term to account for instrumen-
tal noise not included in the nominal uncertainties, and/or for
RV variations induced by stellar activity. We imposed uniform
priors for the remaining fitted parameters. Details of the fitted
parameters and prior ranges are given in Table 4.

We used 500 independent Markov chains initialized ran-
domly inside the prior ranges. Once all chains converged, we
used the last 5000 iterations and saved the chain states every
ten iterations. This approach generates a posterior distribution of
250 000 points for each fitted parameter. Table 4 lists the inferred
planetary parameters. They are defined as the median and 68%
region of the credible interval of the posterior distributions for
each fitted parameter. The transit and RV curves are shown in
Figs. 4 and 5, respectively.

An initial fit for an eccentric orbit yielded e = 0.07+0.06
−0.05,

which is consistent with zero within less than 2σ. We determined
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Fig. 4. Phase-folded and normalized TESS photometric data with our
best fitting transit light curve.
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Fig. 5. Phase-folded HARPS RV data points with our best fitting
circular RV curve. The blue error bars correspond to the nominal
RV uncertainties calculated by the HARPS DRS while the grey ones
account for the RV jitter term. The bottom panel shows the RV residuals
that have a rms of 1.7 m s−1.

the probability that the best-fitting eccentric solution could have
arisen by chance if the orbit were actually circular using Monte
Carlo simulations. Briefly, we created 105 sets of synthetic RVs
that sample the best-fitting circular solution at the epochs of our
observations. We added Gaussian noise at the level of our mea-
surements and fitted the simulated data allowing for an eccentric
solution. We found that, given our measurements, there is a 35%
probability that an eccentric solution with e ≥ 0.07 could have
arisen by chance if the orbit were actually circular. As this is
above the 5% significance level suggested by Lucy & Sweeney
(1971), we decided to conservatively assume a circular model.
We note that the eccentric solution provides a planetary mass
that is consistent within less than 1-σ of the result from the
circular model.

6. Discussion and conclusion

HD 219666 b has almost the same mass as Neptune (Mb = 16.6 ±
1.3 M⊕) but a larger radius (Rb = 4.71 ± 0.17 R⊕). With an
orbital period of Porb ' 6 days and an equilibrium temperature
of Teq ' 1073 K, it is a new member of a relatively rare class of
exoplanets: the hot-Neptunes. Figure 6 shows that HD 219666 b

HD 219666 b

K2-32 b
K2-24 b

Kepler-18 c

GJ 3470 b 
EPIC 246471491 c

NGTS-4 b

WASP-47 d

Kepler-20 c
Kepler-48 c

K2-110 b K2-66 b

upper limit to the rocky material that

Fig. 6. Mass−radius diagram for planets with masses Mp < 25 M⊕ and
radii Rp < 6 R⊕, as retrieved from the catalogue for transiting plan-
ets TEPCat (available at http://www.astro.keele.ac.uk/jkt/
tepcat/; Southworth 2011). Planets whose masses and radii are known
with a precision better than 25% are plotted with grey circles. Compo-
sition models from Zeng et al. (2016) are displayed with different lines
and colours. The red circle marks the position of HD 219666 b. Planets
closer in mass to HD 219666 b are labelled.

lies in a region of the mass−radius diagram that is scarcely pop-
ulated. The comparison with rocky planets composition models
(Zeng et al. 2016) suggests that HD 219666 b holds a conspicuous
gas envelope.

The existence of a hot-Neptunes “desert” has already been
pointed out (see, e.g. Szabó & Kiss 2011; Mazeh et al. 2016;
Owen & Lai 2018), and HD 219666 b falls close to the lower edge
of the desert in the mass−period diagram (see Fig. 1 in Mazeh
et al. 2016), and well inside the desert in the radius−period
diagram (see Fig. 7). The relative paucity of hot-Neptunes (as
compared to hot super-Earths and hot-Jupiters) could be inter-
preted as a consequence of two different formation mechanisms
for short-period planets: in situ formation for terrestrial planets
(Ogihara et al. 2018; Matsumoto & Kokubo 2017), and for-
mation at larger separations followed by inward migration for
giant planets (Nelson et al. 2017). Intermediate-mass planets like
HD 219666 b would then be either the upper tail of terrestrial
planets or the lower tail of giant-planet distributions. Alterna-
tively, giant and small close-in planets could have a common
origin but a dramatically different atmospheric escape history
(Lundkvist et al. 2016; Ionov et al. 2018; Owen & Lai 2018).
Other mechanisms have been proposed to explain the observed
hot-Neptune desert. Matsakos & Königl (2016) advanced an
explanation based on high-eccentricity migration followed by
tidal circularization. They interpreted the two distinct segments
of the desert boundary as a consequence of the different slopes
of the empirical mass-radius relation for small and large planets.
Batygin et al. (2016) advocated the in situ formation of close-in
super-Earths and hot-Jupiters alike. In the rare cases when a core
mass of Mcore & 15M⊕ was reached, rapid gas accretion would
lead to the formation of a gaseous giant planet. In this way the
relative occurrence of Earth- , Neptune- and Jupiter-like close-in
planets can be explained.

To determine whether or not in-situ formation of a planet
so close to its star is even possible, we calculate the isolation
mass of a planet orbiting with a period of 6 days around a 0.9 M�
star. This is the mass of the planet that can form assuming that
it grows by consuming all the planetesimals that are within its
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Fig. 7. Planet radius as a function of the orbital period. As for Fig. 6,
data are retrieved from TEPCat. The position of HD 219666 b is shown
by a red circle. The black dashed lines delimit the hot-Neptunes desert
as derived in Mazeh et al. (2016).

gravitational influence. Assuming a typical T Tauri disc with
a mass of 0.01M� within 100 AU, a gas-to-dust ratio of 100
and a surface mass density profile of Σ ∝ R−3/2 (a steep profile
enables as much material as possible to be made available in the
inner disc for planet formation), the available rocky material is
≈5 × 10−3 M⊕. Even if the gas-to-dust ratio was a factor of ten
lower (Ansdell et al. 2016) the resulting mass is still nowhere
near the mass of the planet reported in this study. We point
out that this calculation assumes no accretion through the disc
when in reality rocky material could drift inwards and build up
the core. From the perspective of pebble accretion, Lambrechts
et al. (2014) showed that the pebble isolation mass – the core
mass at which the drift of pebbles ceases, stopping the accre-
tion of rocky material onto the core – at the radial location of
the reported planet is approximately 1 M⊕, and simulations of
planet growth by pebble accretion in evolving discs also show
that a high mass of rocky material cannot be produced in the
inner discs (Bitsch et al. 2015). The ∼1 M⊕ upper limit to the
rocky material that could have been accreted in situ must be com-
pared with an estimate of the Mcore of HD 219666 b. According to
Lopez & Fortney (2014), HD 219666 b, given its mass and radius,
should have a H/He envelope which contributes 10–20% of its
total mass, that is the 80 to 90% of the mass (13–15 M⊕) belongs
to the rocky core. Therefore, we conclude that it is more likely
that HD 219666 b formed further out and migrated inwards.

We derived the atmospheric mass-loss rate of HD 219666 b
using the interpolation routine presented by Kubyshkina et al.
(2018), which is based on a large grid of hydrodynamic
upper atmosphere models. The main assumption is that the
planet hosts a hydrogen-dominated atmosphere, which, given the
measured bulk density, appears to be valid. For the computa-
tion, we employed the system parameters listed in Table 2 and
a high-energy stellar flux (hereafter referred to as XUV flux) at
the planetary distance to the star of 573.8 erg cm−2 s−1, obtained
by scaling the solar XUV flux, derived from integrating the solar
irradiance reference spectrum (Woods et al. 2009) below 912 Å,
to the distance of the planet and the radius of the host star. This

is a good assumption because the host star has a mass close to
solar and appears to be rather inactive and old. We obtained
a hydrogen mass-loss rate of about 1.2× 1010 g s−1, which is
comparable to what is obtained employing the energy-limited
formula (5.2× 109 g s−1; Erkaev et al. 2007). This indicates that,
for this planet, atmospheric expansion and mass loss are driven
mostly by atmospheric heating due to absorption of the stellar
XUV flux, with an additional component due to the intrinsic
thermal energy of the atmosphere and low planetary gravity
(Fossati et al. 2017). The obtained mass-loss rate corresponds
to 0.06 M⊕ Gyr−1, suggesting that mass loss does not play a
major role in the current evolution of the planetary atmosphere.
However, this does not account for the fact that the star was prob-
ably more active in the past, particularly during the first few
hundred million years, up to about 1 Gyr (Jackson et al. 2012;
Tu et al. 2015), when the XUV fluxes could have been up to about
500 times larger than the current estimate. This would lead to
mass-loss rates about 500 times higher. It is therefore likely that
atmospheric escape played a significant role in shaping the early
planetary atmospheric evolution.

HD 219666 b is an interesting target for further atmospheric
characterisation, given its equilibrium temperature of ∼1070 K,
since the range of expected temperatures at the terminator
(depending on the planet’s albedo and energy transport) strad-
dles widely different atmospheric chemical compositions under
thermochemical equilibrium. Using the properties of the system,
we modelled the transmission spectrum of the planet using the
Python Radiative Transfer in a Bayesian framework7 (Cubillos
et al., in prep.), which is based on the Bayesian Atmospheric
Radiative Transfer package (Blecic 2016; Cubillos 2016), and
simulated James Webb Space Telescope (JWST) observations
with Pandexo (Batalha et al. 2017). These models consider opac-
ities from the main spectroscopically active species expected for
exoplanets at these wavelengths: H2O and CO2 from Rothman
et al. (2010); CH4, NH3, and HCN from Yurchenko & Tennyson
(2014); CO from Li et al. (2015); Na and K from Burrows
et al. (2000); Rayleigh opacities from H, He, and H2 (Kurucz
1970; Lecavelier Des Etangs et al. 2008); and collision-induced
absorption from H2–H2 (Borysow et al. 2001; Borysow 2002)
and H2–He (Borysow et al. 1988, 1989; Borysow & Frommhold
1989). We compressed the HITEMP and ExoMol databases with
the open-source repack package (Cubillos 2017) to extract only
the strong, dominating line transitions.

Figure 8 shows estimated transmission spectra of
HD 219666 b assuming a cloud-free atmosphere, in ther-
mochemical equilibrium (Blecic et al. 2016) for solar elemental
composition, at two illustrative atmospheric temperatures that
lead to different transmission spectra. By combining NIRISS
SOSS and NIRSpec G395H observations, one could potentially
constrain the atmospheric chemistry and temperature of the
planet with a single-transit observation with each instrument.
The transmission spectrum at wavelengths shorter than 2 µm
constrain the H2O abundance for both models, setting the
baseline to constrain the abundances of other species. At
longer wavelengths, either CH4 (T = 600 K model) or CO/CO2
(T = 1000 K model) dominate the carbon chemistry at the probed
altitudes (Fig. 8, bottom panels), producing widely different
features in the transmission spectrum (Fig. 8, top panel).

An important clue to the formation mechanism of
HD 219666 b could come from the knowledge of its orbital obliq-
uity with respect to the stellar equatorial plane, which can be
estimated through the observation of the Rossiter–McLaughlin

7 http://pcubillos.github.io/pyratbay
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, meaning that it would proba-
bly be detectable with HARPS, and certainly with ESPRESSO
(Pepe et al. 2010). Remarkably, there are only two hot-Neptunes
with a reported measure of the orbital obliquity, GJ 436 b (Bour-

Fig. 8. Model transmission spectra of HD 219666 b (top panel). The
dots and error bars denote simulated single-transit JWST transmission
observations with NIRISS SOSS and NIRSpec G395H (wavelength
coverage at bottom) for two underlying models (solid curves) at tem-
peratures of 600 and 1000 K (see legend). CH4 shows strong absorption
bands at 1.7, 2.3, and 3.3 µm in the 600 K model; whereas CO and CO2
show their strongest absorption features at wavelengths beyond 4 µm
in the 1000 K model. Bottom panels: composition of the main species
that shape the transmission spectrum. Depending on the atmospheric
temperature, carbon favours either higher CH4 (temperatures lower than
∼900 K) or CO/CO2 abundances (otherwise).

(RM) effect. We calculated that the RV amplitude of the RM
effect is of ∼3 m s−1, meaning that it would probably be
detectable with HARPS, and certainly with ESPRESSO (Pepe
et al. 2010). Remarkably, there are only two hot-Neptunes with
a reported measure of the orbital obliquity, GJ 436 b (Bourrier
et al. 2018) and HAT-P-11 b (Winn et al. 2010), and both have a
misaligned orbit.

Given the precise RV measurements from HARPS and the
mid-transit time from the TESS mission, we can also constrain
the presence of co-orbital planets (or trojans) to HD 219666 b,
by putting upper limits to their mass Mt (assuming there are no
other planets in the system or they are far enough to not per-
turb the RVs in the time span of our observations). We followed
the technique described in Leleu et al. (2017), and subsequently
applied in Lillo-Box et al. (2018a,b), to model the RV data by
including the so-called α parameter, which accounts for the pos-
sible mass imbalance between the L4 and L5 regions in the
co-orbital region of the planet. The parameter α is defined as
Mt/Mb sin θ + O(e2), where θ is the resonant angle representing
the difference between the mean longitudes of the trojan and the
planet. We set Gaussian priors on the time of transit and period of
the planet, and left the rest of the parameters (i.e. e cosω, e sinω,
α, γ, and Kb) with uniform broad priors. We also included a slope
term and a jitter term to account for white noise. The result of
this analysis provides parameters compatible with the prior joint
analysis and allows us to set constraints on co-orbital planets
in the system. In particular, we find α= − 0.14 ± 0.22, which
assuming the estimated planet mass provides an upper limit

(95% confidence level) of Mt = 4.6 M⊕ at L5 and no constraint
(i.e. up to the mass of the planet) at L4.

In conclusion, we report the discovery of a hot-Neptune
transiting the bright (V = 9.9) G7 V star HD 219666. The collab-
oration between the KESPRINT and NCORES consortia has made
possible a rapid spectroscopic follow-up with HARPS, leading
to the confirmation and characterisation of the planet candi-
date detected by TESS. HD 219666 b adds to a list of only five
Neptune-like planets (0.5 < Mp < 2 MNep with 1 MNep = 17.2 M⊕)
transiting a V < 10 star. We carried out detailed analyses to derive
the fundamental parameters and the elemental abundances of the
host star. We discuss the possibility of further characterisation of
the planet, in particular by examining the potential of JWST in-
transit observations to detect the presence of molecular features
in transmission spectra.
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