
Real-time sea-level monitoring using Kalman filtering of GNSS-R data

Downloaded from: https://research.chalmers.se, 2024-03-13 07:48 UTC

Citation for the original published paper (version of record):
Strandberg, J., Hobiger, T., Haas, R. (2019). Real-time sea-level monitoring using Kalman filtering of
GNSS-R data. GPS Solutions, 23(3). http://dx.doi.org/10.1007/s10291-019-0851-1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Vol.:(0123456789)1 3

GPS Solutions           (2019) 23:61  
https://doi.org/10.1007/s10291-019-0851-1

ORIGINAL ARTICLE

Real‑time sea‑level monitoring using Kalman filtering of GNSS‑R data

Joakim Strandberg1   · Thomas Hobiger1,2   · Rüdiger Haas1 

Received: 29 June 2018 / Accepted: 30 March 2019 
© The Author(s) 2019

Abstract
Current GNSS-R (GNSS reflectometry) techniques for sea surface measurements require data collection over longer periods, 
limiting their usability for real-time applications. In this work, we present a new, alternative GNSS-R approach based on 
the unscented Kalman filter and the so-called inverse modeling approach. The new method makes use of a mathematical 
description that relates SNR (signal-to-noise ratio) variations to multipath effects and uses a B-spline formalism to obtain 
time series of reflector height. The presented algorithm can provide results in real time with a precision that is significantly 
better than spectral inversion methods and almost comparable to results from inverse modeling in post-processing mode. To 
verify the performance, the method has been tested at station GTGU at the Onsala Space Observatory, Sweden, and at the 
station SPBY in Spring Bay, Australia. The RMS (root mean square) error with respect to nearby tide gauge data was found 
to be 2.0 cm at GTGU and 4.8 cm at SPBY when evaluating the output corresponding to real-time analysis. The method 
can also be applied in post-processing, resulting in RMS errors of 1.5 cm and 3.3 cm for GTGU and SPBY, respectively. 
Finally, based on SNR data from GTGU, it is also shown that the Kalman filter approach is able to detect the presence of sea 
ice with a higher temporal resolution than the previous methods and traditional remote sensing techniques which monitor 
ice in coastal regions.

Keywords  GNSS-R · Kalman filtering · Unscented Kalman filter (UKF) · Real time · Sea level · Sea ice · Time series

Introduction

A significant portion of the world’s population lives and 
operates in coastal regions and is thus susceptible to hazards 
originating from the state of the sea (Neumann et al. 2015). 
To detect imminent threats such as storm surges and tsu-
namis, real-time measurements of the current sea level are 
necessary (Holgate et al. 2008). Real-time sea-level reports 
are also necessary for day-to-day operations of, for example, 
shipping routes and ports (Pugh 2004). For these reasons, 
the Global Sea Level Observing System (GLOSS) initiative 
of the Intergovernmental Oceanographic Commission (IOC) 
of UNESCO encourages the collection and distribution of 
data in real time or near real time (UNESCO/IOC 2012). In 

the implementation plan of GLOSS, the IOC also calls for 
the usage of GNSS stations to monitor the movement of tide 
gauges. Since it has previously been proved that the GNSS 
stations can be used directly to monitor sea level (Larson 
et al. 2013) with a technique called GNSS reflectometry 
(GNSS-R), we look into using this technique to retrieve sea 
level in real time.

The fundamental idea of GNSS reflectometry relies on the 
principle of using multipath effects to deduce properties about 
the surroundings of a GNSS antenna. Multipath effects are 
caused by a variety of properties of the environment around 
a GNSS antenna (Nievinski and Larson 2014a). As such, the 
multipath effects, which are considered a major error source 
for positioning and navigation applications, also contain some 
information about their causes. GNSS reflectometry works like 
a passive radar system in that it uses signals that are broad-
casted by some other source, in this case the GNSS satellites, 
and utilize these for measurement purposes other than those 
intended originally. All GNSS signals can be used for this pur-
pose, and with more GNSS systems and satellites still being 
deployed, GNSS reflectometry is, therefore, becoming increas-
ingly more interesting for remote sensing and related fields.
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Reflected GNSS signals can be recorded both from air-
borne or space-borne platforms (Martin-Neira 1993) and 
from ground-based systems (Anderson 2000). However, 
their principle, as well as their purpose, is quite different, 
and the focus of this work will be the latter, i.e., installa-
tions near the ground. More specifically, the focus is set to 
the interferometric approach to GNSS reflectometry, since 
this technique uses only one single off-the-shelf receiver and 
antenna pair (Bilich and Larson 2007), keeping costs rela-
tively low and giving access to data from already existing 
networks of GNSS installations (Dow et al. 2009).

The most common method for using GNSS signals for 
GNSS-R is through analyzing their signal-to-noise ratio 
(SNR) with spectral methods (Jin et al. 2014), e.g., with 
Lomb-Scargle analysis, which can reveal properties such as 
the snow depth around the antenna (Larson et al. 2009) or 
the soil moisture of the surrounding ground (Larson et al. 
2008). However, the method has been proven less suitable 
when, for example, the reflection surface is dynamic, as is 
the case for sea-level measurements, at which point a cor-
rection term is needed (Larson et al. 2013).

As an alternative approach for measuring on dynamic 
surfaces, we have previously developed an inversion-based 
method (Strandberg et al. 2016) which is also using SNR 
from off-the-shelf equipment and existing GNSS instal-
lations on the ground. This method builds on the idea of 
fitting an inverse model that represents the recorded SNR 
data. Thus, by using least-squares methods, it is possible to 
retrieve properties of the reflecting surfaces from the SNR 
data. We have shown that this method retrieves the sea sur-
face height with better precision than Lomb-Scargle meth-
ods (Strandberg et al. 2016). However, a drawback of the 
inverse modeling method with least-squares analysis is that 
it requires that all data for the period of interest are available 
when the inversion starts. This can create significant delays 
between the time when data are recorded and when the final 
analysis results are presented. In cases, when data in near 
real time are required, the method will be inadequate.

Because of this drawback, we introduce a new method to 
retrieve information from GNSS SNR data, which addresses 
the aforementioned latency issue by using Kalman filter-
ing techniques together with the inverse modeling formal-
ism. With this new method, it is possible to retrieve precise 
results in real time, retaining the detailed functional descrip-
tion of the inverse modeling, and therefore opening up for 
new applications in the field of GNSS reflectometry.

Current state of GNSS reflectometry

GNSS reflectometry is based on the idea of accessing the 
sources of multipath through their impact on the SNR of 
the GNSS signal. As the coherent part of the reflected signal 

interferes with the direct signal, the resulting SNR varies in 
strength according to a characteristic pattern that depends 
on the elevation of the GNSS satellite and other parameters 
(Nievinski and Larson 2014a).

Under the assumption of a locally flat and horizon-
tal reflector, the SNR as a function of elevation can be 
expressed as a monotonically increasing trend superimposed 
by a high-frequency oscillation pattern (Bilich and Larson 
2007), as presented in Fig. 1. After removing the trend with 
a low-order polynomial, the high-frequency residual oscilla-
tions behave like a damped sinusoid (Strandberg et al. 2016), 
which can be described by

where � is the elevation to the GNSS satellite corrected for 
atmospheric refraction (Bennett 1982), k the wave number 
of the signal, and h the vertical distance between the antenna 
and the horizontal reflector. The remaining parameters, A , � , 
and � , are aggregate variables depending on several prop-
erties, including, for example, antenna gain patterns of the 
receiver installation and the satellite, and electromagnetic 
properties of the reflector (Nievinski and Larson 2014a).

Under the assumption of a static reflector, we can see 
that the term 2kh relates to an oscillation frequency of 
the sinusoidal part of the SNR, depending only on sin � . 
Therefore, since we know the elevation angles of the sat-
ellites with sufficient precision from satellite broadcast 
orbits, we can use the oscillation frequency of the SNR 
from a single pass of a GNSS satellite to determine the 

(1)� SNR = A sin (2kh sin � + �) ⋅ exp
(
4�k2 sin2 �

)
,

Fig. 1   Single SNR arc with clear multipath oscillations. The data are 
taken from the GTGU installation at Onsala on day of year 357 in 
2015
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reflector height h . Depending on the height of the antenna 
above the reflecting surfaces, roughly 20 min of SNR data 
are enough for a single height retrieval (Williams and 
Nievinski 2017). This method, which we will refer to as 
spectral analysis, has been successfully demonstrated to 
be able to retrieve, for example, snow depth (Larson and 
Nievinski 2013), where the assumption of a static reflec-
tor is appropriate. However, when the reflector height is 
dynamic, some adjustments are needed, for example, by 
adding the first-order correction term for the changing sea 
level (Larson et al. 2013). Still, unless the retrieved sea-
level values are used to form temporal averages, the preci-
sion does not live up to the performance requirements of 
on an operational tide gauge (Larson et al. 2017).

Another way of retrieving parameters from the SNR 
measurements is by using inverse modeling (Nievinski 
and Larson 2014b), for example, by fitting (1) or a similar 
approximation function directly to the SNR data either 
by interval analysis (Reinking 2016) or by least-squares 
adjustment (Strandberg et  al. 2016). In doing so, it is 
possible to go from a static reflector height to a dynami-
cally changing one by modeling temporal variations of 
the reflector height with, for example, a set of B-spline 
functions (Strandberg et al. 2016). Another improvement 
with the inverse modeling compared to spectral methods 
is that a more realistic model of the measurements is used. 
Whereas the spectral analysis only accounts for the oscil-
lation frequency of the SNR, the inverse modeling also 
considers the shape of the oscillations. Therefore, the 
inverse modeling allows retrieving more of the intrinsic 
information that the data carry, than spectral methods do. 
In contrast to using only data from a single satellite pass 
to determine one measurement of the reflector height as 
the spectral method does, the inverse modeling method is 
also capable of combining all concurrent data in a coher-
ent inversion step, regardless of the satellite or the satellite 
system. This ability to combine data from several satellites 
has been shown to increase the robustness and precision 
of the retrievals.

While inverse modeling improves several aspects of the 
parameter retrieval, it also comes with a drawback. As the 
inversion is performed using least-squares adjustment, the 
method is inherently off-line. Since all data for the inver-
sion have to be available when the inversion is started, the 
method has significant delays before any results can be 
presented. The spectral methods are closer to real time, 
but still require a significant portion of a satellite pass 
before any reflector height measurements can be retrieved. 
This gives both a delay but also irregular intervals between 
reflector height estimates. Therefore, we focus on alterna-
tive methods that allow us to deliver results in real time, 
and in this pursuit, we make use of the concept of Kalman 
filtering.

Dynamic inverse modeling of SNR data 
with a Kalman filter

Dynamic parameter estimation in real-time applications 
usually relies on sequential filtering techniques. These 
allow updating the state variables describing the underly-
ing physical properties using measurements that relate to 
the state variables either directly or through known func-
tional expressions. Since the introduction of Kalman filter-
ing techniques (Kalman 1960), they have been prevalent 
in the field of dynamic parameter estimation. The original 
definition of the Kalman filter built upon the assumption 
of linear systems for predicting and updating state esti-
mates, making them less ideal for systems with nonlineari-
ties (Jazwinski 1970). Therefore, as our implementation 
builds on the highly nonlinear relation in (1) for its update 
procedure, we have to resort to alternative techniques. For-
tunately, the nonlinearity in the update step can also be 
dealt with the unscented Kalman filter (UKF) approach 
(Merwe and Der 2000) in which the predicted measure-
ments and their covariances are obtained approximately 
after selecting so-called sigma points around the predicted 
state, parsing all these points through the nonlinear func-
tion h(x).

Our implementation utilizes an ordinary, linear predic-
tion procedure, predicting the change to both the state vec-
tor and the covariance matrix

where the state vector x consist of our estimation of the 
reflector height and the other parameters of (1). As men-
tioned above, the update step will follow the procedure of 
the UKF approach, i.e.

1.	 Compute 2L + 1 sigma points based on the predicted 
state and its covariance

L corresponds to the size of the state vector and � can 
be computed as � = �2(L + �) − L . Following the recom-
mendations by Merwe and Der (2000), we have chosen to 
set � = 10−3 and � = 0 in our implementation.

(2)xt|t−1 = Ftxt−1|t−1 + Btut

(3)Pt|t−1 = FtPt−1|t−1F
T
t
+ Qt

(4)�0
t|t−1 = xt|t−1

(5)� i
t|t−1 = xt|t−1 +

√
(L + �)Pt|t−1 for i = 1,…L

(6)
� i
t|t−1 = xt|t−1 −

√
(L + �)Pt|t−1 for i = L + 1,… 2L
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2.	 Parse all sigma points through the nonlinear observation 
function and compute the predicted measurement and 
the innovation matrix, i.e.

using the weighting factors

from the original unscented transform method (Julier and 
Uhlmann 1997) and � = 2.

3.	 Compute the Kalman gain

where

4.	 Update the state vector and the covariance matrix by

Utilizing this update procedure ensures that the nonlinear-
ity of (1) is taken care of without explicitly linearizing the 
problem.

Parametrization, process noise, 
and observation noise

As denoted in (1), detrended SNR can be expressed as a 
function of elevation angle � , reflector height h(t) , damping 
� , amplitude A , and phase � . The latter two parameters are 

(7)� i
t
= h

(
� i
t|t−1

)

(8)ẑt =

2L∑

i=0

Wi
m
𝛾 i
t

(9)St = Rt +

2L∑

i=0

Wi
c

(
𝛾 i
t
− ẑt

)(
𝛾 i
t
− ẑt

)

(10)W0
m
=

�

� + L

(11)W0
c
=

�

� + L
+
(
1 − �2 + �

)

(12)Wi
m
= Wi

c
=

1

2(� + L)

(13)Kt = Pxz
t
S−1
t

(14)Pxz
t
=

2L∑

i=0

Wi
c

(
𝜒 i
t|t−1 − xt|t−1

)(
𝛾 i
t
− ẑt

)

(15)xt|t = xt|t−1 + Kt

(
zt − ẑt

)

(16)Pt|t = Pt|t−1 − KtStK
T
t

satellite system specific and must thus be estimated sepa-
rately for each GNSS, as well as for each frequency. On the 
other hand, reflector height and damping are common to all 
SNR observations, which means that the combination of sev-
eral GNSS will improve the estimation of all parameters and 
reduce the risk of having outliers bias the target parameters.

Damping, amplitude, and phase mostly depend on slowly 
changing parameters in the environment around a station. 
Therefore, they can be modeled with a random walk pro-
cess that has very small process noise. However, for the sea 
surface height, it is hard to find a dynamic model that works 
for different sites, as the instantaneous sea level can be both 
driven by astronomical and meteorological tides to a varying 
extent, depending on the site and its location. Therefore, we 
turn instead to the B-spline method used by Strandberg et al. 
(2016). This approach uses quadratic B-spline coefficients 
in order to represent the temporal variations of the reflector 
height. In general, the Kalman filter state vector can only 
have a finite number of parameters. Thus, if we want to be 
able to use a Kalman filter without being limited to a fixed 
time interval, we have to change the definition range of our 
B-splines while the filter is running.

Dynamic introduction of B‑spline coefficients

If temporal changes of the reflector height h(t) are described 
by quadratic B-spline functions B2

i
 , we only need to estimate 

a set of scaling coefficients �i . Then, we are able to evaluate 
the function at any point in time, i.e.

Considering now that B-spline functions are defined on 
the zero-degree base function

and the recursive relation

it is obvious that the evaluation of (18) for any higher degree 
k at a certain point in time t  does only require the knowl-
edge of four node values that surround the epoch of inter-
est. However, for evaluating h(t) at any arbitrary epoch, 
the knowledge of all scaling coefficients �i is necessary. In 
case of dynamic filtering, this restriction poses a problem, 
as the dimension of the state vector depends on the total 
length of the observational time series and is not predict-
able unless data are processed in batches. However, as this 
contradicts the idea of continuous Kalman filtering, we have 
to use another method. One method for using B-splines in a 

(17)h(t) =
∑

i

�iB
2
i
(t)

(18)Bi(t) =

{
1 if ti ≤ t ≤ ti+1
0 otherwise

(19)Bk
i
(t) =

t − ti

ti+k − ti
Bk−1
i

(t) +
ti+k+1 − t

ti+k − ti
Bk−1
i+1

(t)
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Kalman setting, presented by Jauch et al. (2017), is based on 
utilizing a fixed set of parameters, and periodically chang-
ing the definition range. This concept is illustrated in Fig. 2 
and makes use of the fact that B-spline base functions are 
compactly supported, i.e., they are only valid over a certain 
interval.

As stated earlier, four quadratic B-spline functions are 
necessary to model h(t) at any given epoch. If we consider 
that we only need to have those B-spline coefficients in the 
state vector that relate to the current update epoch, the state 
vector is of constant size. However, as one approaches an 
epoch where a new B-spline base function is necessary to 
cover the definition range, some actions are needed to deal 

with this special case. As shown in Fig. 2, the four B-spline 
coefficients and the corresponding covariances are continu-
ously updated as the filter moves along in time until the point 
tj where the new node at tj+1 needs to be introduced and the 
node which is no longer required ( �i−3 ) has to be dropped 
from the state vector. As nodes �i−2 , �i−1 , and �i are still 
needed, they change position in the state vector to become 
the first three entries for the B-spline representation, which 
opens the space for the new node, to be put on the fourth 
location in the state vector. As depicted in the second step 
in Fig. 2, the initialization of the new node happens with the 
estimated value of the third node and a slightly larger vari-
ance, which allows that following updates will correct the 

Fig. 2   Dynamic updates of the 
state vector are necessary in 
order to be able to take advan-
tage of the B-spline functional 
expression. The three steps 
illustrate how the state vector 
and the corresponding covari-
ance matrix are handled, before, 
during, and after, an epoch 
where a new B-spline interval is 
entered. The reader is referred 
to the related section for an in-
depth description of individual 
stages
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coefficient according to the next SNR measurements. Corre-
lations between the new coefficients and the other three coef-
ficients are reconstructed from the covariance matrix before 
the shifting takes place. Having introduced the new coeffi-
cients and considered their new validity range, the filter can 
continue with the normal prediction/update sequence and 
estimate reflector height, damping, amplitudes, and phases 
continuously and in close real time. As the latter param-
eter types are modeled as random walk processes, there is 
no need for special considerations, except that only those 
satellite-specific parameters are updated when the particu-
lar satellites are in view at a certain point in time. B-spline 
coefficients which are no longer in the state vector are stored 
on disk so that one can later obtain a timer series of h(t) or 
evaluate the reflector height at any given point in time.

The choice of the stochastic model

While B-spline coefficients are treated as constant param-
eters, i.e., having zero process noise and periodically being 
exchanged for new nodes with some uncertainty, the other 
parameters are modeled as random walk processes in order 
to consider that environmental changes can lead to variations 
of these parameters. For example, the amplitudes and the 
damping coefficient are related to the reflectivity and thus 
allow concluding on parameters like ice coverage (Strand-
berg et al. 2017) or vegetation (Small et al. 2010). Consider-
ing that the phase of the SNR interference pattern relates, 
for example, to soil moisture, it is obvious that also this 
parameter should be allowed to vary over time.

While the filter determines estimates of the system-
dependent parameters amplitude and phase for each GNSS 
and frequency, they are assumed to behave statistically 
similarly across all systems. Thus, the process noises of all 
amplitudes are the same, as well as the process noises for all 
phase parameters. This choice was made to limit the search 
space in order to find functional settings.

The values have been chosen to guarantee a stable solu-
tion on 20-day long data sets used for testing purposes, with-
out any diverging parameters. The effects of changing the 
respective process noise variances are presented in Fig. 3. 
Based on these results, the chosen model parameters used 
for dynamic inversion of the SNR observations are presented 
in Table 1. As the true observation noise for the SNR data 
is unknown, the observation noise is estimated per satel-
lite system and frequency from the average residual of the 
last hour of SNR observations, resulting in noise variances 
around 100–200 V per volt squared (V/V)2.

To be able to run the filter in real time, it is also necessary 
to perform the aforementioned detrending of the SNR series 

in real time as well. The trend depends largely on the equip-
ment used, and the surroundings of the antenna (Nievinski and 
Larson 2014a), and is therefore only slowly varying in time. 
Here, we introduce two alternatives which take advantage of 
the stability of the trends: Either the polynomial coefficients 
are introduced as parameters in the state vector of the Kalman 
filter, or the polynomial for each recurring arc is determined 
through a running average of the last few passages. To not 
increase the number of parameters in the filter overly much, 
we chose to use the second alternative.

Fig. 3   Effect of varying process noise variance settings on the RMS 
error of the retrieved sea surface height as compared to nearby tide 
gauges for both SPBY and GTGU, using 20  days of data for each 
series

Table 1   Process types and noises of the parameters of the prediction 
function of the Kalman filter

Parameter name Process type Process noise variance

B-spline coefficients Constant (new 
node every 2 h)

–

Damping Random walk 10−10/s
Amplitudes Random walk 10−4 (V/V)2/s
Phases Random walk 5·10−11 rad2/s
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Test sites

In order to assess the precision of the Kalman filter based 
retrievals, we used SNR data from two test sites with dif-
ferent characteristics. These sites have previously been 
used to demonstrate the least-squares inversion algorithm 
(Strandberg et al. 2016). The first site is the GTGU test 
installation at the Onsala Space Observatory, Sweden. 
GTGU is a purposefully built GNSS-R installation where 
a standard off-the-shelf receiver and antenna pair has been 
mounted on a pole sticking out over the water to provide 
optimal viewing angles of the sea surface. The antenna 
oversees open water in an azimuth range that is larger than 
180 degrees, see the top panel of Fig. 4. The equipment 
consists of a LEICA AR25 choke ring antenna paired with 
a LEICA GRX1200 receiver recording GPS and GLO-
NASS data at a rate of 1 Hz.

Close to GTGU, a stilling well tide gauge is situated a 
few hundred meters from the antenna. This tide gauge has 
been used in the validation process as a reference and is 
assumed to provide ground-truth values. The tide gauge 
logs water level with millimeter accuracy once every min-
ute using three different types of instruments, one laser, 
one radar, and two bubble pressure sensors (Pugh 1972), 
and is described by Wahlbom (2015). The latter are sus-
ceptible to biases caused by changes in the water salt con-
tent, and the radar has experienced problems with false 
detections. Therefore, we decided on using the laser sensor 
as the reference.

Tidal variations at Onsala are relatively small, reaching 
only 20–30 cm in amplitude. However, being in a quite 
shallow bay, the water level is sensitive to changes in 
atmospheric pressure and thus the sea surface can experi-
ence overall tides that are approximately 1.5 m peak to 
peak (Löfgren et al. 2014).

The second installation, SPBY in Spring Bay, Australia, 
differs from GTGU in that it has never been intended as 
a GNSS-R installation. However, because of its location 
on a pier, it happens to have a clear view of open water 
and can thus be used for GNSS reflectometry. The view 
is, however, narrower than the one of GTGU because of 
other piers in the area, as presented in the bottom panel 
of Fig. 4. Again, the installation uses standard geodetic 
equipment with a LEICA AT504 choke ring antenna and 
a LEICA GRX1200, also recording GPS and GLONASS 
to RINEX files with 1 Hz sample rate.

Colocated with the GNSS installation, there is also 
a tide gauge measuring the sea level using an acoustic 
Aquatrak sensor and a Vegapuls radar sensor. The data are 
recorded at 1 Hz but reported as 1-min averages. Lastly, 
the tides are also different in characteristic in Spring Bay, 
with amplitudes ranging up to 0.9 m.

As described by Strandberg et al. (2016), the data col-
lected from the two GNSS installations are discriminated 
depending on elevation and azimuth using a manually 
constructed, site-dependent mask so that only reflections 
from the area of interest are considered in the processing. 
No discrimination is made between GPS and GLONASS 
satellites, and both L1 and L2 frequencies are used.

Fig. 4   Top panel: drone photograph of the coastline around GTGU 
(in the red circle) at the Onsala Space Observatory, Sweden. Photo-
graph: Roger Hammargren. Bottom panel: aerial image of Spring Bay 
and the SPBY installation (in the red circle). Photograph: Google/
DigitalGlobe
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Measurements of sea surface height 
with Kalman filtering

One feature of the combination of B-splines and the 
Kalman filter that is of particular interest is that the solu-
tion can be evaluated in both real time and with a delay. 
This is because the nodes �i−3,… , �i affecting the meas-
urement at a time t  continue to be updated until �i has 
been shifted out of the state vector. Therefore, there can be 
some delay until the final solution is presented, depending 
on the temporal spacing of the B-spline nodes. However, 
the sea level can of course be evaluated at any point during 
this time, even directly after the measurement at time t  . 
Here, we present the performance for both real time and 
final solution at our two test installations and compare it 
to other GNSS-R techniques.

The final solution is, of course, interesting for historical 
records and long-term monitoring of the sea level and its 
change derived from time series, see for example Fig. 5, 
whereas real-time solutions are of interest for applications 
in need of direct measurements, for example marine ship-
ping (Pugh 2004), reservoir monitoring (Becker and Yeh 
1974), sea state forecasting and warning systems (Hol-
gate et al. 2008), and similar applications. Of the two 
techniques, we compare with here, spectral analysis with 
height-rate correction and least-squares inversion, only 
the former is close to being in real time. Therefore, the 
real-time performance is primarily compared to the perfor-
mance of that method, whereas the final solution will also 
be compared to the more precise inverse modeling method.

For both SPBY and GTGU, the comparison statistics 
are calculated from an 80-day period of measurements, 
from day 5 to 85 of the year 2018 for SPBY and from day 
20 to 100 of the year 2017 for GTGU. Subsets of the tide 
gauge data and GNSS-R solutions from the respective site 
are presented in Fig. 5. During the data collection period, 
the maximum tidal difference measured by the tide gauges 
at both sites was similar, at 1.52 m for SPBY and 1.36 m 
for GTGU. However, as is clearly visible from the figure, 
the dynamics are different at the sites, with sub-daily tides 
dominating the sea level at SPBY, whereas other more 
irregular effects are driving the sea-level variations at 
GTGU. Therefore, the rate of change at SPBY is generally 
higher, degrading the performance of the spectral meth-
ods in particular because of the underlying assumption of 
static surfaces and the limits of the first-order correction. 
In addition, as mentioned in the previous section, the area 
from which data are collected at SPBY is smaller than 
at GTGU, which can affect the precision of the inverse 
modeling and Kalman algorithm, as more data and better 
temporal coverage have been shown to improve the solu-
tions based on the inverse model (Strandberg et al. 2016).

Figure 6 depicts the performance of the Kalman filter 
when evaluated at different delay times, i.e., evaluating the 
sea height at time t using the coefficients from the state vec-
tor xt+Δt . In order to compare the performance of the differ-
ent inversion approaches, we compute the standard deviation 
of the retrieved GNSS-R sea-level values with respect to the 
colocated tide gauges which gives a measure of the preci-
sion of the measurements while ignoring systematic offsets 
arising from different reference levels.

The first feature to notice in Fig. 6 is that the Kalman 
filter is the only technique that provides results in real time. 
The spectral analysis method can only deliver results once a 
satellite has passed a large enough elevation window, which 
takes roughly 20 min. In general, the least-squares method 
has significantly longer delay times (Strandberg et al. 2016). 
In addition, for both SPBY and GTGU, the precision of the 
real-time Kalman retrievals is significantly better than for 
spectral analysis by a factor of four and two, respectively. 
This makes real-time sea height retrieval with GNSS-R 
much more viable for fields such as marine transportation 
where measurements need to be both precise enough and 
provided without delays.

As can be expected, the standard deviation decreases fur-
ther with time as the B-spline amplitudes in the state vector 
are updated with more measurements. At GTGU, the itera-
tion process leads to a final RMS error of 1.48 cm, even 
outperforming the inverse modeling, with an RMS error of 
1.73 cm. This level of precision is actually reached already 
within 30 min. At SPBY, it takes slightly longer for the con-
vergence, finally reaching an RMS error of 3.25 cm, within 
10% of the least-squares precision.

Retrieving properties of the reflecting surface

As with the least-squares inversion, the height parameter 
is not the only parameter of interest. The amplitude, phase, 
and damping parameters are all affected by various proper-
ties of the surroundings. In an earlier paper by Strandberg 
et al. (2017), it was shown that these effects are susceptible 
to changes in the antenna environment and that especially 
the damping is useful to determine the presence of ice on 
the water surface and that least-squares inversion is capa-
ble of retrieving the information. In Fig. 7, we present that 
this is possible with Kalman filtering as well, which is to 
be expected as both use the same underlying model of the 
SNR. Like for the previous algorithm, the damping values 
retrieved by Kalman filtering are seen to decrease during the 
period when ice is reported outside of the Onsala peninsula 
by official ice maps (SMHI 2017).

As the Kalman filter reports instantaneous values, whereas 
the least-squares inversion reports daily average values, the 
time series presented in Fig. 7 differ slightly. The largest dif-
ference is around the transition periods, where the Kalman 
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time series responds on a time scale of a few hours, whereas 
the inverse modeling has a trend over a few days. This can be 
seen in both the freezing and thawing at the start and end of 
the ice period of 2012, but also in the shorter thawing events 
near the end of the period, which are better resolved using 

the Kalman filter. With the increased time resolution of the 
damping retrieval, we have reached a point where now the 
validation data set does no longer provide the temporal and 
spatial resolution in order to catch the small-scale changes of 
ice coverage on the coast detected by GNSS-R.

Fig. 5   Upper graph: time series 
of data from the Onsala tide 
gauge and GNSS-R retriev-
als using data from GTGU. 
Lower graph: tide gauge data 
and GNSS-R retrievals from 
Spring Bay. The mean of each 
series has been removed to aid 
comparison
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Discussion

The performance of Kalman filters is sensitive to the process 
models used in the update step. For this study, the process 
noise settings have been selected through empirical testing. 
However, as the number of parameters in the model is quite 
large, i.e., ten or more depending on the number of GNSS 
systems and frequencies, the number of choices for the 
process noise levels of the individual parameters becomes 
very large, which implies that not every combination can be 
explored. Therefore, it is likely that the performance of the 
algorithm could be improved even further by adjusting the 
noise models. Instead of doing this through trial and error, 
sufficient knowledge about the underlying dynamics of the 
parameters involved could help to set the process noise val-
ues to a more physically correct level. However, this would 
require more detailed knowledge about all factors that can 
affect the SNR and how these vary over time. Thus, the prob-
lem of finding correct process noise level is site-specific 
and includes, for example, the exact geometry around the 
receiver, atmospheric conditions, vegetation growth cycles, 
and more (Nievinski and Larson 2014a). This promises to 
be an interesting topic for further studies.

Conclusions

We show that real-time GNSS reflectometry is possible 
using Kalman filtering techniques, with the unscented 
Kalman filter and a dynamic B-spline approach. We apply 
it to deriving sea surface heights, and the filter solution 
agrees well with measurements from colocated tide gauges, 

Fig. 6   Standard deviation of the difference between the tide gauges 
and the Kalman filter solution as a function of time before evaluation 
for both GTGU and SPBY. Spectral analysis is possible after record-
ing data from a sufficiently long satellite arc, i.e., roughly 20  min 
(Williams and Nievinski 2017). Least-squares inversion (LSQ) 
requires significantly more data, and thus, time before analysis is pos-
sible. Still, for comparison, the precision of the technique is indicated 
in the figure using the shaded areas

Fig. 7   Time series of retrieved 
damping values at GTGU 
for the winter of 2012 using 
Kalman filtering and inverse 
modeling with least-squares 
adjustment. Also presented is 
the air temperature recorded at 
the Onsala Space Observatory. 
The damping time series are 
normalized with the average 
value of an ice-free period
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outperforming the previous spectral methods in real time 
and producing measurements on a similar level of preci-
sion as least-squares inversion in post-processing. Therefore, 
with this new algorithm, real-time GNSS-R can be a feasible 
alternative to traditional tide gauges, for example, in areas 
where remote sensing techniques are preferable.
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