Laser Frequency Combs for Coherent Optical Communications

Downloaded from: https://research.chalmers.se, 2019-08-08 17:28 UTC

Citation for the original published paper (version of record):
Laser Frequency Combs for Coherent Optical Communications
Journal of Lightwave Technology, 37(7): 1663-1670
http://dx.doi.org/10.1109/JLT.2019.2894170

N.B. When citing this work, cite the original published paper.
Laser Frequency Combs for Coherent Optical Communications

Victor Torres-Company, Senior Member, OSA, Jochen Schröder, Senior Member, OSA, Member, IEEE, Attila Fülöp, Mikael Mazur, Student Member, OSA, Student Member, IEEE, Lars Lundberg, Student Member, OSA, Öskar B. Helgason, Student Member, OSA, Magnus Karlsson, Fellow, OSA, Senior Member, IEEE, and Peter A. Andrekson, Fellow, OSA, Fellow, IEEE

Abstract—Laser frequency combs with repetition rates on the order of 10 GHz and higher can be used as multi-carrier sources in wavelength-division multiplexing (WDM). They allow replacing tens of tunable continuous-wave lasers by a single laser source. In addition, the comb’s line spacing stability and broadband phase coherence enable signal processing beyond what is possible with an array of independent lasers. Modern WDM systems operate with advanced modulation formats and coherent receivers. This introduces stringent requirements in terms of signal-to-noise ratio, power per line and optical linewidth which can be challenging to attain for frequency comb sources. Here, we set quantitative benchmarks for these characteristics and discuss tradeoffs in terms of transmission reach and achievable data rates. We also highlight recent achievements for comb-based superchannels, including >10 Tb/s transmission with extremely high spectral efficiency, and the possibility to significantly simplify the coherent receiver by realizing joint digital signal processing. We finally discuss advances with microresonator frequency combs and compare their performance in terms of flatness and conversion efficiency against state-of-the-art electro-optic frequency comb generators. This contribution provides guidelines for developing frequency comb sources in coherent fiber-optic communication systems.

Index Terms — Laser frequency combs, coherent communications, wavelength division multiplexing, fiber-optic communication systems, microresonator frequency combs.

I. INTRODUCTION

A frequency comb is a laser source whose optical spectrum is made of evenly spaced, narrow and phase-locked frequency lines. The comb has two degrees of freedom (stretching and shifting), controlled respectively by two frequencies: the line spacing (or repetition rate), which sets the difference between consecutive lines, and the offset frequency, which defines the location of the comb lines with respect to an ideal grid of frequencies. Key developments in the 90s allowed establishing a coherent link between the frequency comb lines and atomic frequency references [1,2]. This remarkable achievement enabled comparisons between optical clocks with unprecedented precision and accuracy [3], and created opportunities in multiple fields, e.g. broadband molecular spectroscopy [4], the synthesis of pure microwaves [5] and light detection and ranging [6].

Laser frequency combs have also been widely used in lightwave communication systems, particularly in wavelength division multiplexing (WDM). Results range from on-off keying [7,8] to modern communication systems using advanced modulation formats in single- [9,10] and multi-core fibers [11]. The enabling aspect of frequency combs in WDM systems is the possibility to attain multiple frequency carriers on a fixed grid. Locking the absolute location of the frequency lines to an atomic reference is less relevant. However, the possibility to attain broadband phase coherence and high relative-frequency stability yields advantages compared to what is possible with individual lasers. These advances include mitigation of the inter-channel linear crosstalk [12], compensation of nonlinear impairments in the fiber link by proper waveform shaping [13] or digital pre-distortion [14,15], and the achievement of densely packed superchannels for multi-terabit-per-second transmitters [16,17].

The specifics of modern communication systems introduce tough requirements on the frequency comb in terms of repetition rate, optical linewidth, power per line, spectral smoothness (power distribution among lines) and compatibility with fiber-optic components. These demands offer opportunities for alternative frequency comb platforms [18], such as those based on electro-optic modulation of continuous-wave lasers [8,17,19], gain-switched laser diodes [20], semiconductor-waveguide passively mode-locked lasers [21], fiber-based actively mode-locked lasers [16,22] and microresonator frequency combs [23,24].

The aim in this paper is to set quantitative benchmarks for combs in WDM coherent communication systems. We consider the comb as a black box i.e., for the sake of generality, we focus on requirements that are platform-independent. The analysis carried out in Sect. II reviews the fundamental tradeoffs and limitations with regards to optical signal-to-noise ratio (OSNR), linewidth, relative frequency uncertainty and absolute frequency accuracy. This work therefore complements our
recent review [25] and extends the conference contribution [26]. In Sect. III, we briefly discuss recent examples at the system level enabled by the unique properties of frequency combs. Finally, in Sect. IV, we establish a comparative assessment of the performance of two relevant comb platforms, namely electro-optic comb generators and microresonator frequency combs, in terms of power conversion efficiency and spectral flatness.

II. PERFORMANCE REQUIREMENTS OF FREQUENCY COMBS IN WAVELENGTH DIVISION MULTIPLEXING

We consider a comb-based WDM point-to-point link as sketched in Fig. 1. The lines of a frequency comb constitute the optical carriers on which to encode data. The demultiplexing stage separates the comb lines, allowing them to be treated as individual continuous-wave sources by the following modulators. The digital data is encoded onto complex symbols which modulate the amplitude and phase of each optical carrier in an IQ modulator. A single polarization is depicted for simplicity, but polarization multiplexing could be implemented e.g. by replicating the transmitter and rotating its polarization after the last multiplexing stage [27]. After multiplexing, the signal is amplified in an erbium-doped fiber amplifier (EDFA) with suitable gain, $G_{\text{pre}}$, to reach the desired power prior to transmission over a fiber link. The link consists of $N$ spans and the losses in every span are compensated for by another EDFA with gain $G_{\text{link}}$. The accumulated spontaneous emission from the EDFAs will degrade the received optical signal to noise ratio, $\text{OSNR}_{\text{rec}}$. At the receiver side, each channel is demultiplexed and the waveforms are detected in a coherent receiver with the aid of a narrow-linewidth local oscillator whose frequency is matched to the channel of interest. Note that owing to the symmetry at the receiver side, another frequency comb could be used as multi-wavelength local oscillator. The WDM channels in the system of Fig. 1 are detected individually. From this point of view, there is no difference between operating the system with two frequency comb sources or two arrays of tunable continuous-wave lasers, and the fundamentals of coherent optical communications [28] apply equally. In the next section we will consider the possibility of realizing joint signal processing between WDM channels. This can e.g. relax the linewidth requirements [25]. Hence, the performance metrics analyzed in this section should be taken as an upper limit.

Advanced modulation formats allow encoding more bits per complex symbol. This comes at the expense of a higher requirement in signal to noise ratio (SNR) [29]. An amplified coherent link can, as a first approximation, be modeled as an additive white Gaussian channel, where the noise stems from the optical amplifiers. Fig. 2(a) illustrates the achievable bit error ratio (BER) for different modulation formats as the SNR varies. Adding two bits per symbol requires roughly 6 dB extra SNR to maintain the same BER. These SNR requirements represent a theoretical minimum because the calculation assumes an ideal transmitter and receiver, and ignores nonlinearities in the fiber link. In practice, the digital-to-analog converters in the transmitter and the analog-to-digital converters at the receiver will have a limited number of effective bits. Such imperfections are more acute for advanced modulation formats and higher symbol rates. As a result, higher SNRs than what is set in Fig. 2(a) are needed to attain the same BER [29]. The difference between the theoretical minimum and the actual SNR is called implementation penalty.

Modern high-spectral-efficiency transmission systems apply forward-error-correction (FEC) coding to reach error-free transmission, which is defined as a BER $\leq 10^{-15}$. They typically operate at relatively modest SNRs corresponding to pre-FEC (before decoding) BERs on the order of a few percent and use an overhead of 20 – 30 percent redundant information to attain error-free post-FEC (after decoding) BERs. However, the relationship between pre- and post-FEC BERs, as well as the required overhead and complexity is highly specific for the selected code. Moreover, the increasingly common soft decision codes decode bits based on the received bit probabilities ('soft' data) rather than the 'hard' bit values. Thus, the pre-FEC BER does neither exist nor make sense to use in such cases. This problem has motivated the use of alternative metrics to the pre-FEC BER. One metric that is becoming increasingly popular in the long-haul optical transmission community is the generalized mutual information (GMI) [30,31], which will be used in this paper. The GMI is computed from the transmitted and received bit probability distributions. Under some simplifying assumptions the GMI is the maximum data rate (in bits/symbols) the channel can sustain at a given
then becomes

\[ P \text{ channel and } P \text{ received noise power}, \]

calculate both the received signal power, \( P_{\text{received}} \), and the overall system performance.

Here, \( P_{\text{launch}} \) is the spontaneous emission factor, \( h \) the Planck’s constant, \( \nu \) the optical frequency of the channel, \( \Delta \nu \) the noise bandwidth and \( N \) the number of spans. The received OSNR then becomes

\[ \text{OSNR}_{\text{rec}} = \frac{P_{\text{launch}}}{n_{\text{sp}} h \nu \Delta \nu (G_{\text{pre}} - 1 + N G_{\text{link}} - N)} \cdot \quad (3) \]

Figure 3(a) illustrates how the received OSNR degrades upon propagation in the link and with higher preamplifier gains. It is instructive to compare this result with the OSNR achievable in the case where the transmitter delivers sufficient power per channel, \( \text{OSNR}_{\text{laser}} \), by setting \( G_{\text{pre}} = 1 \) in Eq. (3),

\[ \frac{\text{OSNR}_{\text{rec}}}{\text{OSNR}_{\text{laser}}} = \frac{1}{1 + \frac{G_{\text{pre}} - 1}{N G_{\text{link}} - 3}} = \frac{1 + \text{OSNR}_{\text{laser}}}{\text{OSNR}_{\text{TX}}} \cdot \quad (4) \]

The first equality indicates that the OSNR of the comb-based transmitter will be lower than the OSNR of a multi-wavelength laser-based transmitter, particularly when the gain of the preamplifier becomes comparable to or larger than the gain of the total link, \( G_{\text{pre}} \approx N G_{\text{link}} \). Thus, frequency comb sources may be more suitable to operate in long-haul communication systems, where the spontaneous emission noise of the EDFAs in the link masks the limited SNR at the transmitter. In the second equality, \( \text{OSNR}_{\text{TX}} = \frac{P_{\text{launch}}}{n_{\text{sp}} h \nu \Delta \nu (G_{\text{pre}} - 1)} \) is the OSNR at the transmitter side, i.e. Eq. (3) with \( N = 0 \). This equation assesses the penalty incurred at the receiver side due to having a limited OSNR at the transmitter. It provides a useful guideline to calculate the necessary OSNR at the transmitter side given the modulation format requirements set by in Fig. 2. This equation indicates that the OSNR at the transmitter side should be at least 13 dB higher than the target OSNR at the receiver to be able to ignore potential penalties due to having limited power at the transmitter.

\[ \text{OSNR}_{\text{TX}} = \frac{P_{\text{launch}}}{n_{\text{sp}} h \nu \Delta \nu (G_{\text{pre}} - 1)} \cdot \quad (5) \]

Figure 2(a) shows the achievable bit error ratio as a function of signal to noise ratio for different M-ary quadrature amplitude modulation (QAM) [32]. (b) Generalized mutual information for the same modulation formats, compared to Shannon’s capacity. In both cases, the noise is considered additive and white, following a Gaussian distribution. The GMI is computed assuming bitwise receiver processing, independent bits, and ideal FEC encoding/decoding that can give arbitrary low BER.

**Fig. 2.** (a) Achievable bit error ratio as function of signal to noise ratio for different M-ary quadrature amplitude modulation (QAM) [32]. (b) Generalized mutual information for the same modulation formats, compared to Shannon’s capacity.

**Fig. 3.** (a) Evolution of optical signal to noise ratio of a WDM channel with distance for different pre-amplifier gains. The link is formed by consecutive spans of 80 km fiber with 0.2 dB/km loss. The noise bandwidth is considered 12.5 GHz and the noise figure of the amplifiers 5 dB (\( n_{\text{sp}} = 1.5 \)). (b) Ratio between OSNR achieved in a power-limited WDM transmitter (\( \text{OSNR}_{\text{rec}} \)) and OSNR achieved when pre-amplifier is not needed (\( \text{OSNR}_{\text{OSNR}} \)). This is plotted for different ratio of OSNR at the transmitter side. This result gives the useful rule of thumb that the OSNR at the transmitter side should be 13 dB or higher than the target OSNR at the receiver to be able to ignore potential penalties due to having limited power at the transmitter.

A. Optical signal to noise ratio (OSNR)

One practical problem of using a frequency comb instead of an array of tunable lasers is that the comb power is divided among multiple carriers. The lower power in the comb lines directly leads to a decreased SNR. In addition, the comb may display power variations from line to line. To compensate for this, we assume that, following the last multiplexing stage in the transmitter and preamplifier (see Fig. 1), the WDM channels would be equalized (for example with a programmable filter) to achieve an equal target launch power. In this sub-section, we analyze the OSNR performance for the weakest channel in the WDM system which therefore provides a lower bound for the overall system performance.

To calculate the received OSNR, \( \text{OSNR}_{\text{rec}} \), we need to calculate both the received signal power, \( P_{\text{launch}} \), and the received noise power, \( P_{\text{noise}} \), [33]

\[ P_{\text{launch}} = P_{\text{low}} G_{\text{pre}} \cdot \quad (1) \]

Here, \( P_{\text{low}} \) represents the power level of the weakest WDM channel and \( G_{\text{pre}} \) the pre-amplifier gain. On the other hand,

\[ P_{\text{noise}} = n_{\text{sp}} h \nu \Delta \nu (G_{\text{pre}} - 1 + N G_{\text{link}} - N) \cdot \quad (2) \]

where \( n_{\text{sp}} \) is the spontaneous emission factor, \( h \) the Planck’s constant, \( \nu \) the optical frequency of the channel, \( \Delta \nu \) the noise bandwidth and \( N \) the number of spans. The received OSNR then becomes
The frequency mismatch between combs is
\[ v_n - v'_n = (v_0 - v'_0) + n(f_r - f'_r) = \Delta v_0 + n\Delta f_r. \]

Here, we have assumed that the frequency difference between combs is constrained within half the repetition rate, so that the same line number can be assigned to both combs. The above equation indicates that outer lines experience higher frequency mismatch. Figure 4(b) illustrates the requirements for pairs of combs. The maximum tolerable deviation depends on the particular DSP algorithm, but a good rule of thumb is to keep the deviation to ~1 GHz or less for 10 Gbaud signals. Higher deviations introduce challenges in the frequency offset estimation DSP block and may lead to large performance variation and loss of data. Considering a WDM system with 20 channels, this introduces a requirement to be able to match the offset frequency and repetition rate between combs with ~500 MHz and 50 MHz accuracy, respectively. This may not be a problem for combs that are continuously tunable and whose repetition rate can be set by a microwave signal, such as electro-optic combs [34], but it introduces fabrication challenges for integrated frequency comb generators that rely on cavities, such as passively mode-locked lasers and microresonator combs. Notwithstanding, recent advances in dissipative Kerr solitons in silicon nitride microresonators demonstrate that it is possible to achieve these requirements with 100 GHz combs specifically designed for ultra-high channel count [35].

Optical signal processing schemes can relax these requirements and operate the receiver in a self-homodyne configuration (the local oscillator frequency matches the channel frequency), but at the expense of hardware complexity [17,36,37]. Examples include nonlinear regeneration of an electro-optic comb [36] or frequency synchronization via digital signal processing and optical feedback on a gain switched diode [37]. These examples match both the offset modulation formats as the linewidth, normalized to the baud rates, increases. For each modulation format, the SNR is kept constant, and its value close to the value that provides a BER close to 0.01, see Fig. 2. The linewidth reflects the combined effect of phase noise in the transmitter and receiver. Phase recovery is performed by the blind phase search algorithm and the drift is modeled by a Wiener process [38].

The frequency mismatch between combs is
\[ v_n - v'_n = (v_0 - v'_0) + n(f_r - f'_r) = \Delta v_0 + n\Delta f_r. \]
and for the most complex modulation formats, the DSP can be addressed by, e.g., differential bit encoding. Phase presence of cycle phase slips that occur upon which the GMI drops abruptly to zero causes a continuous decrease in the GMI, but there is a point beyond which the GMI is close to the theoretical value of 12 bits/4D symbol based on Fig. 2(b) considering polarization multiplexed 64 QAM. The comb source is an electro-optic comb generator formed by cascading one intensity modulator and two phase modulators [34]. The continuous-wave laser has a nominal 100 kHz linewidth and a similar laser is used at the receiver side as tunable local oscillator. The microwave signal driving the modulators comes from a commercial low-noise dielectric resonator oscillator.

C. Absolute frequency accuracy and grid spacing
The previous sub-section concerned about matching the Rx comb lines to the Tx. A different aspect is the accuracy with which the frequency lines in the Tx must match a frequency grid. The International Telecommunication Union (ITU) regulations on dense WDM (ITU-T G.694.1) establish that the allowed channel frequencies must be anchored to 193.1 THz on a fixed grid with 12.5 x 2 GHz spacing, with l being either 0, 1, 2 or 3. The nominal frequencies of the grid are defined with an accuracy that depends on the grid spacing, and it ranges from 4 digits of precision for a 12.5 GHz grid to one digit for 100 GHz. This means self-referencing is not necessary in practice and the required level of accuracy can be easily attained with e.g. free-running electro-optic comb generators or microresonator combs.

D. Optical linewidth
Advanced modulation formats are affected by phase noise from the optical source. The impact of laser phase noise in coherent communications systems has been extensively analyzed in the literature (see eg. [38,39]). Here, we give a different insight by analyzing the impact of the phase noise on the GMI for different M-ary constellations (Fig. 5). Clearly, higher-order constellations are more susceptible to phase noise because the angular separation between adjacent constellation points decreases with increased modulation order. An interesting aspect revealed by Fig. 5 is that a broader linewidth causes a continuous decrease in the GMI, but there is a point upon which the GMI drops abruptly to zero. This is due to the presence of cycle phase slips that are not handled by the blind phase-search algorithm in the DSP, which could otherwise be addressed by, e.g., differential bit encoding.

Figure 5 shows that, for baud rates in the order of 10 Gbaud and for the most complex modulation formats, the DSP can successfully track the phase noise with minimum degradation in the GMI as long as the joint linewidth is ~ 100 kHz. This linewidth is relatively easy to achieve with electro-optic comb generators because they can be pumped directly by a narrow linewidth continuous-wave laser and suffer little degradation across the bandwidth of interest in WDM communications. The situation is different for other high repetition rate frequency comb generators, such as semiconductor passively mode-locked lasers [40]. These comb sources require additional external cavities or injection locking to an external continuous-wave laser to reach optical linewidths below 1 MHz [21].

III. ADVANCES AT THE SYSTEM LEVEL
Frequency combs offer unique opportunities to increase the performance of WDM systems. To get more physical insight, it...
is worth comparing the electric field of an array of individually tunable lasers with carrier frequencies $\nu_n$ and phase noise $\phi_n(t)$,

$$E_{\text{ lasers}}(t) = E \sum_{n=-N}^{N} \exp \left[ -j2\pi \nu_n t + j\phi_n(t) \right], \quad (6)$$

with the electric field of a frequency comb

$$E_{\text{comb}}(t) = e^{-j2\pi \nu_{\text{d}} t + j\phi(0)} \sum_{n=-N}^{N} E_n \exp \left[ -j2\pi \nu_n t \right]. \quad (7)$$

Note that Eq. (6) does not represent a Fourier series since the carrier frequencies cannot be precisely located on an equidistant grid. Another important difference is that the optical phase noise in the frequency comb, as described by Eq. (7), is the same for all carrier frequencies. Hence, there are two distinct and unique aspects of a frequency comb that can be exploited for coherent communications. One is the stability of the line spacing, and the other is broadband phase coherence across a wide bandwidth.

Figure 6 shows experimental results for a comb-based superchannel Tx [41]. 51 channels are modulated by polarization multiplexed 64 QAM signals at 24 Gbaud, resulting in an achievable information rate of 11.9 Tbps and spectral efficiency 9.3 bits/s/Hz after substracting the overhead. The signal is successfully propagated over 960 km in a recirculating loop [41]. These results are enabled by the robust line spacing in the comb source and an optimized DSP implementation using pilot symbols, which is available via an open source license [42].

Figure 7 illustrates a different example. According to Eq. (7), the optical phase noise in a comb-based system is correlated among WDM channels. This opens the door to reuse the phase noise information extracted from one WDM to the next one, see Fig. 7(a). This scheme, coined master-slave phase recovery, has been recently implemented using two free running electro-optic combs, one at the transmitter and another at the receiver [43]. Experimental results for the back-to-back situation (no propagation) are illustrated in Fig. 7(b). Essentially, the performance of the master-slave configuration is identical to the performance of the system when the phase recovery is realized on independent channels. As chromatic dispersion causes a time offset between the WDM channels, the master-slave configuration will suffer from a penalty that depends on the system length, the spectral distance between the master and the slave, and the linewidth of the comb sources. A thorough analysis of this penalty is outside the scope of this paper, but as a rule of thumb, the time offset between master and slave needs to be well below the coherence time of the comb sources, similar to self-homodyne superchannels [36]. For example, for a 100 km dispersive link and a 5 nm comb-based superchannel, this translates into a dispersive walk off of ~ 10ns. Requiring a coherence time 100 times longer demands optical frequency carriers with a linewidth below 1 MHz.

The master-slave configuration enables a substantial simplification of the DSP at the receiver and may lead to significant power savings. This is particularly interesting for short-reach links because the power used by the phase recovery block in the DSP chain takes a more substantial proportion than in long-haul systems. An estimate of the power savings is provided in Fig. 7(c), indicating an exponential decrease of the power consumption of the phase recovery unit with the number of jointly processed WDM channels [44].

IV. PROGRESS IN MICROMEALATOR FREQUENCY COMBS

The results highlighted in the previous section were realized with electro-optic frequency comb generators (or EO combs in short). From a practical point of view, realizing comb-based WDM coherent transmitters and receivers will require a large degree of photonic integration. Microresonator frequency combs (or microcombs in short) developed using silicon nitride [45] offer a path forward in combination with advances in silicon photonics [46]. Here, we establish a brief comparative assessment between these two comb technologies for applications in WDM.

Both microcombs and EO combs are seeded by a continuous-wave laser. If this laser has sufficiently low linewidth, it is safe to neglect potential phase noise variations from one WDM channel to another. In fact, both platforms have demonstrated successful transmission of advanced modulation formats [17,35,47,48].

Next, we focus our attention on the power achieved in the weakest comb line, $P_{\text{low}}$. This figure of merit implicitly considers absorption losses in the comb generation process and uneven power distribution among lines. The results are presented in Fig. 8. The EO comb is modelled by considering an intensity modulator followed by a set of phase modulators [49]. For microcombs, we consider two different generation processes i.e., dissipative Kerr solitons [50], which have a very
smooth spectral envelope but relatively poor power conversion efficiency [51], and mode-locked dark pulses [52], which feature much higher conversion efficiency [53] but at the expense of large power variations among lines. The microresonators are optimized in terms of coupling rate and dispersion [35,54], considering intrinsic quality factors of ten million, which can be realized based on recent fabrication developments [55,56]. This analysis indicates that optimized mode-locked dark pulses can approach a performance in terms of power per line very close to what can be achieved with state of the art, commercially available electro-optic comb generators based on lithium niobate. Recent results based on lithium niobate on insulator could yield higher comb line performance, depending on the number of processed channels.

Finally, we discussed how mode-locked dark pulse combs in silicon nitride microresonators can potentially provide powers per line close to what can be achieved with state-of-the-art, but bulky and power hungry, electro-optic frequency comb generators.

V. SUMMARY

A single frequency comb can replace tens of lasers in a WDM system. The combs can be used at the transmitter side as a multi-carrier source on which to encode complex data, and at the receiver side as a phase-locked multi-wavelength local oscillator. The limited power per line in a comb results in a received signal with lower OSNR, but this aspect becomes less of a concern for longer links, where the performance is dominated by the noise in the amplifiers of the link. The ITU demands in terms of absolute frequency accuracy are not particularly stringent and can be easily met with standard comb sources used in communication systems. Matching Tx and Rx frequencies requires positioning the lines with ~100 MHz relative accuracy, which introduces challenges for combs that rely on cavity waveguides. Finally, the optical phase noise requirements for the most demanding modulation formats considered in this work can be met with 100 kHz linewidths.

With regards to recent advances at the system level, we have shown the possibility to achieve spectral efficiencies close to 10 Gbaud/Hz over transmission distances ~1000 km and achievable information rates > 10 Tbps. These results are implemented with electro-optic combs, whose line spacing stability allows decreasing the guardbands between WDM channels. In a different example, we have shown how the broadband phase coherence of electro-optic combs can be utilized to realize a fully coherent WDM link, with significant simplifications of the DSP blocks. This can result in notable power savings, depending on the number of processed channels.

References


