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Abstract:

Historically, Kohnen and Zagier connected modular forms with period poly-
nomials, and as a consequence of this association concluded that the products
of at most two Eisenstein series span all spaces of classical modular forms of
level 1. Later Borisov and Gunnells among other authors extended the result
to higher levels. We consider this problem for vector-valued modular forms,
establish the framework of congruence types and obtain the structure of the
space of vector-valued Eisenstein series using tools from representation the-
ory. Based on this development and historic results, we show that the space of
vector-valued modular forms of certain weights and any congruence type can
be spanned by the invariant vectors of that type tensor at most two Eisenstein
series.

Keywords : vector-valued modular forms, congruence type, Hecke operator, products of
Eisenstein series, Fourier expansion of modular forms m
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“Depuis quinze jours, je m’efforcais de démontrer qu’il ne pouvait exister aucune fonction
analogue a ce que j’ai appelé depuis les fonctions fuchsiennes ; j’étais alors fort ignorant ;
tous les jours, je m’asseyais a ma table de travail, j’y passais une heure ou deux, j’essayais
un grand nombre de combinaisons et je n’arrivais a aucun résultat. Un soir, je pris du café
noir contrairement a mon habitude ; je ne pus m’endormir ; les idées surgissaient en foule
; je les sentais comme se heurter, jusqu’a ce que deux d’entre elles s’accrochassent pour
ainsi dire pour former une combinaison stable. Le matin, j’avais établi ’existence d’une
classe de fonctions fuchsiennes, celles qui dérivent de la série hypergéométrique ; je n’eus
plus qu’a rédiger les résultats, ce qui ne me prit que quelques heures.”

Henri Poincaré, Science et méthode, 1908
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“For fifteen days I strove to prove that there could not be any functions like those I have
since called Fuchsian functions. I was then very ignorant; every day I seated myself at my
work table, stayed an hour or two, tried a great number of combinations and reached no
results. One evening, contrary to my custom, I drank black coffee and could not sleep.
Ideas rose in crowds; I felt them collide until pairs interlocked, so to speak, making a stable
combination. By the next morning I had established the existence of a class of Fuchsian
functions, those which come from the hypergeometric series; I had only to write out the
results, which took but a few hours.”

Henri Poincaré, Science and Method, 1913, translated by George Bruce Halsted
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1 Introduction

1.1 Introduction In the contents of a textbook on mathematical analysis [God03], the
author Roger Godement simply nicknamed modular forms, a subject or rather a tool, as the
“opium of mathematicians”. One could argue that the word “mathematician” for him might
be exclusive to the Bourbaki, hence there is nothing really so fascinating if it is only about a
small circle of people. However, such a unique feeling more or less exists among many other
mathematicians as well. One of the most famous quotations on it, probably attributed
to Martin Eichler, is “There are five fundamental operations in mathematics: addition,
subtraction, multiplication, division, and modular forms”. Indeed, this saying might not
be much exaggerated in terms of the Modularity Theorem, that all rational elliptic curves
arise from modular forms. The Modularity Theorem was first hinted at by Taniyama in
1955, and later formulated by Shimura in such form. It was first proved for a large part, by
Wiles and Taylor in [Wil95] and [TW95], and later completed by Breuil, Conrad, Diamond,
and Taylor in [Dia96], [CDT99], and finally in [Bre+01]. More concretely, we can describe
the theorem in a simple version as follows. Let £ : Y2 = 4X3 — gy X — g3 for ¢», g3 € Z such
that g5 —27g3 # 0 be a cubic equation, which then define elliptic curves over Q. For a given
prime p, we define a,(E) to be p — |(z,y) € F}, (z,y) solves the equation £ (mod p)|. Till
now everything looks purely arithmetic, but the magic is that all the arithmetic information
encoded in a,(E) can be always captured from some modular form, which arises from an
analytic setting. More precisely, we can define an operator acting on the whole space of
modular forms of a given weight and level, a Hecke operator T}, for each p, so that there
is an eigenform f = fg of T}, with the p-th Fourier coefficient a,(f) (which is also the
eigenvalue of 7},), such that

One could go on and count many roles that modular forms play in connecting with
other parts of mathematics, and more recently, string theory [Fle+18]. Such ubiquitous
functions not surprisingly have a very simple definition. The word “modular” indicates
that such functions should be defined on some moduli space of very fundamental objects.
If we view the complex plane C as a two dimensional real vector space, and consider the
moduli space .Z of all lattices of rank 2 in C. We then find that two lattices correspond
to the same point in .Z if and only if they can be transformed via a homothety A € C*.
We thus define a function f on the set of all the lattices A to be a “modular form” if it
satisfies some very nice analytic condition, and behaves in the simplest possible way under
the action of homotheties A : A —— AA for all A € C*. More precisely, if f furthermore
satisfies

fo)\:)\fkof

for some number k, we call f a modular form of weight k. Such simplest type of modular
forms is also called Elliptic Modular forms, in that a lattice A, with a chosen base 1, z can
be identified with an elliptic curve E, = C/A, up to an oriented basis. This point of view
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will be later called the “lattice point of view” in this thesis, in contrast to the following
group point of view.

We can also show that it is equivalent to define modular forms via the slash action, i.e.
f 9 — Cis called a modular function if it satisfies certain analytic condition and the
modularity condition f|yy = f for all v € SLy(Z), where the slash action -| is defined by

a7’+b)
cr+d/)’

(7], (2)) (1) = (er + a4 (

Modular forms are always defined to be holomorphic on some geometric object, while mod-
ular functions are allowed to be meromorphic. This consideration is due to the requirement
that, in order to connect with more interesting mathematics, the analytic condition is most
of the time crucial. Slightly weaker than being holomorphic, real-analytic functions which
satisfy modularity condition are also interesting objects, and we compute the Fourier ex-
pansions of one simple case in Appendix A.

One of the key features of modular forms, is that the space of these functions of a
given weight (and other parameters later to be introduced in the thesis) is always finite
dimensional, with very explicit bound. For example, in the simplest case of modular forms
for SLo(Z) of weight k, the dimension of the spaces of all such forms is less or equal
than |k/12] + 1. This fact in general allows us to determine all the information by just
computing a few Fourier coefficients of modular forms, which guarantees the computational
efficiency in this subject. Moreover, classical modular forms have Fourier coefficient in some
cyclotomic field of bounded degree except the constant term, which makes the computation
very ideal.

Modular forms can be defined on general discrete subgroups of SLy(R). By the su-
perrigidity theorem of Margulis, for SL,(R) where n > 3, lattice subgroups (i.e. dis-
crete with finite covolume) and arithmetic subgroups coincide, and each complex finite
dimensional representation for SL, (Z) has canonical decomposition. By a theorem due to
Bass—Lazard—-Serre [BLS64] and independently Mennicke, every finite-index subgroup in
SL,(Z) is a congruence subgroup. However, for SLy(R) situations are much more subtle,
and there are many non-congruence subgroups of SLy(Z) of finite index. In this thesis, we
focus on modular forms for congruence subgroups, while stating each result in its natural
generality:.

The first non-trivial question is on the existence of nonzero modular forms. Indeed
this question also once bothered Henri Poincaré when he first believed that this kind of
modularity would be too strong to have any solution. In fact, if we carry out the Reynolds
operator with respect to the slash action, then it should be invariant at least formally
under the slash action, so the only questions left are: do they converge nicely, and are
they nonzero? For the first question, the assumption of absolute convergence of infinite
series together with the Riemann rearrangement theorem would guarantee the modularity
condition and certain analytic property of such infinite series, which we call Eisenstein
series. To answer the second question, we have to at least compute something, and the
simplest choice might be to compute its constant Fourier coefficient. In fact, an Eisenstein
series is in one-to-one correspondence with its constant coefficient, which in some sense
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suggests that Eisenstein series is the simplest object among modular forms. In this thesis,
we carry out computation of Fourier coefficients of all classical Eisenstein series of weight
k > 2 and level N for any positive integer N.

The cusp expansion of a modular form f of weight k, at some cusp v € SLy(Z) of
a congruence subgroup, is defined by the Fourier expansion of f|zy, up to a cyclotomic
unit. Its computation for Eisenstein series for I'y(N) has been obtained in [Cohl18]. We
comment that it is also useful to consider this problem by collecting all the cusp expansion
information of a classical modular form into a vector-valued modular form. This turns
out to be particular powerful when there is twist by a pair of Dirichlet characters, in
fact vector-valued modular form allows us to focus mainly on the analytic part of the
problem by encoding all the other algebraic information into a finite dimensional irreducible
representation of SLy(Z/N), which we call an irreducible congruence type. We find in
Section 5 a complete description for the structure of spaces of vector-valued Eisenstein
series using simple tools in representation theory.

We consider another important aspect of Eisenstein series in Section 7, that products
of at most two Eisenstein series can span the whole space of modular forms of a given
weight. The fundamental historic contribution on this aspect are due to Rankin [Ran52],
Kohnen and Zagier [KZ84], and Borisov and Gunnells [BGO1]. Based on these results,
and the language of Hecke operator for congruence types developed in Raum [Wes17], we
state in Theorem 7.5 for the first time a simplified formula to look at this aspect, and
with all the knowledge about classical Eisenstein series, this allows us to compute general
vector-valued modular forms of congruence types in a more efficient way. We notice the
advantage of using the tool of representation theory here, for example in Lemma 7.3, which
is rather difficult to prove (for a weaker version of it) by finding a purely combinatorial
bijection, even only for the fact that the dimension of these isomorphic spaces are the same.
Throughout this thesis we try to keep balance of using the conventional notations from
classical modular forms and the standard language from representation theory. Along the
way towards the main result, we also discover some results known in the literature from
different point of view, which we summarize in Section 1.4.

1.2 Notation Throughout this note we use the following notations. We denote by
the upper half plane {7 € C : Im(7) > 0}. We denote by I" the full modular group SLs(Z),
and IV C I a general congruence subgroup. Let Iy, denote the subgroup of I' generated
by —id and 7" := (3 }). In other words, I'xc = {£(}7) : n € Z}. For each element v € T,
entries of v are denoted by a(7),b(7), c(7), and d(y). For a positive integer N, we define
the congruence subgroups

(mod N},
,a(y) =d(v) =1 (mod N)},
(v) =0,a(y) = d(y) =1 (mod N)}.

Let Ly := (Z/N)? and L} be the set of the primitive points of Ly, namely those of order
N. Let A denote an element in Ly (or Ly).
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We denote by 4™ the space of holomorphic functions of moderate growth at all cusps,
with respect to the weight k slash action. In other words, f : § — C € ™4 if and only
if for each v € T,

(fler)(7) = O(1)

as 7 — 10o. For a finite dimensional complex representation of p of I', we denote by
J6™4(p) the space of vector-valued holomorphic functions f : $ — V(p) of moderate
growth. Since V(p) is finite-dimensional, we can make the identification

A p) = A @ p.

For a congruence subgroup I and a representation p of [, we denote by M (1", p) C
H74(p) the space of holomorphic vector-valued modular forms of weight k and arithmetic
type p. In other words, for a vector-valued function f € J£™(p), f € My(I", p) if and
only if

fOr) = (er + &) p(7) f(7)

holds for all v € I'. The space Si(I", p) C M (I, p) of vector-valued cusp forms of weight
k and arithmetic type p, is defined via

Se(I, p) :={f € My(T", p) : Vw € V(p)":(wo f)(r) — 0 as 7 — ioco}.

When IV = I', we often omit the group and use the notations My(p) and Sk(p), respectively.
If classical modular forms are involved within the same context, we choose to use a different
font, e.g. My, S, to further clarify them.

For a complex number z, we denote by e(z) := exp(2miz).

Let Ry be a set of representatives for I'; (NV)\I', fixed once and for all. We also fix a
set of representatives Ry for I'o(N)\I" in Section 4, and do not require Ry and Ry to be
compatible to each other in any sense.

1.3 Definitions

Definition 1.1 (Linear Permutation Representation). Let G be a discrete group.
Let X be a finite G-set with the action 7 : G — sym(X). We define the permutation
representation p of G corresponding to 7, via V(p) := CX, and

p(g)ex = Cr(g)zs

for all g € G and = € X.

We refer to Example 9.1 for a linear permutation of S, presented via permutation matrices.
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Definition 1.2 (Homomorphism of representations). Let G be a discrete group. Let]
p, o be two representations of GG, and V, W their representation spaces, respectively. We
define a homomorphism of representations from p to o, to be a C-linear map f: V — W,
such that

a(g)o f=foplg),

for all g € G. We say p, o are isomorphic, if there are homomorphisms f from p to o, and
g from o to p, respectively, such that f o g =idy and go f =idy.

Definition 1.3. Given a congruence subgroup I of I', let R be a set of representatives for
the cosets I"\I'. For § € R and v € I, we define I5(y) € I by the equation 5y = I5(v)57,
where 37 € R is the representative element of the class [37].

We record that I,(e) a 1-cocycle!.

Definition 1.4 (Induced Representation). Given a congruence subgroup I of " and
an arithmetic type p for I, we fix a set of representatives R for the cosets I"\I'. For such
a fixed set R of representatives, we define the induced representation Indll:, p by

V(Indfp) := V(p) ® C[R]and

Indrp(y)(es) := p((lﬁ(v‘l))_l>e/w-

Similar to the induced representation, we define the Hecke operators for representations
and vector-valued modular forms. For a positive integer NV, denote by

Av={(s4)ad=N,0<b<df

a set of upper triangular matrices of determinant /N that are inequivalent under the left
[-action. For any 2 by 2 matrix § with integer coefficients and determinant NN, there is a

unique v € I' and § € Ay such that g = ~d. We denote 3 := §. Note that the right action
mn of I' on An defined via

TN () 1 B — By

yields a 1-cocycle defined by the equation 8y = I3(7y)37. Therefore, we can define vector-
valued Hecke operators as follows.

Definition 1.5 (Hecke Operator for arithmetic types). Given an arithmetic type p
for T, the representation Ty (p) is defined via

V(Tv(p)) = V() © ClAx] and (Tw(0)) ()0 ® e3) == p( (1s57) ) (0) ® e

1See Lemma 8.18.
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For = (&%) € GLy(R), and a complex function on the upper half plane f : § — C,
we define the slash action

(B = (5)" £87)

Definition 1.6 (Hecke Operator for vector-valued Modular Forms). Let N be a
positive integer, p be an arithmetic type of finite kernel index for I'. Given a vector-valued
modular form f € My(p), Ty (f) is defined via

(Tn(N)(T) = 3 (fIkB) @ eg.

BeEAN

Definition 1.7 (Induced vector-valued Modular Forms). Given a congruence sub-
group I of I and a character x of IV, we fix a set of representatives R for the cosets ["\I'.
Let p:= Indg, x be the induced arithmetic type for I'. We define the map

Ind : My(I", x) — Mi(p)

by sending a modular form f € My(I"”, x) to the vector-valued modular form

(d()(7) == X (f1sB) @ e.

BER

1.4 Structure of this thesis In Section 2, we start from some basic properties of con-
gruence subgroups, that we often encounter in later sections. We then state and prove
Lemma 3.5 in Section 3, a generalization of center split in representation theory, for ex-
plaining decomposition of modular forms later. At the end of this section, we show that
vector-valued modular forms of a general congruence type can be identified as invariant
vectors in holomorphic sections, and obtain the self-duality of the permutation represen-
tation py, which is of central importance in the thesis.

In Section 4, we take an elementary number theoretic method to compute all the T-
invariant vectors of Indp, o(\) X, and obtain a characterization of orbits (double cosets) under
the action of T to have a nonzero T-invariant vector. The central notion we define in this
section is the “girth” of an orbit (which should correspond to the width of a cusp from a
geometric point of view), and by using this notion, we obtain an arbitrary component of
vector-valued Eisenstein series of this type.

In Section 5, we first prove the decomposition of modular forms into Eisenstein series
part and cusp form part, both for vector-valued modular forms and for their components.
We then use this fact to study the structure of spaces of vector-valued Eisenstein series of
a congruence type, and reaches the goal at the end of this section.

We compute Fourier expansions for all the classical Eisenstein series of level NV in Sec-
tion 6, and emphasize on its mysterious constant term, which features the reflection phe-
nomenon of special values of Hurwitz zeta functions.

And finally in Section, we state and prove the main result Theorem 7.5 based on the
framework we adopt in this thesis and historic results on products of Eisenstein series.
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The proofs we provide in Section 8 are from mostly our perspective suitable for this
thesis. For auxiliary results that are very much in the standard literature, we cite their
original proofs.

2 Congruence Subgroups

Throughout this section, we fix a set of representatives [N] := {0,1,--- , N—1} for Z/N.
Let [N]* denote the set of representatives for (Z/N)*, chosen from [N]. Given d € [N]*,
we denote d~! € [N]* to be the representative element of the inverse of d modulo N.

Lemma 2.1.
1 b
Iy(N) = U (O 1) ['(N).
be[N]

Proof. 1t suffices to show that for each v € I'y(N),

(0 l{)_lw e T(V)

for some integer b € {0,1,--- ,N — 1}. We choose such an integer b such that b =
b(7y) (mod N), and the rest is clear from Lemma 8.31. ]

Lemma 2.2.

r) = U (% 5w

0 - 1 ’
de[N]* N d

where for each matriz appeared in the formula, * is determined by d.

Proof. 1t suffices to show that for each v € I'y(N),

(4 5) ven

for some integer d € [N]*. We choose such a representative element d such that d
d(7y) (mod N), and the rest is then clear from Lemma 8.31.

Lemma 2.3. We have the formula of index for the tower I'(N) CT'y(N) CTy(N) C T as
follows.

P o) =TT + ;w,
ra(aV): Ta(¥) = T - ;w,

[Dy(N) : D(N)] = N.
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Proof. First of all, we compute the size of the group GLy(F,) for a prime p. Since
|My(F,)| = p*, and the set of non-invertible matrices M(F,) \ GLy(F,) is a disjoint
union of the following sets: matrices with the first row (0,0) and arbitrary second row,

and matrices with the first row A # (0,0) and the second row being one of t\ for
t € F,, we have |GLy(F,)| = p* — <p2 + (p? — 1)p) = (p— 1)*p(p + 1). The surjec-
tive group homomorphism det : GLy(F,) —> F, thus yields the size of the kernel, i.e.
|SLy(F,)| = % =(p-1pp+1) =p*Q1 - ﬁ) Now we use induction to show that
for each e € Z>1, we have |SLy(Z/p°)| = p**(1 — Z%) For e = 1, it is showed to be true.

Suppose this is true for e > 1, then we need to show that [SLy(Z/p**")| = p**3(1 — ).
Consider the group homomorphism

SLy(Z/p*™") —» SLa(Z/p")
7 7 (mod p°),
we find that it is surjective by solving linear equations over IF,. Moreover, the kernel of the
map is bijective with the set of elements (IZ;';I wg?il) satisfying z,y, z,w € {0,1,--- | p—
1}, and x+w—y — 2z = 0 (mod p). We then further identify this set with a subspace space
in IF; of codimension 1 over F,, and therefore the kernel of the map has cardinality p*. By
the induction assumption, we then find [SLy(Z/p*™")| = p*|SLa(Z/p°)| = p**3(1 — 5).
Finally, by the Chinese remainder theorem and the fact that

SLy(R® S) = SLy(R) @ SLy(S)

for any commutative rings R and S, we conclude that |SLy(Z/N)| = N*T[,|n (1 - 1%)
The canonical isomorphism I'/I'(N) = SLy(Z/N) then gives the total index [I' : T'(IV)] =
N3 Tl (1 - z%) For the third identity [I'1(NV) : I'(N)] = N, it is clear from the surjective
group homomorphism

T (N) —» Z/N

(Z Z) — b (mod N),

whose kernel is by definition I'(V). For the second identity [['o(N) : T'y(N)] = [T,n(1 —

%)N , it is clear from the surjective group homomorphism

Po(N) — (Z/N)”

(Z Z) — d (mod N),

whose kernel is by definition I'y (V). Last, the first identity [I" : I'o(N)] = [T,n (1 + %)N is
then clear form the total index and the rest two indices. m

Lemma 2.4. I'y(N) is a normal subgroup of T'o(N).
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Proof. Consider the group homomorphism

7:To(N) — (Z/N)",
(¢8) — d (mod N).

It is clear that ker p = I'y(N), hence I'; (N) < 'y (). ]

Lemma 2.5.

[o(N) = (Z/N)* x T'1(N),

where I';(N) denote the images of I';(N) in SLa(Z/N), fori =0 and 1, under the natural
projection SLy(Z) — SLo(Z/N).

Proof. Consider the group homomorphism

7 :To(N) — (Z/N)",
ab P
(55)—d
For any d € (Z/N)*, we can lift it to an integer d coprime to N, and find integers a,b
such that ad — bN = 1. So (&%) € T'o(N) yields a preimage of d, and the map is
surjective. It is clear that the kernel is equal to I'y(N). Therefore, I'y(N) < I'y(N) and

[o(N)/Ty(N) = (Z/N)™. Tt then suffices to show that every element 79 € I'o(N) can
be uniquely written in the form 7, = (3_1 Q) v1, where d € (Z/N)* and v, € T1(N).

0 d =

Indeed, if such a form exists, it must be unique, as d is equal to d(vy). Conversely, if we
_ __ -1 -

let d := d(vp), we get vy := (dolg) Y € I'1(N). ]

Remark 2.6. Literally speaking we have just proved the inner semidirect product decom-
position holds. Since each inner semidirect product can be naturally viewed as an outer
semidirect product via the conjugation action, we will later view this lemma without spec-
ifying the word inner (resp. outer).

Corollary 2.7. T'\(N) is a normal subgroup of To(N).

3 Representation theory: vector-valued Modular Forms of
congruence types

Throughout this section, we fix the following notations. Let R; be a set of representatives
for I'y(N)\I', which is fixed throughout. Let 1 : I')(/N) — 1 be the trivial character of
['1(N). We define Indgl( w1 based on Ry. Similarly, we fix a set of representatives Ry for
Fo(N)\I' and define Indgo( X based on Ry, for a Dirichlet character x (mod V).

Let Ly := (Z/N)? and L} be the set of the primitive points of Ly. In other words, a
point of Ly is in Ly if and only if it has order N.
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We identify Ly with row vectors of dimension 2, whose entries lie in Z/N. Similarly,
we identify Ly with row vectors (c,d), where ¢,d € Z/N and ged(e,d, N) = 1. Then I'
naturally acts on both Ly and L} via the formula (7)) := Ay~ (so that they are still left
actions) for A € Ly and v € I'. We denote these two actions by my and 7y, respectively,
and the corresponding permutation representations by py and py.

Definition 3.1. We call p an arithmetic type for I' if it is a finite dimensional complex
representation of I'. If furthermore there is a positive integer N, such that I'(N) C ker p,
we call p a congruence type of I'.

Lemma 3.2. Both py and py are congruence types.
Proof. First of all, they are both finite dimensional since
dim p} < dim py = |[(Z/N)?| = N*.
By definition, v € ker py if and only if
Myt = A

for all A € (Z/N)?. Clearly this holds for all v € T'(N), hence T'(N) C ker py. Similarly,
we have I'(IV) C ker py. ]

Lemma 3.3. Let G be a group, such that it has finite center Z := Z(G). Let Z be the
character group of Z, and p a finite dimensional complex representation of G. For each
¢ € Z, we define a subspace of V(p)

Ver={veV(p):Vze Z:p(z)v=_,(2)v},

then Ve is a subrepresentation of p, which we also denote by pe. Moreover, we have the
decomposition

p=€Dpe.
ez

Proof. We first check that V¢ is a subrepresentation of p. For any v € V; and g € G, we
have that for all z € Z,

p(2)(p(9)v) = p(zg)v
= p(g=)v = p(g) (p(2)v) (3.1)
= p(9) (£(2)v) = £(2)(pl9)v),

where we used the fact that zg = gz, since Z is the center of G. Therefore p(g)v € V¢.
Next, we show the direct sum decomposition as vector spaces (hence also as representations

by (3.1))
V(ip)=EP Ve (3.2)

cez

—10—
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Since Z is a finite abelian group, as a representation of Z, Resyz p can be decomposed into
irreducible representations £ € Z, which are all of degree 1 (Theorem 9 in [Ser77]). Let dg
be the multiplicity of £ in the canonical decomposition of Resy p, we have

Resz p = €P £%%. (3.3)

¢ez
Therefore, to prove Decomposition (3.2), it suffices to show that
Ve = V(e™)

for each & € Z. By definition of Vg, it is clear that V (£%%) C V. To see the other direction,
let v € Vg, hence

p(z)v = &(z)v (3.4)

for all z € Z. By the decomposition 3.3, we can write

v = val’

ez
where ve € V(£%%') for each £ € Z. On the one hand, since p(z)ve = &' (2)ver, we have

2 =3 p(z)ve = 3 €(2)ve.

&z ez
On the other hand,
E(z)v = Z £(2)ver.

¢ez
Therefore, by the direct sum decomposition (3.3), Condition (3.4) implies that
§(2)ve = €' (2)ve

for all ¢ € Z and z € Z. For any & # &, we can pick some element z € Z such that
£(z) # €' (2), therefore v = 0 and v = v € V(£P4%). m

Now, we apply Lemma 3.3 to our case, where G = I' and Z = (&id), which has
two characters: £, is the one such that £, (—id) = 1, and £ is the other such that

§(—id) = —1.

Corollary 3.4. The representation py can be decomposed as

PN = PiN DO N,

where V (pX x) are the eigenspaces for the eigenvalues &1 of py(—id), respectively.

—11 —
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Note that Lemma 3.3 is based on that the center of a group plays both roles as an abelian
group and a normal subgroup. We now give an alternative criterion for decomposition of
representation, by viewing these two roles separately.

Lemma 3.5. Let B be a finite group, A C B an abelian subgroup and N < B a normal
subgroup, such that B = AN. Let p be a finite dimensional complex representation of B.
For a character x € A, Let V, be the x-isotypical component of p, that is,

Vy = {v e V(p) :Va e A, pla)v = X(a)v}.

Then the following statements are equivalent for each character x € A:
i) Vy is a subrepresentation of Resyp.

i) plana™)v = p(n)v for alla € A, n € N and v € V,.

iii) V,, is a subrepresentation of p.

We denote by p,, the subrepresentation of p (for B) on V., if Condition (iii) holds for some
x- If (iil) holds for all x € A, then we have

P = @ Px- (3.5)

xEA

In particular, this decomposition holds when Resyp is trivial.

Proof. Suppose Condition (iii) holds, then Condition (i) is clearly satisfied. Now assume
Condition (i), then for all a € A, n € N and v € V,, we have p(n)v € V,, hence

plana™")v = p(a)p(n)(p(a™")v) = x(a)*p(a) (p(n)v) = x(a) " x(a)p(n)v = p(n)v,

that is, Condition (ii) holds. Finally, assume Condition (ii), and we show that Condi-
tion (iii) holds, i.e. for any v € V,, a € A and b € B, p(a) (p(b)'u) = x(a)p(b)v. Since
B = AN, we may write b = an for some a € A and n € N. By Condition (ii), we have
p(n)v = p(a~'na)v. Together with the assumption that A is abelian, we get

p(a)(p(b)v) = p(aa)p(n)v = p(aa)p(a ' na)v = x(a)p(an)v = x(a)p(b)v.

If Condition (iii) holds for all x € fl, we simply repeat the second half of the proof of
Lemma 3.3, with Z ~» A, and obtain the decomposition (3.5). =

Remark 3.6. Note that this lemma does not assume ANN = {1} as part of the condition,
hence it includes the setting of semidirect product B = A x N as a special case.

Lemma 3.7.

pn = D on
N'|N

—12 —
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Proof. By Lemma 8.13, we have a bijection

u:Ly — [ Ly,
N'|N

together with its inverse map

r: [ Ly — L.
N'|N

Consider the linear map

f:Vipn) — V(D oa),

N'|N

e\ 7 Cy(n)-
It is clear that the inverse is given by

9: V(B o) — Vipn),

N'|N

ex > er(n)-

By Lemma 8.1, in order to see that f is an isomorphism of representations, it suffices to
check the compatibility condition, i.e. the following identity

(D riv()of=Fopn(r)

N'|N
holds for all v € T". In fact, for any A € Ly, we have

(B s) e f) e

N'|N

=( D ) (eun)-

N'|N

Let N(A) be the order of A, that is, if u(\) € Ly, we have then

(B ri()(eun)
N'|N
:PJXV(A) () (eun))
=Cu(n)y1-
On the other hand, for any A € Ly, we have
fopn(v)(er)
=Cu(\y1)-

By Lemma 8.14, we conclude that u(Ay™") = u(A\)y~!, which completes the proof. m

—13 -
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Lemma 3.8.

Indll:l(N)]l = py-

Proof. By Lemma 8.15, we have a bijection [ : Ry — Ly and its inverse map r : Ly —
R:. Consider the linear map

[ V(Indp, (1) — V(px),
Cy 7 €(y)-
It is clear that the inverse is given by
g9:V(px) — V(Indg, (1),
e\ — ().

By Lemma 8.1, in order to see that f is an isomorphism of representations, it suffices to
check the compatibility condition, i.e. the following identity

py(Y) o f = foIndf n1(v)

holds for all v € T". Indeed, for any 3 € R, we have
(P (1) 0 F)(es) = eutsps = eyzos, = (£ o IndE, oy 1(7) ) (es),
where the equality [(3)y~' = [(87~!) is proved in Lemma 8.17. [

Lemma 3.9.

Indp, 1= @ Indp X
X' (mod N)

Proof. Given a Dirichlet character x (mod N), we define the following linear map:

Dy V(Indll:l(N)]l) — & V(Indll:O(N)X’),
X' (mod N)

& — X((La(7) ™) exs € V(Indg, (v x),

where for each v € Ry, 7 € Ry is the representative element for the class [y] € I'o(N)\TI.
Moreover, Lemma 8.21 states that p, is a homomorphism of representations.
On the other hand, for each y, we define a linear map

we P V(IndEO(N)X’) — V(Ind?l(N)]l),
X' (mod N)

ews > > X(La(¥))er,

'YLGRI’
v'=B
ey 5 — 0, for X' # x.

—14 —
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Now consider the homomorphism

_1
p=¢(N)"2 > p:V(ndp, 1) — @ V(Indrwx),

X (mod N) X (mod N)

together with the linear map

L:=p(N) 2 Z Ly @ V(IndEO(N)X) — V(Indgl(N)]l).

X (mod N) X (mod N)

By Lemma 8.23, they are inverse maps to one another. Note that as a linear combina-
tion of homomorphisms, p is a homomorphism, hence an isomorphism between the two
representations by Lemma 8.1. m

For a Dirichlet character Y (mod N) and an integer k > 2 such that x(—1) = (=1), let

M (N, x) be the space of classical modular forms of weight &, level N, and character .
That is,

Mi(N,x) == {f € My(T1(N)) : Vy € [o(N) = flry = x(7)f}-

The following lemma can be found in Section 4.3 of [DS05], and here we first reproduce
a proof in terms of representation theory. We record the Diamond operator (d) for d €

(Z/N)*, defined via

(d) - My(T1(N)) — M (T (N)),
f — f‘kF%

for any v = (‘;8 Zg) € T'g(N) such that dy = d (mod N). Note that the image f|,y does
not depend on the choice of 7, due to the fact that vo € I'y(N)y, if both 77 and ~, have
the same bottom row (mod N), by Lemma 8.15. Furthermore, the Diamond operator

also defines a representation, denoted by (- ), for the abelian group (Z/N)* on the space
M (T'1(N)), via

(-} (Z/N) > d—> (d).

Since any finite dimensional representation of a finite abelian group splits into 1-dim ir-
reducible representations, and all the 1-dim irreducible representations of (Z/N)* are
just Dirichlet characters y (mod V), we know that its isotypical components are the y-
eigenspaces.

Next, we apply representation theory to classical modular forms. It is clear that in the
case of (-), My(N, x) is the isotypical y-component of the space M (I'1(N)), i.e. we have

Mi(N,x) = {f € My(T1(N)) : Vd € (Z/N)* : {d) f = x(d) f }. (3.6)

Therefore, by the canonical decomposition of the representation (-) into its isotypical
components, we obtain Lemma 3.10 below.

—15—
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Conceptually, we record another proof as an application of Lemma 3.5. Consider the
linear action of I'g(IV) on My (I'1(N)), via

vf =l (3.7)

Note that here we are literally defining the right action, since we follow the convention of
defining My (N, x) as the y-eigenspace, rather than the y'-eigenspace, see for instance
[DS05]. Fortunately, (3.7) is in fact also a left action. Indeed, by Lemma 2.4, I';(N)
is a normal subgroup of I'y(/V), and f is invariant by the action of I';(N), hence the
linear action (3.7) factors through the action by the quotient I'y(N)\I'o(N) = (Z/N)*,
which is abelian. It is well defined, in that for any + € T'1(IV), yy1 = 71y for some
vy € T'1(N), hence (flx7)x71 = fle(v11) = fle(44y) = flxy. Therefore, we have a complex
representation p for I'y(N) on My (I'1(N)). Since I'(N) C ker p, it follows that p induces
the homomorphism

p: To(N) 2 To(N)/T(N) — GL(Mx(I'1(N))).

By Lemma 2.5, we have

To(N) 2 (Z/N)* x T1(N).

Therefore, for the group B := I'¢(V), there is a subgroup A isomorphic to (Z/N)*. More-
over, the normal subgroup N := T'1(N) acts trivially on My(T'1(NN)), i.e. Resyp is trivial.
We then apply Lemma 3.5 to p , and get

Vip)= B Vip,)

x€A

By definition, V(p) = M(T'1(N)), and each xy € A is actually a Dirichlet character
(modN), so that

V() = {f € Mu(T1(N)) : ¥y € A floy = x(7)f} = Mi(N, %),

which completes the proof.

Now we will also present a more explicit proof based on the spirit of Lemma 3.9. Instead
of directly employing the extrinsic projection p, in the proof of Lemma 3.9, we need to
find an intrinsic analogue of it. The key is to average the Diamond operators twisted by
X over (Z/N)* to obtain this projection map.

Lemma 3.10.

MiTi(N)) = D Mu(N,x).

X (mod N)

—16 —
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Proof. Consider the linear map

Py Mi(T'1(N)) — M(N, x),
1

fr— SD(N)de(ZZ/N)X x(d)"{d) f.

The map is well-defined, since for f € M (I'1(N)) and any d’ € (Z/N)*, we have
1
(i (f) = == > x(d)"Ndd)f
! PN) ez~

/L r =1/ g
R SN CU L

= X(d/)px(f);

so that by Equation (3.6), py(f) € Mg(N, x). Then we define the linear map

p: Mp(Ti(N)) — @B Mi(N,x),

x (mod N)

fr— (px(f ))X
We claim that p is an isomorphism, with the inverse map given by

v @ Mi(N,x) — M(T1(N)),

X (mod N)
(fx>x’_> Z fX’

X (mod N)

In fact, following the definitions above and applying the orthogonal relations for Dirichlet
characters, we have

vop(f) = > pulf)

X (mod N)
1
. d)~'(d
90<N) (H%N)de(zz/;\/ xa
1
_ L ) )(d
de(Zz/;V <‘P(N>x(r§w>x<) )< .
= Z 5d;1 (modN)<d>f
de(Z/N)x
=)
=/,

—17 -
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where ¢ is the Kronecker delta. Similarly, we also have

por((fx)=p( X fv)

X' (mod N)

X
= O xS x’>
X' (mod N)
(fx)
Since M (N, x) are already subspaces of My(I'1(V)), the isomorphism p gives the set-
theoretic identity. n

We denote the (classical) cusp forms of weight k, level N, and character x (mod V)
by Se(N,x) 1= Mi(N, x) N Se(T1(N), and by E(T4(N)) = My(T3(N))/Sy(T1(N)) and
E(N, x) = My(N, x)/Sk(N, x) the quotient space of modular forms by cusp forms (which
should not be confused later with the notation & n for the space of classical Eisenstein
series), following the convention of this notation for Eisenstein series, adopted for instance
in [DS05] (and in later chapters in [DS05] it can be shown that it is canonically isomorphic
to a subspace of modular forms as the complement of the cusp forms). Then we have the
same type of decomposition as in Lemma 3.10 for them as well.

Corollary 3.11.

STi(N) = @ SN, x),

X (mod N)

GIN) = B &NV
x (mod N)
Proof. For the first decomposition, we simply repeat the proof of Lemma 3.10, and check
furthermore that the maps are well-defined also between cusp forms, which is clear by
definition.
For the second decomposition, we consider the surjective linear map

x (mod N) x (mod N)
b H— P (fx mod Sy (N, X))
X (mod N) X (mod N)

—18—
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It is clear that ker p = @, (moan) Sk(IV, X), hence we have

@x (mod N) Mk(N7 X)
Dy (mod ) Sk(N, X)

= P MNX)/SN,x)= D EINVX). .

x (mod N) X (mod N)

Er(T1(N)) = Mi(T'1(N))/Se(T'1(N)) =

The examples for classical modular forms point to the decomposition of vector-valued
modular forms, from their arithmetic types. To start the preparation, we view My as a
functor from the category of arithmetic types for I' to the category of C-vector spaces
of vector-valued modular forms of weight k£ and certain arithmetic type. In fact, given a
morphism between two arithmetic types for I'

$ipr— P2,

we can define the associated morphism

Myi(p) : My(p1) — Mi(p2),
f—rpof.

This is well-defined, since
(90 Dlipy = (27 00) fliv = (po (v ™) fler = @0 flemy = 0o .

Moreover, if ¢ is a morphism between p; and py, and 1 is a morphim between p; and ps,
then we have that for all f € Mj(p),

Mo ¢)(f) = (og)of=1o(pof)=(Me)oM(e))(f),
hence My (1) o ¢) = M, (1) o My (¢). Further, we have that for all f € My(p),
My(id,)(f) = id, 0 f = f,
hence Mj,(id,) = idas,(,)- As a corollary to the functoriality of Mj, we have

Lemma 3.12. Let py, ps be two arithmetic types for I'. If p1 = pa, then My(p1) = Mi(p2).

We also remark that M} keeps the direct sums. Here we give a concrete proof.

Lemma 3.13. For each i € {1,--- ,n}, let p; be an arithmetic type for T, then we have

My (®ipi) = @ Mi(pi)-

—19—
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Proof. 1f we fix a linear isomorphism
p: V(@) — DVip),
with the inverse map ¢, then we can write down explicitly the corresponding isomorphism
P My(®ipi) — @Mk(pi>7

via p(f) := po f for f € My(®;p;). Its inverse 7 is given by (h) := voh for h € @; My(p;)m
Proposition 3.14.

Mip) = @ Mi(pin) = @ Mi(Indf, 1),

N'|N N'|N

Proof. The first isomorphism follows from Lemma 3.7, Lemma 3.12 and Lemma 3.13. And
the second isomorphism follows from Lemma 3.8, Lemma 3.12 and Lemma 3.13. [

Recall that 2™ is the space of holomorphic functions of moderate growth with respect
to weight k, at all cusps. Since for each 7/ € T,

fley/(m) = O(1)
as 7 — 100, for all v € I', we have
(Flr DIy () = (Fle(v719)) (7) = O(1)

as 7 — 100 as well. Therefore, 774 is closed under the group action vf := f|,7~!, hence
is naturally a (left) representation of I. Depending on the context, the slash action -|; can
be omitted, and the space ™4 will then also denote the representations.

Proposition 3.15. Let p be an arithmetic type for T', then we have

Mi(p) = Hom(1, 7 (p))
= Hom(p", /4™),

where we can also use other notations for the Hom set, namely
r
Hom(1, ™ (p)) = Hom(L, 4™ @ p) = H'(T, A" © p) = (A" @ p) .

Proof. For the first isomorphism, consider the linear map

s+ My(p) — Hom(L, A (p)).

—20—
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which sends a vector-valued modular form f € M (p) to the homomorphism s(f) :=
(1 — f). It is clear that s is injective, if well-defined. To see s is well-defined, i.e.
s(f) € Hom(1,54™4(p)), and that s is surjective, we claim that for any h € J4™(p),
(1 — h) € Hom(1, 4™ (p)) if and only if h € My(p). Indeed, by Definition 1.2,
(1 — h) € Hom(1, 54™4(p)) is tantamount to that

h=p(y)(hlxy™") = hle,(v)

holds for all v € I, i.e. h € My(p). This completes the proof for the first isomorphism. As
for the second isomorphism, we apply Lemma 8.24 by inserting m ~ 1, p ~ ™4 (with
the slash action), and o ~» p, with the fact that 1 ® p = p for any representation p. [

Note that py has self-duality (although the one we construct below is not canonical). In
fact, since I is generated by T' = (4 1) and S = (9 '), a linear map ¢ : V(pX) — V(p¥")
intertwines with py and p]XVV if and only if it satisfies

P (V) oo =popx(v)

for v = T,5. Note that since p}’ (y)w = w o pi(y~1) for w € V(p¥)Y, this condition
in terms of the matrix form p(ey) = > e Lx /f,wel\j, with respect to a chosen basis ¢, for

V(py) and its dual basis eY, can be written as

k((c,d), (g,h)) = K((c,c+d), (9,9 + 1)) = £((d, ), (h, —9)), (3.8)

with the identification (k) ,) ~ £ : Ly x Ly — C. Note that for any function § : Z/N —
C, m((c, d), (g, h)) = {(ch—dg) is a natural construction satisfying Equation (3.8). In other
words, let 7 : Ly, X Ly — Z/N be the map sending ((c, d), (g, h)) € Ly x Ly to ch—dg,
then for all functions ¢ : Z/N — C, we have k = o7 satisfies Equation (3.8). Therefore,

we may construct self-dual maps in this way, and furthermore, we can find those with
matrix forms over Q.

Lemma 3.16. There is an isomorphism

Vv
0PN — PN

whose matriz form (¢z,) has entries vy, € Q for all \,p € Ly, with respect to the basis

ex € Vi(p) and e; € V(p)".

Proof. Let m : Ly X Ly —> Z/N be the map sending ((c, d),(g,h)) € Ly x Ly to
ch —dg € Z/N. From the discussion above, we know that the composition £ o 7 always
yields a homomorphism of representations for any function ¢ : Z/N — C. By Lemma 8.1
and the fact that both linear spaces have the same dimension, if ¢ is furthermore injective,

then it is an isomorphism of representations. Therefore, we only need to look for some
function ¢ taking values in Q, so that det (/-i()\, u)) #0fork =Eom.

—21 —
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X
x Ly

(resp.
¢ as a point in A?N), and the determinant map detg : Afgv “IN L K asa morphism of
K-affine varieties, which then induces the morphism

Let K be a field, we view k : Ly x Ly — K as a point in the affine space A;}N

5&} : A%{/N — K,
& —> detg (o).

By definition, cie\t; is always defined over Q for any field K. First of all, we show that

detg is a nonzero morphism for any field K. It suffices to show that the coefficient of the
term & (6)‘L1XV| that appears in the determinant has nonzero coefficient. In fact, when we
expand the determinant formally, each monomial contributes a coefficient +1 to the sum,
therefore it suffices to show that the number of all the monomials of the form &(0)/*~! is
an odd integer. This is equivalent to showing that |S| = 1 (mod 2) for the set

S:={oe S(Ly):YAe Ly :m(\o(N) =0}
Note that 7 is skew symmetric, i.e. (A, pu) = —m(u, A) for all A\, u € Ly, we have
VAe LY :n(M\o(\) =0 < YA€ LS :m(c(A\),\) =0 <= VA€ LY :7(\, 07 '\) =0,

hence o € Sifand onlyif o~ € S. Moreover, it is clear that id € S, hence |S| = 1 (mod 2).
Now we put K =R, and let £ € AR be a point with nonzero image, i.e. detg(§) # 0.

Since Ag LN s dense in Ay LN and detg is continuous, with respect to the normal topology

induced from the topology of the field R, we find infinitely many (countable) points &, €
Aé/ N for n € N with nonzero images, in some neighbourhood of £. Putting x,, := &, o,

we thus find infinitely many (countable) different isomorphisms ¢, : pX — p3" defined
over Q with the matrix form k,,. [

Remark 3.17. In fact, if we consider the self-duality of py instead of py, then the Fourier
transform of vector-valued functions together with its inverse transform provides a concrete
example of self-dual isomorphism. More explicitly, similar to the proof above, we can
choose § := e( 5 ) and find that { o 7 indeed defines an isomorphism between V(px)

and V(pn)Y. Here 7 : (Z/N)* x (Z/N)* — Z/N is the map sending ((c, d), (g,h)) €
(Z/N)* x (Z/N)? to ch — dg € Z/N. Further discussions can be found in Section 3.1 of
[Car12].

As a corollary of Proposition 3.15 and Lemma 3.16, we have

Corollary 3.18.
Mi(py) = Hom(1, #(py)) = Hom(py, Hz).

We record here some basic properties of induced representations.
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Lemma 3.19. Let Gy C Gy C G3 be finite groups, and p an arithmetic type for Gy, then
we have

IndZ: (Indg2p) = Indgfep.
Proof. See chapter 7 in [Ser77], for instance. m
Lemma 3.20. Let Gy C Gy C G5 be finite groups, then we have
IndZ1 — IndZ1.
Proof. By Lemma 3.19, we have

IndG1 < Indg: (Ind 1) = TndG21. "

4 Vector-valued Eisenstein series and their components
for Fo(N)

The goal of this section is to compute components of vector-valued Eisenstein series
in a concrete case, from the perspective of arithmetic. From the results obtained in this
section, we could also subsume classical Eisenstein series under this class.

Definition 4.1 (Slash action). Let p be an arithmetic type for I'. For v = (2%) € T’
and every vector-valued function f : $ — V(p), the slash action of + is defined via

(flepn)(7) = (em+d) p(y™) f(y7).2
In particular, for a vector v € V(p), the slash action is given by
(V) (1) = (T +d)Fp(v v,
Lemma 4.2. The slash action is a group action of I'.

Proof. We need to follow a straightforward computation, and note that p(y~!) instead of
p(7) is the correct version, in that it transforms the right action to the left one. [

Throughout this paper, the space of (I, p)-invariant vectors v € V(p) is denoted
by V(p)'=. Namely, v € V(p)'> if and only if v € V(p) and v|x ,y = v for all v € T'w.

Definition 4.3 (Vector-Valued Eisenstein Series). Let p be an arithmetic type for
[, and k > 2 an integer. Given a (I's, p)-invariant vector v € V(p)'=, we define the
vector-valued Eisenstein series of weight k, arithmetic type p, and constant term v via

Ek,p,v(T) = Z (Ulk}ﬁV)(T)

(V€T \T

assuming that the right hand side converges absolutely at every point 7 € 3 We denote
by Ej(p) the space linearly spanned by Ej ,, for v € V(p)F=.

3If p is furthermore of finite kernel index, this condition is automatically satisfied.
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Remark 4.4. Note that some authors define £y ,, in a slightly different way than ours.
They assume that ker p has finite index in I', and define

1
pU m Z (U|k,p’7)a

(Y€ oo (v)\I

Ey,

where I'o (v) := T'so N Stab(v). The space Ej(p) is then defined as the linear span of Erpo
for v € V(p). In fact, under their assumption, these two versions agree, i.e., Ey ,, = F .
for all v € V(p)'=, and Ey(p) = Ex(p). See Lemma 8.25.

For the remainder of this section, let x be a Dirichlet character mod N, and let p :=
Indll:o( nX- In particular, p is a congruence type of I'.

First we identify the cosets I'o(/N)\I' with the projective line over the ring Z/N, by
sending the bottom row of a matrix to the affine coordinates of the projective line*. Second
it is worth mentioning that the I'-action is so special that the ordering of natural numbers
naturally helps with simplifying the computation. Bearing these points in mind, we make
the following definition.

Definition 4.5 (The Standard Representatives of I'o(N)\I'). Let v = (¢4) € I" be
an arbitrary element. We define a nonnegative integer associated to the coset [y] €
Lo(N)\TL, called ¢([7]), to be ged(e, N) if it is not equal to N. Otherwise we define ¢([y]) to

*

be 0.> Among all the elements in the coset [y] which are in the shape of (c([:]) d),6 we pick

one having the smallest nonnegative integer d entry, say dy. We call the pair (¢([y]), do)
the standard representative” of the coset [7].

From now on we fix once and for all the representative set Rg C I' for I'o(N)\I', so
that each element 0 in Ry C I' has its bottom row (c,d) being equal to the standard
representative of its coset [§]. For convenience, we may and will assume id € Ry. We also
fix m from now on to be the right action of I'y, on the standard representatives Ry arising
from the natural action on I'g(V)\I'.

Lemma 4.6. Given § € Ry, let A be the orbit of m containing the element , then vs is a
C-linear combination of eg’s where B € A. More precisely, we have

=y 2 3 (1) ez (1.1
-+ ((5() ez (42)

4See Lemma 8.35.

5We follow the convention that ged(a, b) for any integer a and b not all zero should always be a positive
integer. It is easy to check that ged(c, V) does not depend on the choice of the element +, see Lemma 8.37.

6it exists, see Lemma 8.37

Strictly speaking it is not a representative element, but these pairs are in one-to-one correspondence to
the elements we have picked as representative elements, which have exactly these standard representatives
as their bottom row.
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where T = ({1). As a corollary of (4.2), we have the decomposition of the (T, X)-
1novariant vector space

V)'c= @ Va (4.3)

A:T'oo —orbit

where Va is the subspace generated by vg’s for B € A. Moreover, dimVa < 1 for every
orbit A. If dimVx =1, then vg is a nonzero vector for all € A.

Proof. Before presenting the proof, we remark that the proof itself does not depend on the
choice of Ry. Recall that vs := e:{, which is then defined to be equal to

;VZ o, T LS e (4.4)

MeToo W\l

By Definition 4.1, for each v = (} ?) € ',

s, 7 = (0 + 1) oy es = oy es,

and by Definition 1.4 with p := Imdll:0 X

o7 = x((16(07) e = x(s) e

After inserting %’k v = X((Lg(v))*l)eﬁ into the right hand side of (4.4), we get (4.2);
P

and by replacing v with 7" we also get (4.1).

Given a fixed orbit A, if vg = 0 for all 5 € A, then Vj is of dimension 0. Otherwise
there is an element § € A, such that vy is a nonzero vector. In this case, the dimension
of Va is 1. Indeed, for an arbitrary element § in A, since both g and ¢ are in the same
orbit, we have § = ypda for some 7 € I'o(IV) and « € T'y,, which yields a scalar multiple
relation vg = x (75 ')vs by the computation in the next paragraph. Note that since x(75")
is a nonzero scalar, vz is also a nonzero vector.

Here is the computation to show vz = x(75 ' )vs. Replacing § by 8 = yda in (4.1), we
have

Z X((Fsa(T™) ™" ) 55507 (4.5)

We then simplify 1,50 (7™) and yo0aZ™. Since vy € I'o(N), v00aT™ = 6a1™. By Defini-
tion 1.3, we have I, 5, (T") = (70aT™)(700aT™) ™" = (y0aT™)(0aT™)~ . So (4.5) can be
simplified as

1 N—
vg = NZ ( (@Tm)(aT™) 16~ 170_1)6W. (4.6)

n=0
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Note that in (4.6), both vy and 6(aT™)(aT™) 15 15" = (L,4sa(T™)) ! are elements in
[o(N), hence X(é(aT")(aT”)‘lé_lvo_l) =x(o )X(é(aT")(aT")_lé_l). Also note that
a € 'y, 50 we can write o = T* for some integer k, hence oI™ = T"** and finally we get

N+k—-1
vs=x( )y 2 x(OT T )esr (4.7)

n=~k

Since TV € I'(N), by Lemma 8.31, each summand depends only on n (mod N). Therefore
(4.7) can be simplified to

vs = X NZ X(OT(6T™) ™ ) exzm
VT

) )eszr
= X('YO_1>U57

as is desired to show. n

Definition 4.7. Let y be the Dirichlet character fixed throughout the note. We say a
(T'so, x)-orbit A contributes to the (I'w, x)-invariant vectors if dimVa = 1, where Vj is the
space generated by vg’s for § € A.

We denote by A C Ry an arbitrary orbit of 7. Motivated by the notion of ¢(]v]) in
Definition 4.5, we first introduce the notation

c(A). (4.8)

Note that each element § = (% %) € A has the same value of ¢,® we thus define ¢(A) to be
this value.

After doing some experiment with concrete examples’, we are motivated to prove the
following formula of orbit’s size.

Proposition 4.8. Let A be an arbitrary orbit of the right action m : Ry X I'ne — Ry
arising from the natural action To(N)\I' x I'oe —> To(N)\I', with ¢(A) = ¢, then the

size of A agrees with the size of the ideal ¢*Z/N, which we denote by M := m.

Furthermore, given an arbitrary element 6 € A, 6T™ depends only on n (mod M), and we
have an explicit list of all the elements in A:

Az{éT”:OSnﬁM—l}. (4.9)

8See Lemma 8.40.
9See Ex.9.2 and Ex.9.3.
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Proof. To show (4.9), we start from the definition of A containing an arbitrary element 6,
ie. A= {W 'n € Z}7 where T = (}1). Since 7172 = F172 for all 1,7, € T, if we can
show that STM = 3 for any 3 € A, then it follows that 67" depends only on n (mod M).
Plus if we can also show that the §7™’s are all distinct if some integers n’s are distinct
with one another (mod M), then we conclude (4.9). In other words, it suffices to show
that M is the smallest positive integer n such that

BT = 3 (4.10)

for an arbitrary element 5 € A, which we deduce in two parts as follows, where we let
(¢,d) be the bottom row of 3, hence ST has the bottom row (¢, cn + d).
First we show that if (4.10) holds, then M divides n. By Lemma 8.35, (4.10) implies

that there is an integer A coprime to N, such that

¢ = Ac (mod N), hence ¢(A — 1) =0 (mod N),
cn+d = Ad (mod N), hence d(A — 1) = ¢n (mod N).
Therefore, we have that ¢*n = cd(\ — 1) = 0 (mod N), which implies that M | n.

Second we show that (4.10) holds for n = M. By Lemma 8.34, it suffices to show that
there is an integer A coprime to N, such that

¢ = Ac (mod N),
cM +d = \d (mod N),

which is equivalent to the equations

(A—=1)c=0 (mod N), (4.11)
(A—=1)d = c¢M (mod N). (4.12)

In order to find such a A, first we observe that

C2

M=——~—N
‘ ged(c?, N)

is divided by N. Set A — 1 = cMp for some integer pu, (4.11) is satisfied. Moreover,
since any \ set in this way is coprime with ¢M, which is exactly equal to the girth g(A)
in Definition 4.11, by Lemma 8.26, any A set in this way is coprime to N. Therefore it
suffices to find an integer p such that Equation (4.12) is satisfied with A — 1 = cMy, in
which case (4.12) is equivalent to the equation

dp =1 (mod é),
where ¢ = %;’N). Since ged(e,d) = 1 and ¢ | ¢, d is coprime with ¢, hence such u exists.m

Regarding the formula of |A|, we have the following corollary.
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Corollary 4.9. For an arbitray orbit A, |A| = 1 if and only if ¢(A)*> = 0 (mod N). In
particular, if N is square free, the only orbit of size 1 is {id}. Conversely, if N is not
square free, then there is more than one orbit of size 1.

Regarding the formula of an arbitrary invariant vector vs, it can be further simplified in
the following corollary, from (4.2), by the claim in Proposition 4.8 that given an arbitrary
element 6 € A, 07" depends only on n (mod M).

Corollary 4.10. For an arbitray orbit A, we denote by ¢ := ¢(A) and by M the integer

m. Let 6 € A be an arbitrary element, we then have

vs = ]IV IS (ﬁfx(fg (T"+kM)>> esr, (4.13)

and by (4.9), ezzn’s are linearly independent vectors, with n € {0,--- , M — 1}.

Motivated by some interesting examples'’, a notion naturally arises to measure the intrinsic
potential of an arbitrary orbit A to remain untwisted under the effect of a character
(mod N), which we call the girth of an orbit.

Definition 4.11. Let A C R be an orbit of 7. We define the girth of the orbit A to be

c(A)N
A):=c(A)|A| = :
o(8) = oA = S E o

Remark 4.12. You may like to think of the orbit as a circle with each point of the orbit
equally distributed on it. The distance between each pair of neighbour points are to be
read as the c-value of the orbit, since it is exactly the leap on the d-value each time moved
under the action of T'. Therefore the circumstance of the circle should be the c-value times
the number of the orbit, hence the definition of the girth.

Proposition 4.13. Let A be an orbit of the right action 1 : Rg X I'se — R arising
from the natural action To(N)\I' x ' — To(N)\I', and g = g(A) be its girth. Let N*
be the conductor of x. Then A contributes to the (', X)-invariant vectors if and only if
N* divides g. !

Proof. Let ¢ := ¢(A) and M be the integer m. We fix an arbitrary element 6 € A. By
Definition 4.7 and Lemma 4.6, A contributes to the (I'y, x)-invariant vectors if and only
if vs # 0. By Corollary 4.10, vs # 0 if and only if there is an integer n € {0,--- , M — 1},
such that

]:MZ_:X(% (T”“fM)) 0. (4.14)

10Gee, for instance, Ex.9.4.
Hjoke: so the girth is well-defined, which measures how fat an orbit is (mod N).
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Dropping all the conjugates in (4.14) and applying Lemma 8.18 to 8 = id, 71 = § and
7o = T e have I (T”*kM) = Iy (5T”+kM) and simplify (4.14) to

X1

> x(Fa(677) ) 0,

k=0

which is furthermore, for all n € {0,--- , M — 1}, equivalent to

N_q
M k
> (x(1+9) #0, (4.15)
k=0

by Lemma 8.43. Moreover, since
~ N
M _ .
(X0 +9)" =x(1+ 579) =x(1+eN) =1,
(4.15) holds if and only if

x(1+g) =1 (4.16)

To conclude, A contributes to the (I'w, x)-invariant vectors if and only if (4.16) holds,
which by Lemma 8.27 is equivalent to that N* divides g. [

Corollary 4.14. [t depends only on N*, N, and c¢(A) to determine whether A contributes
to the (I'w, x)-invariant vectors. If moreover the character x is primitive, then A con-
tributes to the (I'w, X)-invariant vectors if and only if

gcd(c(A), (,»(]VA)) .Y

In particular, if x is primitive, all of the orbits contribute to the (I, x)-invariant vectors
if and only if N is square free.

Proposition 4.15. Let Rq be fized as before in this section, and let A be an orbit which
contributes to the (I'w, X)-invariant vectors. Let 6 € A be an arbitrary element. Then we
have an explicit formula

|A|-1
vs = |A1’ 3 X(Ld (5T")>em. (4.17)

n=0

We denote by va to be the vector vs,, for 69 € A with the smallest value of d among all
the elements of A.
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Proof. Let ¢ := c¢(A) and M := By Lemma 4.10, we have

gcd(c2 N)*

1M1

N ( Z X< (T"*’“M)))em-

By Lemma 8.43, we simplify each coefficient

M1

Z v (Ls (Tn+kM>>

k=0

to

N
a1

X(An) D (X(Hg))k,

k=0

where )\, is an integer coprime to N, satisfying

X(\) = X(Ld (5T”)>.

Since A contributes to the (I, x)-invariant vectors, by Proposition 4.13, we have x(1 +
N k
g) =1, hence S (X(l + g)) = & Therefore,

M—
Z (4.18)

to which we insert M = |A| and apply Proposition 4.8 to write the formula in a self-
contained way:

|Al-1

vs = |i‘ Z X( ld((ST ))eéT (4.19)

We also give below an algorithm to compute all the coefficients that appear in (4.17),
namely X(Ld(éT”)) = X(A,), more explicitly for finding such a value.

Lemma 4.16. The \,’s in (4.18) can be computed by the following steps. Let n be an
integer, and (c,d) a pair of integers which are coprime with one another. Denote by
gn = ged(en +d, N), and p, == c’;%l. First we find the smallest non-negative integer \,,

such that ged(\,, gﬂn) =1 and \, = u, (mod (%)), and denote by \, := )\, (mod (C’%)) IS

Z/(g%) Then we solve the following equations for A, which has a solution, unique modulo
N. The solution is then equal to \,, modulo N .

{A =Xt (mod (X)) (4.20)
1 .
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Now we are in position to find all the components of the vector-valued Eisentein series
Ey.po for p = Indgo( wX- Given an arbitrary v € V(p)">, with the set of representatives
Ry fixed after Definition 4.5, Lemma 4.6 and Proposition 4.15 allow us to write v =
> A cava, where ca € C and the orbits A’s under the summation symbol run over those
contributing to the (s, x)-invariant vectors. Therefore to determine a component of
Eipo =2 acaEg vy, it suffices to work with each Ej ., -

Let A be an arbitrary orbit which contributes to the (I'w, x)-invariant vectors, and let
§ € A be a fixed element throughout this section. Recall the definition va := vs := ¢l. By
writing down explicitly the Reynolds operator acting on ¢s and recalling Definition 4.3 for

E} v, we have

V2.
k,p

B pon(T) = Z (N Z e(slk,le)

[VQ]GFOO\F [’Yl}eroo (N)\FOO

Note that the slash action is a group action on the right. We also observe that as [vo]
runs through I',,\I" and [y;] runs through I'oo(N)\I's, [7] with v = 7172 runs through
Lo (N)\I'. Therefore we have

1
B pua(T) = N Z ¢5|k,p7-
[Y]€T oo (NM\I!

Writing down the slash action explicitly by Definition 4.1 and 1.4, we have

V(1) o= (er +d) Fp(y " es

S (R R
— (T + d)’“x<(15(’y))l> ® ¢5,.

|
(Sk,p

Therefore for an arbitrary 5 € Ry, ¢s]x,,7 contributes to the eg-component of Ej, ,,,, which
we call the (A, 3)-component, if and only if &y = 3, which is equivalent to y3~! € T'o(V).
For these 4’s which contribute to the (A, 3)-component, we have that I5(y) = dy8~! by
Definition 1.3. We now conclude with the following formula for the (A, 3)-component:

= Y. ()BT, (4.21)

[]€T oo (N,
5yB~telo(N)

where the pair of integers (¢, d) appeared in each summand is the bottom row of  in that
summand.

Combining the results in this section, we have the following summary, which describes
Ej p in terms of By ., s.

Proposition 4.17. Let x be a Dirichlet character (mod N), and p := IndEO(N)X. Given
a (I'ss, p)-tnvariant constant vector v, Ey, ,., is a C-linear combination of Ej ., s.
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Given B € Ry and A, we fiz an element 6 € A. Then, the eg-component of Ey, ., (T) is
given by the following formula:

— > (et +d)Fx(By~toh) 2, (4.22)

where we write y = (¢ 4).

5 Spaces of Eisenstein Series

Let p be an arithmetic type for I' and k a positive integer. Recall the definition of the
space of vector-valued Eisenstein series of weight k£ and type p, Ex(p), in Section 4.

Lemma 5.1. Let k > 2 and p be a congruence type for I', then we have

My(p) = Ex(p) + Sk(p).

Proof. Given a vector-valued modular form f € Mj(p), we have to find fr € Ei(p) and
fs € Sk(p), such that f = fg + fs. Let v € V(p) be the constant term of f, that
is, v = lim, i f(7). We shall prove later that v € V(p)'=, which together with the
assumption about k£ and p implies that fr := Ej ,, is well-defined. By Lemma 8.5, fx
has constant term v, so fs := f — fg has constant term 0 € V(p). Since f € My(p) and
fe € Ex(p) C Mi(p), we have fg € My(p), and therefore fg € Sk(p). To see the fact that
v € V(p)'>, we take the limit 7 — ioc on both sides of f|,7y = f for all v € I's,. On the
right hand side, lim,; ;o f(7) = v. On the left hand side, we find

i fli,y(7) = (er +d)~p(y7") lim f(y7) = (er +d) " p(y™ v = vl

for all v = (29) € ', and so we conclude that v|g,y = v for all v € I, that is,

veVip)lte. n

In what follows, we define spaces of components of modular forms and work on the
relations between spaces of vector-valued modular forms of certain types and spaces of
components of these types. Let p be a congruence type for I' and £ > 2 an integer. We
define

M[p] :=span{wo f:w e V(p)'and f € Mi(p)},
Eulp] = span{uwo f - w € V(p)and f € Bilp)}.
Silp] == span{wo f:w € V(p)'and f € Sk(p)}.

We view all these spaces as (left) representations of I', via the slash action -[x(y~"). In
fact, if f € My[p], by definition there are vector-valued modular forms f; € My(p), and

12We will see in the proof that each summand in (4.22) does not depend on the choice of v for each
class [7].
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linear functionals w; € V/(p)¥, such that f = 3, w;o f;. By the linearity of the slash action
|k, and the assumption that f;|; ,v = fi for all ¥ € I', we have

v = (X wio fi)lwy
= Z (wi © P(”Y)) © (fi’km’Y)
= ngofw

\

where w] := w; o p(y) € V(p)'. Hence My[p] is closed under the slash action f|z(y7'),
and similarly, &[p] and Si[p] are also closed under the slash action. Note that from the
definition of spaces of components, we have surjections between representations

p’ @ My(p) — Mi[p]
p’ @ Eip(p) — Eklp]
p’ @ Sk(p) — Sklpl,

where My(p), Ex(p), Sk(p) are viewed as trivial representations. We then consider the
space of all components of vector-valued modular forms (Eisenstein series and cusp forms,
respectively) of the same weight k£ and any congruence type. One way to do so is to
define each element simply as finite sums of components from different congruence types p.
Another slightly more standard way is via irreducible representations, which is equivalent
to the first for the following reasons. Take for example finite sums of f, € My[p] for
all congruence types p. Recall from Section 2.6 of [Ser77] that for any finite dimensional
complex representation of a finite group, the canonical decomposition exists and is unique.
In particular, this applies to every arithmetic type for I' of finite kernel index, hence to
every congruence type p. By Lemma 3.13, the split of congruence types passes on to that
of modular forms and their components. Therefore, each element from this total space
can be written as a finite sum of f, € M;[p®"] where p are irreducible congruence types.
Moreover, we have My [p®"] = M[p] for all positive integers n, since for any w = @I w;
and f = @, f;, where w; € V(p)¥ and f; € My(p), we have wo f =31, w; o f; € My|p].
Furthermore, for any two congruence types pi, po that are isomorphic via ¢, we have
Mylpr] = Mylpa), since wo f = (wo p~) o (po f) € Mylps] for any w € V(p))" and
f € Mg(p1), and vice versa by switching p; and ps. By the same token, we can replace
the modular forms by the Eisenstein series and cusp forms, respectively in this argument.
Combining these facts it is clear that the following definition is equivalent to the one using
finite sums of components from all different congruence types (not necessarily irreducible).
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Notation 5.2.

./Vlk = @ Mk[p]

p irred

&= P &lpl, and
p irred

S = B Silp]
p irred

where the direct sums are over all non-isomorphic irreducible congruence types p for T

Lemma 5.3. Let k > 2 be an integer, then we have
ENS, ={0}.

Proof. Suppose f € & NSk, by definition there exist some irreducible congruence types p;
and p} for I', fori € {1,--- ,n} and j € {1,--- ,m}, fu,; € Elpi], fs; € Sklp]], such that

f - Zsz = ZfS,j-
i=1 j=1

By definition, each fg; (similarly fs ;) is the sum of terms in the forms of wgo I (similarly
wg o fg), with fr € Ei(p;) and wg € V(p;)Y (similarly fg € Sk(p;) and ws € V(p})").
Therefore, we have

f=> wg,o sz =) wg;o fs,j

il jeJ

for some finite sets I and J, where sz € Ek(pi),fs’j € Sk(p}) and wp,; € Vi(pi)Y,wg,; €
V(p)" (p:; might be the same for some 4 € I, and similarly also for p}).

We first compute the constant term of f|zy for all v € I', namely lim, ;o (f|x7)(7). On
the one hand, we express it with respect to the constant terms of Eisenstein series. Let
v; be the constant term of fEJ, ie., v; ;= lim, ;o sz( ). By the linearity of wg,; and
modularity of fEﬂ-, for all v € ', we have

(fle7)(7) = (z;wE,i o fei)l7)(7)
= ZwE,i © (sz|k7(T))

el

—Z(szopz )(sz|kpz (T ))

el

_Z(szopz )sz( )

el
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Therefore, the contant term of f|,7 is

lim (f17)(r) = lim 3~ (wgi 0 pi(3)) fia(7)

T—400 T—100 ol
=2 (wE,i © Pi(7)>< hm G ) Zsz(pz Z). (5.1)
i€l iel

On the other hand, replacing the letter £ by S, similarly we find
(Flm)(7) =D (wss © (7)) fsi(7) for all y € T
jed

Since fg; € Sk(p) for each j, by definition of vector-valued cusp forms with w; := wg; o
P(7) € V(p})", we have that

lim (f[x)(7) = lim 3" (w; 0 fo;(r)) =0forally €T (5.2)

T—100 T—100 7
JjEJ

Combining Equation (5.1) and Equation (5.2), we get
> wpi(pi(y)vi) =0 forall y € T (5.3)
il

Then, we insert Equation (5.3) into the expression of Eisenstein series. Since k > 2 and
p; is a congruence type, the applicatign of wg, intertwines with taking the limit. By
Lemma 8.5 with the constant term of fg; ~» v;, we have

/= ZwE,i o sz

icl

= Z WE,i © ( Z Ui|k‘19i’7)
i€l [Y]€T oo\

= Z Z WE,i Uz |k iV )
[Y]€T oo\ i€1

= Z cT + d Z WE; (pz z)
[Y]€T oo\ iel

=0,

which completes the proof. [

Combining Lemma 5.1 and Lemma 5.3, we have the following decompositions.

Corollary 5.4. Let k > 2 be an integer and p be a congruence type for I', then we have
the decompositions

M (p) = Eir(p) @ Sk(p),
Milp] = Eklp] @ Silpl, and
M =&, D Ss.
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Proposition 5.5. Let k > 2, p and p' be two arithmetic types for T of finite kernel index,
such that p — p', then we have a linear isomorphism

s+ Ey(p) = Hom(1, &[p'] ® p) = (&[0T @ p)
fr= (10— ).

r

Proof. 1t is clear that s is injective, if it is well-defined. Moreover, under a chosen basis ¢;
of V(p) and its dual basis ¢;, we have f =3 ;(¢) o f)®¢; € E[p] @ V(p) C &[] @ V(p).
Similar to the proof of Proposition 3.15, after a simple calculation, we know that s(f) €
Homp (1, &[p'] ® p) if and only if

fle,y ' = fforalyel, (5.4)

which is satisfied by all f € Ex(p) C My(p). Therefore, the linear map s is well-defined.

We show next that s is surjective. If (1 — f) € Homp(1,&[p] ® p) for some f €
Exlp'] @ p, then we need to show that f € Ej(p). First, the homomorphism condition of
representations implies that Equation (5.4) is satisfied. Second, since wo f € &[p] C 4
for all w € V(p)Y, f € H™(p), hence f € My(p). Therefore, it suffices to prove that if
f € My(p) so that wo f € &EJp] for all w € V(p)Y, then f € Ex(p).

By Lemma 5.1, there exist fr € Eix(p) and fs € Sk(p), such that f = fg + fs. In
order to conclude that f € Ei(p), it suffices to show fs = 0. Equivalently, we show that
wo fg =0 for all w € V(p)". In fact, for such w, since w o fr € E[p] and wo f € E[p]
for all w € V(p)Y, their linear combinations lie in &. In particular, the relation w o f =
wo fp+wo fg forces the element wo f —wo fp =wo fg to be in & N S[p] C & N Sy
By Lemma 5.3, the intersection is {0}, hence w o fg = 0 for all w € V(p)¥, as desired. =

Remark 5.6. For instance, when p = py and p' = p;y for a positive integer [, see Ex-
ample 9.7. Furthermore, one can also easily loose the condition p —— p’ to that any
irreducible component of p that admits a nonzero T-fixed vector also occurs in p/, and still
have the same isomorphism.

Since an Eisenstein series is determined by a T-fixed vector (or a I'y-invariant vec-
tor, depending on the slash action of —id.), we first need to determine which irreducible
congruence types of level N have a T-fixed vector.

Lemma 5.7. Let p be an irreducible congruence type of level N. If p has a nonzero T-fixed
vector, then p occurs in the decomposition of px, i.e. p — px-

Proof. We show the lemma in two steps. First, we fix a T-fixed vector v # 0 in the
representation space V(p). Since p is irreducible, the submodule generated by v must be
the whole space V(p). Since p is finite dimensional, we can choose some elements 7; € T
for i =1,2,--- n, such that p(+;)v consist a basis of V(p). Let I denote the stabilizer of
v in I'. We claim that there is an inclusion of representations

¢ :p—> Indp1

p)v— e
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First of all, it is straightforward to check that ¢ is a homomorphism of representations.
Then we compute ker ¢ as follows. If vy := 31, cip(y:)v € ker g, after fixing a set of
representatives R for ["\I", we have

n
OZZCWF:ZQB Z Ci,
=1

BER inl:ﬁ

which implies that ¢ := 3 = 0 for all § € R. Note that for all i, p(v;)v = p(8~')v

T 1 C;
i; 1=,3 i

for g = F, since v is fixed by I'V. Therefore, we have

v =Y cp(vv= 3 csp(B7 v =0,
i=1 BER
which implies ker ¢ = 0.
Second, we complete the inclusion by showing that IndL1 — Indgl( L. since v is
fixed by T, and p is of level N, v is thus fixed by any element in I'y(N), i.e. IV D T'y(N).
By Lemma 3.20 and Lemma 3.8, we have

Indp, 1 < Indp, 1 = py,
which completes the proof by the composition with the first inclusion ¢ : p = Indf, 1. m

Lemma 5.8. Let k > 2, p a congruence type for I' of level N, then we have a linear
isomorphism

5 Ei(p) = Hom(1, &[] @ p) = (EcloR) @ )

fr—=1—f).

Proof. Since p factors through finite group SLy(Z/N), it is completely reducible, hence it
suffices to show the lemma for p irreducible. There are two cases: if p has a nonzero T-fixed
vector, then by Lemma 5.7 we have an embedding p < py, hence by Proposition 5.5 we
conclude that s is a linear isomorphism. If p does not have a nonzero 7T-fixed vector, then
V(p)'>= = 0 and therefore by definition we have E;(p) = 0. On the other hand, let (1 —
f) € Homp(1, E[pn] ® p) be a homorphism of representations, then we have f € Mg(p).
By Corollary 5.4, we can write f = fg + fs for fp € Ex(p) = 0 and fs € Sk(p), which
forces all the components of f to lie in the space E[px] N Sk[p] C E NSk. By Lemma 5.3,
all the components must therefore be zero, hence f = 0 and Homp (1, & [pn] @ p) =0. =

Now we apply Proposition 5.5 with p = py to study the structure of Ex(py). We start
with moving py from the right to the left by taking the duality (which is isomorphic to
itself), to further simplify the Hom set.

Lemma 5.9.

Hom(L, Elpx] ® pi) = Hom(py ", Exlpx]) = Hom(py, Exlpx])-
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Proof. The first isomorphism follows from Lemma 8.24, with 7 ~~ 1, p ~ &[py], and
o ~» pxn- The second isomorphism follows from the self duality of py, i.e., Lemma 3.16. m

We then study the space of components E[py], which can be identified with the space
of classical Eisentein series defined via double sums over a pair of integers (¢, d) with the
restriction ged(c,d) = 1. For A € L}, we define the classical Eisenstein series of weight £,
level N, associated with \ via

Ek,N,)\ = Z (CT‘I‘d)_k,
(c,d)eZ?,
(¢,d)=X (mod N),
ged(e,d)=1

The C-linear space spanned by Ej y ., for all A € Ly, is denoted by & n. We call it
the space of (classical) Eisenstein series of weight k and level N. Note that & v is closed
under the slash action of I' by Lemma 8.6, hence & y is naturally a (left) representation
of I' via

. 1
YEe N = Exnalky -

Depending on the context, & y also denotes this representation. We then identify the
space of components of vector-valued Eisenstein series &[py], with the space of classical
Eisenstein series & n, as representations of I'.

Lemma 5.10. Let k > 2 be an integer and N a positive integer, we have
Elpn] = Ep -

Proof. For N = 1, both sides are equal to 0 if k£ is an odd integer, and agree with the
1-dim space generated by Ey(7) if k is an even integer. For N = 2, both sides vanish if &k
is an odd integer.

For N > 3, or N = 2 and k even, to see & n C E[py], it suffices to show that for
each X € Ly, Exna € Elpn]. Let vy := ey + (—1)feg—) € V(py), it is clear that

oly,,xy = vo for v = —id and v = T, hence vy € V(px)t=, and Ek,pfwvo € Er(py) is
well-defined. By definition, we find
Ek‘,p;@,’uo - Z (CT + d>_k (2(5’3) + (_1)ke(jc7jd)> (55)
c,d)eZ?:
{g(cdo):,ed):l}/ =

Applying ¢} € V(px)Y to both sides of (5.5), and noting that A\ # —X when N > 3
(Lemma 8.44), as well as A = —\ when N = 2, we find the A-component

N —
e}\ © Ek‘,p;:,,’l)o - Ek7N7>‘7

hence Ey v € Elpn]-
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Conversely, to show E[pn] C & n, it suffices to prove that for each A € Ly and
v € V(px)t=, the component QX(Ek,pfv,v) € &.n. Since e is a linear function continuous
with respect to the norm (unique up to equivalence) on the finite dimensional space V(py ),

and the series E) x  is convergent, we have
7PN7U

S (Bypi )= 2 <cf+d>-kex(px<v—1>v)=; > (er+d)Fe (px(v ).

YET o \T YE(MN\T

Note that any two elements 1,72 € I" have the same bottom row if and only if v,y ' € (T).
Fix a set of representatives for (T)\I', and let .4y denote the representative element with
the bottom row (c¢,d). Then we have

1 _ _
e}\/(Ek,pK,,v) = 5 Z (CT + d) ke;\/ (p;\(](’y(c,ld))?j)

(c.d)eZ?,
ged(e,d)=1

If we can show that ey (pjf,(v(_c}d))v) depends only on (¢,d) € L}, say this value is ey for

N = (¢,d), then we have
1
Q\A/(Ek,pfv,v) =5 Z exErny € Exn.

X
NeLy

In fact, since py factors through the representation py for SLy(Z/N) (naturally induced
from pX), and v € V(px)'>=, we have px(7)v = v for all v € I';(N), which implies that
o (v = px (75 H)v for any two elements 7;, v, in the same coset of I'y(N)\I'. This
means that ey (pjﬁ(v(;}d))v) depends only on the coset of y(.,q), hence only on X' = (¢,d) by

Lemma 8.15. u
To study the structure of & n, we start with the parity issue. The fact that
Epnalu(—id) = By n-x = (—1)" By

motivates us to consider it in terms of representations. The key fact is that for any
group with a finite center, its representation always splits into isotypical components (not
necessarily non-zero) of characters of its center. More precisely, as a corrolary of Lemma 3.3
we have the following construction. Since the center of I' is equal to +id, we can split the
space V(py) into two parts. Let V(py)+ denote the eigenspace of +1 and V' (py)_ that of
—1, under the action of py(—id). Then by Lemma 3.3, they are subrepresentations of py,
which we denote by p]XV’ + and pIX\,ﬁ, respectively. Moreover, we have the decomposition of
representations

PN = PN+ D PN, - (5.6)

We then connect &, y with one of these components, by associating the parity of the weight
k to such representations, and constructing an explicit basis for each eigenspace.
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For k € Z and \ € Ly, let
Ve 1= ey + (—1)Fey,
and
Prn = (kA € L),
Since
px (ks = pr(Ve-r + (=1 px(1)er = eorg1 + (=1 er-1 = v a1,

pr n 1 a subrepresentation of py. Moreover, since

pr(—id)vgy = px(—id)e_y + (=1)*pX(—id)er = ex + (—1)Fe_y = (=1) v,

we know py y is contained in the eigenspace of (—1)*, and py,, y is contained in that of
(—1)**1. In order to conclude that they actually coincide, by Decomposition 5.6, it suffices
to show that their basis, vg \ and vy for all A € Ly, generate the whole space V(py ).
But this is clear from the relation

1
e\ = 5((—1)’“%7,\ —+ (—1)k+1vk+17,\).

To conclude, we have the decomposition for each k (mod 2)

PN = PaN P Pri1n
which each component being eigenspace of (—1)¥ (resp. (—1)¥*1), for the centre action of
X
PN-

Now the we are in position to state

Proposition 5.11. Let k € Z>3, then we have an isomorphism of representations

~ X
5k,N = Pr,N
Ek,N,)\ > ¢).

Proof. 1t follows from Lemma 8.6 and Lemma 8.8. [

We start from the definition of group version Eisenstein series.

Lemma 5.12.

Epxna= > 1|B0 = > 1|6,

[Bl€Toc\I'1(N) [Y]€l oo (N\L(N)

where ' (N) :=To NT(N), and 6 = (24) € ' satisfies that (¢,d) = X (mod N).
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Proof. The first equality follows directly from the definition of Eisenstein series, and the
second equality follows from Lemma 2.1. [

Similar to the Eisenstein series Ej v, We define a class of Eisenstein series by Gy n»,
via double sums without the restriction ged(c,d) = 1

Grna = > (et +d)7,
(c,d)eZ?,
(¢,d)=X (mod N)
for A € LY. Note that the difference is that the summation for Gy n ) is via lattice
(additive) structure, while that for Ej y ) is via cosets of a group, or “primitive points” in
the lattice of level N (multiplicative in nature).

Lemma 5.12 tells us that &y is group theoretic in nature. On the other hand, we
can define the lattice theoretic Gy v in a similar way, namely the space spanned by all the
G.v .\, and view it as the representation py via the slash action. Furthermore, Lemma 8.10
and Lemma 8.12 show that

Exn =GN

This tells us that in order to compute Fourier expansions, we can choose the more practical
lattice version G nx € Gk n, Which is carried out in Section 6.
Furthermore, as representations they are also isomorphic via the map

0 :EN = GpN
Einy — Gi,n -
In fact, by Lemma 8.8 and Corollary 8.11, the map ¢ is a linear isomorphism. By

lemma 8.1, it suffices to show that ¢ intertwines with the slash actions on both sides.
By Lemma 8.6, we have that the slash action on & y acts as

Ernaly = Er vy

On the other hand, the slash action on G; x can be computed via the slash action on & n,
by Lemma 8.12. We have

Gk,N,Alv - ( Z (a,N(k)Ek,N,a*1A)|'y
a€(Z/N)*

= Z Ca,N(k)Ek,N,a—l)\"y
a€(Z/N)*

= Z Ca,N(k)Ek,N,a—l)\'y

a€(Z/N)*

= Gi,N 2y

hence the map ¢ : By — Gj v, intertwines with the slash actions. From now on, we
will only use the notation & y for the space of classical Eisenstein series of level N.
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In order to connect classical Eisenstein series back to vector-valued Eisenstein series, we
start from the natural identification of a family of classical modular forms with a vector-
valued modular form. Given an arithmetic type p of I, Let {e,} be a basis of V(p) and
{eY} be the corresponding dual basis of V(p)¥. Then there is a natural identification of a
function

fi{e/\}XfJ—>C

(or equivalently, a family of functions fy : § — C) with a vector-valued function f:
h — CxV(p)Y, via

f= S
A
In particular, when p = py and A € Ly are points of order N, we naturally identify
the set of G v (and that of Ej v ) and their linear combinations with a vector-valued
Eisenstein series. Such point of view is useful for computing cusp expansions via vector-
valued Eisenstein series, and in general for computational aspects of modular forms.

Lemma 5.13.
Hom(p}, pr; ) = End(pg v ).

Proof. Tt suffices to show that any element in Homr(py, py x) factors through the projec-
tion py of V(py) onto V(p;n) € V(py). In other words, for any ¢ € Homr(py, o n),
there exists a unique element ¢ € End(py ), such that

© = PO py. (5.7)

In fact, if Factorization (5.7) holds, then the map ¢ — ¢ provides a linear isomorphism
as desired. If » = 0, then ¢ = 0, hence the injectivity. For surjectivity, given an arbitrary
element ¥ € Endr(py ), @ o pr is actually in its preimage, by the uniqueness of ¢ in
Factorization (5.7), and the fact that p, € Homrp(py, oy n)-

To see Factorization (5.7) holds, we look at the action of the center. Recall that

X X X
PN = PN P PryiN-

In particular, —id € T acts as scalar products (—1)" and (=1)*"" on V(p; y) and V(p;,; ),
respectively. Therefore, for any element ¢ € Homr(py, py ), the restriction of ¢ on the
subspace V(py,; y) must be 0, which implies that the restriction of ¢ on the subspace
V(pg) uniquely satisfies (5.7). m

Combining Proposition 5.5, Lemma 5.9, Lemma 5.10, Proposition 5.11, and Lemma 5.13,
we have the main result of this Chapter.

Proposition 5.14. There is a linear isomorphism

E(py) = End(pyy)-
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6 Fourier Expansions of Eisenstein series
Lemma 6.1. Let dy € {0,--- ,N — 1}. Then, for any k € Z>s, we have

> m = GOk do/N) + (<G, (N = do)IN)) if do #0,
medo+ NZ\{0}
and
ok = e (COR) + (~1RCR) i do = 0,
medo+ N7\ {0}

Furthermore, this sum can be evaluated for all dy as
(—2mi)* Z—Bk(n/N)
(k—=1IN — k

C(2mi)t & B (k—1\ & i
~GoDIN 1)!N§0 ; (j B 1) nz:jl n/N)E=Je(dyn/N).

e(don/N)

Proof. We insert the fact that

Z’k
cos (lm/2 - 27Tdn/N) = g(e(—dn/N) + (—l)ke(dn/N))

into the functional equation in Lemma 8.47, and get

¢(1—k,n/N)= % dz_j C(k, d/N)(e(—dn/N) - (—1)ke(dn/N)>

= e | X (a4 e (v = ay)et-an/

+ (€0 + (-1 w)] (6.1)

Now let f(n) := & (i’”lN) ¢(1 — k,n/N) for n € {1,---,N}, and g(d) := ¢(k,d/N) +
(=1)*¢(k, (N — d)/N) for d € {1,--- ,N — 1} and g(d) := (k) + (=1)¥C(k) for d = N.
Then we can rewrite Equation 6.1 by

Zg (—dn/N).

Fourier analysis over Z/N then provides the inversion formula, in particular for d = dy we
get

o) = 3 F(m)eldon/N). (6.2)

n=1
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Finally by Lemma 8.48, we have

B N
(1~ k) = = 20
for n € {1,---, N}, which we insert into Equation 6.2 to conclude the proof. [

Remark 6.2. The reflection formula of Hurwitz function states that for all z € R

T dk—l

C(k,1 =) + (=1)*¢(k,2) = _(k?—].)!dl'k_l‘tx cot(nt)
ﬂ.k dkfl

T k= 1)ldah 1 e 0 1)

which makes the evaluation possible for real value . However, when x € Q,1), from the
perspective of computation, computing symbolic (k — 1)-th derivative of cot(¢) is much
less effective then computing Q-linear combination of j-th Bernoulli numbers, for 7 < k in
a closed formula.

Remark 6.3. The formula in the lemma for dy = 0 also reproduces one relation between
Bernoulli numbers and values of Bernoulli polynomials:

> Buln/N) = s (63

by taking dy = 0 and comparing the case N = 1 and N being a general positive integer
in the sum 3°, g4 nz\ (0} m~". Note that Equation 6.3 is a special case (take z = 0) of
Raabe’s formula

N-l B.(Nz
> Bi(z+n/N) = ]’if(k_l),
n=0

which can be found at 9.624 in [GRO7].

For keeping our expression homogeneous in the sense that all Fourier coefficients are of
“degree zero” in N, we define our divisor sum of level N as follows, where (m/N)*~! takes
place of the usual m*~! when N = 1.

op—1,NA(n) = > sgn(m)(m/N)*" e(dym/N).
meZ, m|n,
n/m=co (mod N)

Now we are in position to state the Fourier expansion of Gy n x.
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Proposition 6.4. Let k € Z>3 and N € Z>y. Let X := (¢o,dy) € Ly, then the Fourier
2;11%'1@ Gr.n\ 1s given by

expansion of (E

(k —1)!

1 Y n/N)

e(don/N) —i—NZO'k 1na(n) e(nt/N)  (6.4)

n=1

:ﬁw$§ %G >§nm’ %WN+NZ%1MU(MW)

J\u-—1 -

where 0 is the Kronecker delta, By(x) := J 0 ( )B a*=7 s the k-th Bernoulli polynomial,
and

Proof. We start by separating the sum

Gk,N,)\ = Z (C’T + d)_k

(c,d)€Z?,
(e,d)=A (mod N)

in terms of sgn(c) € {—1,0,1}. Clearly the part of ¢ = 0 contributes the sum

S0 Y. dF
d=dp (mod N)

which can be further simplified by Lemma 6.1, and then inserted to the left hand side of

Formula 6.4.
For convenience, let dy also denote the representative element from {0,1,--- , N —1} for
dy € Z/N, then we have

Z (et +d)7F

c>0

(e;d)=(co,do) (mod N)
1 —k
= > 2 ((er+do)/N +1)
c>0 leZ
c=cp (mod N)
C
=f’2 S S mle(mdo/N)e(mer /N) (6.5)
c>0 meZ>1
c=cp (mod N) =
wx (X wemdy/N))etnr/N),
n€Z>1 meZ>1, m|n,

n/m=co (mod N)

where C}, := %, and Equation 6.5 follows from application of Lemma 8.45 with z :=

(et 4+ do)/N € $. We treat the part of ¢ < 0 similarly, except that we set z := —(c7 +
do)/N € $ in order to apply Lemma 8.45 again, and consequently in the last step we
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consider the sum over m’' := —m instead of m. We thus obtain
> (7 +d)7*
c<0
(¢,d)=(co,do) (mod N)
1 —k
:<_N)k Z Z( (cr +do)/N — )
c<0 leZ
¢=cp (mod N)
Cy
:(_ NE X X m*~te(—=mdy/N)e(—mer /N) (6.6)
c<0 meZ>1
c=cp (mod N) -

Z ( Z —m’kle(m'do/N)>e(m'/N),

nEZ>1 m/€l<_y1, m'|n,

n/m’=cp (mod N)
where Equation 6.6 follows from Lemma 8.45. Combining positive and negative parts of
the divisor sum, we get the Fourier coefficient of e(n7/N) for n > 1. ]

7 Products of Eisenstein series

Historically, Rankin [Ran52] was the first to associate periods with the scalar products of
cuspidal Hecke eigenforms and products of two Eisenstein series. Later Kohnen and Zagier
[KZ84] connected modular forms with period polynomials, and as a consequence of this
association concluded that the products of at most two Eisenstein series span all spaces
of modular forms for SLy(Z). In higher level cases, Borisov and Gunnells [BG01] [BGO3]
solved the problem for I'y (N) and weight £ > 3, and Khuri-Makdisi [Khul2] considered it
for ['(N) and weight 2. For the group I'g(N), Imamoglu and Kohnen [IK05] first considered
the problem in the case of I'y(2), and later Kohnen and Martin [KMO08] generalized it to
the prime level, for I'y(p). Recently, Dickson and Neururer [DN18] showed that each cusp
form of weight k > 4 for ['((/N) can be spanned by products of explicit Eisenstein series
for 'y (IV), under certain technical assumptions on the level N.

We continue to consider this problem for vector-valued modular forms, following the
strategy and results in Raum [Wes17]. Recall Definition 1.6 of the vector-valued Hecke
operator Ty for vector-valued modular forms, which yields a linear map

Ty : Ep(1) — Ex(pry),

where 1 is the trivial representation of I' = SLy(Z), and pr, = Tn(1) is defined in
Definition 1.5. Hence we have the following inclusion.

Theorem 7.1. Let k,| € Z>4 be even integers. Let p be a congruence type for I'. Then
we have

Mii(p) = Evulp) + > ¢<TN(E1€(]1))®TN’(EZ(]1))>7
N,N’GZZI,
:pT OPT) ) =P
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where the sum runs over all the homomorphisms of representations ¢ : pry @ pr,, — p
for all positive integers N, N'.

Proof. See [Wes17], and note that the weight k that appears in that paper corresponds to
k + [ here. [

Our goal is to formulate this result in terms of classical Eisenstein series. We need to
use a basic fact for the representation py.

Lemma 7.2. Let [ > 2 be an integer, then we have
T (E(1)) € Ey(Tn(1)).
Proof. By Proposition 2.7 in [Wes17], we have
Ty (Ei(1)) € Ty (Mi(1)) € My(Tw(1)).

By Lemma 2.3 in [Wesl7|, we know Tx(1) is a congruence type. From the proof of
Proposition 5.5, for any f € FE;(1) we know that if we could show that all the components of
Tn(f) is in the space of all classical Eisenstein series &, then we have Ty (f) € E) (TN(1)>.
But it is straightforward to compute each component of T (f) as f|;y for some vy = (254) €
Ay, and it turns out they all belong to the classical Eisenstein series defined via congruence
relations, and the level of the Eisenstein series f|; is at most ad = N. [

Lemma 7.3.

d2| N d?| N d|N

Proof. We show the lemma in two steps. First, note that for any matrix with integer
coefficients of determinant N, the action of I" by the multiplication from left or right
does not change the ged of all the four matrix coefficients. This implies a decomposition
An = [I4Anq and the corresponding decomposition of the action my by I', where Ay 4
denotes the subset of Ay, whose elements have d as the ged of all the coefficients. For any
v € An,a, we have v = dy' for some 7' € Ay 1, since dety = d*dety’. It is thus clear
that we have the decomposition

T(1) = @ T5m(1),

d2|N

where T y »2(1) is the permutation representation associated with the I'-action on Apy/g2 ;.
Second, we show that there is an isomorphism for every positive integer N’

 : T3 (1) = Indp (i1,

— ¢
f(e) T
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In fact, it is clear from the theory of Smith normal form applied to the principal ideal
domain Z that the action of I' on Ay is transitive!3, hence the vector e( N'0) generates the
01

whole space V(T ¢ (]l)) Therefore, the homomorphism ¢ is well-defined via the association
e( N 0) —> ¢iq and the intertwining relation, given that the stabalizer of e< N0y denoted

by 0T11 , is contained in that of ¢;q, denoted by I'g. The surjectivity follows fromo tllle fact that
the permutation representation of I' on I'o(N)\I' is transitive. On the other hand, it is
also clear that the homomorphism ¢ is injective if I'y C I'y (similar to the injectivity part
of the proof of Lemma 5.7). Now we have to show that I'g = I';. It follows directly from
the definition of Indj, v/ 1 that v € T'o if and only if v € To(N), and that v = (¢4) € I'y

if and only if
N0\ (a ) (N 0\
0 1/\c d 0 1 ’

which is equivalent after direct computation that ¢ = 0 (mod V), that is, v € I'o(/N’). This
shows that 'y = I'y = I'o(N’). Finally, the inclusion

IndEO(N/)]l — Indll:l(N/)ﬂ = p]>\</'/
follows from Lemma 3.20 (or Lemma 3.9 as another way to view it). [

Lemma 7.4. Let N, M be positive integers such that N | M, then we have
PN Pir-

Proof. Since N | M, we have I'y(N) D I'y(M). We now apply Lemma 3.20 with G; :=
['(M),Gy:=T1(N),G5 :=T, and Lemma 3.8, to conclude the inclusion

pnN = Indgl(N)l o Ind?l(M)l = i n
Combining the above results, we have the following main theorem.

Theorem 7.5. Let k,l € Z>4 be even integers. Let p be a congruence type for I' = SLy(Z)
of level N, i.e., N is the smallest positive integer such that I'(N) C ker p, then we have

> r
Mysi(p) = (Erun @ p)" + Y. (Env @ En @)
N'=1
Proof. For any two congruence types p; and py, and each homomorphism ¢ : p; ® po — p,
¢ intertwines with the slash actions (-)|kp, ® (+)]1,p, and ()|k4i,, hence we have

Mii(p) 2 Exa(p) + > v(Erlox) @ Eilpi))- (7.1)
N’EZzl,
YN, PN =P

13for a typical example of transforming one diagonal matrix to a different diagonal matrix in Ay 1,
please refer to Example 9.8.
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On the other hand, by Theorem 7.1, Lemma 7.2, Lemma 7.3, and Lemma 7.4, we have the
inclusions

Mii(p) = Egi(p) + ) ¢<TN1 (Ex(1)) ® Ty, (Ez(]l)))
Ni,N2€Z>1,
¢:TN1 (]]-)®TN2 (]1)—>p

Cha+ Y o(B(Tn W) @ B(Tv,0)),
Ni,N2€Z>1,
T, (D)@ Ty (1) —p
C Ewnlp) + D w(Ek(p§3)®Ez(p§4)), (7.2)
N3,Ny€Z>1,

PPN, OPN, P

CElp)+ Y. ¢(Elpk) ® Eilp}). (7.3)
N’ EZzl s
YN, ®p N =P

We argue for the last two inclusions a bit more: both are via composition of maps. For
(7.2), note that for a fixed pair of positive integers (N, V), Lemma 7.3 induces two
projections

mi: @ o — Ta(1)
di | N;

for ¢ = 1,2. We then consider for each homomorphism ¢ : Ty, (1) ® T, (1) — p its
composition with the projections, namely

= ¢o(m ®m),
and all the components
Pdydy 1= 90’@1@% FPay @ Pay, — -

We find that

¢<Ek (TNl(ﬂ)> ® b (TNQ(]I))) = Yo Pdra <Ek: (P§1> ® k (PCZ)),

di | N1,d2 | N2

which concludes the inclusion (7.2). For the last inclusion (7.3), we show it in a similar
manner. For a fixed pair of positive integers (N3, V), Lemma 7.4 induces two projections

.ox X
@i 1 PNr — Ph,

fori = 3,4and N’ := lem(N3, Ny). We find that for each homomorphism ¢ : px, ®py, —

@(Ek (szvg,) ® E (Pﬁ)) = ¢<Ek (PJXV/) ® E (PJXV/)>
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for ¢ 1= po (w3 ®@wy) : pyv @ par — p, which concludes (7.3). Therefore, combining (7.1)
and (7.3), we obtain

Mi(p) = Exalp) + Y ¢<Ek(mxw) ® El(ﬂzxw))a (7.4)
NIEZZl,
Vi ®p 1P
Finally, since p is a congruence type of level N, by Lemma 5.8 and Lemma 5.10, we obtain

Eryi(p) = HlQm (]17 Errlpn] ® P) = HlQm (]1, Errin ® P) >~ (Eun @ p)

Similarly, we can also simplify the second term of (7.4) by Lemma 5.8 and Lemma 5.10.
For each homomorphism ¢ : px, ® px+ — p, we have

V(Ex(px) ® Bi(py)) = @/}((&C,Nf ® pfw)r ® (Ev ® wa)F>
C w((gk:,N/ Q@ py REN R szv/f)
- (gk,N’ R &EN @ P)F7

hence we conclude that

s r
Mysi(p) = (Errn @ )" + D (gk,N’ ® &N ® ,0) : (7.5)
N=1

On the other hand, since for each positive integer N’
ng\n (029 Sl,N’ —> Mk—H - jﬁfﬁ?,

by Proposition 3.15 we have
ad r r r
(Exrn @ p)t + Z <5k,N' ®&E N ® P) — (%’ﬁ? ® P) + (/fﬁ? ® P) = My(p),
N/=1

which together with (7.5) completes the proof. [

Remark 7.6. Note that the sum over N’ in Theorem 7.5 is a finite sum, and the upper
bound of N’ can be found by means of Hecke theory.

8 Auxiliary Statements

Lemma 8.1. Let ¢, p be two representations of a group G. Let f : o — p be a ho-
momorphism of representations. If f is an isomorphism as a linear map, then it is an
isomorphism of representations.
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Proof. Assume g is the inverse map of f, i.e.
f 0g = idv(p), and go f = idv(w)‘ (81)

Since f is a homomorphism, we have a commutative diagram, which can be extended from
both sides by g, we obtain the following commutative diagram:

V(p) —— V(e) —— V(p)
@(w)l lp(v) : (8-2)

Insert Condition (8.1) into Diagram (8.2), we get the following commutative diagram,
hence ¢ is also a homomorphism of representations.

V(p) —— V(p)

p(v)i lw(v) : (8.3)

Lemma 8.2. Let x € R_1 ;) and y € R.y. Let 7 = x +iy. Then we have

1
ler +d| > %|cz + d|

for all real numbers c, d.
Proof. We show this inequality in two cases. If |cx + d| > %|d|, then we have
2 2 2 o Lo 1o 2 L 2
e + d|” = |ey|” + |cx + d|” > |e]* + Z|d| > 5(|c| + |d|*) = 5|cz+d| :
If |cz 4 d| < 3|d|, then we have
1
| = [(cz +d) + (—ex)] < |ez +d] + |ex| < Sld] + |ez],

hence |ey| > |cz| > 3|d| (where we use the assumption |y| > 1 > |z]). Therefore, we also
conclude

1 4 1 1 1, .
ler +d|? = |ey* + |cx +d|* > |ey]* = g|cy|2 + g|cy]2 > 5|C|2 + gld|2 = 5\02 +d? =

Lemma 8.3. Let k > 2 be a real number, then

o lei+dTF <20(k) + 227 (C(R/2))%
()2 (00}
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Proof. Let X :={(0,d):d € Z\ {0}}, Y :={(c,0): c€ Z\ {0}}, and Z := {(c,d) € Z* :
¢#0,d # 0}. Then it is clear that Z*\ {(0,0)} = X I[Y [ Z, hence
SN ei+d ™ = > Jeitd TP+ Y Jei+d TR+ Y Jci+dTF. (8.4)
(c,d)eZ2\{(0,0)} (c,d)eX (c,d)eYy (c,d)eZ
Since k > 2, ¥ ajex ci +d|7F = ¥ ajey |ci + d|7F converge and are both equal to 2¢().
For Y.z |ci + d| 7%, we note that |ci 4 d| = (¢® + d*)'/2 > (2|c||d|)*/?, so we have

Do leitd Tt <2t YT N e PR = 22 (((k/2)),

(e,d)eZ ceZ\{0} deZ\{0}
as k/2 > 1. Inserting these inequalities into (8.4), we finish the proof. n

Lemma 8.4. Let k > 2 be an integer and p an arithmetic type for I' such that ker p is
of finite index in I'. Let v be a I'w-invariant vector. Then, the infinite series Ej . is
dominated by some convergent series on some open neighbourhood (punctured) U of icc.
In particular, Ey ,, converges uniformly on U. Morever, Ey, ,, converges absolutely at each
point on §).

Proof. Let U be the open subset {7 € $ : Im(7) > 1, |Re(7)| < 1}. Since the norm on the
finite dimensional vector space V' (p) is unique up to equivalence, we simply fix an arbitrary

choice [|-||. We shall prove later that there is a constant C,, depending only on (p,v), and
a positive real number R(c, d) for each (c,d) € Z*\ {(0,0)}, depending on k, such that
1]k, V(DI < Cp o B(c(7), d(7)) (8.5)

forally € I'and 7 € U, and that 3=, 4)4(0,0) Fi(c, d) < co. Note that if we have this estimate
(8.5), then the infinite series (of vector-valued functions) Ej ,.(7) = Xjyjer.o\r Vlr,,7(7) i8
dominated on U by the infinite series (of non-negative real numbers)

1

1
Cow >, Rlc(v),d(v)) = iCp,v > R(c,d) < §C’p7v > R(c,d) < oo,
[V]€T o\ ged(e,d)=1 (c,d)€Z2\{(0,0)}

as desired. To show (8.5), we first recall that ker p is of finite index in I', hence there
are only finitely many values of ||p(v)v| for v € I. Let C,, be the maximal value of
|p(7)v]l, then we have |[v|.,Y(T)|| = |er + d|7F ||p(v)v]| < C,uler +d|7*. By Lemma 8.2,
lem + d| ™% < 5%/2|ci + d|7* for all (¢,d) # (0,0) and 7 € U. Let R(c,d) := 5*2|ci + d|7*,
the first condition of (8.5) is satisfied. By Lemma 8.3, we have

> R(c,d) = 5*/2 > |ci 4 d|7F < oo,
(c,d)€Z2\{(0,0)} (c,d)€Z2\{(0,0)}

hence the second condition of (8.5) is also satisfied. To see that E ,, is absolutely con-
vergent at an arbitrary point 7 = x + 1y € $, we decompose the sum

—k/2
> ler +d|7F = > ((cm +d)* + (cy)2)
(c,d)eZ>\{(0,0)} (c,d)eZ?\{(0,0)}
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into three parts and estimate them separately. If ¢ = 0, then the sum is bounded above
by 2¢(k). If ¢ # 0 and |cz + d| < 1, then for each fixed value of ¢, there are at most 2
corresponding values of d, hence the sum is bounded above by

S0 (lely™ < ay7R(R).

c€Z\{0} d:|cz+d|<1

If ¢ # 0 and |cx + d| > 1, then the sum is bounded above by

oo R2eyl™ Y e+ d TR < YT 2y THP2((R/2) = 2272y THR(C(R/2))?,

ceZ\{0} deZ:|cx+d|>1 ceZ\{0}
Combining these inequalities and ||[v]x,v(7)|| = |er + d|7% |p(v)v]| < Cpuler + d|7F, we
obtain the absolute convergence of Fj ,, at the point 7. ]

Lemma 8.5. Let k > 2 be an integer. Let p be a congruence type for T and v € V(p)l'=,
then the constant term of Ej ,, is equal to v. Conversely, if f € Ex(p) has the constant
term v € V(p)te, then f = Ej ..

Proof. 1t is clear that the second claim follows from the first. For the first claim, the
constant term of £y, ,, is by definition
lim Ep,p= lim Y ol

T—100 T—100
[V €Da\I

where Lemma 8.4 allows us to interchange the limit with the sum here, so we find the
constant term of Ej, ,, as
lim (er +d)*p(y)v.
lefoe\r T
Since lim, ;o (c7+d)*p(y™1)v = 0 if ¢ # 0, and the only coset [y] corresponding to ¢ = 0
is the trivial one, which contributes v to the sum, the constant term is therefore equal to
v. [

Lemma 8.6. Let k > 2, N > 1 be integers. For all A\ € Ly and v € T', we have
Ek,N,/\’k"Y = Ekx Ny (8.6)

Proof. For N = 1, both sides are always equal to Fy. For N = 2 and k > 2 an odd integer,
both sides vanish. In the remaining cases, let vy = ¢gq + (=1)*eg—5) € V(px)'™,
where the representation py is defined in the beginning of Section 3. From the proof of
Lemma 5.10, we know that

_ Vv
vy =ex 0 Ly px
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Since Ek,px,vo € Mk(ﬂ]@)? we have Ek,p;@,vo‘kﬂy = p]>§](7) o Ek,p;f],vo|k,p§ﬁy = pK](’Y) © Ek,p?ﬁ,,voa
and therefore

AY; _ \ X
Ek,N,)\|k7 =€, 0 Ek,p;f,,vo - (2)\ © pN(’Y)) ° Ek‘,p;f,,vo'

Note that we also have Fjn\, = ey, o By % vy O see (8.6), it suffices to show that

e}, = ¢y o px(7). This is clear from the definition of py and the dual basis. m

Lemma 8.7. Let N > 3 be an integer and k > 2 an integer, or N = 2 and k > 2 an even
integer. Then, the constant Fourier coefficient of Ey n x is non-zero if and only if A = (0,1)
or (0,—1). Furthermore, when N > 3, if A\ = (0,1), the constant Fourier coefficient of
Epna is 1; if A = (0,=1), it is (=1)*. When N = 2 and k > 2 an even integer, the
constant Fourier coefficient of Ey n.x is 2 for A = (0,1) = (0, —1).

Proof. Let vy := et + (—1)*eg—) € V(px)">, where the representation py is defined in
the beginning of Section 3. From the proof of Lemma 5.10 we know that

_ WV
E]%N)\ =€ Ek,p;@,vo'

By the continuity of the application of ¢} and Lemma 8.5, we find the constant Fourier

coefficient of Ej, y  is

Jim By va(r) = ex(lim Ey o, (7)) = ex(vo),

and the rest is clear. ]
Lemma 8.8. The FEisenstein series Ey yx are linearly independent over C when \ runs

over a set of representatives for Ly / £ 1 ( which will be simply denoted by A\ € Ly/ + 1
later).

Proof. Suppose there is a linear relation

Z 5)\Ek,N,/\ =0,

AeLy

such that at least one of {€,,e_,} equals 0 for all A € L}. Then, we need to show that
ex = 0 for all element A € LY. We apply -|x7 ! on both sides, with v = (¢%) € T, such
that (¢,d) = A (mod N). By Lemma 8.6, we get

> exBinyg =0.

NeLy

Now consider the constant Fourier coefficient on both sides. By Lemma 8.7, if N > 3, the
constant Fourier coefficient on the left hand side is equal to

k
> et Y (D=0,
NeLy, NeLy,
Ny~t=(0,1) Ny~1=(0,-1)
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Note that for any N € Ly, Nyt = (0,1) if and only if N = (0,1)y = A, and Ny~! =
(0, =T) if and only if N = —\, hence we get ey + (—1)*¢_, = 0. But at least one of
{€x, e_n} is 0 by assumption, so we must have ¢y = 0. If N =1 or 2, (0,1) = (0,—1) and
the constant Fourier coefficient is equal to

Z €N/ :O,

NeLy
Ny=t=(0,1)

whence we deduce ¢, = 0. m

Remark 8.9. Conceptually speaking, this proof is from the cusp expansions of modular
forms, namely each Eisenstein series Ej y . is characterized by a unique cusp of I'(N)
which supports it. For a pair of coprime integers ¢, d such that (¢,d) = A (mod N), this
cusp can be explicitly written as I'(N)(d : —c), which corresponds to the first column of
vyl = ( d _b) € I' in the proof.

—C a

Lemma 8.10. For each A\ € L}, the Eisenstein series Ej n . s a linear combination of

Gk7N,b>\ fO?“ all b € (Z/N)X

Proof. We start from the Mobius Transform of the one function
Z :u(d> = 5n,17
m|n

for all n € Z>,, where ¢ is the Kronecker delta. Then we apply it to the sum from the
definition of Ej v\ and obtain

Ey N

= > (et +d)F

(¢,d)=X (mod N),
ged(e,d)=1

= Z 5gcd(c,d),1(07_ + d)_k
(¢,d)=X (mod N)

- Y Y et

(c,d)=X (mod N) mEZ>q,

m | ged(c,d)
= > um Y (er+d)" (8.7)
meZL>1, (e,d)=\ (mod N),
ged(m,N)=1 ged(e,d)emZ
- ¥ “(”Z) S (dr+d)* (8.8)
meL>1, (¢, dY=m~ ') (mod N)

ged(m,N)=1

- Z Z MT(:Z) Gr,Na-1x

a€(Z/N)*  meLx1,
m=a (mod N)

= Z Ca,N,,u(k:)Gk,N,tflA’

a€(Z/N)*
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where (, n,, is our modified zeta function twisted by the Mobius function, given by

SRR )

mGZél,
m=a (mod N)

which is not directly linked to the Hurwitz zeta function. Equation 8.7 follows from the
fact that all the m appeared as factors of ged(c, d) must be coprime to N. This is because
ged(e,d, N) =1 for all terms appeared in the previous sum, since (¢,d) = A (mod N) and
A € LY. Equation 8.8 follows from the transform of variables (¢/,d’) = (<, %), and that

m’m

me (Z/N)*. ]

Corollary 8.11. The Eisenstein series Gy are linearly independent over C for A €
Ly/ £1.

Proof. By Lemma 8.10 and the fact that Gy _» = (—=1)*Gj oy, the set G of all the
Eisenstein series Gy, v\ for A € Ly, /+£1, generates & n, so rk G > dim & n. By Lemma 8.8,
dim &, y = |E|, where E is the set of all the Eisenstein series Ej v, for A € Ly /£1. Since
|E| = |G|, we obtain

|G| > 1tk G > dim & vy = |G,

therefore we have |G| =1k G, i.e., all the Eisenstein series G,y are linearly independent
over C. -

Lemma 8.12. Given an element A\ € Ly, the Eisenstein series Gy . is a linear combi-
nation of Ex npx for allb € (Z/N)*.

Proof. We separate the sum over pairs (¢,d) from the definition of Ej y ., in terms of
n = ged(c, d), which are coprime to N since ged(c, d, N) = ged(co, do, N) = 1, and obtain

Grna

= > (et +d)™"

(e,d)=X\ (mod N)

= > > (et +d)F

n€l>1, (c,d)=X (modN),
ged(n,N)=1  gcd(c,d)=n
1
= > = > (dr+d)7* (8.9)
n€L>q, (c,d"Y=n"1X (mod N)
ged(n,N)=1 ged(c,d')=1
1
= Z Z ﬂEk,N,a_l)\

a€(Z/N)*  n€lxi,
n=a (mod N)

= Y. Cn(E)Ernaa, (8.10)
a€(Z/N)*
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where Equation 8.9 follows from the transform of variables (¢/,d’) = (£,%), and that
n € (Z/N)*. The modified zeta function (, x in Equation 8.10, given by

Ca,N(k) = Z

TLGZZl s
n=a (mod N)

1
ko

is a scalar multiple of a Hurwitz zeta function ((-, §;), namely

1
k, ﬁ). ]

Qa,N(k?) :W ( N

Lemma 8.13. We have a disjoint union decomposition of Ly, namely there is a bijection

u:Ly — [ Ly,
N'|N

s ord(\)

A (modord(\)),

where ord(\) denotes the order of A in the group Ly .
Proof. For each A € Ly, we have NX = 0, hence ord(A) | N. In particular, we have

LN: H LN,N/a

N'|N

where Ly n := {\ € Ly : ord(\) = N'}. Therefore, it suffices to show that, for each
N'| N, there is a bijection

UN’ LN,N’ — LX/,

N/
A — W/\ (mod N').

To see this is well-defined, for a given A € Ly y/, we can lift it to a pair of integers (¢, d).
Since N'(c,d) € (NZ)?, we get &= (c,d) € Z*. Furthermore, it is clear that the map does
not depend on the choice of the lift, so un/(Ly /) € Lys. To see that the image is in
Ly, it suffices to show that for any integer [, if %)\ =0 € Lys, then N'|l. Indeed, by
considering the lift to integers again, this would imply that (A =0 € Ly. But A € Ly v,
which means as the order of A, N must divide [. Finally, following a similar procedure,
we can check that the inverse of uy is

TNyl LE, — L]\[J\f/7

N
/\r—>ﬁ (mod N). ]
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Lemma 8.14. For any A € Ly and v € T', we have that

u(Xy) = u(A)y,
where u is the map defined in Lemma 8.185.

Proof. First we show that A\ and Ay have the same order in the group Ly. In fact, let V;
be the order of A, and Ny that of Ay, then N; also annihilates Ay, hence a multiple of N,.
Similarly since A = (Ay)y~!, N, annihilates )\, hence a multiple of N;. The rest is clear
from the definition of the map w. [

Lemma 8.15. We have a bijection
[:Ty(N\I' — Ly
[y = (2§)] — (€,d) := (c,d) (mod N).

Remark 8.16. For convenience, the ensuing bijection between R; and L} is also denoted
by [. The inverse of [ is denoted by r in both cases.

Proof. For any v = (%) € T', we have ged(c,d) = 1, hence (¢,d) € LY. For any
v € I'1(N), by Lemma 8.31, we have

=) (0 ) o

hence the map is well-defined. For injectivity, if two matrices (CCLI ZZ) eI for i =1,2 have

the same bottom row mod N, then we apply Lemma 8.31 again to get
ar b as by o . G b1 az by o _ (a1 b di —bs
C1 d1 Co dg - C1 d1 C1 d1 - C1 d1 —C1 a9
_ [ady — b1y * (1 %
- ( 0 a2d2 — b202> o < 1> (H’lOd N)’

hence these two matrices are in the same coset. For surjectivity, given a pair of integers
(¢, d) satisfying ged(c, d, N) = 1, we have to find a pair of coprime integers (¢, d’), such that
(d,d) = (¢,d) (mod N). This is a direct application of Lemma 8.36 with m := ged(d, N)
and n := d. In fact, since m|n and ged(c,m) = 1, Lemma 8.36 says that there is some
integer k, such that ¢ 4+ km is coprime with n, that is, ¢ + k ged(d, N) is coprime with d.
Write ged(d, N) = xd + yN for some integers z,y, then ¢ + kyN is coprime with d. Tt
suffices to set ¢ := ¢+ kyN and d' := d. [

Lemma 8.17. For any v1 € R1,72 € I', we have

Z(W) - l(71)727

where [ is the map defined in Lemma 8.15, and 7 € Ry denotes the representative element
of the coset [y] € I'1(N)\I'.
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Proof. 1t suffices to show that the bottom row of 7,y mod N is equal to (7). In fact,
the bottom row of ;7 mod N is equal to the bottom row of 44 mod N multiplied by 7,
hence equal to I(71)7a. ]

Lemma 8.18. Given a congruence subgroup I of ', let R be a set of representatives for
the cosets T'\I'. Let I be the cocycle attached to R, and for an arbitrary element o € T,
let @ € R denote the representative element of the coset [o] € I'\I'. Then we have the
1-cocycle relation

Is(n2) = Ls(71) I557(72)- (8.11)

Proof. By the definition of cocycle, 8v1 = I5(71) 5871, s0 87172 = Is(71)(B7172). Replacing

Briv2 by Iz-(72)(B1v2), we get

Ts(172)B(1172)
= Bnye =Is(v1) I (72) (B1i2),

where actually 5(7172) = (87172). In fact, since fy, and 37, are in the same coset, so are
B(717y2) and 7y17,. Therefore the cancellation law of the group I' yields (8.11). m

Lemma 8.19. If 7,7 € T' are in the same coset from To(N)\I', and I is the cocycle
attached to Ry. Then

La(Y)(La(y)) ™ ="
Proof. Suppose v/ =75 = [, then we have
La(y)(La()) ™ = (B (v8) =" .

Lemma 8.20. For an arbitrary element o € ', let & € Ry denote the representative
element for the coset of o in I'y(N)\I', and @ € Ry that in Uo(N)\I'. Let I be the cocycle
attached to Ry. Then we have the following two facts for all v, € T':

La(7)I5(67Y) and La(76~Y) are in the same coset in T (N)\T, (8.12)
and
76" and 6~ are in the same coset in To(N)\T. (8.13)
Proof. Apply Lemma 8.18 with 3 =id, v, = v, and 75 = 6!, we get
La(MI5(07") = La(vd7").
To see the rest of Fact 8.12, it suffices to check that for any a € I', ja(«) and [iq(&) are

in the same coset in ' (N)\I'. Since o and & are in the same coset in I'; (N)\I', they are
certainly in the same coset in I'o(N)\I'. Apply Lemma 8.19, we then get

La(@)(La(@) " = ad™ € Ty(N).

To see Fact 8.13, note that 76! and vd~! are in the same coset in To(N)\I', and the latter
is in the same coset with v6—1, in I';(IV)\I', hence certainly the same coset in T'o(N)\I'. m
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Lemma 8.21. For any Dirichlet character x (mod N), the following linear map is a ho-

momorphism from Ind?l( N)]l t0 Dy (mod N) IndIED( N)X'-‘

Py V(Ind?l(N)]l) — ED V(IndEO(N)X')
X' (mod N)

Cy —> X((Iidm/))il)exﬁ;
where § € Ryq is the representative element for the class [y] € To(N)\T.

Proof. The natural injection

NS V(IndEO(N)X) — P V(IndEO(N)X’)
X' (mod N)

€g > &

is a homomorphism from Indll:O(N)X t0 D/ (mod N) IndEO(N)X’. Plus, we have p, = i, oy,
where

Ty - V(Indlﬁl(mﬂ) — V(IndEO(N)X)
ey —> X(([id(’Y))fl)eV-

To show that p, is a homomorphism of representations, it suffices to show that , is a
homomorphism from Indp (1 to Indgo( X Le.

Indp, vy x(6) 0 Ty = my 0 Indp, () 1(6)
holds for all 6 € I'. In fact, for an arbitrary v € Ry, we have
Indf, 3 X(6) 0 7 e,
=x((Ta(7)) ") Indiy ()X (8)e5
=x((La() ™) x (5 e

- ]
=x((La(y01)) )e%\_/l (8.14)
::er,yfl;\—/l

=T, O IndFI(N)]l((S) (ey),

where @ € Ry for a € I" denotes the representative element for the coset of v in I'y (N)\T,
and @ € Ry that in I'o(N)\I'. Equation 8.14 follows from Lemma 8.20. ]

Lemma 8.22. Let Ry be a fized set of representatives for T'1(N)\I'. For any fixed element
B €T, we have a bijection dg

dg: {y € Ri:7 =B} — (Z/N)*
v d(La(y)) = d(y871),
where d(v') :=d (mod N) fory' = (279).
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Proof. First we show the injectivity. For any two elements 71,72 € R4 such that 77 = 73,
if d(Lia(71)) = d(Lia(72)), then we need to show that 73 = 5. By Lemma 8.19, we have

Y172 ;= (1) La(y2) ™t € To(V), hence

(75 ) = d(La(1)(Ta(12)) ) = d(La(1))d((Ta(2)) ) = T,

which furthermore implies that y,75 * € [';(N). Since 71,72 € R4, this means that vy, = 7s.
Second we show surjectivity. Given dy € (Z/N)*, we find and fix an element ~y € T'o(V),
such that d(v) = dy. Let v := %AB € R1, and we claim that ~ is the pre-image of dy. In
fact, from our construction, there is some v; € I'y(IV) such that v = 1700, so we have

d(v7) = d(m) = d(v) = do. n

Lemma 8.23. The maps p and v constructed in the proof of Lemma 3.9 are inverse maps
with one another.

Proof. The result follows from a certain orthogonality relation of Dirichlet characters,
applied to the following computation.
On the one side, we show that for each v € Ry,

Lop(ey) = e,.

After summing up by definitions of the maps p and ¢, we have

bop( v)
T ; <x(rgc:uv)X((Ld(w)_l)x(]id(vl)))ev’
1 .
“o(N) ;l,(x(n%mx{w ))ex (8.15)
1
TeV) S, (PN ) (8.16)
:e’Y’ Y=Y

where 0 is the Kronecker delta. Equation 8.15 follows from Lemma 8.19, and Equation 8.16
follows from the orthogonality relation

Z X(d) = p(N)da=1 (mod v)-

X (mod N)

Here v/y~ 1 = (2%) € Ty(N), and d = 1 (mod N) if and only if vy~ € I';(N). Since both
of them are in R4, this actually means that v = .
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On the other side, we show that for each x (mod N) and each € Ry,

poileys) = ez

After summing up by definitions of the maps ¢ and p, we have

po L(ex,b’)
1 —
:m X' Zd]\[) 6273 X< id\Y > ((Ld(’}/)) l)ex/7?
mo ’y 1,
Y'=B
1 ( Y /
“o(N) v [i Y >Q ’
QO(N> ¥’ (mod N) ’Y'GZRl, X’( d( >) x',B8
v'=8
1 ( X >
o) oD )ex 8.17
SO(N) X' (T%N) dE(ZZ/]V)X XI( ) xX',B ( )
1
o) PNty 8.18
gp(N))U(rr%N) ( )XXXﬁ ( )
€x.55

where Equation 8.17 follows from Lemma 8.22, and Equation 8.18 follows from the follow-
ing orthogonality relation

de(Z/N)*

for any character y (mod V), where xo (mod N) is the trivial character. ]

Lemma 8.24. Let w, p, and o be arithmetic types for a group I', then we have a linear
isomorphism

qum(ﬂ, pROo) = qum(ﬂ ®a’,p).
Proof. First of all, there is a natural isomorphism between linear spaces
F: Hgm (V(ﬂ'), Vi(p) ® V(a)) — Hgm (V(ﬂ') @ V(s)", V(p)),
¥ F() = (0r @ wov — wov (¥(vs))),

where v, € V(r), and w,v € V(0)V is linearly extended to w,v : V(p) ® V(o) — V(p)
via wev (v, ® v,) 1= (wav(va))vp, for v, € V(p), v, € V(0), respectively. The inverse F~!
is given by

F0) = (vn — 0(vs ® Q).
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where Q, € V(0)¥ ® V(o) is the Casimir element, and § € Homc (V(’/T) ® V(o)Y, V(p))
is linearly extended to 6 : V(7m) @ V(o) @ V(o) — V(p) ® V(o) via 0(v; @ w) @ v,) :=
O(vy @ wY) @v,. It is straightforward to check that F and F'~! are indeed inverse of each
another.

Next, we need to check that F' and F~! is compatible with group actions. In fact, to
show that F restricts to a linear isomorphism F : Homp (7, p ® 0) — Homp (7 ® 0V, p),

it suffices to check F( Homp (7, p ® O')) C Homr(r ® oV, p) and F~! ( Homp (7 ® ¥, p)) C
Homp (7, p ® o). To see the first inclusion, suppose we have ¢ € Homr (7, p ® o), that is,
for all v € T,

(p@ o)) op=po(n(v). (8.19)

Then we need to prove

(p(0) © (F(9)) = (F() o ((r @ 0)(7)) (8.20)

for all v € I'. By the linearity of the maps on both sides of (8.20), it suffices to check their
evaluations at v, ® w,v for any v, € V(7) and wyv € V(o). By the definition of F(y),
the evaluation of the left hand side of (8.20) is

p(7) (woe (o (vr)). (8.21)

For the evaluation of the right hand side, we first recall the definition of dual representation
" (Y)wev := wev o o(y71). By the definition of F(y), we then simplify the evaluation of
the right hand side of (8.20) and get the expression

(wov 0 (v (e(m(y)v)), (8.22)

which is equal to

(wov 0 o(v7) ((p® o) (V) (2(vx))) (8.23)

by (8.19). In order to show that the expressions in (8.21) and (8.23) agree, we may assume
¢(vr) = v, ® v, for some v, € V(p) and v, € V(0), since all the maps involved are linear.
With further simplification under this assumption, we see that (8.21) and (8.23) agree,
and both are equal to

(10 (v0)) (p(7)0 ).

To show the second inclusion F‘l(Homp(ﬂ ® av,p)) C Homp(m, p ® o), we can choose

a basis {¢;} of V(o) and its dual basis {e)} of V(c¥), and write the Casimir element as
Q, =>,¢/ ®e¢;. If n € Homp(m ® 0V, p), that is, for all v € T,

(p() on=no ((x2")(7)), (8.24)
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then we need to show

(p@o)) o (F'm) = (F'(m) o (7(v)) (8.25)

for all v € T". Simplifying the evaluation at any v, € V(m) for both sides of (8.25) by
(8.24), in a similar way as for the first inclusion, we are reduced to show that

Zn((ﬂ(’v)vw) © (e 0o(y™) @ (0(7)e) = Zn((ﬂ(v)vw) @e) @ (8.26)

Let A be the matrix representing o () under the basis {¢;} (¢; as a column vector, and ¢,
as a row vector), then the left hand side of (8.26) can be expressed as a linear combination

> cun((m(7)vr) ® &) @ e,

with ¢;p = 3 Ari(A™Y)i; = (AA™Y); = O, where 0 is the Kronecker delta. This
expression completes the proof. [

Lemma 8.25. Let p be an arithmetic type for I, such that ker p has finite index in T.
Then we have [I's : T'wo(v)] < 00, where I'(v) := T', N Stab(v). Moreover, for any
v e V(p), we have

> (k) € Er(p)-

[V]€ oo (W)\T

Proof. Since [I" : ker p| < oo, we have [['s : I'so Nker p] < [I': ker p] < co. Furthermore,
ker p C Stab(v), hence I, Nker p C I'y, N Stab(v) = I'o(v), and therefore Iy : T (v)] <
[T : Too Nker p] < co. For the second claim, it suffices to find a vector w € V(p)r>, such
that

o (W)= Y. (W) (8.27)

[V]€T o \T (1€l o0 (0)\I

We write the right hand side of Equation (8.27) as a double sum

> (X k),

M€l [y]€l o0 (v)\l'o

and set
W= Z (v]k,p7")-
[v]€ o0 (W)\I'
It is then clear that w € V(p)'= and that Equation (8.27) is satisfied. ]

Lemma 8.26. Let A be an orbit of 7 and g = g(A) its girth. Then we have that g
divides N, and that g*> = 0 (mod N). In particular, we have that any integer coprime to g
is coprime to N as well, and the differential-like identity (1+ g)" = 1+ ng (mod N) which

yields that x(1 + ng) = (X(l + g))n for all integers n.
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Proof. Since c¢(A) | N, we have ¢(A) | ged(c(A)?, N). The identity g%ﬁf’m = N then

implies that g | N. For seeing the second fact, write

) c(A)? N

- ged(e(A)2, N) ged(c(A)?, N) N

9

The rest is clear. [
Lemma 8.27. Let A be an orbit of m and g = g(A) its girth. Then we have that

xX(1+g) =1
if and only if the conductor of x, which we denote by N*, divides g.

Proof. Since for any integer k, 1 + kg is coprime to g, by Lemma 8.26, it is coprime to
N as well. Let x* (mod N*) be the primitive character that induces y, we thus have that
X(1+ kg) = x*(1 + kg) for all integers k. If N* divides g, then x(1+g) = x*(1+g) = 1.
Conversely, if x(1 + g) = 1, then N* must divide g. In fact, on the one hand, for any
integer k, we have

V(L4 kg) = x(1+kg) = (x(1+9)) =1,

hence x* is induced by some character x’ (mod ged(g, N*)). On the other hand, x* is
primitive, therefore ged(g, N*) = N*, which implies that N* | g. n

Definition 8.28. Let GG; C G5 be a subgroup of finite index. We fix R to be a set of
representatives of G1\G» containing the identity element, and by 7 € R the representative
element of the coset containing an arbitrary element +. For any § € R and v € Ga, we
define the cocycle I by the equation Sy = Iz(y)B7v. Given a linear representation p over
C of G, we define the induced representation Indgf (p) over C of G5 by

V(Ind: (p) = V() @ CIR) and 1nd% () (1)(0 ® e3) == (p((1a(7)7)0) ® e

Let (-,-) be a scalar product on V(p), we define the induced scalar product of (-,-),
denoted by (-,-), on V(Indg?(p)) via the formula

(U® e,V ® eg) 1= 0q5(u,v),
where 6.. is the Kronecker delta.

Lemma 8.29. Let Gy C Gy be a subgroup of finite index. We fix R a set of representatives
of G1\ G2 containing the identity element. Recall Definition 8.28. If p is a unitary repre-
sentation of Gy with respect to a scalar product (-,-) on V(p), then IndZ?(p) is unitary
with respect to the induced scalar product (-,-) of (-,-).
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Proof. We have to show that (-, -) is invariant with respect to the action of G5 via Ind%? (p).
Since the induced scalar product (-,-) is bilinear, and the eg’s with 5 € R is a basis of
C[R], it suffices to check that for all o, 5 € R, u,v € V(p), and 7 € G, the following
identity holds:

(IndZ (p)(7) (1 ® e), IdZ (p) () (0 ® 5)) = (4 ® 00 @ e5). (8.28)

The right hand side of (8.28) is d,p(u,v) by Definition 8.28, where .. is the Kronecker
delta. The left hand side is, by Definition 8.28 again,

s (L) (L0770,
Observe that 6= z-=1 = da for any 7 € G,. Therefore, if o # [, then (8.28) holds, since
both the left and right hand side vanish. If o = 3, then (8.28) is equivalent to

(P((Lalr™ ) s p(Lalr™ )70 = (ws0),

which follows from the assumption that p is unitary. [

Definition 8.30. Let N be the positive integer fixed through this note. Denote by M, (Z)
the ring of 2 x 2 matrices with integer entries. Given two elements 71, v2 € My(Z), we say
that 71 = 72 (mod N) if and only if v — 79 € NMy(Z).

Lemma 8.31. Recall Definition 8.30, we have the following common arithmetic properties
modulo N. For any two elements v1,v, € T, if 1 = 72 (mod N), theny;* =75 (mod N).
For any four elements v1,ve, vy, Vo € Ma(Z), if 1 = v2 (mod N) and v} = 4 (mod N),
then v1+71 = 72475 (mod N) and 17, = 274 (mod N). For any two elements v1,7, € T,
Y1 = v, (mod N) if and only if y175* € T(N), and if v = v (mod N), then 77 = 3. If
furthermore 1,72 € To(N) and y1 = v2 (mod N), we have x(71) = x(72)-

Proof. We prove the first property. If 43 = (29) = 7o = (i,' Z’,) (mod N), then a =
a (modN), b =V (modN), ¢ = ¢ (modN) and d = d (mod N). Since 7,72 € T,
we have that ;' = (flc _ab) and v, ' = (flé, ’al,’l). Entry-wise congruence modulo N of

these two matrices implies that 47" = 75! (mod N). The rest of the arithmetic properties
is clear in that NMs(Z) is a two-sided ideal of the ring Ms(Z). As a corollary, for any
two elements 71,7 € I, 71 = ¥ (mod N) if and only if v175' = id (mod N), which is
equivalent to that ;7 * € T'(N). If 4, = 45 (mod N), then 717, * € T'(N) C I'y(N), hence

a’ b
c d

in particular d = d’ (mod N), so x(71) = x(72)- ]

71 = 72. If furthermore v, = (¢ %) 72 = ( € I'o(IV), since 71 = v, (mod N), we have

Lemma 8.32. Let p := Indll:O(N) (x) for a Dirichlet character x of modulus N. Then we
have

kerp= {7 €T 7= (52) (mod N) for some ¢ € Z, such that x(¢) =1}

In particular, T'(N) C ker(p), where I'(N) is the principal congruence subgroup of level N.
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Proof. For any v € I', we have that v € ker p if and only if

By T =B and x((Is(y)™") =1

for all € Ry. By Definition 1.3 this can be simplified to the following conditions:

BB~ € To(N) and x(By87") = 1 (8.29)

forall g €T.

For any v = (%) € ker p, we have to show that there is an integer e satisfying x(e) = 1,
such that v = (§9) (modN). Set 5 to be T = (§1) and S = (9 7'), respectively in
(8.29), we get that b = ¢ =0 (mod N) and x(d) = 1. Then we set 8 = (19) in (8.29), and
get further restriction that a = d (mod N). Let e be equal to the integer d, then we have
the desired condition.

Conversely, for any v € T, if there is an integer e, such that v = (§2%) (mod N) and
x(e) =1, then by Lemma 8.31 we have that 337 ' =3(§%)87'=(§2) (mod N), hence
BB~ € Ty(N). Also by Lemma 8.31 we have that x(3y57') = X(( 2)) = x(e) = 1.

In particular, we have that

o on

T(N) ={y€T:y=(}9) (modN)} C
{’yEF:ny(gg) (mod N) for some e € Z, such that X(e)zl}:kerp. ]

Remark 8.33. Tt is worthwhile to note that even if y is primitive, it still might not be the
case that ker(p) = I['(N) holds.'* Quadratic characters in general yield such examples.

Lemma 8.34. Letv; = (& 4,) andy2 = (& 4, ) be two elements inT'. If there is an integer
A coprime to N, such that co = Acy (mod N) and dy = Ady (mod N), then [y1] = [12] in
To(N\L.

Proof. First we reduce the proof to the case A = 1. In fact, given an integer A coprime
to N, we can always find two integers a and b, such that a\A — b/N = 1, hence the element
Yo = (&%) isin I'o(N). Replacing 1 by %071 = (e dy) (mod N), we can thus assume that
A=1

We treat the case A = 1 straightforwardly, where ¢y = ¢; (mod V) and dy = d; (mod N),
by the following multiplication formula:

-1 _ [* * dy *\ * AT
e = <Cl d1> (—CQ *>—<Cld2—62d1 *) _<0 *) (HlOdN)

Therefore, v175 ' € To(N), i.e. [y1] = [12]. "

1See Ex. 9.5, for instance.
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Lemma 8.35. The map

¢ : Lo(N\I' — PY(Z/N)
(e — [(c:d)].

where we denote the projection modulo N of an integer n by m, is well-defined, and a
bijection.

Proof. To see that the map is well-defined, we have to show that for any two elements

(2%) and (gf Z/,) in T, if there is an element vy € T'o(N), such that (‘g,' Zﬁ) =7 (‘;,/ 21),

then [(¢ : d')] = [(¢: d)]. In fact, since 9 € To(N), we have 9 = (§ %) (mod N) for some
integer A coprime to N. By Lemma 8.31, we then have

a b a b x x\ [(a b ok
(d d’) - <c d) - (o A) <c d) N </\c Ad) (mod V),
hence (¢, d’) = (A¢, Md), with A coprime to N. So [(¢ : d')] = [(¢: d)] in P}(Z/N) and the
map is well-defined.

To show that ¢ is surjective, given an element [(¢ : d)] € P}(Z/N), we have to find an
element v = (Zi Zi) € T, such that ¢([y]) = [(¢ : d)]. By the definition of ¢, it suffices
to find a pair of integers (c1,d;) with ged(cy,dy) = 1, such that [(¢7 : dy)] = [(¢ : d)].
First we find an arbitrary lift of (¢,d) in Z?, say (co,dp), and set A := ged(cp, dp). Since
(¢:d) € PL(Z/N), we have gcd(A\, N) = 1. Then we set (c1,d;) to be (A\~teg, A71dy), thus
we have ged(cy,dp) = 1 and that

[(e1: d0)]) = [V Teo - A o)) = [(A e : A do)] = [(@0 : do)] = [(e: ).

To see that ¢ is injective, suppose two cosets [y1] and [y2] are sent to the same image by

¢, we have to show that these two cosets are equal. Assume explicitly that v, = (‘;11 Zi)

and 7, = (‘éj Zz), then by the definition of ¢ we have that [(e7 : d1)] = [(&z : dy)],
which implies that there is an integer A coprime to N, such that c; = A¢; (mod N) and
dy = Ad; (mod N). Apply Lemma 8.34 to v, and v, we conclude that [y] = [y2]. ]

Lemma 8.36. Let m,n be two positive integers such that m divides n. Then the natural
map

©:ZL/n — Z/m
a — a (modm)

restricts to a surjective group homomorphism

™ (Zfn)* — (Z/m)*
a — a (modm)

—68 —



— 8 Auxiliary Statements J. Xia

Proof. The group homomorphism is clearly well-defined. To see the surjectivity of ™, we
reduce it to the case where n = p® and m = p/ for some prime number p and non-negative
integers f < e. This is a trivial case, since for any integer [ which is coprime with m, it is
automatically coprime with n.

To see the general case, let n = [[;_, p;* and m = [];_, pzfi where f; < e; be the prime-
factorization of n and m, respectively. As a corollary of the Chinese Remainder Theorem,
we have the decomposition

S S
X

@/n)* =@ (2/p:)" and Z/m)* =D (2/p])".

i=1 i=1

For each component (Z/p{*)* of (Z/n)™, we define a homomorphism

o (2D ) — @ /pf)
a — a (mod p;7),

and our task is to reduce the surjectivity of ¢ to that of each ;. To do this, first re-
call the general fact that the family of groups {Z/n n € Zzl} indexed by the di-
rected poset Zs; with respect to the division relation'®, together with the family of group
homomorphisms f,,,, : Z/n — Z/m for all m|n, defined by f,,(a) == a (modm),
constitutes an inverse system over Zs;. In particular, for any a € (Z/n)*, under the
identification of (Z/n)* with @:_,(Z/p{")* and (Z/m)* with @5_,(Z/p;/)”, we have that
pr;(p*(a)) = ¢, (pr;(a)) for each i, i.e. p* = ®3_,¢;*. Therefore, if each ¢;* is surjective,
so is >, thus the general case is reduced to the trivial case discussed at the beginning. m

Lemma 8.37. Every element v = (¢5%) in a given coset in To(N)\I' has the same value

in this coset.

Qo
—

of ged(e, N). Moreover, this value is equal to ¢ for some element 4 = (‘Z

Proof. For the first claim, we have to show that for any element v = (¢%) in I" and any

element 7y in To(NV), if vy = (‘cl,/ g’,), then ged(¢’, N) = ged(e, N). Suppose 7o has the
shape (} }) for some integer A coprime to N. Then by Lemma 8.31,

a v _(x *\[a b\ [x x
<c’ d'>:707: (o )\> <c d) _<)\c Ad) (mod V),

hence ¢ = A¢ (mod N) and we have ged(c¢', N) = ged(Ae, N) = ged(c, N).

Set ¢ to be ged(c, N). To show the second claim, we will construct an element 4 € I' in
the shape of (; %), such that [§] = [v] in To(N)\I'. First we observe that it suffices to find
an integer A coprime to N, such that ¢ = Ac (mod N). In fact, with such a A, we can pass
from 7 to 7. Set d := Ad. Since ¢ is a factor of N, it is coprime with ); and since ¢ is also

a factor of ¢, it is coprime with d. Therefore ged(é,d) = 1, and we thus find an element
A= (‘C‘ Z) e I'. Apply Lemma 8.34 to v = (25) and ¥ = (3, xy), we see that [§] = [7].

15i.e. m < n in the index poset if and only if m | n as integers.
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In order to find an integer A coprime to N, such that ¢ = Ac (mod N), we take the
following two steps. First, since ¢ = ged(c, N), we have ged(, %) = 1, hence there is an
integer \ coprime to %, such that 5\5 =1 (mod %) Second, by applying Lemma 8.36 to
the case m = & and n = N, we find an integer A coprime to N, such that A = A (mod ).

So we have \§ = 5\% = 1 (mod %) Multiplying both sides by ¢, we get Ac = ¢ (mod N). m

Remark 8.38. To illustrate the process of finding such an element, we refer the reader to
Ex. 9.6.

Lemma 8.39. Let v € I' be an arbitrary element, then X(Iid(fy)) can be computed explic-
itly based on Definition 4.5 as follows. Let (co,dy) be the standard representative of [v],
i.e. the bottom row of 7, and (c,d) the bottom row of ~y, then there is an integer \, unique
modulo N, such that ¢ = A¢g (mod N) and d = Ady (mod N). Furthermore, it is coprime
to N, and we have that X(Iid(V)) = x(A\). In particular, the map v — X(Iid(y)) defined
on I' factors through the projection onto the bottom row.

Proof. By Lemma 8.34, the bottom row (c¢,d) of 7 determines [y], hence its standard
representative (co, dy), so the corollary is clear from the explicit computation.

To show the validity of such computation which only involves the bottom rows, first
we recall that (co,dp) is the bottom row of 7. Apply the part of Lemma 8.35 that ¢ is
well-defined, to two elements v and 7 in the same coset [y], we see that there is an integer
A coprime to N, such that ¢ = A¢y (mod V) and d = Ady (mod N). To see that this integer
is actually unique modulo N, given another integer p satisfying the same property, we
have that (u — A)cg = (u— N)dp = 0 (mod N). Since ged(co, do) = 1, we can find z,y € Z,
such that zcy + ydy = 1. Therefore p — A = (. — A)(zco + ydo) = 0 (mod N).

With the bottom row being fixed as (cg, dy), we write 7 as (ao bo ), it then follows that

co do

-1
. 1 % ) [ap bo o (* % do —bo
== () -9 ()
* * _[* * o (x ox
- <* aod—boc> - <* /\aodo—)\boco> - <* >\> (mod )

hence we have that X(Iid(fy)) = x(A). m

Lemma 8.40. Let 7 be the action on the representative set Ry fized after Definition 4.5,
arising from the natural right action of ', on To(N)\I'. Let A be an arbitrary orbit of m,

* 3k

then every element 6 = (% %) in A has the same value of c.

Proof. For an arbitrary element 6 = (}5) € A C Ry, we need to show that if 3 is another

element in A, that is, 8 = &7 for some element v € 'y, then 3 is in the shape of (% %).
On the one hand, viewing § as an arbitrary element in I', by Definition 4.5, we have

c([8]) = ged(c, N). On the other hand, since § € Ry, from the exact way that Ry is fixed, we
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know that the bottom row of d is equal to the standard representative of [0]. In particular,
their first entries are equal, i.e. ¢ = ¢([d]). Therefore, we have that ged(c, N) = c.

Since v € 'y, 0 is in the shape of (} ), hence the standard representative of the coset
[07] is in the shape of (gcd(c, N), >x<) = (¢, ). Since each element in Ry has its bottom
row being equal to the standard representative of its coset, 3 = 7y € Ry has to be in the
shape of (}3). n

Lemma 8.41. Let A be an orbit of the action m : Rg X I'one —> Ry arising from the
natural action To(N)\I' X Ty — To(N)\I', with g = g(A) its girth and ¢ := ¢(A). Let

M = m and 0 € A be an arbitrary element. Then for every integer n, there are two

integers A, coprime to N and p, coprime to (%), such that for any integer k,

X(Iid (5T”*’“M)> = XA + pakg). (8.30)

Proof. By Lemma 8.40, 6 € A has the bottom row in the shape of (¢, x), which we denote by
(¢,d). For each integer n, we denote by (¢, d,) the bottom row of 67™. Apply Lemma 8.39
to v = 6T™, whose bottom row is (¢, cn + d), we get an integer \,, coprime to N, such that

Anc€ = ¢ (mod N), (8.31)
Andy, = cn+d (mod N). (8.32)

Recall from Proposition 4.8 that |A| = M, and from Definition 4.11 that ¢ := ¢(A)|A|, we
get g =cM.

By the claim in Proposition 4.8 that 67" depends only on n (mod N), we have §T"++M =
0T™, whose bottom rows are equal to (c, d,,) for any integer k. We also have that the bottom
row of 6T FM ig (c, cn+ kM) + d). Now apply Lemma 8.39 to v = §7"*M_ In order to

find an integer p, coprime to % such that (8.30) holds, it suffices to solve the equations
determined by v, in Lemma 8.39 for A = \,, + u,,kg, namely we have to solve the following
equations for pu, coprime to %:

(An + pnkg)e = ¢ (mod N), (8.33)
(An + pnkg)d, = c(n+ kM) + d (mod N). (8.34)
Since gc = d(cfg 7V is divided by N, and that A, satisfies (8.31), for any integers u,

and k, \, + pnkg always satisfies (8.33). Since )\, satisfies (8.32), to find a p, such that
An+ lnkg solves (8.34), it suffices to solve the equation (u,kg)d, = ckM = kg (mod N) for
fn, which is equivalent to p,d,k = k (mod (%)) Note that ged(c, d,) = 1, we have thus
ged(d,, (%)) = ged(d,, %Q’N)) = 1, hence there is an integer p, coprime to (%), such
that u,d, =1 (mod (%)), which implies u,d,k = k (mod (%)) For such p,, A\, + pnkg
satisfies both (8.33) and (8.34) for any integer k. m
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Lemma 8.42. Let g be an integer which divides N. Let X\ be an integer coprime to %,
and L a multiple of (%), then

2_: X(l + Akg) = Z_f x(l + kg)- (8.35)

Proof. Since L is a multiple of (%), we write L = l(%) for some integer [. It is then
clear that the multiset {k (mod %) :0 <k <L—1}is equal to [ copies of Z/(%), with
each copy invariant under the multiplication by \ € (Z / (%)) - Therefore, the multiset

{\k (mod%) :0<k<L-—1}is also [ copies of Z/(%), hence equal to {k (mod %) 10 <
k < L —1}. So we have an identity of multisets

{1+)\kg (modN):OSkSL—l}:{l—l—kg (modN):ng;gL—l},
which yields (8.35) as desired. m
Lemma 8.43. Let A be an orbit of the action ™ : Rg X I'ee —> Rq arising from the
natural action To(N)\I' x I'e — To(N)\I', with g = g(A) its girth and ¢ := ¢(A). Let

M = m and § € A be an arbitrary element. Then for each n € {0,--- M — 1},
there is some integer X\, coprime to N, such that

MZ: X([id (5T"+W)) — (M) X_j (x1+9)". (8.36)

In particular, for alln € {0,--- , M — 1} we have that

N_q

3 xR ) £ 0.

k=0
if and only if

N
L

> (x(1+9)" #o0.

k=0

Proof. Given an integer n € {0,---, M — 1}, to which we apply Lemma 8.41, there are
two integers A, coprime to N and p, coprime to (%), such that for any integer k,

X(Iid (5T”+W)) — O + Jinkg). (8.37)
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Since ged(Ap, N) = 1, there is an integer v, coprime to N, such that A\,v, =1 (mod N).
Therefore we have

N1 N1
> x (Mt nkg) = x(Aa) Do x(1+ pnvnkg), (8.38)
k=0 k=0

Recall that p, is coprime with % and v, is coprime to N, hence pu,v, is coprime to %.
Since (ﬂ> is a multiple of (%), by Lemma 8.42 with A = p,v, and L = %, we have that

M

N _q N _q

M M

> x(1+ pvmkg) = > x(1+ k). (8.39)

k=0 k=0
Furthermore, by Lemma 8.26 we have that for any integer k,

k
X(l + kg) = (X(l + g)) : (8.40)

Combining (8.37), (8.38), (8.39), and (8.40) yields (8.36) as desired. ]

Lemma 8.44. Let N > 3 be an integer, then for any A € Ly, we have A # —\.

Proof. For a positive integer N, it is clear that there exists A € Ly such that A = — ), if
and only if NV is an even integer and ged(NN/2, N) = 1. But this condition is satisfied only
when N = 2. [

Lemma 8.45. Let k € Z>5 and z € §), then we have

1 oo
— C k—1
%7(24—71)’“ knz::ln e(nz),

where C}, := %

Remark 8.46. This is known as the Lipschitz’s formula, and proofs inspired by Euler can
be found for example on page 16 of [Bru+08] and page 49 of [KK07]. For a generalization
of this classical summation formula, see [PP01]. Here we present a proof based on contour
integral and the Poisson summation formula.

Proof. For fixed k € Z>5 and z € 9, let f: R — C be the function

1
t) = —.
f®) (z+ )k
Clearly f is a function of moderate decrease, i.e., there is a constant C' such that f(t) <

Hctg. We then compute its Fourier transform

[e.9]

fe)y= [ fipe(-¢nar,

—0o0
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by applying the residue formula to the meromorphic function g¢(¢) = f(t)e(—£C) =
ﬁe(—f{) and a certain contour.

If £ € R<g, we take the contour C for g¢(¢) to be the union of the line segment [—R, R]
and the semicircle centered at the origin of radius R in the upper half plane $, with the
positive orientation, for a positive real number R. Note that the only pole of g¢(() is —z,
which lies in the lower half plane, g¢({) is thus holomorphic in an open set containing both
the contour C'r and its interior, hence

|, a0 =o.

Since the integral of g¢(¢) on the circle of radius R is bounded above by O(R~*=1) it
tends to 0 when R — oo. Therefore, we obtain

F(€) =0, for all £ € Ry, (8.41)

If & € Ry, we take the contour Cpr for g¢(¢) to be the union of the line segment
[—R, R] and the semicircle centered at the origin of radius R in the lower half plane ),
with the negative orientation (clockwise), for a positive real number R. Note that g¢(() is
holomorphic in an open set containing both the contour C'r and its interior, except at the
pole —z of order k. By the residue formula (negative orientation), we get

[ 9(©)d¢ = —2mi ves g

where the residue at the pole of order £ is given by the formula

1 ‘ dk—l k
res_.ge = )i hmz kT (€ +2)"g¢(¢)
_ ot

(k=1

Since the integral of g¢(¢) on the circle of radius R is bounded above by O(R~*=1) it
tends to 0 when R — oco. Therefore we obtain

F(&) = CpeFe(2), for all € € Ray,. (8.42)

From Equation 8.41 and Equation 8.42, it is now clear that f is also of moderate decrease.
We apply the Poisson Summation formula to f and insert Equation 8.41 and Equation 8.42
to conclude as follows.

PN srnr:

nez

=> fn) =3 f(n) =G, inkle(nz). -

(Z +n) nez nez
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Lemma 8.47. Let k € Z>1, n,N € Z such that 1 < n < N. Then we have the following
equation of the Hurwitz zeta function.

¢(1—k,n/N) = W d; cos (km/2 = 2xdn /N )C(k, d/N).

Proof. This is a special case of the functional equation of Hurwitz zeta function, when the
usual complex variable s is taken as an integer. See Apostol theorem 12.8, page 261, with
replacement of variables r ~ d, k ~» N, s ~» k, and h ~» n. Finally, since k € Z>;, we
can insert I'(k) = (k — 1)! into the formula. n

Lemma 8.48. For each k € Z>,, we have

B
(ko) = -2
k
Proof. See Theorem 12.13 on page 264 in [Apo76| , with n ~ k — 1 € Z>( here. m

9 Examples

Ezample 9.1. Let G = S3 and X = {1,2,3}. Let G act on X naturally, and p the
corresponding permutation representation. For an element g = (1,3,2) € G, we have
p(g)e; = eg(;). Therefore, the column representation of permutation matrices of p(g) under
the standard basis {ey, ¢, e3} attached to X is

0 01
1 00
010

FExample 9.2. To better illustrate how to discover the size of the orbit, first we give a
very generic case, that is, when ¢(A) is coprime to N. So we have actually ¢(A) =1
For convenience, we use the standard representatives to name the elements in Ry. Let
N = 9 and A the orbit containing (1,0). Then A = {(1,n) 0 < n< 8} has size
9= % This example works for a general integer N, namely instead we will have in general
A={(,n):0<n<N-1}.

Ezxample 9.3. We will see more tricky cases following Ex. 9.2, when ¢(A) is bigger than 1.
Let N = 18 = 2- 3% and A be the orbit containing (6, 1), then we see that actually A
contains only this element (6, 1), in that (6,7) and (6, 13) are not standard representatives,
and they correspond to the same standard representative (6, 1) by multiplying 7 (mod 18)
consecutively. On the other hands, if we consider another close example where N = 18
and A is the orbit containing (3,1), then we see that actually A contains two elements
(3,1) and (3,4), and we have 2 = ;72. Yet in another example where N = 18 and A is the
orbit containing (2, 1), we see that A contains nine elements (2,2n + 1), where 0 <n < 8
and we have 9 = %. This phenomenon suggests that the size of orbits is rather reduced
by the square of ¢(A), where one needs to take ged with N.
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Example 9.4. We take the same material as in Example 9.3. This time, instead of focusing
on different elements in the same orbits, we take a different point of view, by looking at
the repetition of the same element.

If ¢(A) = 1, there is actually no repetition of elements (mod18), i.e. (1,n) are all
different elements for 0 < n < 17.

When ¢(A) = 2, we also get no repetition (mod 18), but this time things are a bit dif-
ferent: the orbit A contains only 9 elements, literally speaking there is a double repetition
(mod 18), for instance (2,1) = (2,19). But this was somehow neglected due to the fact
that ¢(A)|A| =0 (mod 18) has hidden the effect of repetition.

Now consider the case where ¢(A) = 3, we can directly see the effect of repetition
(mod 18), as in (3,1) = (3,7) = (3,13). Furthermore, we see that the leap 3 = ¢(A) in
the second component between two consecutive elements, under the action by T := (} 1),
with 2 = |A] steps of the action by T, leads to the difference 6 = ¢(A)|A| between 1 and
7, namely the period of repetition. Moreover we also see that from 7 to 13, the factor
(mod 18) is still 7, and in general one has 7" = (1 + 6)" = 1 + 6n (mod 18).

Carrying on with this example, we see that when ¢(A) = 6, we have that the orbit A has
only one element (6, 1), and the period of repetition should be also 6 since (6,1) = (6, 7).
This comes from 6 = 6 - 1 = ¢(A)|A]. To conclude, it provides us with some clue that
¢(A)|A| might be important to measure the period and 1+ ¢(A)|A| might be important
as the multiplicative factor.

After doing more similar examples with a choice of Ry that is not the one fixed by the
standard representatives, we can see that this notion turns out to be intrinsic.

Ezample 9.5. Let N = 8 and x(n) := (—1)l%) for all odd integers n and x(n) := 0
for all even integers n defines a primitive Dirichlet character y (mod8). Consider an
element v = (~2' *) which is not in the principal congruence subgroup I'(8). However,
simple computation reveals that v € ker p, where p = Ind?o(g)(x). In general, a quadratic
character, e.g. the quadratic residue symbol yields such examples. It is worthwhile to

mention that quadratic characters in general yield such examples.

Ezxample 9.6. Let N = 36 and v = (57 3) an element in I". We know that the ged of 36
and 27 is 9, so there should be an element v = (% }) € I'0(36), such that voy = (§5). To
find out A, we first note that %6 =4 and % = 3 are coprime and 3-3 =1 (mod4). But 3
is not coprime to 36, so we can add a multiple of 4 to 3, so that it becomes coprime to 36.
For example, we can take A to be 344 = 7 and find out the rest part to construct such a

matrix 7.

FExample 9.7. We give an explicit isomorphism to illustrate Proposition 5.5. Let N, [ be
positive integers, then we have

Ei(py) = Hom (L, E[py] @ px)
fr— (1= f).
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Ezample 9.8. We look at the case where N’ = 6. For A :=({ %) and B :=(29), they are
both in Agy. Let 71 := (1) and 5 := (_11 _32>, we have v; € I' for i = 1,2, and that

A =1 B.

10 Appendices

We include here two notes that the author composed before carrying out the project on
vector-valued Eisenstein series. These notes serve as archives about some of the difficul-
ties the author once encountered, and a beginner’s path to the vector-valued Eisenstein
series. In particular, in writing these notes, two typos from each of the two classic books,
[IK04] ( resp. [Bru+08]), were found and corrected at Equation (10.29) (resp. below Equa-
tion (10.37)) independently by the author, which are important for other applications.

10.1 A: Fourier expansions of real analytic Eisenstein series This note is to
investigate some classical aspects of real analytic Eisenstein series, which serves as part
of the preparation for the research project on vector-valued real analytic Eisenstein series.
Let I' = PSLy(Z) be the full modular group and I', = {j:((l) ’f)|n € Z} the stabilizer
of the cusp point seen as a subgroup of I'. In this manuscript, we denote the complex
variable in the upper half plane by 7, Re(7) by z and Im(7) by y and hence 7 = x + iy
by convention. Note that there are at least two different definitions for the (real analytic)
Eisenstein series Fy(T,s).

From “average action” (or, Reynolds operator) point of view which takes a proper average
through group action on the real analytic function Im(7)*, we can define

Ei(t,s) = Z Im(7)*%|xy
YEL\I
= > Im(yr)¥(er +d)7"
YET o\ (10.1)
1 y°
P 2 (e + d)¥|er + d|?s

c,d€Z
(e,d)=1

as our definition. It is clear that this sum is absolutely convergent if the condition
2Re(s) + k > 2. (10.2)

is satisfied. Since the number of pairs (¢,d) with N < |er +d| < N +1is O(N) as N —
00, up to a constant multiple the series is bounded above by S.%7_, N~(Re(®)+k=1) "hence
absolute convergent and it is the absolute convergence that guarantees the modularity of
the sum. Since there are no modular forms of odd weights on the full modular group, we
can thus assume that in this manuscript,

k is an even integer satisfying k > 2 — 2Re(s). (10.3)
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The Eisenstein series from the “function of lattice point of view” is defined as

1 y°®
G == E ) 10.4
#(75) 2~ (m7+n)kmr 4 n|? (10-4)
(m,n)#(0,0)

which can be related to Ey(7,s) via G(7,s) = ((2s + k)Eg(7,s). Separating the terms
corresponding to m = 0 for the remaining ones, we find that G(7, s) is equal to

C(2s + k)y°
1)k/2 SZm_2S By Z( —i(z+r/m)— in)isik(y—i-i(x—l—r/m)+in)7s.

re€Z/mneZ

(10.5)

where x and y are the real part and imaginary part of 7 respectively, as fixed notations
from the beginning of this section.

Now we are in position to compute the Fourier expansion of real analytic Eisenstein
series. First of all, we observe that G(7, s) is 1-periodic with respect to 7. In particular,
it has a Fourier expansion of the form

Gi(t,s) =D c(n,y) e(nx)

nez

for specific functions ¢(n,y), where e(z) := exp(2mix) for a real number x by convention.
We compute it by applying the Poisson summation formula to the sum

> (y —i(z+r/m)— m)_s_k(y +i(x 4+ r/m)+ m)

neL

—S

Specifically, we set

fr(t) = (y —i(z+r/m)— it) =t (y +i(x +1/m) + it) - (10.6)

For each r, f,(t) is square integrable on R, since |f,.(¢)|? is bounded by O(t™*). Tts Fourier
transform is given by

£ (&) = / - fr(t)e 2™ dt.

Replacing t + x + r/m in the integrand by a new dumb variable ¢, it is equal to

e(f(x—i—r/m)) [ @ity e — iy e (10.7)
with
b=c~y, et sz—;k’ p~ 27m€
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so that if € # 0, formula 3.384.9.6 of [GRO7] allows us to evaluate this integral. The
conditions to apply this formula are satisfied:

Re(b) = Re(c) =y > 0, since 7 € H; Re(p + v) > 1, due to Condition (10.2).

We thus obtain explicit formula for fr (€) and in particular when £ = [ is an integer, we
have

/2 (27.‘.l)s+k/271

Jott) = (1t -+ rm) (2m(20)

Wk/2,1/2—s—k/2(47le))

s+k/2 (108)
= (MySk/le+k/21Wk/271/2_5_k/2(47le)e(lr/m)>e(la:)
for positive integer [ and
R —97l s+k/2—1
fr() = e(l(m + r/m)) <27r(2y)_8_k/2<r)(8)Wk/z,l/st/Q(—47le)>
i (109)
= (T W o mllyhetin /) )elie)
for negative integer [.
Therefore the Poisson summation formula guarantees that
> (y—iletr/m) —in) " (y+iletr/m)+in) = X i) = 3 f00)
nez nez leZ
(0) + Tk Y (et (el fm) i)
= f(0)+ —y°~ (ls T W21 2—s—k2(4mly)e(lr /m )e lx
(s + k) 172 /21 /
etk k/2 k/2—1
+ T'(s) y > (MSJr /2= W—k/2,1/2—s—k/2(47”|y)e(l7’/m)>e(l$>~
IGZS—I

We insert this into (10.5), and isolate the Fourier coefficient ¢(l,y) associated with e(lx).
For positive integer [, we obtain

C(l,y) k:/2 s Z m—2s k Z

s—l—k) _S_k/2l5+k/2_lWk/2,1/2fsfk/2(47?5?/)@([7’/777/)

reZ/m
2778+k/2y7 /2 +k/2-1 —~ 2k
=(-1) WZS Wij2.1/2—s—kja(dmly) > m= 7% >~ e(lr/m)
m=1 reZ/m
,n_s—‘rk/Qy—k/Q s _ o0 o
= (‘Ukmml TR 1o s—ks2(ATly) S m T (mdy)
m=1
,n.s-i-k/Q —k/2
= (-1) F(S_Ek)Wk/2,1/2—s—k/2(47le)ls+k/210123k(l)
ﬂ.s-i-k/? —k/2
(=1) 2T(8i/k‘)W’“/2,s+k/2—1/2(4ﬂy)l8k/2<72s+k1(5),

(10.10)
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where the last step is because the Whittacker function W, , is an even function in u. For
negative integer [, similary we obtain

,ﬂ.erk/Q —k/2 L
clly) = (1) 5 Woppasiga (il o (1) (10.10)

Finally we are to compute the [ = 0-th Fourier coefficient ¢(0,y). From (10.5) we find
that it is equal to

o0

C2s+ Ry + (~DY% 3 m >t 3 (). (10.12)

m=1 re€Z/m

To this end, we have to evaluate f,(0). From (10.7) we find that

£:(0) = / b (y + it)~5(y —it) "> *dt

—0o0

is independent of r. We denote this constant by Ix(s) and the [ = 0-th Fourier coefficient
¢(0,y) is then equal to

C(25 + E)y® + (—1)*2¢(2s + k — 1)y*I(s). (10.13)

When k = 0, we can simply interpret the integral Io(s) in terms of the Beta function. We
have

Io(s) = [ O:o(yz + )t

After changing the variable ¢ to u = (1 + ;—22)_1 we can transform the integral into

1-2 bos -1
Y S/ w2 (1 —u) 2du,
0

which is by definition of the Beta function equal to y'™2*B(s — ,1). Recall the relation
between Beta and Gamma function, we have

D(s - 1) (10.14)

— ﬁyl—Qs F(S)Q )

For the general case when k € Z, the strategy is to apply the partial derivative operator
0y to
o

Li(s) = / (y +it)~(y — it)~*dL.

—00

—80 —



— 10 Appendices J. Xia

Since both @y((y—i—it)_s(y—it)_s_k) and (y+it)~*(y—it) >~ are continuous in t and y ev-
erywhere, we can interchange d, and the integration. Therefore after a simple computation
we get a recurrence relation between I 1, I and I for all the integers k:

(9ylk(5) = —slk_l(s + 1) — (S -+ k))[k+1(8), (1015)

from which we can read two useful formulas for the case £k < —1 and k > 0 respectively.

If £ < —1, from Condition (10.2) we know that s # 1, so that it is valid to write (10.15)
with

1

Ik_1(8> = —8_1<(9y]k(5 - 1) + (S + k— 1)Ik+1(8 — 1)) for k € Zg_l. (1016)

If £ > 0, from Condition (10.2) we know that s # —k, hence it is valid to write (10.15)
with

1

Iiia1(s) = _s,—{—k:(ayjk(s) + slp—1(s + 1)) for k € Z>o. (10.17)

We observe that if we could get 1_1(s) explicitly, together with Formula (10.14) for Iy(s)

we can obtain Ij(s) for all negative integers k, by induction through Formula (10.16); and

similarly through Formula (10.17), we can obtain Ix(s) for all positive integers k.
The problem is now reduced to I_;(s), but this can be evaluated directly. We have that

Ty(s) = / Ty i)ty — it)

—ylo(s) —i [ (4 + )t
—o0 (10.18)
= ylo(s)
I(s— 1)

_ 2—2s 2
- \/Ey F(S) )

since the integrand (y? + t?)75t is an odd function in ¢. Hence the remaining task is to
clear up the results by induction.

From Formula (10.16), Expression (10.18) and Expression (10.14) for /_; and Iy, respec-
tively, we find by induction that

k/2—1

Ii(s) = ﬁy%’““( 1;[k (s +j)> Lls + ];/é)_ 1/2) for k= —2,—4,--- and  (10.19)
k/2—3/2 s
Ii(s) = ﬁy‘ZS_kH( U (s ﬂ'))w for k= —1,-3,---, (10.20)

where we set the product equal to 1 if k > k/2 —1 or k > k/2 — 3/2, respectively.

—81 —



— 10 Appendices J. Xia

On the other hand, from Formula (10.17), Expression (10.14) and Expression (10.18)
for Iy and I_4 respectively, we find by induction that

k/2—1 s _
Ii(s) = ﬁy25k+l< r_[o (s +j)> I( Jl:(k;/i k)1/2) for k =2,4,--- and (10.21)
L(s) = V7 (” NTls+k/2) .
k(s Y 1:[0 (s —|—j)> TG k) for k=1,3,---, (10.22)

with the convention of defining the empty product to be 1 as mentioned above. In fact,
with this convention we even have that (10.19) and (10.21) coincide at k = 0 with Ex-
pression (10.14). Now, we only need the results for an even integer k, due to Assumption
(10.3). Inserting (10.19) and (10.21), respectively, into (10.13), we obtain the 0-th Fourier
coefficient ¢(0,y). Moreover, we can simplify and also unify the formulas for both positive
and negative k by the following classic identities for Gamma functions:

Rl T(s+k/2) ol T(s+k/2)
jl;[k <S+j)77F(S—|—]€) 1fk§0,j1;[0(3+j)r(8) if k>0, (10.23)

and T'(s + k/2 — 1/2)['(s + k/2) = 22727k /7T'(2s + k — 1).

where the last identity follows directly from the Legendre duplication formula for Gamma
functions.

To summarize the computation in this section, we have the following proposition for the
Fourier expansion of G(7,s).

Proposition 10.1. The Fourier expansion of Gi(7,s) is given by
Qkﬂ.s—i-k

ke
(=1) )

S (U sk (U)W ool (i)
ZEZS,l
e IT(2s+Ek—1)
s | [ 1\k/202—2s—k
+<g<2s+k>y B )

2k,ﬂ_s+k

I'(s+ k)

((2s+k — 1)y1_5_k)

+H(=1)M? > <l_8025+k—1 (D) (4rly) > Wisa sn /212 (47le>> e(lx)

lEZZl

for all even integers k, where v = Re(7) and y = Im(7).

10.2 B: Classical Eisenstein series for I'o(N) In this manuscript, we consider some
classical aspects of Eisenstein series on the congruence subgroup I'g(/N), especially those
twisted by a general Dirichlet character y mod N. We fix I', = {i((l) 7f)|n € Z} to be
the stabilizer of the cusp point at infinity. In general we have the notion of modular forms
on I'y(N) for a Dirichlet character x:
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Definition 10.2 (Modular Forms of level N). Let x be a Dirichlet character modulo
N. A holomorphic function f : $ — C is said to be a modular form of weight k£ for the
character x on I'g(N) if the following conditions (a) and (b) are satisfied:

(a) flexy(2) = f(z) for all y € I'y(N) and z € 9,
(b) flxy(2) = O(1) as z — ioco for all v € SLy(Z),

where f|;y : $ — Cis defined by

(flex)(2) = X(d)(cz + d) ™ f(72) (10.25)

and flry : $H — C defined by

(10.24)

(fliy)(2) = (cz +d)* f(72)

Remark 10.3. Since v = —id € I'y(NN), if we plug it in the condition (a) of (10.24) we find
a necessary condition for the existence of nonzero modular form of weight k£ and character
x on T'o(N):

x(=1) = (—=1)". (10.26)

Under Assumption (10.26), we investigate a very important class of modular forms,
namely Eisenstein series, of weight & and character x on I'g(IV), represented by the series
Ery = Xyeraaro) ey The idea of the construction of Eisenstein series and that
of Poincaré series is very natural and is very well illustrated in [Bru+08] that we take an
appropriate scale of averaging operation.

Definition 10.4 (Eisenstein series twisted by a Dirichlet character). Let & > 2
be a nautral number. Let y be a Dirichlet character modulo N satisfying (10.26). Then
the function series

Ek:,x = Z 1|k,x’7a
YEL s\ (V)

where f|;,7 is defined by the same formula as in (10.25), is absolutely convergent in the
whole upper half plane ), which we call the Eisenstein series of weight k£ twisted by the
character y.

In the next section on the computation of Fourier expansion of Eisenstein series, we will
see that actually all the Fourier coeffients of Ej, are nonzero, hence this construction of
averaging operation is nonzero.

10.2.1 Fourier expansion In this section we state the Fourier expansion of Eisenstein
series twisted by a Dirichlet character. We fix the notation e(z) = exp (2miz) as common in
analytic number theory and many other related mathematical topics. We adopt the basic
theory for L-functions and carry out our computation on a zero-free region of L-functions.
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Let £ > 2 be an integer. Let x(mod m) be a Dirichlet character satisfying (10.26).
Recall the definition of Eisenstein series Ej, from Def. 10.4, whose Fourier coefficients
are to be stated based on the following notations. We introduce the “analytic” factor ¢y
involved in the Fourier coefficients by the formula

Ck —27i)k
= ———, wh = — 10.27
Ch,x L) where ¢, = 1) ( )
and the “arithmetic” factor ay ,(n) for each n by
ag(n de Y7(x, %a), where 7(x, 1) = > x(b)e(ab/m). (10.28)
din beZ/m

Here 7(x,,) is called the Gauss sum associated with a Dirichlet character x and the ad-
ditive character ¢, (b) := e(ab/m). We are now in position to state the Fourier coefficients.

Proposition 10.5. Let k, x be as from the beginning of this section. The 0-th holomorphic
Fourier coefficient of Ej,(z) is 1, and for all positive integers n, the n-th coefficient is
equal to ¢, xarx(n), where ¢y, is given explicilty in (10.27) and aj(n) in (10.28).

Given y of modulus m from the beginning of this section, we denote by x* of modulus
m* the primitive character which induces x. We find that 7(x,1,) can be expressed in
terms of the classical Gauss sum 7(x*) = Yp-cz/m+ X (0*)e(b*/m*) by

v =7(X) Do dxF(a/d)u(m/dm”)x" (m/dm”) (10.29)

d|(a,m/m*)

Remark 10.6. Note that (10.29) differs from the one stated in the book [IK04] at Lemma
3.2 on page 48, which can be falsified with the example when x is the non-primitive
character mod 9 induced by the unique primitive character mod 3 and a = 3. In this case
the LHS of the formula given in the book is nonzero while the RHS of it is zero.

We now employ Formula (10.29) to write down explicitly the Fourier expansion of Ej ,
as a corollary of Proposition 10.5:

Corollary 10.7. Let k, x be as from the beginning of this section. Let x* of modulus m* be
the primitive character that induces x. Then, we have the Fourier expansion for Eisenstein
series By, as

Bin(2) = 1+ (07 Z(Zd’“ > (m Y (m i) Jl22),(10.30)

dln U(d,7%)

In particular, when x is a primitive chamcter, i.e. when x = x*, we have

Erxe(2) = 1+ (7 Z(Zd’“ L ) (n2), (10.31)

where the constant ¢, is given in (10.27).
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Finally we are led to the fact that Eisenstein series twisted by a Dirichlet character y is
an “old form”, i.e. Ej,(z) can be decomposed into a direct sum of one dimensional spaces
spanned by Ej .- (dz).

Proposition 10.8. Let k, x be as from the beginning of this section, then we have

Epp(2) = ), =
X d%f 2| Ag

%

B+ (d2), where ag = d*p(m/dm*)x*(m/dm*). (10.32)

Morever, these Ej,,(dz) are linearly independent over C.

We will prove it in the next section, but skip the part of linear independence, namely
the fact that it is actually a direct sum.

10.2.2 Proof of the old-new form relation This section was planned to be divided
into three parts, in order to prove the statements in Section 10.2.1, with each of them ded-
icated to deduce Fourier coefficients of Ej , from the definition and basic function theory,
(10.29) from the inclusion-exclusion principle, and Proposition 10.8 from Corollary 10.7.
For the main purpose of this manuscript, we now only provide the third part, namely
deduction of Proposition 10.8 from Corollary 10.7.

To prove Proposition 10.8, it suffices to show that the coefficient of e(nz) on both sides
are equal for all non-negative integers n. For n = 0 this is clear from the expressions in
(10.30) and (10.31) with the fact that

Qq

—_— =1
m m Q
d|W Zd‘m* d

For the general terms, note that the contribution of the coefficients of e(nz) on the RHS
of (10.32) only comes from those of Ej ,-(dz) where d is a divisor of n, and in terms of
expression (10.31) each contribution corresponds to the original coefficient of e(%z) instead
of e(nz). Therefore summing them together we obtain that the coefficient of e(nz) on the
RHS of (10.32) is equal to

W( S du(m/dm®)(m/dm?) sz—lx*(o). (10.33)
2l G N gy g
As to the coefficient of e(nz) on the LHS of (10.32), we simply copy that from (10.30),

which is

Ck’XT(X*)(Z drt > lx*(d/l)u(m/lm*)x*(m/lm*)). (10.34)
dn 1(d, 1)
Now the proof can be decomposed into two parts: first we show that
Ck,FT(F) —
S = k5T :
Zd\% ay kX (X )
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and second we show that

S dbalm /i )X (m fdm®) S 1 (1)

dl(n, %) g

=S Y e (d/Dpm /im* )X (m ).

dln 1(d, %)

(10.35)

For the first part, note that L(k,x) and L(k, x*) have no pole in our setting k£ > 2, hence
¢rx and ¢ 3= are nonzero and that

e mP L(k,x mF X (p mF x*(d
e e R (N (B DR WIS
T

Ckv? m*k L(k7 X*) m p prime p

plo%
m >*( m
dm* X dm

For the second part, we note that on the RHS of (10.35) any pair of positive integers (d, 1)
appears in the double sum if and only if d = [h for some positive integer h, such that
I|(n, %) and that k|7, hence this double sum can also be written as

S i N () S () = >t () () DN

= 3 (o) v @ = 5

m
dl =

*) = Z q-
d| -

which is the same as the LHS of (10.35), since the only difference between them are symbols
of dummy variables in the same double sum. We are done with the second part of the
proof, hence conclude Proposition 10.8.

10.2.3 Numerical falsification On page 17 of [Bru+08], it is mentioned that if y is a
non-trivial Dirichlet character and k a positive integer with x(—1) = (—1)*, then there is
an Eisenstein series having the Fourier expansion

Gy (T) = () + Z (ZX d)d*~ 1) 7), where ¢ (x) = ;L(l — k., x). (10.36)
d|n

satisfying the modularity condition

at +b a b
Gk,X(CT n d) = x(a)(ct + d)*Gy, () for any <c d) € Io(NV). (10.37)

In this section we provide a numerical evidence to falsify (10.37) and point out that if
one changes x(a) into y(a) = x(d) in(10.37) , then it coincides with the results we predict,
and is also veryfied by the computational evidence.

The example we take as a computational evidence here is the special case when N =5,
k = 5, the primitive character x mod 5 defined by x(2) = 7 which satisfies Condition
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(10.26). Moreover, we compute for a special point in the upper halp plane, 7 = i with
(a,b,c,d) = (2,1,5,3). The output of the following Julia code has two terms: the first
being relative error (i.e. |LHS-RHS| divided by LHS) of (10.37), and the second that of
its modified version replaced by X(a). It turns out from the computation that the relative
error of (10.37) is close to 2 while that of the modified version is close to 0 up to an error
of scale 1071°. Note that the numerical issue for the variable tauone in the code is a bit
tricky: it turns out that if we take the precision variable “prec” to be from 1000 to 20000
and the result is very close. However, if we use “//” instead of the usual “/” in Julia for
umerical division, the result turns to be much more accurate: for prec 1000 we get error
scale 10~™ and for prec 10000 we obtain 107146,

import Base.e
using Nemo

divisors(a::Int) = map(Int, divisors(ZZ(a)))

function divisors(a::fmpz)
iszero(a) && return []

divs = [one(ZZ)]
isone(a) && return divs

for (p,e) in factor(abs(a))
p = fmpz(p)
ndivs = deepcopy(divs)
for i = 1:e
map! ((d) -> p*xd, ndivs, ndivs)
append! (divs, ndivs)
end
end

return divs
end

CC = ComplexField(500)
ee(tau) = exppii(2*CC(tau))

function chiO(n)
if n% 5 ==
return O
elseif n % 5 == 1
return 1
elseif n % 5 == 2
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return onei(CC)
elseif n % 5 ==
return (-1)*onei(CC)
elseif n % 5 ==
return -1
end
end

sigmachi(n) = sum(d~4*chiO(d) for d in divisors(n))

# the following variable ‘‘a0’’ is the constant Fourier coefficient
which is

# equal to 1/2 L(1-k, chi) in the book’s formula. Note that such

value of

# L-function can be computed through a finite sum of Hurwitz zeta
function.

function eisenstein(tau,prec)
a0 = (574)//2 * (zeta(CC(-4), CC(1//5)) + zeta(CC(-4), CC(2//5))
* onei(CC)
- zeta(CC(-4), CC(3//5)) * onei(CC) - zeta(CC(-4), CC(4//5)))
return CC(a0) + sum(sigmachi(n)* ee(n*tau) for n in 1:prec)
end

# the following variables corresponding to the mathematical terms
in (4.2)
# of the note Eis series of level N. ‘‘tautwo’’ is tau in the note
which is
# taken as the imaginary unit i, and ‘‘tauone’’ is (a tau + b)/(c tau + d)J
# which is exactly (2i + 1)/(51i + 3) = 13/34 + 1/34 i. “‘b0’’ is
(c tau + )7k
# which is (61 + 3)75 in our setting.

tauone 13//34 + 1//34*onei(CC)
tautwo onei (CC)
b0 = (3 + 5%onei(CC))"5

# the first term in the output is the relative error of the book’s
formula and

# the second one that of the modified version, namely by taking a
bar in the

# original formula.
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function check eisenstein(prec)

ev = eisenstein(CC(tauone) ,prec)

egav = CC(b0) * eisenstein(CC(tautwo),prec)

return ((ev - egav * onei(CC))//ev, (ev + egav * onei(CC))//ev)
end

Output: check_eisenstein(10000)
([2.0000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
0000000000000000000 +/- 2.30e-146] + ix*x[+/- 2.07e-146],

[+/- 7.56e-147] + i*[+/- 4.98e-147])

10.2.4 Special cases We discuss some special cases of (10.29) here. One of them is
when x = X is a principal character, m* = 1 and x* is the trivial character, hence the
formula is reduced to that of the Ramanujan sum. Another one is when (a,m/m*) = 1,
in which case the sum becomes only one term, namely

706 ¥a) = TOXC)X (@) p(m/m*) X" (m/m”). (10.38)
In this formula, We take a = 1 on both sides and get
700 = 7O plm/m*)x* (m/m*).
Inserting this in (10.38)we obtain
70 ¥a) = TOOX (@). (10.39)

Also note that under the assumption (a,m/m*) = 1 we have x*(a) = x(a), so that we get
from (10.39) that

T(X Ya) = T(X)X(a)- (10.40)

In particular, when x is primitive, namely when m = m*, (10.40) holds for any a. This
result also accounts for Corollary(10.7).
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