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In this paper, the performance of three different numerical approaches in cavitation modelling are com- 

pared by studying two benchmark test cases to understand the capabilities and limitations of each 

method. Two of the methods are the well established compressible thermodynamic equilibrium mixture 

model and the incompressible transport equation finite mass transfer mixture model, which are com- 

pared with a third method, a recently developed Lagrangian discrete bubble model. In the Lagrangian 

model, the continuum flow field is treated similar to the finite mass transfer approach, however the cav- 

ities are represented by individual bubbles. Further, for the Lagrangian model, different ways to consider 

how the fluid pressure influences bubble dynamics are studied, including a novel way by considering the 

local pressure effect in the Rayleigh–Plesset equation. The first case studied is the Rayleigh collapse of a 

single bubble, which helps to understand each model behaviour in capturing the cavity interface and the 

surrounding pressure variations. The special differences between the Lagrangian and finite mass transfer 

models in this case clarify some possible origin for some limitations of the latter method. The second in- 

vestigated case is the collapse of a cluster of bubbles, where the collapse of each bubble is affected by the 

dynamics of surrounding bubbles. This case confirms the importance of considering local pressure in the 

improved form of the Rayleigh–Plesset equation and illustrates the influence of the liquid compressibility 

for cavity modelling and appropriate capturing of the collapse pressure. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

Understanding and control of cavitation and its consequences is

till a challenge in engineering. In many applications, cavitation is

n undesirable phenomenon and it is tried to avoid its occurrence,

r at least to minimize its effects. Cavitation erosion causes mate-

ial loss and degradation of hydraulic systems such as pumps, tur-

ines and ship propellers. Other nuisances from cavitation include

ssues like noise, vibrations, load variations, and blockage in the

achinery. However, it is found a desirable event in some other

ituations such as ultrasonic cleaning and ultrasonic drug delivery.

herefore, reliable prediction and control of cavitation is of consid-

rable importance in the design of hydraulic and marine systems

s well as its application in biomedical treatment and chemical

ystems. 

Computational Fluid Dynamics (CFD) can be a supplement or

lternative to experimental measurements. Experimental tests can

e very expensive, suffer from scale effects, and give limited in-

ormation; the latter is a particular problem in cavitating flows
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here the application of optical measurement techniques is of-

en not possible. In comparison, CFD methods can provide more

etailed features of the flow field to have a more comprehensive

nderstanding of the hydrodynamics of cavitation. However, cav-

tating flows include a vast range of spatial and temporal scales,

nd sometimes are accompanied by other processes and flow ef-

ects that make the modelling and computations challenging. For

xample, the duration of the final stage of bubble or cavitating

ortex collapse is of the order of one microsecond ( Franc and

ichel, 2006 ) while the erosion process might take place over the

ifetime of a propeller. Also, the normal velocity of the interface

an vary from some meters per second for turbomachinery sys-

ems to hundreds of meters per second in diesel injector nozzles.

esides that, the peak pressures can reach up to several thousands

f bars for a few microseconds during the last stages of cavity col-

apse. Another parameter to consider is fluid properties, as cavita-

ion does not occur only in water but also in e.g. rocket pumps,

he lubricant of bearings ( Koop, 2008 ), diesel injectors, or blood

essels during ultrasound drug delivery. Depending on the fluid

roperties and pressure differences, sometimes strong shock waves

nd considerable temperature variations are seen in the domain

hich means that the compressibility and thermal effects should
between numerical methods in simulation of cavitating bubbles, 
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be considered in the simulation. Considering the issues with suf-

ficient spatial and temporal resolutions as well as the mentioned

flow effects, there is no unique CFD approach today that has suf-

ficient performance for every cavitation problem. In fact, current

computational capabilities do not allow the resolution of all scales

arising in typical cavitating flows except for a few academic cases

( Schmidt et al., 2014 ). Therefore, various numerical methods are

being used today, and each of them is applicable or feasible only

to a specific group of cavitation problems. 

There are different categorizations of cavitation models based

on the fundamental assumptions behind them. In one group of

models, the two-phase cavitation regime is considered as a sin-

gle fluid flow which is in mechanical and thermodynamic equi-

librium. This equilibrium assumption implies that mass trans-

fer rate at the gas–liquid interface is infinite. These models

are mostly implemented in density-based algorithms with differ-

ent approaches to find the pressure-density relation. For exam-

ple, Schnerr et al. (2008) and Koop (2008) used an equation of

state (EoS) to find the flow pressure. The different phases and

their relevant interface are recognised based on the density value

at each point and the EoS can be a function of temperature.

Kyriazis et al. (2017) used an explicit density-based solver with

real fluid thermodynamic properties for n-Dodecane to demon-

strate heating effects in bubble collapse cases. When the flow tem-

perature variation is not significant, the EoS can be independent

of the temperature which simplifies the pressure-density relations;

this is known as barotropic EoS. The barotropic models are imple-

mented in both density-based (e.g. Koukouvinis et al., 2016a ) and

pressure-based algorithms. Goncalves et al. (2010) compared an in-

compressible pressure-based solver with a compressible density-

based solver with barotropic cavitation models. From the results,

it seems necessary to consider fluid compressibility effects to cor-

rectly describe the cavity dynamics. The single fluid EoS models

do not usually need any empirical parameters; however, the cap-

tured liquid–gas interface is rather diffuse in these models and

high grid resolutions with very small time steps are needed for

adequate prediction of a sharp interface. Furthermore, to correctly

capture pressure wave propagation, very small time steps are nor-

mally needed in the simulation. Therefore, these models are com-

putationally expensive and they are usually applied to cavitating

flows in small scale geometries such as diesel injector nozzle flows.

Another widely used modelling approach is the transport equa-

tion based method. Here, similar to the previous approach, the

multiphase flow is treated as a homogeneous mixture and one

set of continuity and momentum equations is used to calculate

the mixture flow. However, a transport equation is solved to cap-

ture the liquid–vapour interface. This equation can be developed

based on the volume fraction of the two phases (e.g. Singhal et al.,

2002 & Bensow and Bark, 2010 ) or through a level-set method, i.e.

expressed based on a signed distance of any point to the inter-

face (e.g. Lauer et al., 2012 ). Also, the mass transfer between the

phases is defined as an explicit source term to the transport equa-

tion. Therefore, this approach, known as finite mass transfer rate

method (FMT), should incorporate a numerical model to estimate

vaporization and condensation rates. Most models that are used in

the literature (selectively Schnerr and Sauer, 2001, Merkle et al.,

1998 & Kunz et al., 20 0 0 ) estimate the phase change rate based on

a simplified form of the Rayleigh–Plesset equation, in which the

second temporal derivative of bubble radius as well as the effect of

non-condensable gas are ignored. This simplification may affect the

model accuracy; Ye and Li (2016) showed that the bubble growth

rate can become greatly reduced if the bubble-bubble interaction

and second-order derivative in the Rayleigh–Plesset equation are

considered. To improve the model accuracy, however, some em-

pirical constants are implemented in these models which should

be tuned for each different simulation to adjust the mass trans-
Please cite this article as: E. Ghahramani et al., A comparative study 
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er rate. Such uncertainty of model constants is one of the lim-

tations of the finite mass transfer approach. A recent study by

oukouvinis and Gavaises (2015) showed that even with the fi-

ite mass transfer approach consistent results can be achieved by

heoretically increasing the transfer rates to infinity. The transport

quation method is commonly implemented in pressure-based al-

orithms and the pure fluids are usually assumed to be incom-

ressible; there are, however, a few studies in which the fluid com-

ressibility is taken into account. For example, Koukouvinis et al.

tudied the expansion and collapse of a single bubble subject to

ravity ( Koukouvinis et al., 2016b ) and in the vicinity of a free sur-

ace ( Koukouvinis et al., 2016c ). However, they ignored the mass

ransfer rate in the simulation. Also, Yakubov et al. (2015) investi-

ated the effect of fluid compressibility in pressure-based solvers

sing the finite mass transfer approach. This study shows that

onsidering fluid compressibility in the pressure correction equa-

ion may lead to ill-conditioned matrices of coefficients which can

ause numerical issues for steady-state simulations or transient

imulations with large time steps. From the results, it can also

e inferred that the cavitation patterns are very similar for com-

ressible and incompressible simulations. Therefore, for the large

cale problems, such as cavitating ship propellers and turbines, it is

ore common to use incompressible transport equation models as

hey are less computationally expensive and can give rather satis-

actory results using larger time steps, as compared to equilibrium-

ased models. However, due to simplifications in the mass transfer

ate model as well as the grid resolution dependency of the trans-

ort equation, cavity structures smaller than the grid size, such as

avitation nuclei and bubbles, or sparse clouds of bubbles, are not

ell treated using these approaches. Accurate simulation of such

tructures and their violent collapses and fast rebounds are very

mportant in accurate prediction of cavitation erosion. 

Discrete bubble model (DBM) is another approach in which the

avity structures are tracked in a Lagrangian framework while the

ontinuum flow is still calculated using Eulerian governing equa-

ions. In other words, cavity structures are considered as individ-

al bubbles, and groups of bubbles, or parcels of them, are tracked

y solving the Lagrangian equations of motion. Different numeri-

al studies in the literature show the potential of this method to

esolve cavitation phenomenon. Giannadakis et al. (2008) , for ex-

mple, studied the predictive capability of a stochastic Lagrangian

odel accounting for the onset and development of cavitation

nside diesel nozzle holes. Since different flow forces on cavi-

ies are implemented directly in the transport equation and bub-

le size variation is represented using a more accurate form of

he Rayleigh–Plesset equation, the Lagrangian approach can give

 more realistic estimation of cavitation dynamics as compared to

he transport equation approach. Abdel-Maksoud et al. (2010) com-

ared Euler-Euler and Euler-Lagrange methods, and showed that

nly Lagrangian models are able to describe correctly the bubble

ehaviour in vortices. In this method, the small subgrid scale struc-

ures and nuclei can be resolved which is crucial in cavity col-

apse and rebound estimation as well as erosion prediction. Also,

t allows to take into account inhomogeneous and transient water-

uality effects ( Yakubov et al., 2013 ). 

To have a more physical representation of the cavity dynam-

cs in DBM, various interactions between cavity structures should

e modelled appropriately in the solution algorithm. These inter-

ctions include, but are not limited to, different flow forces on

ubble trajectory as well as its dynamics, turbulence effect on

ubble motion and break-up, bubble-bubble interaction and the

ubble contribution on mixture properties and surrounding pres-

ure. However, the Lagrangian models can be computationally ex-

ensive when the number of bubbles is large. Besides that, they

re limited in representation of large and non-spherical vapour

tructures. To overcome these limitations, hybrid multi-scale mod-
between numerical methods in simulation of cavitating bubbles, 
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ls are being developed in which the large cavities are repre-

ented using a transport equation model while the small scale

tructures are tracked in the Lagrangian framework. For example,

siao et al. (2017) developed a multi-scale approach through cou-

ling of the level-set method with a DBM approach to capture the

heet cavitation formation and development, unsteady breakup,

nd bubble cloud shedding on a hydrofoil. In another recent study

y the current authors ( Ghahramani et al., 2018 ), the DBM model

s coupled with the FMT model based on a direct transition be-

ween Eulerian structures and Lagrangian bubbles. The concept of

ulti-scale hybrid Eulerian–Lagrangian solvers is a novel approach

o simulate multiphase flows in large scale applications in which

ffective small scale details need to be resolved sufficiently. This

ethod has proven to be a suitable option to simulate atomizing

as–liquid flows as well (e.g. Ström et al., 2016 ). A key factor in

eveloping such solvers is the correct and smooth transition be-

ween Lagrangian and Eulerian structures ( Ghahramani et al., 2017

 Ghahramani et al., 2018 ). 

In this study, an Eulerian–Lagrangian cavitation model based on

he coupling of an Eulerian finite mass transfer model and a La-

rangian model is presented and its capability to estimate the dy-

amics of collapsing bubbles is validated with theoretical and nu-

erical benchmark studies. Here, the vapour–liquid mixture prop-

rties is obtained based on a volume fraction methodology, but in

hich cavities are tracked in the Lagrangian framework rather than

olving an Eulerian transport equation. In the general application

f the solver, the large cavities are tracked in the Eulerian frame-

ork and there is a transition algorithm between Eulerian and La-

rangian frameworks; however, in the test cases of this study, em-

hasise is on the Lagrangian model performance in prediction of

ubble collapse dynamics and its effect on the continuum pres-

ure through the Eulerian–Lagrangian coupling. Further, the gen-

ral Rayleigh–Plesset equation, that describes the relation between

ow pressure and bubble size, is improved to have a more appro-

riate representation of local flow pressure effect on bubble dy-

amics. 

Although cavitating flows in general consist of different com-

lex structures such as sheet and cloud cavities, nuclei and the

ynamics of bubbles often play a crucial role for the nuisance of

avitation. Thus, the correct representation of the effects of bubble

avitation, and cluster of bubbles, is very important for detailed

ssessment of cavitation. Besides that, there are special problems

n which the structures are only a group of bubbles. For example,

n ultrasonic drug delivery bubbles are considered as suitable ve-

icles to carry drugs as they can be circulated in the body with-

ut loosing the drug near healthy tissues, while near the infected

issues they can release the drug via a violent collapse which is

riggered by ultrasonic pressure waves ( Ibsen et al., 2013 ). There-

ore, the study of bubbly flows and bubble effects have been the

ubject of different studies in literature (selectively Tiwari et al.,

015, Mattson and Mahesh, 2012 & Wang and Brennen, 1999 ). In

uch problems, the Lagrangian approach seems to be the appropri-

te option which can give detailed information on bubble dynam-

cs, although the other methods may be used if the bubbles may

e resolved. 

The first test case, thus, is a single bubble collapse in which

he three approaches are compared: the compressible EoS, the in-

ompressible FMT, and the Lagrangian approach. For this case, an

nalytical solution is available, and the predicted bubble collapse

ehaviour and the surrounding pressure can be assessed in detail.

n the second test, the collapse of a cluster of bubbles is inves-

igated; previously studied by Schmidt et al. (2011) . Here, no ex-

ct solution is available but only comparison between the meth-

ds can be made. In addition to validating the Lagrangian model

nd the improved Rayleigh–Plesset equation, the performance of

he Eulerian finite mass transfer model is studied in detail and
 p  
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he effect of various parameters in this method including empir-

cal constants are investigated, which helps to have a better un-

erstanding of its behaviour and possible source of deficiencies for

uture improvements. All simulation models are developed in the

pen source C ++ package OpenFOAM ( OpenFoam, 2018 ); for the

agrangian model this involves improving the interPhaseChange-

OAM solver and coupling it with a Lagrangian library, which is an

mproved version of an available Lagrangian model in OpenFOAM. 

In the following sections, the three numerical models are de-

cribed first. Then, the performance of the three models are com-

ared in simulating the single bubble collapse and the strength

nd deficiency of each method are discussed. In this part, the ef-

ects of mass transfer model empirical constant and simulation

ime step in capturing the flow physics is investigated. After that,

he models are compared in simulating the collapse of a cluster

f bubbles, where the effect of neighbouring bubbles and relative

ressure pulses play an important role in the collapse behaviour.

he paper is then concluded with recommendations for future de-

elopment of finite mass transfer and Lagrangian models. 

. Numerical methods 

.1. Compressible equilibrium EoS model 

In this study, the governing equations of the compressible

odel are the Euler equations, which include continuity, mo-

entum, and energy equations, similar to previous studies of

ezal (2012) and Koop (2008) . Due to the dominance of inertia ef-

ects within the considered benchmark cases, viscous effects can

e neglected. The equations are given by 

∂ � q 

∂t 
+ 

∂F i ( � q ) 

∂x i 
= 0 , (1) 

here � q is the vector of conserved quantities defined as 

  = 

⎡ 

⎢ ⎢ ⎣ 

ρ
ρu 1 

ρu 2 

ρu 3 

ρE 

⎤ 

⎥ ⎥ ⎦ 

, (2) 

nd F i ( � q ) is the physical flux in coordinate direction x i , given by 

 i ( � q ) = ρu i 

⎡ 

⎢ ⎢ ⎣ 

1 

u 1 

u 2 

u 3 

E 

⎤ 

⎥ ⎥ ⎦ 

+ p 

⎡ 

⎢ ⎢ ⎣ 

0 

δ1 i 

δ2 i 

δ3 i 

u i 

⎤ 

⎥ ⎥ ⎦ 

(3) 

n these equations, ρ is the fluid density, u i is the velocity vec-

or, p is the pressure, δij denotes the Kronecker symbol, and E is

he specific total energy which is the sum of the specific inter-

al energy and the specific kinetic energy. The Euler equations are

olved with the suitable temperature dependent equations of state

or each phase. 

In two-phase water-vapour flows, three possible states may oc-

ur: pure liquid, pure vapour, and mixture. If the calculated density

s higher than the liquid saturation density, the fluid is assumed to

e pure liquid. The liquid phase is then described by the modified

ait EoS ( Saurel and Abgrall, 1999 ), given by 

p = K 0 

[ (
ρ

ρl,sat (T ) 

)N 

− 1] 

] 

+ p sat (T ) , (4)

here K 0 is a liquid dependent constant and ρ l, sat is the saturated

iquid density at temperature T . Since the density of water is ap-

roximately constant, the temperature can be obtained from the
between numerical methods in simulation of cavitating bubbles, 
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Table 1 

Equilibrium model parameters. 

N K 0 C vl ( J / kgK ) C vv ( J / kgK ) T 0 ( K ) e l 0 ( J / kg ) R ( J / kgK ) L v ( T 0 ) ( J / kgK ) 

7.15 3.3 × 10 8 4180 1410.8 273 617 461.6 2.753 × 10 6 
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caloric EoS ( Koop, 2008 & Saurel et al., 1999 ), which is an approx-

imation of the complete form of internal energy equation, as 

T = 

e − e l0 
C v l 

+ T 0 , (5)

where e is the internal energy of the fluid and e l 0 is the liquid

internal energy at reference temperature of T 0 . Also, C vl is the liq-

uid specific heat at constant volume. When the density drops be-

low the vapour saturation density, the fluid is assumed to be pure

vapour. The perfect gas law is used to describe the pure vapour

phase, 

p = ρRT . (6)

Here, R is the specific gas constant and the temperature is obtained

using the caloric EoS, 

T = 

e − e l0 − L v (T 0 ) 

C vv 
+ T 0 . (7)

In this relation, L v ( T 0) is latent heat of vaporization at the refer-

ence temperature ( T 0 ) and C vv is the vapour specific heat at con-

stant volume. With the thermodynamic equilibrium assumption,

the mixture pressure can be considered equal to saturation pres-

sure. Here, the temperature is calculated using the mixture internal

energy as 

T = 

ρ(e − e l0 ) − αv ρv ,sat L v (T 0 ) 

αv ρv ,sat C vv + (1 − αv ) ρl,sat C v l 
+ T 0 , (8)

where ρv, sat is the saturated vapour density at temperature T and

αv is the vapour volume fraction, computed from the mixture den-

sity as 

αv = 

ρ − ρl,sat 

ρl,sat − ρv ,sat 
. (9)

The parameters in Eqs. (4) –(8) are given in Table 1 . The saturated

values of pressure, p sat , and liquid and vapour saturated density,

ρ l, sat and ρv, sat , in the equations are obtained from IAPWS-IF97

library ( Wagner and Kretzschmar, 2008 ). 

In this model, the compressibility of both liquid and vapour

phases is taken into account, which makes it capable of captur-

ing possible shock and pressure waves in a cavitating flow. The

model has been implemented as a density-based solver in Open-

FOAM ( Eskilsson and Bensow, 2012 ). The numerical flux is eval-

uated by solving the approximate Riemann problem using HLLC-

USM low-Mach Riemann solver ( Koop, 2008 ). Second order accu-

racy in space is achieved by piece-wise linear reconstruction with

the limiter function of Venkatakrishnan ( Venkatakrishnan, 1995 ).

The solution is advanced in time using a second order explicit low

storage Runge–Kutta scheme. 

2.2. Incompressible finite mass transfer model 

In this model, the vapour and liquid phases are treated as a sin-

gle mixture fluid and the continuity and Navier–Stokes equations

are solved to calculate the mixture flow. Here the flow is consid-

ered as incompressible and isothermal, motivated by the balance

of computational cost and model accuracy for the intended appli-

cations as described above, but a similar framework can be devel-

oped for compressible flows. 

Although the pure liquid and pure vapour are considered as

incompressible, the mixture density varies based on volume frac-

tion of the immiscible phases and hence the continuity equation is
Please cite this article as: E. Ghahramani et al., A comparative study 
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iven by 

∂u i 

∂x i 
= 

(
1 

ρl 

− 1 

ρv 

)
˙ m . (10)

he RHS term is the effect of vaporization and condensation,

here ˙ m is the rate of mass transfer between phases, ρ l is the

iquid density and ρv is the vapour density. Further, the Navier–

tokes equation is 

∂ ( ρm 

u i ) 

∂t 
+ 

∂ 
(
ρm 

u i u j 

)
∂x j 

= 

∂τi j 

∂x j 
+ ρm 

g i . (11)

n this equation, τ ij is the stress tensor and ρm 

is the mixture den-

ity. They are defined as 

i j = −p δi j + μm 

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 
− 2 

3 

∂u k 

∂x k 
δi j 

)
, (12)

m 

= αρl + (1 − α) ρv , (13)

here μm 

is the mixture dynamic viscosity, given by 

m 

= αμl + (1 − α) μv , (14)

nd α is the liquid volume fraction that specifies the relative

mount of liquid in a control volume. In the volume fraction based

ncompressible finite mass transfer models, this quantity is calcu-

ated by solving a scalar transport equation given as 

∂α

∂t 
+ 

∂ ( αu i ) 

∂x i 
= 

˙ m 

ρl 

. (15)

o close the above set of equations, the mass transfer rate, ˙ m ,

hould be determined. There are many numerical models pro-
osed in literature to estimate this term and most of them are
ased on a simplified form of the Rayleigh–Plesset equation (later
iven in Eq. (24) ) in which the second order derivative term as
ell as dissolved gas pressure, surface tension and viscous forces

re neglected. The Schnerr-Sauer model ( Schnerr and Sauer, 2001;
penFoam, 2018 ) has been used quite often in literature (e.g.
snaghi et al., 2017 ) and has been proven to give reasonably sat-

sfactory results for a range of applications. This model is used in
he current study, and the vaporization and condensation rates are
iven by 

˙ m c = C c α(1 − α) 
3 ρl ρv 

ρm R B 

√ 

2 

3 ρl | p − p threshold | max (p − p threshold , 0) , 

˙  v = C v α(1 + αNuc − α) 
3 ρl ρv 

ρm R B 

√ 

2 

3 ρl | p − p threshold | min (p − p threshold , 0) , 

(16)

here ˙ m c and ˙ m v are the rates of condensation and vaporization,

espectively. In the above equations, R B and αNuc are the generic

adius and volume fraction of bubble nuclei in the liquid which

re obtained from 

Nuc = 

πn 0 d 
3 
Nuc 

6 

1 + 

πn 0 d 
3 
Nuc 

6 

, (17)

 B = 

3 

√ 

3 

4 πn 0 

1 + αNuc − α

α
, (18)

here n 0 and d Nuc are user defined parameters corresponding to

he number of nuclei per cubic meter and the nucleation site di-

meter, respectively. Also, C c and C v are the condensation and va-

orization rate coefficients in OpenFOAM ( OpenFoam, 2018 ), and
between numerical methods in simulation of cavitating bubbles, 
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 threshold is a threshold pressure at which the phase change is as-

umed to happen, usually considered as the vapour pressure of the

uid. As the overall combination of these values only influences

he mass transfer rate as a constant coefficient, in this study only

he vaporization and condensation rate coefficients ( C v and C c ) are

odified and the fluid properties as well as model parameters are

ept constant. The number of nuclei per cubic meter ( n 0 ) is as-

umed to be 10 8 and the nucleation site diameter ( d Nuc ) is set to

0 −4 m . 

In the finite mass transfer solver, the pressure and velocity

quations are coupled using a PIMPLE algorithm. This algorithm is

 merge of the SIMPLE ( Patankar and Spalding, 1983 ) and PISO al-

orithms, where the PISO loop is complemented by an outer it-

ration loop, see e.g. Barton (1998) for different ways to merge

ISO and SIMPLE procedures. For the single bubble test case, at

ach time step, one outer SIMPLE loop is performed, and in each

IMPLE loop at least three PISO loops are performed. For the bub-

le cluster simulation, four outer SIMPLE loops are performed, and

n each SIMPLE loop four PISO loops are performed. A first or-

er implicit time scheme is used for time discretization. The mo-

entum equation convection terms are discretized using Gaussian

inear upwind differencing scheme while the convective terms of

he volume fraction scalar equation is discretized by Gaussian TVD

chemes with the van Leer limiter. 

One feature of the mass transfer approach, similar to the equi-

ibrium EoS method, is that it treats the structures that are smaller

han the grid size as a homogeneous mixture, therefore sparse

apour clouds or sub-grid inhomogeneity in cavitation clouds are

ot well treated. An extremely high mesh resolution would be re-

uired to resolve the small individual cavitation bubbles, which is

ot feasible in engineering applications. In addition, during the last

teps of the cavity collapse and early stages of its rebound, the cav-

ty size changes very rapidly and the bubble inertia becomes more

mportant. However, in the simplified mass transfer model the

ubble inertia, corresponding to second order derivative term in

he Rayleigh–Plesset equation, is ignored and this approach cannot

ully resolve cavity collapse and rebound. The Eulerian–Lagrangian

odel, however, is potentially able to take into account the cavity

nertia and is less dependent on grid resolution. 

.3. Eulerian–Lagrangian model 

In this model the cavities are treated as discrete Lagrangian

ubbles in an ambient Eulerian continuous flow. At each time

tep, the Eulerian equations are solved first, then the bubbles are

racked by solving a set of ordinary differential equations along the

ubble trajectory, after which the Eulerian vapour fraction is up-

ated based on the new bubble positions and radii. The Eulerian

overning equations are the continuity and Navier–Stokes equa-

ions as described for the finite mass transfer model ( Eqs. (10) and

11) ) and the Lagrangian equations for tracing individual bubbles

re given by 

dx b,i 

dt 
= u b,i , 

 b 

du b,i 

dt 
= F d + F l + F a + F p + F b + F g . (19) 

he RHS of the second equation includes various forces exerted

n the bubbles which are, from left to right, sphere drag force

 Liu et al., 1993 ), Saffman–Mei lift force ( Mei, 1992 ), added mass,

ressure gradient force, buoyancy force, and gravity. Explicit imple-

entation of flow forces is an advantage of the Lagrangian model

hich gives the opportunity to consider different flow effects on

avity behaviour, but it also means that the representation is de-

endent on the accuracy of available models for these effects. The

orces typically depend on the bubble size. 
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To find the bubble size variation due to surrounding flow, con-

ider a spherical vapour bubble with radius R in an incompress-

ble Newtonian fluid, Fig. 1 . Neglecting the mass transfer through

he interface, the liquid velocity is equal to the interface velocity,

 (R, t) = 

˙ R . Also, ignoring the gravity effect, the pressure on the

ubble interface is given by ( Franc and Michel, 2006 ) 

p R = p v + p g0 

(
R 0 

R 

)3 γ

− 2 

σ

R 

+ 2 μ
∂u 

∂r 
| r= R . (20)

n this relation, p v is the vapour pressure. The second term is the

issolved gas pressure in which p g 0 and R 0 are the initial gas pres-

ure and radius. The third term is the surface tension stress in

hich σ is the surface tension coefficient, and the last term de-

otes the viscous stress on the bubble surface. In addition to the

entioned simplifications, we assume spherical symmetry around

he bubble. Then the flow continuity and momentum equations are

implified as ( Franc and Michel, 2006 ) 

 (r, t) = 

˙ R 

R 

2 

r 2 
, (21)

∂u 

∂t 
+ u 

∂u 

∂r 
= − 1 

ρ

∂ p 

∂r 
. (22) 

ubstituting Eq. (21) into Eq. (22) gives 

¨
 

R 

2 

r 2 
+ 2 ̇

 R 

2 

(
R 

r 2 
− R 

4 

r 5 

)
= − 1 

ρ

∂ p 

∂r 
. (23) 

This equation can simply be integrated between any two points

n a radial line from bubble interface to the infinity. If the in-

erface ( r = R ) and infinity ( r = ∞ ) are chosen as integration end

oints, then considering the relative boundary conditions at inter-

ace ( Eq. (20) ) and infinity, the well-known Rayleigh–Plesset equa-

ion is achieved as ( Franc and Michel, 2006; Brennen, 2013; Plesset

nd Prosperetti, 1977 ), (
R ̈R + 

3 

2 

˙ R 

2 
)

= p v − p ∞ 

+ p g0 

(
R 0 

R 

)3 γ

− 4 μ
˙ R 

R 

− 2 σ

R 

, (24)

here p ∞ 

denotes the pressure at infinity. An inherent assumption

n this equation is that the bubble is located in a completely un-

ounded spherically symmetric infinite domain. However, in most

eal case applications this assumption will not hold, as the bub-

le is surrounded by other cavity structures or may be confined

ithin flow boundaries. Therefore it is more useful to take the in-

egration between the interface and another nearby point. If the

econd point is chosen at r = 2 R, then we achieve a localized form

f Rayleigh–Plesset equation as (
1 

2 

R ̈R + 

17 

32 

˙ R 

2 
)

= p v − p 2 R + p g0 

(
R 0 

R 

)3 γ

− 4 μ
˙ R 

R 

− 2 σ

R 

, (25)

here p 2 R denotes the pressure at r = 2 R . In this study, the

ime-step adaptive second-order Rosenbrock method is imple-

ented to solve the Rayleigh–Plesset equation numerically (see

.g. Shampine and Reichelt (1997) for a description of this ap-

roach). 

To consider the bubble effects on the continuous Eulerian field,

he continuous flow is considered as a single fluid mixture flow,

imilar to the finite mass transfer approach. However, instead of

olving the vapour transport equation, the volume fraction is cal-

ulated from the Lagrangian bubble distribution. In other words,

t each time step the α value of each cell is obtained from bub-

le cell occupancy. The bubble cell occupancy for a cell is obtained

ased on the relative volume of the cell that is occupied by the

ubble(s). This calculation includes a loop over all bubbles inside

he cell and summing up the volume of these bubbles and divid-

ng the total volume by the cell volume. Then this relative value is

sed to define vapour volume fraction, α, which is used to find the
between numerical methods in simulation of cavitating bubbles, 

/j.ijmultiphaseflow.2018.10.010 

https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.010


6 E. Ghahramani et al. / International Journal of Multiphase Flow 0 0 0 (2018) 1–21 

ARTICLE IN PRESS 

JID: IJMF [m5G; November 2, 2018;15:6 ] 

Fig. 1. Single bubble in infinite domain. 
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mixture properties from Eqs. (13) and (14) . Hsiao et al. (2017) used

a similar approach to consider bubble contributions in the mix-

ture properties for a multi-scale Eulerian–Lagrangian model. There-

fore, in this method the Eulerian continuity and momentum equa-

tions are the same as for the incompressible finite mass transfer

model. Also, the continuity equation source term is obtained us-

ing the Schnerr–Sauer model. It is possible to calculate the phase

change source term from bubble size and distribution variation di-

rectly, however the intention is to use the Lagrangian approach

coupled to a FMT solver; thus to compare the effect of Eulerian

cavity transport equation to Lagrangian distribution, in this study

the continuity equation is solved in a similar way to the previous

method. At each time step, the continuity and Navier–Stokes equa-

tions ( Eqs. (10) and (11) ) are solved first and the updated pressure

and velocity field are used to solve the Lagrangian transport equa-

tion (19) and Rayleigh–Plesset equation. The updated bubble size

and distribution are then used to update the volume fraction val-

ues to obtain the new mixture properties for the next time step.

The solution algorithm for the Eulerian equations and the equation

discretizations for this model are exactly the same as for the finite

mass transfer model. 

The Lagrangian model that is used in this study is a special ver-

sion of the hybrid Eulerian mixture- Lagrangian bubble solver that

has been introduced in a recent study ( Ghahramani et al., 2018 ). In

the current model all of the cavities are treated as Lagrangian bub-

bles, but in the general form of the hybrid solver, large cavities are

represented using the FMT approach and the small structures are

tracked as Lagrangian bubbles. For stability reasons and to have the

solutions of both FMT and Lagrangian parts being more compati-

ble with each other, it was decided to have similar formula for the

continuity equation source terms in the solver and it is the reason

to use the Schnerr-Saur model for calculation of the mass transfer

source in the Lagrangian approach. 

3. Single bubble collapse 

The collapse of a single bubble is a benchmark test case that

has been widely used for primary validation of different numerical

models in literature. Here, the collapse of a vapour bubble in an

infinite medium with atmospheric pressure is simulated and the

effects of viscosity, non-condensable gas, and surface tension are

ignored. This problem is also known as Rayleigh bubble collapse and

can be solved analytically up to the collapse time. As described

by Franc and Michel (2006) , the collapse time of the bubble, also

known as the Rayleigh time, is given by 

τR = 0 . 915 R 0 

√ 

ρ

p ∞ 

− p v 
. (26)
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urther, by integrating the Rayleigh–Plesset equation, the collapse

ate is obtained as 

dR 

dt 
= −

√ 

2 

3 

p ∞ 

− p v 

ρ

(
R 0 

3 

R 

3 
− 1 

)
. (27)

rom this relation, the bubble radius profile can be calculated ana-

ytically. The pressure distribution around the bubble is determined

rom Eq. (23) as 

(r) = 

p(r) − p ∞ 

p ∞ 

− p v 
= 

R 

3 r 

(
R 0 

3 

R 

3 
− 4 

)
− R 

4 

3 r 4 

(
R 0 

3 

R 

3 
− 1 

)
. (28)

ere, we consider the case where initial bubble radius is 0.4 mm

nd the flow is assumed to be initially at rest. The initial pres-

ure around the bubble has a Laplacian distribution according to

q. (23) while the pressure inside is p v = 2 , 320 Pa. Also, the liq-

id volume fraction is set to 0.01 inside the bubble and equal to 1

utside. Considering the spherical symmetry of the flow field, only

n asymmetric wedge mesh with an angle of five degrees is cre-

ted ( Fig. 2 a). The far field boundary is located at 0.5 m from the

ubble centre, with a fixed atmospheric pressure (10 5 Pa) and zero

radient conditions for liquid volume fraction and velocity. The

otal domain is discretized with 50 0 0 cells, including 10 0 points

n the radial direction. The initial bubble is well resolved by 20

ells in the radial direction and 50 cells in the circumferential di-

ection. The generated grid with the initial pressure field is de-

icted in Fig. 2 b; it is radially uniform inside the bubble. For the

ulerian–Lagrangian model, instead of liquid volume fraction ini-

ialization, a 0.4 mm bubble is injected at the first time step and

he corresponding liquid volume fraction is calculated from bubble

ell occupancy. The liquid and vapour densities are assumed to be

l = 10 0 0 kg m 

-3 and ρv = 0 . 01389 kg m 

-3 , and the correspond-

ng dynamic viscosity values are set as μl = 0 . 001 kg m 

-1 s -1 and

v = 10 −5 kg m 

-1 s -1 . The solution time step is set to 5 × 10 −9 s

or incompressible simulations and 1 × 10 −10 s (corresponding to

FL number of 0.32) for the equilibrium model. Therefore, for the

ncompressible simulations we have �t/τR = 1 . 35 × 10 −4 , and for

he compressible simulation �t/τR = 2 . 7 × 10 −6 . However, larger

ime steps are also used for time-step dependency studies. In the

ollowing sections, the results of each model in solving this prob-

em are compared with the theoretical solution. 

.1. Equilibrium model result 

The numerical evolution of bubble radius with time is com-

ared with the exact analytical solution in Fig. 3 . In this plot, the

adius and the evolution time are non-dimensionalized by initial

adius and Rayleigh collapse time, respectively. Since the bubble

nterface may not be perfectly sharp at all time steps, R is the
between numerical methods in simulation of cavitating bubbles, 
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Fig. 2. Single bubble; (a) flow domain with initial vapour fraction; (b) generated grid with initial pressure distribution. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Validation of the equilibrium (EoS) model in predicting the evolution of the bubble radius. 
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(  
quivalent radius of the total vapour volume. As depicted in the

gure, the radius profile is well captured by this method. 

In Fig. 4 , the pressure distribution in the radial direction is

ompared with the analytical data at different normalized time

teps. In this figure, the normalized times t / τ R of 0.812, 0.894,

.921, 0.948 and 0.975 are chosen which are corresponding to non-

imensional radius ( R / R 0 ) values of 0.64, 0.52, 0.47, 0.4 and 0.3,

espectively. The selected instances are shown in Fig. 3 as well.

t these steps, the bubble size variation is quite fast and the sur-

ounding flow field changes rapidly. Before t/τR = 0 . 812 , the pres-

ure variations around the bubble does not have large gradients

nd the profile is rather similar to the initial distribution. Consid-

ring the stated assumptions, the pressure is expected to be equal

o the vapour pressure inside the bubble, which corresponds to

 non-dimensional value of -1. From the bubble interface to the

arfield, the pressure increases to the farfield pressure. However,

ccording to Eq. (28) , its profile has a maximum value close to the

nterface if R / R 0 < 0.63 ( Franc and Michel, 2006 ). This behaviour is

learly seen from the analytical solution in Fig. 4 a. The numeri-

al results also follow the general trend, but with some noticeable
Please cite this article as: E. Ghahramani et al., A comparative study 
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ifferences. First, the pressure near the interface is still close to

apour pressure and the pressure increase starting point seems to

e at a radius larger than the bubble radius. This inconsistency can

e due to the numerical diffusivity of the bubble interface, shown

n Fig. 5 . In this figure, an imaginary red line shows the exact

ubble radius overlayed on predicted vapour fraction and pressure

elds at t/τR = 0 . 812 . In Fig. 5 a, the computed vapour fraction dis-

ribution over the discretized domain is shown. It is seen that the

ubble interface is diffused over three layers of radial cells (the or-

nge, the green and the light blue cells), which means that in these

ells the fluid is considered as a saturated mixture in the equilib-

ium model and the pressure, in the last layer (outside exact bub-

le radius) cannot vary considerably from the vapour pressure. In

ig. 5 b, the pressure contour around the bubble is depicted. It is

een in this figure that the pressure is equal or close to the vapour

ressure up to one cell layer after the bubble radius. Since the ra-

ial edge size of each cell is 0.02 mm (initial radius is resolved by

0 radial cells) this discrepancy is comparable to what is shown

n Fig. 4 a. In Fig. 5 c the same contour is plotted with local scale

i.e. 2, 320 < p < 2, 380 Pa) and it shows that inside the bubble
between numerical methods in simulation of cavitating bubbles, 
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Fig. 4. Comparison of equilibrium (EoS) model pressure distribution with analytical data; (a) at similar radius; (b) at shifted interface. 
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the pressure is not exactly estimated as constant, especially in four

radial layers where the fluid is saturated mixture, c.f. Fig. 5 a. In

these layers, the temperature has a small variation (less than 0.5

degrees) and it causes around 40 Pa variation in the saturated pres-

sure value. This is one of the capabilities of the temperature de-

pendent equations of states that consider the temperature changes

during cavitation. 

To have a better understanding of the model performance in

calculation of pressure field outside the bubble, the analytical data

are shifted a little in Fig. 4 b. In fact, in the new analytical pro-

files, the sharp bubble interface is assumed to be equal to the outer

edge of the diffused numerical interface so that both pressure pro-

files have similar gradient at the interface. From this figure it can

be inferred that the equilibrium model would be capable to predict

outer pressure profile more reasonably if the interface could be
Please cite this article as: E. Ghahramani et al., A comparative study 
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aptured sharply and at the correct location. However, the pressure

s still a little underestimated at the later steps, i.e t/τR = 0 . 948

nd 0.975. Besides that, some large wiggles are seen in the pres-

ure profile which are due to numerical pressure waves that are

mitted from bubble interface. When the fluid phase changes from

apour to liquid in a computational cell, there is a change in the

elative equation of the state for the fluid and the general pro-

le of the density-pressure relation changes. Such a change in the

odelling equations causes some spurious pulse in the flow. Since

n the polar grid that is aligned with the interface, phase change

ccurs in all cells of a radial layer simultaneously, the numerical

ulses of the neighbouring cells are superposed and generate a sig-

ificant disturbance. In a Cartesian grid, for example, the vapour

ollapse at neighbouring cells does not happen simultaneously and

he wiggles in the pressure profile are expected to cancel and be
between numerical methods in simulation of cavitating bubbles, 
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Fig. 5. Resolution of bubble interface from the equilibrium model at t/τR = 0 . 812 ; (a) vapour volume fraction contour; (b) pressure contour at global scale; (c) pressure 

contour at local scale. The red line depicts the bubble radius of the analytical solution. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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maller; this is observed in the second case of the bubble cluster.

urthermore, these pulses are a function of numerical discretiza-

ion schemes as well and more diffuse schemes are expected to

enerate smaller pulses. 

To investigate the effect of the grid resolution on the model re-

ults, the problem is solved with a coarser grid in which the initial

ubble is discretized with 12 cells (i.e. �r /R 0 = 0 . 083) . In Fig. 6 ,

he estimated bubble radius and pressure profiles are compared

ith the corresponding ones of the fine grid. For the bubble ra-

ius, the results are very similar, however, considerable differences

re seen for the pressure estimation. For the coarse grid, the max-

mum non-dimensional pressure peak is 32, which is not seen in

he plot range. 

.2. Finite mass transfer model result 

The temporal evolution of bubble radius for the finite mass

ransfer model is compared with the exact analytical solution in

ig. 7 . According to this figure, the finite mass transfer model is

apable in estimation of bubble radius profile if the empirical co-

fficients are set high enough. In fact, with low coefficients values,

he bubble collapses very slowly. 

To have a better understanding of the model performance in

esolving the flow field, the collapse pressure profiles are com-

ared with analytical data in Fig. 8 . It is seen that although mod-

rate coefficient values ( C = 100 ) can capture the radius evolution,

here may be numerical issues in representing the pressure field. In

ig. 8 a, it is seen that in the last stages of collapse ( t / τ R > 0.921),

he pressure inside the bubble is overestimated. Besides that, some

umerical pulses are created at the interface which cause the out-

ide pressure at t/τR = 0 . 921 to be higher than the correspond-

ng value at t/τR = 0 . 948 , for example. Here, ignoring the pure

hase compressibility is also affecting the prediction. As seen in

he compressible equilibrium model results ( Fig. 4 ), a numerical

ulse causes a pressure wave that is emitted gradually in the do-

ain and therefore, (only) the local pressure is increased. However,

or the finite mass transfer model in this study, the liquid is as-

umed to be incompressible and a local numerical pulse increases

he whole domain pressure instantaneously. Therefore, the outside

ressure profile at t/τR = 0 . 921 is higher than the corresponding

rofile at t/τR = 0 . 948 . Further increasing the coefficient to 500

r 10 0 0 solve the inside pressure overestimation issue, however,

he numerical pulses get more significant. If the coefficients are

ncreased to 10 4 , then both of the issues are approximately ad-

ressed. However, similar to the equilibrium model, the interface is
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iffused and the pressure increase starting point is shifted a little

n the radial direction and the pressure peaks are underestimated.

f the coefficients are increased to very high values ( Fig. 8 c) the

ressure profile does not change considerably. However, compari-

on of profiles at t/τR = 0 . 921 and 0.894 shows that small numer-

cal pulses still appear in the simulation. It should be mentioned

hat increasing the model constants may decrease the stability of

he problem and special measures should be done to make sure

 converged solution of the vapour transport equation is achieved.

he general trend of pressure profile relative to the model con-

tants are in agreement with the work of Schenke and van Ter-

isga (2017) in which they used the Merkle mass transfer model

 Merkle et al., 1998 ) and concluded that for more satisfactory res-

lution of bubble Rayleigh collapse, the model constants should be

uite large while the time steps should be fine enough. 

Another parameter that can be effective on model performance

s the time step size. In this study, the very small time step of

t = 5 × 10 −9 s was chosen at first, to make sure that it works

or different applied models. This value may work for EoS model

s well, but to avoid some pressure fluctuations and to satisfy the

FL number limitation, a smaller time step was used in the com-

ressible approach. For the FMT model, however, a time step study

f the finite mass transfer model ( Fig. 9 ) shows that the time step

hould be smaller than 5 × 10 −8 s to ensure time-step independent

olution. Further time step study (not reported here) confirms con-

erged solution using dt = 5 × 10 −9 s. However, smaller time steps

ay increase the solution instability, and the solution parameters

eed to be set more carefully, e.g. by decreasing the solution toler-

nces or setting a minimum number of iterations, to ensure con-

erged result for high values of mass transfer coefficients. Also,

rom Fig. 9 it seems that the spurious numerical pulses may be

voided by increasing the simulation time step; however, it can

e shown that there is not a predictable relation between these

ulses and the time step, as for time steps larger than 5 × 10 −8 s

e.g. 1 × 10 −7 s), some spurious pulses are seen in the domain that

re larger than the previous ones. 

To investigate the model dependency on the grid resolution,

he problem is solved with a coarser grid ( �r /R 0 = 0 . 083) as well.

n Fig. 10 , the estimated bubble radius and pressure profiles with

mpirical coefficients of 10 4 are compared with the corresponding

nes of the fine grid. It is seen that while the bubble radius is well

stimated with the coarser grid, considerable numerical pulses ap-

ear in the solution even with the high mass transfer coefficients.

his is an important point, since in typical engineering problems,

he small cavity structures are not discretized with very fine grids.
between numerical methods in simulation of cavitating bubbles, 
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Fig. 6. Domain discretization effect on the equilibrium model; (a) bubble radius; (b) pressure profile. 

Fig. 7. Validation of the finite mass transfer model with different coefficients in predicting the evolution of the bubble radius. 
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Fig. 8. Comparison of finite mass transfer (FMT) model pressure distribution with analytical data; (a) C c = C v = 10 2 ; (b) C c = C v = 10 4 ; (c) C c = C v = 5 × 10 6 . 
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Fig. 9. Time-step dependency of the finite mass transfer model; (a) bubble radius; (b) pressure profile. 

Fig. 10. Domain discretization effect on the finite mass transfer model; (a) bubble radius; (b) pressure profile. 
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3.3. Lagrangian model result 

In the Lagrangian model, the governing equations are similar to

those of finite mass transfer model and only the bubble dynam-

ics are resolved by solving the Rayleigh–Plesset (R–P) equation, in-

stead of solving the Eulerian vapour transport equation. Therefore,

the numerical schemes are similar to those of the previous sec-

tion. In this section, first the Lagrangian results based on the orig-

inal form of the R–P equation are presented. In the original form

of the equation, the farfield pressure is known and constant. Since

we have the exact profile of bubble radius in such case, the vapour

fraction field is resolved accurately and the result can be used to

investigate the pressure equation and mass transfer rate. The prob-

lem is also solved based on the localized form of R–P equation

( Eq. (25) ) to investigate the effect of local pressure in calculation

of bubble dynamics since the original form of R-P is not applicable

in more complicated problems, as will be shown later. 

In Fig. 11 , the obtained pressure profile from the Lagrangian

approach with original R-P is compared with the analytical data

for two different mass transfer coefficients. Similar to the Eule-

rian model, the coefficients should be high enough for an accu-

rate estimation of pressure inside the bubble; however, even with

small coefficients no numerical pulse is seen in the Lagrangian

model results and the outside pressure profiles are very well es-
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imated, Fig. 11 a. Also, for this model, one only needs to make

ure that the coefficients are high enough and the pressure pro-

le are well captured even at the last stages of collapse, Fig. 11 b.

t should be mentioned that the solution instability problems, that

ere mentioned for the finite mass transfer model above, do not

xist for this Eulerian–Lagrangian approach, even when increasing

he model constants to very high values or decreasing the time

tep to smaller ones. It seems that for the bubble Rayleigh col-

apse with the stated assumptions, the issue with the finite mass

ransfer model is related to the scalar transport equation of vapour

raction. When the exact value of bubble radius is known at each

ime step and the interface is sharply captured, the pressure equa-

ion (continuity) is solved accurately and only the mass transfer

ate should be high enough to compensate for the bubble inertia

n the Rayleigh–Plesset equation that was simplified in finite mass

ransfer models. 

The inherent issues with the original form of Rayleigh–Plesset

quation are its dependency on the constant known farfield pres-

ure and the assumption of unrestricted field around the bub-

le. In most practical applications, the bubble is surrounded by

ther cavity structures and local flow effects need to be consid-

red. There are modified versions of the equation in literature in

hich the local flow pressure on the bubble interface, or near that,

s used in the equation (instead of p ∞ 

) and to compensate for
between numerical methods in simulation of cavitating bubbles, 
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Fig. 11. Comparison of Lagrangian model based on original R–P equation with analytical data in calculation of pressure distribution; (a) C c = C v = 10 2 ; (b) C c = C v = 10 4 . 

t  

t  

r  

G  

c  

l  

a  

s  

w  

b

 

c  

o  

l  

m  

b  

w  

p  

e  

Fig. 12. Validation of Lagrangian model based on localized R–P equation in predict- 

ing the evolution of the bubble radius. 
his simplification some correction terms are added to the equa-

ion. For example, Hsiao et al. (20 0 0) suggested a slip velocity cor-

ection term based on the bubble-flow velocity difference. Also,

iannadakis (2005) proposed another correction term based on lo-

al turbulence quantities. However, for this simple collapse prob-

em, such modifications in the equation cannot improve the results

s the flow velocity is very small and there is no turbulence in the

ymmetrical flow around the bubble. As a solution, the equation

as re-derived here based on the local pressure value as stated

efore, using Eq. (25) . 

In Fig. 12 , the Lagrangian model performance based on the lo-

alized R–P equation is validated with the analytical solution. Here,

nly the high coefficient ( C = 10 , 0 0 0 ) result is presented, as the

ower coefficients were shown to be problematic in pressure esti-

ation inside the bubble, as discussed above. It is seen that the

ubble radius evolution is well captured with the localized R-P as

ell. In Fig. 13 , the pressure lines for different time steps are com-

ared with analytical solution which shows that this model can

stimate the pressure peaks and their location with good accuracy
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Fig. 13. Comparison of Lagrangian model based on localized R–P equation with analytical data. 

Fig. 14. Time-step dependency of the Lagrangian model based on localized R–P equation; (a) bubble radius; (b) pressure profile. 
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and without any numerical pulse or significant delay in the pres-

sure increase starting point. Only after t / τ R > 0.95 some discrep-

ancy is seen between numerical and analytical data and it is due to

the localized R–P equation dependency on the exact estimation of

local pressure. During the last stages of the collapse, the pressure

field around the bubble varies quite rapidly and a small error in

pressure estimation can lead to considerable difference in bubble

radius calculation which leads to more discrepancy in the follow-

ing time steps. However, the estimated pressure in the last steps is

still acceptable as compared to finite mass transfer and equilibrium

models results. 

In Fig. 14 , the results using a larger time step, dt = 1 × 10 −7 s,

are compared to the obtained data with dt = 5 × 10 −9 s). The re-

sults are overall similar for bubble radius as well as pressure pro-

files and only in one time step ( t/τR = 0 . 948 ) the pressure line has

a small shift. 
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To study the model dependency on the grid resolution, the

roblem is solved with a coarser grid ( �r /R 0 = 0 . 083) as well. In

ig. 15 , the calculated bubble radius and pressure profiles with em-

irical coefficients of 10 4 are compared with the corresponding

nes of the fine grid and it is seen that even with coarser spa-

ial discretization, the model has an acceptable accuracy and no

umerical pulse is generated in the domain. It can be concluded

hat the Eulerian–Lagrangian model can produce satisfactory re-

ults with larger time steps and coarser grids as compared to other

odels. 

It should be mentioned that for the local form of the R–P

quation, other radial distances for local pressure value have been

ested as well, and the pressure profile has similar trend and only

he quantitative difference with the theoretical profile varies a lit-

le for different radial distances; smaller distances (such as r = 2R)

eads to a little more accuracy. 
between numerical methods in simulation of cavitating bubbles, 
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Fig. 15. Domain discretization effect on the Lagrangian model based on localized R–P equation; (a) bubble radius; (b) pressure profile. 
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Fig. 16. Distribution of 125 spherical non-intersecting bubbles within the small cu- 

bic domain of 20 3 mm 

3 over a flat wall (red surface). This small domain is inside 

a larger outer domain of 4 × 4 × 2 m 

3 (not shown here). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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The single bubble collapse is a simple problem that can clar-

fy the basic behaviour of the numerical approaches. However, the

ubbles are usually surrounded by other cavity structures and the

ow field can be restricted by wall boundaries. Also, there are spe-

ial cases where the ambient pressure is such high that the ob-

erved numerical pulses are of minor importance and we are more

nterested in measuring large collapse pressures. In the following

art, a more complex test case is simulated to analyse the models

ehaviour regarding these effects. 

. Collapse of a bubble cluster 

In this section the collapse of a cluster of bubbles over a flat

all is simulated. Here, the bubble dynamics is affected by the

ollapse of the surrounding bubbles as well as the near wall in-

uence. In the current study, the bubble cloud which was previ-

usly defined by Schmidt et al. (2011) is used. This cloud consists

f 125 spherical vapour bubbles with a radius distribution rang-

ng from 0.70 mm to 1.64 mm with non-uniform distribution. The

verage radius of the bubbles is 0.95 mm and they have a min-

mum distance of 0.2 mm to avoid intersection. Also, they have

arger concentration and radii around the centre of the cloud. The

verall cloud is located in a small liquid-filled cubic domain of

0 × 20 × 20 mm 

3 and has a total volume fraction of 5.8%. The

ubic domain, itself, is located in a larger rectangular domain of

 × 4 × 2 m 

3 and the bottom faces of the two domains are copla-

ar. The bubble distribution inside the inner domain is depicted in

ig. 16 . Recently, Ogloblina et al. (2017) investigated the bubble-

ubble interaction and the stand-off distance effects on the col-

apse behaviour of the cluster and based on the obtained results,

t can be concluded that the bubble interactions in the currently

sed cluster are significant. 

The fluid domain is assumed to have a stationary initial con-

ition with a uniform temperature of 293 K. The initial pressure

nside the bubbles is set equal to the vapour pressure of 2,340 Pa

nd in the surrounding liquid it is assumed to have a Laplacian dis-

ribution, which is reasonable for a stationary condition. The copla-

ar bottom faces of the domain are defined as impermeable walls

nd other outer faces are considered as far-field boundaries with

onstant pressure of 40 bar and no gradient of other flow parame-

ers. 

To discretize the bubble cloud, the small domain consists of 55 3 

artesian structured cells with the numerical resolutions ( �CFD ) of

.36 mm, and it is equivalent to Grid 3 in the work of Schmidt
Please cite this article as: E. Ghahramani et al., A comparative study 
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t al. (2014, 2011) . In this discretization, the smallest bubbles

re represented by about 32 cells and the largest ones are dis-

retized by more than 400 cells, which approximately corresponds

o 0.2 < �/ R < 0.5; it is thus coarse compared with the resolutions

tudied for the single bubble collapse. In Fig. 17 the contours of the

nitial solution are shown. The vertical cut planes are vapour frac-

ion fields in the small inner domain using cell values (right) and

ontinuous colouring (left), while the bottom horizontal face de-

icts the pressure field on the bottom face of the inner domain. In

his figure, the upper limit of vapour fraction contours is set to 0.5

or better contrast. The time step of the simulations is 3 . 9 × 10 −8 

 corresponding to CFL number (for compressible solution) of 0.7

nd the sampling frequency of 2.56 × 10 7 Hz. Finally, in order to

easure the imposed pressure of the collapsing bubbles on the

ottom wall, one pressure transducer is located at the centre of

he bottom face. This transducer covers an area of 1 × 1 cm 

2 . 

To validate the simulations, first the equilibrium model results

re compared with the data of Schmidt et al. (2014, 2011) . In

ig. 18 a, the dimensionless volume variations of the bubble cloud

nd collapse durations are compared. As there is no experimental

ata or analytical solution for this specific cloud with the speci-

ed boundary conditions, a simplified analytical estimation is uti-

ized to evaluate the general trend of the results. Assume the col-
between numerical methods in simulation of cavitating bubbles, 
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Fig. 17. Initial flow contours: vapour fraction using cell values (vertical right); 

vapour fraction using point values for continuous colouring (vertical left); pressure 

(horizontal). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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lapse of an equivalent bubble with the same initial vapour volume

as the bubble cloud, yielding an initial equivalent radius of 4.8 mm.

The Rayleigh collapse time of this bubble in a farfield pressure of

40 bar is 6 . 9 × 10 −5 s ( Eq. (26) ). The collapse time of the numerical

cloud in the current simulation is 7 . 3 × 10 −5 s while from the work

of Schmidt et al. (2014) it is found to be 6 . 3 × 10 −5 s. Therefore,

both estimated collapse times are reasonable. The volume varia-

tion profile of the equivalent bubble is also plotted in Fig. 18 a for

comparison. From the collapse time and volume variation profiles

it is seen that there is a time shift between the two simulations.

This shift is seen in the pressure profile as well, see Fig. 18 b. This is

probably due to an anticipated small difference between the initial

pressure field of the two simulations. However, the profiles look

very similar for both volume variation and wall pressure, and after

the initial shift the simulation profiles are almost parallel. There is

also some difference in pressure peak values which is due to dif-

ferent flux schemes that were used in the simulations. In the pres-

sure profile, the result of a finer grid ( �CF D = 0 . 09 mm) is shown

as well and it is seen that the results of the current study is more

similar to the fine grid profile of Schmidt et al. (2014) . 

In Fig. 19 , the vapour volume variations of the finite mass trans-

fer model with different mass transfer coefficients are compared

to the equilibrium model result. It is seen that with different mass
Fig. 18. Validation of the equilibrium model simulation of bubble cluster; (a) time
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ransfer coefficients, the finite mass transfer model estimate simi-

ar variation for the total volume of the cloud with time. For the

ingle bubble collapse, it was found that when the empirical con-

tants are larger than a minimum value, the bubble radius profile

oes not show a considerable change. For a cloud of bubbles with

 large ambient pressure (40 bar in this case), however, the total

olume of the cloud does not change significantly with the chosen

ange of coefficient values, although individual bubbles may have

ifferent radius variations which can be anticipated from small dif-

erences between C = 1 profile and the others. 

The temporal evolution of cloud volume for the Lagrangian

odel based on different R–P equations are compared to the equi-

ibrium model in Fig. 20 . Three different forms of the R–P equation

re used in these simulations. The first one is the original form of

he equation ( Eq. (24) ) with the infinity pressure ( p ∞ 

) value equal

o the pressure at the farfield boundaries (40 bar). The other case

s the original form in which the liquid surface average pressure

t the bubble interface is used as p ∞ 

. As stated before, this ap-

roach has been used in literature as a simplified method to con-

ider local flow effect on the bubble. The third case is the local-

zed R–P equation ( Eq. (25) ). It is seen in the figure that the origi-

al R–P equation with farfield pressure estimates a faster collapse.

his is expected since the farfield pressure (40 bar) is much larger

han the effective local pressure around the bubble. Also, replac-

ng the farfield pressure with the corresponding value at the in-

erface leads to a very slow rate of collapse and after 70 μs only

5 percent of the cloud volume is condensed. In previous stud-

es, this approach has been modified by correction terms such

s a constant pressure added to p ∞ 

, slip velocity correction term

 Hsiao et al., 20 0 0 ) or corrections based on the turbulence quan-

ities ( Giannadakis, 2005 ). However, such corrections do not work

or this problem, since the slip velocity and the turbulence level

re negligible and the corrected constant pressure is unknown.

omparing to these two forms, the localized R–P equation can cap-

ure the collapse rate very well. In fact, the estimated collapse

ime is close to the one from equilibrium model and the total vol-

me profile is very similar to the finite mass transfer method re-

ult, see Fig. 19 . It should be mentioned that for the localized R–

 equation, the empirical constants should be larger than a mini-

um value ( C ≈ 100) to capture the volume profile reasonably. It is

hown later that with smaller coefficients, the pressure field is not

ell-estimated and it affects individual bubble collapse in the La-

rangian approach. However, after this minimum value, the cloud

ate of collapse is independent of the mass transfer coefficients. 
 history of the vapour volume; (b) average pressure on the wall transducer. 

between numerical methods in simulation of cavitating bubbles, 
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Fig. 19. Time history of bubble cloud volume using finite mass transfer model (FMT) with different coefficients. 

Fig. 20. Time history of bubble cloud volume using Lagrangian model with different R–P equations. 
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In Fig. 21 , the average pressure profiles of the finite mass trans-

er model on the 1 × 1 cm 

2 pressure transducer are compared with

he equilibrium model result. For the single bubble collapse some

umerical wiggles were detected in the pressure profiles of the

quilibrium model results and as stated, in the polar grid, due

o the simultaneous phase change in several polar cells (equidis-

ant to the centre), these wiggles are augmented and form larger

ulses. In the bubble cluster case, however, a Cartesian grid is used

nd the numerical pulses are negligible compared to large physical

ollapse pressure peaks. In fact, no considerable numerical pulse

s seen in the average pressure profile over the small transducer

 Fig. 18 b) and the local peaks of the equilibrium model profile are

elated to the collapses of different bubbles. Therefore, the equilib-

ium model result can be considered a reasonable benchmark solu-

ion for estimation of the finite mass transfer model performance.

n Fig. 21 a, it is seen that the pressure estimation of the finite

ass transfer model is highly dependent on the empirical coeffi-

ients, contrary to what was noted for the volume variation. If the

oefficients are low, no local pressure peak is seen from individ-
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al bubble collapse and the average pressure on the wall increases

moothly to the maximum value which corresponds to the final vi-

lent collapse, and after the collapse it decreases smoothly. When

he coefficients are increased to moderate values (C = 10 2 ), there

re some local peaks in the wall pressure profile and the maximum

ressure value is estimated much larger than the corresponding

alue of compressible equilibrium model. When the coefficients are

urther increased to high values (C = 10 5 ), these peaks still exist

nd it is seen that for both moderate and high coefficients they

re so frequent that the profile is not a regular line. It should be

entioned that the maximum pressure peaks for C = 10 2 and C

 10 5 are larger than 30 0 0 bar which are not in the range of de-

icted plot. Actually, most of the local peaks in the pressure profile

an be regarded as spurious numerical pulses and it can be fur-

her distinguished if the plotted data are filtered out every 10 time

teps as shown in Fig. 21 b. From this figure, the finite mass trans-

er result for C = 10 5 is rather similar to the equilibrium model,

lthough there is a time shift due to earlier collapse of the finite

ass transfer approach. However, in general cases that the correct
between numerical methods in simulation of cavitating bubbles, 
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Fig. 21. Average wall pressure over the small transducer using finite mass transfer model; (a) comparison of different transfer coefficients; (b) filtered result with C = 10 5 . 

Fig. 22. Average wall pressure over the small transducer using Lagrangian model with different mass transfer coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

t  

w  

Y  

i  

l  

e  

s  

n  

s  

s

 

t  

t  

t  

s  

a  

i  

l  

i  

e  
solution is unknown, it is not possible to distinguish between nu-

merical spurious peaks and physical collapse pulses and this can

lead to inaccurate prediction of the impact loads and erosion esti-

mations in cavitating flows. 

In Fig. 22 , the average pressure profiles of the Lagrangian model

with localized R–P equation are compared with the equilibrium

model result. It is seen that with small mass transfer coefficients,

the bubble cloud collapses too early. As shown in Fig. 21 a for the

finite mass transfer model, when the empirical constants are small,

the pressure field and its temporal peaks are not well captured.

Since in the Lagrangian approach, the localized R-P solution is di-

rectly dependent on the surrounding pressure, an inaccurate pres-

sure estimation leads to a wrong prediction of the vapour volume

profile and collapse time. Also, for the larger coefficients, the es-

timated average pressures are similar to those of the finite mass

transfer model, which shows that even with more accurate formu-

lation in modelling the vapour interface, the numerical pulses still

exist. As stated before, in this study the compressibility of pure

liquid and vapour are not taken into account and it seems that

the liquid incompressibility around the cloud is the major reason

for spurious pulses. In an incompressible fluid, every single pulse
Please cite this article as: E. Ghahramani et al., A comparative study 
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rom the variation of a bubble size appears as a sudden and simul-

aneous pressure change in the whole flow domain, including the

all boundary. Such numerical peaks can be seen in the work of

akubov et al. (2015) , where ignoring the pure phase compressibil-

ty caused quite larger peaks in the hydrofoil surface pressure and

ift force profiles (Fig. 17 of Yakubov et al., 2015 ). However, consid-

ring the liquid compressibility in pressure based cavitating flow

olvers may lead to ill-conditioned matrices of coefficients which

eeds special measures and smaller time steps to ensure solution

tability and this, in turn increases the computational expenses;

uch an improvement is the subject of a future study. 

For further comparison and understanding of different models,

he bubble cloud structure and wall pressure contours at different

ime instances are depicted in Fig. 23 . It should be noticed that the

ime instances of different rows of the figure are not exactly the

ame. Since the equilibrium model result has a small time delay

s compared to the other two models ( Figs. 19 and 20 ) the time

nstances of the equilibrium model contours are chosen a little

ater (0.2–0.4 μs) to compare the corresponding instances of cav-

ty structures in each row. Also, since there is a 1 μs time differ-

nce in the collapse profile of the current equilibrium model re-
between numerical methods in simulation of cavitating bubbles, 
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Fig. 23. Comparison of equilibrium model (left), Lagrangian model (middle) and finite mass transfer model (right) in prediction of cloud structure and wall pressure at 

different time instances (a) t = 0 ; (b) t = 3 . 4 μs; (c) t = 3 . 7 μs; (d) t = 6 . 1 μs; (e) t = 6 . 8 μs. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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sults and the corresponding data of Schmidt et al. (2011) , the cho-

sen time steps of Figs. 23 c–e for the equilibrium model is about

1 μs larger than the corresponding values in Figs. 6(2)–6(4) of

Schmidt et al. (2011) . For plotting the cavity structures of the Eu-

lerian models, the vapour fraction threshold of 0.01 < αv < 0.9 is

chosen. In Fig. 23 a, it is seen that while in the Lagrangian approach

each spherical bubble can be presented with the exact dimension,

in the Eulerian modelling the vapour volume is distributed over a

number cells which may lead to the diffusion of the bubble inter-

face. For a more precise representation of bubble interfaces, a finer

grid is needed as the one in the work of Schmidt et al. (2011) with

11 million cells in the inner domain or even, to have a better repre-

sentation, the generated grid with a total of 120 million cells in the

study of Adams and Schmidt (2013) . Fig. 23 b is depicted to show

the similarity in the cavity structures despite the difference in es-

timation of the pressure profiles between the compressible and in-

compressible methods. The small marked bubble in this figure col-

lapses a few time step later and since it is close to the bottom

boundary, the collapse pressure effect on the wall is considerable.

Based on Fig. 23 c the equilibrium model can capture the emitted

pressure wave on the wall as in this model the compressibility of

the pure phases is taken into account. However, for the Lagrangian

and finite mass transfer model the collapse pressure appears as a

sudden and simultaneous pressure change in the whole flow do-

main (and not as an emitted wave). Therefore, no circular wave

pattern is seen in the pressure contours of these models in which

the liquid compressibility is neglected. In fact, the pressure on the

wall, and specially close to collapse point, has a huge and instanta-

neous increase at the collapse time, but after just a few time steps

the wall pressure becomes rather uniform. 

Due to the non-symmetrical pressure field around the bubbles,

they are expected to lose their spherical symmetry during the col-

lapse, as predicted by the equilibrium model. In fact, in the last

steps of the collapse, the bubbles are deformed by impinging liq-

uid jets and they are finally pierced and take a torus shape. How-

ever, as shown in Fig. 23 d for the Eulerian models, the bubbles

have small deformation in shape while in the corresponding con-

tours of Schmidt et al. (2011) (figure 6(3) of the paper) the small

bubbles are already pierced by the liquid jet. The collapsing bub-

ble have similar shapes later in Fig. 23 e, while in Fig. 6(4) of

Schmidt et al. (2011) (the corresponding instance) the last bub-

bles have torus shape. Therefore, the Eulerian equilibrium model,

at least, can estimate the bubble piercing and non-symmetrical

shapes, however it needs a very fine grid (around 220 3 cells for

this case). From the middle contours of Figs. 23 d and e, it is seen

that the Lagrangian bubble stay spherical during the entire collapse

time as in the Rayleigh–Plesset equation, the bubble is assumed to

keep its symmetrical shape. However, it is possible to improve the

Lagrangian model and consider the non-spherical shapes in this

approach regardless of the computational grid size and it can be

the subject of a future study. 

5. Conclusions and future works 

In this study, the performance of three different numerical

models are compared by investigating two benchmark test cases,

including a discussion on the effect of pressure computation ap-

proaches for the Lagrangian model. For the equilibrium model,

the (pure phase) compressibility was taken into account by solv-

ing the corresponding equation of state for each phase and us-

ing a density-based algorithm. However, for the finite mass trans-

fer model and the Lagrangian model, the pure fluid was assumed

to be incompressible and a pressure based algorithm was used to

consider pressure-velocity coupling. Also, in the Lagrangian model,

the continuum fluid is solved similar to the finite mass transfer ap-

proach, however the cavities are represented by individual discrete
Please cite this article as: E. Ghahramani et al., A comparative study 
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ubbles. In this method, the bubble deformation was calculated us-

ng the original and improved forms of the Rayleigh–Plesset equa-

ion to investigate the effect of local pressure in estimation of bub-

le collapse rate. The first test case was the Rayleigh collapse prob-

em, for which exact analytical results are available, to investigate

he behaviour of each method for a fundamental problem. The sec-

nd studied case was the collapse of a cloud of bubbles in which

he flow field around each bubble was unsymmetric and the cor-

ect estimation of the local pressure plays a more important role.

inally, from the obtained results, the following conclusions are

rawn: 

– Both Eulerian models estimate a diffusive liquid–vapour inter-

face and to have a more precise representation they need finer

grids as compared to the Lagrangian model. The interface dif-

fusivity can have considerable effect in the estimation of local

pressure on the interface (as in the case of single bubble col-

lapse) and the shape of cavity structure (as in the case of bub-

ble cluster), especially in the last stages of the collapse. 

– Some numerical pulses are detected in the estimated pressure

profiles of the Eulerian models for the single bubble collapse

problem, and this can be significant in collapse pressure calcu-

lation for special situations. From the comparison of the finite

mass transfer and Lagrangian results, it is concluded that when

the sharp bubble interface is estimated precisely, these numer-

ical issues are solved. 

– The numerical pulses are augmented when the grid lines are

aligned with the bubble interface and there is a simultaneous

phase change in several neighbouring cells. For the more com-

plex case of bubble cluster, the Cartesian grid was used. There-

fore, the pulses are not augmented, and they are negligible as

compared to the high pressure in the farfield and large physical

pressure peaks from individual bubble collapses. 

– The Lagrangian models can give satisfactory results with larger

time steps and coarser grids as compared to the Eulerian ap-

proaches. 

– In the general cases that a bubble is surrounded by other cavity

structures or confined by flow boundaries and the surround-

ing flow field is not symmetrical, it is necessary to use the

local pressure in the R–P equation. The introduced localized

Rayleigh–Plesset equation was shown to have a more appropri-

ate representation of the bubble dynamics as compared to the

original form of the equation or the above-mentioned improve-

ments in the literature. 

– The fluid compressibility is an effective parameter in estima-

tion of the flow pressure and to have a reliable study of the

cavity collapse pressure it is necessary to consider this param-

eter. However, from the comparison of the cavity structures of

the compressible and incompressible simulation, it is seen that

even by ignoring the fluid compressibility, the collapse rate and

vapour distribution can be predicted with reasonable accuracy. 

Also, it was shown that for the case of single bubble collapse,

he Lagrangian model yields better accuracy compared to the fi-

ite mass transfer model, even with larger time steps and coarser

rid cells. And for the more complicated case of bubble cluster the

wo approaches have similar accuracy. There are special problems

n which the non-condensable gas content as well as fluid viscos-

ty effects should be considered and these parameters are easier to

mplement in the R–P equation of the Lagrangian models as com-

ared to the mass transfer source terms. Therefore, the Lagrangian

odel or a hybrid Eulerian–Lagrangian model can be suitable al-

ernatives to the Eulerian finite mass transfer rate models. Devel-

pment of a hybrid model is the subject of future studies. The im-

lementation of the non-condensable gas effect in the compress-

ble equilibrium is possible as well, however, it is not as straight-

orward as adding an additional term in the R–P equation. In ad-
between numerical methods in simulation of cavitating bubbles, 
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ition, the incompressible models should be improved to consider

he pure phase compressibility for a more appropriate estimation

f the pressure field. This development improves the generated

ressure pulse and erosion estimation as well as solution of the

ocalized Rayleigh–Plesset equation. Finally, for the special applica-

ions in which the bubble non-spherical shape at the latest stages

f collapse is important, the effect of flow field unsymmetry can

e further considered in the Lagrangian equations to improve the

agrangian or hybrid model in this regard as well. For the pure Eu-

erian approaches more refined grids are needed to have an accu-

ate estimation of the bubble shape, which makes the simulations

imited to the small scale flow field, especially for the compressible

ensity-based models. 
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