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Mining human gut microbial metabolism through in vitro and in silico 
approaches 
 
Promi Das 
Department of Biology and Biological Engineering 
Chalmers University of Technology 
 
Abstract  
The human gut microbiome is a consequence of mutual co-evolutionary interaction between 
the eukaryotic and prokaryotic parts of the mammalian holobiont. Based on the 
environmental and dietary inputs, there is a succession of microorganisms living inside the 
human colon. They have evolved to perform metabolic tasks that are not possible by the 
human host — for example, they breakdown complex polysaccharides and produce bioactive 
molecules such as short-chain fatty acids. They have the potential to transform human 
generated metabolites (e.g., primary bile acids) to signaling compounds such as secondary 
bile acids. They also produce several of B-vitamins, which otherwise human host derive 
through dietary means. Cognate receptors in various host cells could sense these bioactive 
metabolites and contribute to a wide variety of physiological function through signaling 
system in the host. An imbalance between the microbial activity and their effect on the host 
system could lead to the development of metabolic diseases. 
 
Provided the critical role of gut microbial metabolism, this thesis presents the evaluation of 
metabolic genes of gut microbiota such as bile acid, vitamin, and short-chain fatty acid 
metabolism using metabolic reconstructions and bioinformatics analysis in different states of 
health. Fecal metagenomes of subjects with inflammatory bowel diseases, type 2 diabetes 
and malnutrition were analyzed for such functional analyses. Furthermore, abundant gut 
microbial species were characterized to study their growth and metabolism in in vitro co-
cultures using network analysis. The findings explained here show the gut microbial 
metabolic diversity in various cohorts and conditions. It also includes a discussion on the 
challenges and future perspectives in a broader context of its potential application. The 
efforts undertaken in this work aims to inspire how the interplay between gut microbial 
metabolism and the host health status could contribute to the overall well-being of an 
individual. 
 
Keywords: gut, metabolism, short chain fatty acids, bile acids, vitamins, metagenomics, 
metatranscriptomics, metabolomics, co-occurrence network, in vitro co-cultures. 
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1. BACKGROUND 

 
1.1.  EVOLUTION OF THE GUT MICROBIOME 
Advances in the high-throughput sequencing technologies and bioinformatics tools and methods 
have propelled the field of human microbiome science. These technological resources have been 

crucial in systematic mining of human gut microbial ecosystem, despite low cultivation practice of 
most gut microorganisms. Qualitative and quantitative research of microbial communities through 

16S rRNA marker-based sequencing revealed answers by addressing “Who is there?” and “How 
many are there?” Eventually, microbiome researchers became interested in questioning the 
functionality and interrelationship of microbial communities from whole genome sequencing, such 

as, “What do they do?” and “How do they do?” The evolution and major discoveries in 
microbiome research are listed in Table 1. Currently, the question has evolved into “How the 

microbiome could be modified to modulate our health?” 
 

Table 1. Key advancements that set the foundation of microbiome research. 
YEAR ADVANCEMENTS REFERENCES 
Early 
1680s 

Difference between the microbes found in samples from the 
oral cavity than that from the feces 

Antoine van Leuwenhoek 

1864 Germ Theory of Disease Louis Pasteur 

1876 Koch’s postulates Robert Koch 

1901 Probiotics for good health Eli Metchnikoff 

1909 
Effect of diet on the composition of gut microbiota and its 

impact on the host’s health 
Arthur I Kendall 

1950 Normal flora under different states of health Rene Dubos 

1977 
Ribosomal RNA genes as molecular markers for phylogenetic 

studies 
Carl Woese and Norman Pace 

1979 Shotgun sequencing method (Gardner et al., 1981) 
1983 Polymerase chain reaction Kary Mullis 

1990 Start of large-scale sequencing trials NIH 

2006 Metagenomic analysis of the human gut microbiome (Gill et al., 2006) 
2007 Human Microbiome Project (Turnbaugh et al., 2007) 
2009 Study of the gut microbiome in lean and obese individuals (Turnbaugh et al., 2009) 
2010 Microbiome gene catalog (Qin et al., 2010) 
2011 Enterotypes of the human gut microbiome (Arumugam et al., 2011) 

2014 Human Microbiome Project 2 
(The Integrative HMP Research 

Network Consortium, 2014) 
2015 Precision Medicine (Zeevi et al., 2015) 
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1.2.  THE HUMAN GUT MICROBIOME 
 

• Human Physiology and Microbial Ecology of Gastrointestinal Tract 
The human gastrointestinal (GI) tract can be visualized into six distinct anatomical regions, 

extending from stomach to the rectum. These six anatomical regions are stomach, duodenum, 
jejunum, ileum, cecum, and rectum. On a broad level, small intestine consists of duodenum, 

jejunum, and ileum; while large intestine consists of cecum and rectum. The physiochemical 
features in each of these regions differ and thereby influences the colonization, composition, and 

abundance of the microbial species. These physiochemical variations are mostly attributed to 
host secretions (e.g., digestive enzymes, bile salts, hydrochloric acid, and mucus), availability of 

diet-derived metabolites, local pH, redox potential, and transit rates of the luminal content 

(Savage, 2003). The microbial load is low (less than 104 organisms per gram of stool) in the 

upper GI tract (i.e., stomach, duodenum, and jejunum) and gradually increases (greater than 107 
organisms per gram of stool) towards the lower GI tract (i.e., ileum, cecum, and rectum) (Figure 

1). In the upper GI tract, acid stress in the stomach, the presence of the bile acids (BAs), 
pancreatic enzymes in the duodenum, and the rapid wash out of the cells by the fast flow of food 

are the primary reasons for impeding the microbial colonization. However, in the lower GI tract, 
increased availability of nutrients caused by reduced transit times makes it a favorable 

environment for the microbes. Hence, there is a high abundance of microbial species in the colon 
(Savage, 2003). 
The intestinal lumen is separated by the epithelial surface from the internal body environment and 
forms a continuum with the external environment. The epithelial surface is a single layer of 

intestinal cells that is covered by a mucus layer. The microbial composition present in the feces 
and luminal content differs significantly than the ones associated with the mucus layer (Eckburg 

et al., 2005; Frank et al., 2007). 

 

Figure 1. Schematic representation of bacterial density and the environmental pH in different 
anatomical regions along the length of the gastrointestinal tract. Adapted from (Kovatcheva-
Datchary et al., 2013). 

  



 3 

• Establishment of Gut Microbiota in the GI tract 
The colonization of an infant gut microbiome begins at birth when exposed to an external 
environment. Microbial species that are introduced to the GI tract of the neonate are a 
consequence of contact between the microbes found in the skin/vagina and surrounding 

environment of the mother (Dominguez-Bello et al., 2010). The development of the neonatal gut 
microbiota begins from a simple community and transforms into a climax community through a 

gradual and dynamic process for over two years of life. This process is determined by multiple 
factors, such as the type of feeding, the health status of the baby, mode of delivery, and maternal 

microbiota (Bäckhed et al., 2015). Due to the positive redox potential in the neonatal gut, it is 
populated by facultative anaerobes. In fact, as the infant starts to consume solid food, the existing 

microbiota creates an anoxygenic condition, which becomes favorable for the proliferation of 
anaerobic species (Wall et al., 2009). At two years of life, the succession of microbial composition 

reaches a state which is similar to that found in an adult intestine (Koenig et al., 2011). 
Furthermore, the microbial structure of a matured or stabilized microbiome is shaped by diet, 

colonization history, type of antibiotic medication, and host immune system and other stressful 
factors that play a vital role in health and disease later in life (Figure 2) (Yatsunenko et al., 2012). 

 

Figure 2. Involvement of diverse factors in association with the gut microbiome.  
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1.3.  FACTORS THAT SHAPE HUMAN GUT MICROBIOTA 
 

• Medication 
Human gut microbiota is a reservoir of antibiotic resistance gene encoded in the genomes of 

microorganisms, termed resistome (Wright, 2007). In the last few decades, the use of antibiotics 
have posed severe threats to the public health (Laxminarayan et al., 2013). These genes have 

been detected in the human gut microbiota of inhabitants from low-income, remote, and 

industrialized urban areas all over the world. Most of the studies indicate that the emergence of 
antibiotic resistance is driven by the rate of antibiotic consumption and misuse. The increased 

selective pressure of antibiotics accounts for the differences in the diversity and abundance of 
these genes across countries (Salyers et al., 2004; Bartoloni et al., 2009; Sommer et al., 2009; 
Forslund et al., 2014; Pehrsson et al., 2016). They persist in the gut ecosystem for many years 

even after the termination of antibiotic treatment (Hu et al., 2013; Clemente et al., 2015). 
 

On the other hand, non-antibiotic drugs such as anti-diabetics (e.g., metformin) (Forslund et al., 
2015), proton pump inhibitors (Imhann et al., 2016; Jackson et al., 2016), non-steroidal anti-

inflammatory drugs (Paño-Pardo et al., 2016), and antipsychotics (Flowers et al., 2017) have 

been associated with changes in the composition of gut microbiome. In fact, a similar finding was 
evidenced in a large cohort where medication intake explained the most significant variation with 

other covariate-microbiota associations in altering the gut microbial composition (Darzi et al., 
2016). Systematic profiling of associations between human targeted drugs and gut bacteria has 

revealed the importance of accounting for potential medication-related confounders in future gut 
microbiome-disease studies. A comprehensive resource of pharmaceutical drug actions on the 

microbiome with further validation of the drug–microbe network facilitates more in-depth clinical 
and mechanistic studies, thus ultimately improving the drug development (Maier et al., 2018).  
 
Though antibiotic treatment can disrupt the commensal microbiota, reconstitution of human gut 
microbiome is often slow and incomplete (Jernberg et al., 2007; Dethlefsen et al., 2008; 

Dethlefsen and Relman, 2011). While probiotics have been suggested to restore the gut microbial 
composition from an antibiotic-induced dysbiosis, no substantial evidence has been found to 

support the recommendation. However, in vivo examination of the extent of probiotics on gut 
mucosal colonization was shown to delay the reconstitution of indigenous microbiome following 

an antibiotic exposure (Suez et al., 2018). Alternately, autologous-fecal microbiota transplantation 
(aFMT) succeeded to induce rapid and near-complete gut mucosal microbiome re-colonization, 

and reversion of the human gut transcriptome as that of the pre-antibiotic configuration (Taur et 

al., 2018). 
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• Genetics 
As part of the microbiome is known to be heritable, host genetics has been an essential factor in 
determining the gut microbial composition (Turnbaugh et al., 2009; Goodrich et al., 2014, 2016; 

Turpin et al., 2016; Xie et al., 2016). Despite different phylogenetic profiles among different 
populations, a “core microbiome” at a functional level was identified among the various individuals 

(Turnbaugh et al., 2009). However, the extent to which the host genetics determine the heritability 
remained an unsolved question. While several studies have found associations between 

individual bacterial taxa or pathways and host single nucleotide polymorphisms (SNPs) 
(Blekhman et al., 2015; Bonder et al., 2016; Goodrich et al., 2016; Turpin et al., 2016; Wang et 

al., 2016; Xie et al., 2016), these associations turned out to be statistically insignificant after 
multiple testing corrections (Kurilshikov et al., 2017).  
 
From re-analysis of the microbiome and genetic data of 2252 twins (TwinsUK cohort), the 
average heritability of the gut microbiome was estimated to be around 1.9 to 8.1%, suggesting 

only a small number of bacterial taxa are likely to be heritable. Furthermore, genetic ancestry or 
individual SNPs of the subjects were not significantly associated with their microbiome 

(Rothschild et al., 2018). Contrarily, direct evidence supporting the notion that environmental 
factors predominantly shape gut microbial composition demonstrated a significant gut microbiome 

similarity among genetically unrelated individuals who share a household (Rothschild et al., 
2018). In the same study, no considerable microbiome similarity was reported among genetically 

related individuals who do not have a history of household sharing. It was strongly anticipated 
that studies with larger sample sizes could identify heritable taxa and SNP associations in the 

future. Nonetheless, it is unlikely to change the inference that environmental factor predominantly 
shapes the microbiome composition. 
 

• Diet 
With the help of compositional and functional tools, several studies have investigated the role of 
microbes in mediating diet-induced effects on host physiology. By emphasizing on diet 
components, the research question focused on how a particular component of each dietary 

pattern could influence the abundance and functional capacity of different types of bacteria in the 
gut, and how those gut microbiota-derived metabolites could affect human health. Based on the 

recent observational and interventional studies, the impact of some dietary compounds on human 
gut microbiome and health status is summarized in Table 2. 
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Table 2. Influence of dietary components on human health mediated through gut microbial 
metabolism. 

DIET EFFECT ON THE GUT MICROBIOME EFFECTS ON THE HOST REFERENCES 

Fiber 
Increased microbial diversity and SCFA 

production 
Reduced CVD and T2D 

(Battaglioli and 

Kashyap, 2018; 

Sasaki et al., 2018; 
Zhao et al., 2018) 

FODMAP 

High FODMAP diet decreased the 

abundance of gas-consuming bacteria, 

and low FODMAP diet increased 
Actinobacteria 

Reduced symptoms of IBS 
(Gibson, 2017; 

McIntosh et al., 2017) 

Vegan 

Modest effects on the composition of 
gut microbiota, but significant 

differences in metabolome compared to 

omnivores diet 

High gut microbial-
mediated metabolites in 

the plasma compared to 

omnivores diet 

(Orlich et al., 2013; 
Wu et al., 2016; 

Mihrshahi et al., 

2017) 

Cheese 
Increased Bifidobacteria and reduced 

Bacteroides and Clostridia 

Reduced production of 

TMAO and increased 

output of SCFA 

(Montel et al., 2014; 

Zheng et al., 2015) 

Polyphenols 
Increased Akkermansia, Bifidobacteria, 

Lactobacillus, and butyrate producers. 
Reduced LPS producers 

Reduced metabolic 

markers of CVD risk and 
metabolic syndrome 

(Etxeberria et al., 
2015; Moreno-Indias 

et al., 2016; Ozdal et 

al., 2016) 
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1.4.  STRATEGIES TO STUDY GUT MICROBIOTA 
The availability of high-throughput experimental techniques has allowed a more in-depth study on 
the composition and functional potential of a microbial community. Broadly, they are of two types 

(i). Compositional techniques, which analyze the number and kind of microbe present in a 
community and (ii). Functional techniques, which examine the community level functions 

executed by the bacteria present in a community. Table 3 lists the techniques used in the field of 
microbiome science. 

Table 3. Techniques used to study the human gut microbiota from isolated samples. 
COMPOSITIONAL 

TECHNIQUE DESCRIPTION ADVANTAGES DISADVANTAGES 

Culture-based 
Isolation and growth of bacteria in 

a selective growth medium 
Semi-quantitative 

Labor-intensive, only a 

minor fraction of 

bacteria is cultivable 

Cloned 16S rRNA gene 

sequencing 

Cloning and sequencing of 16S 

rRNA gene 
Quantitative 

PCR-bias, cloning-bias, 

laborious, expensive 

Temperature gradient 

gel electrophoresis 

Gel separation of 16S rRNA 

amplicons using temperature 
Semi-quantitative PCR-bias 

Denaturing gradient gel 

electrophoresis 

Gel separation of 16S rRNA 

amplicons using denaturants 
Semi-quantitative PCR-bias 

Fluorescence in-situ 

hybridization with flow 
cytometry 

Hybridization of 16S rRNA regions 

with fluorescently labeled 
oligonucleotide probes 

Semi-quantitative 

Limited to known 

species as sequence 
information is required 

Terminal restriction 

fragment length 
polymorphism 

Restriction enzyme-digested 

fragments of 16S rRNA amplicon 
Semi-quantitative PCR-bias, low resolution 

DNA microarray 

Hybridization of nucleotide regions 

with fluorescently labeled 
oligonucleotide probes 

Semi-quantitative 

PCR bias, the possibility 

of cross-hybridization, 
lack of sensitivity 

16S rRNA amplicon 

sequencing 

Massive parallel sequencing of 

the16S rRNA amplicons 
Quantitative PCR-bias 

Whole metagenomic 
sequencing 

Large-scale parallel sequencing of 
the entire genome fragments 

Quantitative 
Computationally 

intensive analysis 

FUNCTIONAL 

Metatranscriptomics 
Parallel measurement of RNA 

levels in a mixture 
Quantitative 

Computationally 

intensive analysis 

Metabolomics 
Parallel measurement of 

metabolites levels in a mixture 
Quantitative 

Computationally 

intensive analysis 

Metaproteomics 
Parallel measurement of proteins 

levels in a mixture 
Quantitative 

Computationally 
intensive analysis 

 

  



 8 

In systems biology, mathematical models such as genome-scale metabolic models are often 

used to capture information from complex systems in a concise way. They help in comprehending 
important biological reactions and enable the simulation of metabolism and other biological 

processes involved in cellular growth (Nielsen, 2017). Testing the metabolic capabilities of an 
organism under different environmental conditions and parameters has allowed robustness in 

simulations (O’Brien et al., 2015), which is otherwise not feasible in human studies. These 
models provide top-down, systems biology analysis at holistic genome-scale level, with bottom-

up, systems biology modeling investigation. They could be used in predicting the metabolic 
potential of the gut microbiota in a complex ecosystem. Reconstructing GEMs for each species of 

a community could enable interpretation of their metabolic interactions with other members (Sen 
et al., 2019). One potential application of gaining knowledge from these simulations would be 

rational designing of synthetic microbial communities. In simplest terms, the workflow for 
reconstruction of a genome-scale metabolic model has been summarized in Table 4. 

Table 4. General steps involved in reconstruction of a modeling framework for analysis and 
predictions. 

ACTION DESCRIPTION 

Build 
For a target organism, known metabolic reactions, genome annotation, and 
biochemical characterization from published articles are retrieved as raw materials. 

Structure 

For each metabolic reaction, stoichiometric coefficients for each of the substrate and 

product involved; reversibility; location in a cellular compartment; enzyme metabolic 
gene and its genomic location are assembled into pathways, metabolic sectors, and 

finally into genome-scale networks.  

Model These stoichiometric equations are converted into a numerical matrix. 

Constraints 
These are mathematical equations imposing mass balance constraints in a network, 
such as equating the consumption and production rates of every metabolite; the 

reaction flux within lower and upper bound at steady state. 

Solution space 
A solution space with allowable flux distributions that satisfy the imposed constraints is 
achieved. 

Objective function 

It is a mathematical representation of a biological process (e.g., growth, ATP 

consumption) which is optimized in specific environmental and physiological context 

during conversion of a network reconstruction to a model 

Model evaluation 
The accuracy, consistency, and incomplete pieces of information in a model are 

checked to ensure informative and qualitative outcome for e.g., growth capability. 

Prediction 

Next to gap filling and curation, quantitative phenotype predictions are performed. Flux 

state(s) that maximize the assumed objective are predicted using flux balance or flux 
variability analysis.  

Validation 
These predictions are then iteratively compared to experimental measurements until 

the model evaluation is satisfactory. 
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1.5.  METABOLIC FUNCTIONS OF GUT MICROBIOTA 
 

• Carbohydrates and Fermentation 
Carbohydrates are a significant component of human diet, and not all of them are metabolized 

equally. From a microbial and human host perspective, the division in the availability of 
carbohydrates to both microbes and host serve different purposes. While mono- and 

disaccharides in the diet are readily absorbed in the small intestine, a fraction of the dietary 
carbohydrates is resistant or non-digestible by the human host. These carbs reach the proximal 

colon and serve as active substrates for metabolic breakdown by the gut microbiota (Macfarlane 
et al., 1992). Dietary resistant oligosaccharides, undigested (resistant) starch and plant cell-wall 

components such as cellulose, hemicellulose, and pectin are the primary sources of microbial 
fermentation in the gut. These substrates are further metabolized by the microbes to short-chain 
fatty acids (SCFAs) primarily acetate, lactate and butyrate and thus lowering the environmental 

pH (Cummings et al., 1987; Macfarlane et al., 1992). The contribution by the gut microbe’s 
enzymatic potential of carbohydrate degradation has been well established. For example, the 

human host produces only 17 carbohydrate-active enzymes, whereas gut bacterial species 
possess more than 200 carbohydrate-active enzymes (Cantarel et al., 2012). A generalized 

workflow of carbohydrate degradation and fermentation is presented in Figure 3. 

 

Figure 3. Microbial fermentation of dietary carbohydrates to short-chain fatty acids in the human 
colon.  
 

The fate of the major SCFAs produced is dependent on their location (Koh et al., 2016). Acetate 
produced in the gut enters the liver through the portal circulation and eventually is used for 

cholesterol synthesis. However, a significant fraction passes the liver and becomes available to 
peripheral tissues as an energy source. Propionate is used for gluconeogenesis in the liver and 
inhibits cholesterol synthesis from acetate (Wolever et al., 1991). Propionate thus represents a 
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source of glucose for the host. It is also used for intestinal gluconeogenesis (De Vadder et al., 

2014). Most of the butyrate that is absorbed is utilized by colonocytes (Cummings et al., 1987), 
acting as their primary energy source. Relatively little butyrate reaches the circulatory system 

(Cummings et al., 1987). 
 

• Proteins and Fermentation 
Proteins are the second major component of human diet and are metabolized to different extent 
(e.g., animal and plant proteins) by human digestive enzymes and colonic gut microbiota. Dietary 

protein assimilation is impeded by gastric acid in the upper GIT, which results in a considerable 
amount of protein digest traversing from proximal to distal colon (Evenepoel et al., 1998). As the 

availability of carbohydrate decreases in the distal colon, protein degradation takes place near 
neutral pH, where proteins and amino acids become the primary source of energetic inputs for 

the gut microbiota (Macfarlane et al., 1992). Besides dietary proteins, endogenous material such 
as pancreatic enzymes, mucus, and exfoliated epithelial cells also serve as protein sources for 

microbial fermentation. A variety of secondary metabolites, with a range of host effects, are 
produced from the breakdown of amino acids in the gut (Table 5). Besides SCFAs, hydrogen, 

carbon dioxide, indoles, decarboxylated amino acids, branched chain fatty acids, ammonia, 
amines, N-nitroso compounds, phenolic compounds, and sulfides are also produced in the colon 
(Cummings and Macfarlane, 1991). 

Table 5. Influence of dietary-protein derived microbial-mediated metabolic end products on 
human health. 

PRODUCT SOURCE EFFECT RESULT REFERENCES 

p-cresol 
Fermentation of aromatic 

amino acids 

Damages DNA of colonic 

epithelial cells 

Cancer 
development, 

Kidney failure 

(Vanholder et 

al., 1999; 

Toden et al., 
2005) 

Hydrogen 

sulfide 

Fermentation of sulfur-
containing amino acids, 

by the action of sulfate-

reducing bacteria that 
utilize hydrogen and 

sulfate; degradation of 

taurine 

Blocks the oxidation of 

butyrate in colonic epithelial 

cells by inhibiting the 
activity of acyl-CoA-

dehydrogenase goblet cell 

depletion; superficial 
ulceration, and causes 

genomic DNA damage 

Ulcerative colitis 

and colon cancer 
development 

(Pitcher and 

Cummings, 
1996; Magee 

et al., 2000; 

Attene-Ramos 
et al., 2006) 

Indole 

acetic acid 
and indole-

3-propionic 

acid 
 

Metabolism of 

tryptophan generates 
indole derivatives 

Ligands for the aryl 

hydrocarbon receptor  

Protective against 
colitis, and 

involved in 

reducing 
inflammation in the 

central nervous 

system 

(Lamas et al., 
2016; 

Rothhammer 

et al., 2016) 
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Tryptamine 
 

Decarboxylation of 
dietary tryptophan 

A β-arylamine 

neurotransmitter, which 
induces ion secretion in gut 

epithelial cells 

Alters overall 

serotonin dynamics 

in the host affect 

gastrointestinal 
transit time. 

(Lamas et al., 

2016; 
Rothhammer 

et al., 2016) 

 

• Bile acids and Biotransformation 
Human host-mediated primary bile acids, e.g., chenodeoxycholic acid (CDCA) and cholic acid 
(CA), are produced in the liver. After meal consumption, these BAs are released into the 

duodenum to facilitate the emulsification of dietary lipids. Then, they are re-absorbed through the 
ileal active transporter (generally known as IBAT or ASBT) and re-circulated to the liver through 
portal vein blood. This entire process is called enterohepatic circulation and preserves around 

95% of the bile acid pool (Hofmann, 2011).  

 

Figure 4. Schematic representation of bile salt biotransformation in the human colon. Co-
substrates and by-products have been highlighted in black and green color respectively. 
Conjugated primary bile salts are first deconjugated to primary bile acids by BSH enzyme. Then 
they enter the cell via BaiG membrane transporter, where the blue outline denotes the cell 
membrane of a bacterium. The primary bile acid gets transformed to secondary bile acid through 
series of reactions. The transporter required to export the secondary bile acid outside of the cell 
has not been determined. Enzymatic proteins that were studied have been highlighted in red 
color 
 
The remaining 5% of the bile acid pool is prevented from active reuptake due to a change in 

chemical structure (e.g., removal of glycine or taurine from the primary bile acids). Microbial 
metabolism of BA begins with the deconjugation of the conjugated primary BA, followed by 

dehydroxylation into secondary BAs in the large intestine. This multi-step pathway of 
dehydroxylation (Figure 4) is encoded in a bile acid-inducible (bai) operon as identified in 

Conjugated 1° BA

1° BA

- Glycine or taurineBSH

1° BA

BaiG

+ ATP + CoA-SH
- AMP + PPi

1° BA ~ SCoA

BaiB

3-oxo 1° BA ~ SCoA

+ NAD+

- NADH
BaiA

3-oxo 4- 1° BA ~ SCoA

+ NAD+

- NADH
BaiCD/

BaiH

3-oxo 4,6 - 2° BA ~ SCoA

- H2O
BaiE/

BaiI

3-oxo 2° BA ~ SCoA

+ NAD+

- NADHBaiN

2° BA

+ 1° BA 
- 1° BA ~ SCoA

BaiF

?
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Clostridium clusters XIVa and XI, and Eubacterium from Firmicutes (Ridlon et al., 2006). These 

secondary BAs are a critical class of bioactive compounds that can regulate gut microbial 
composition, and several host metabolic processes via activation of cognate receptors (like 

farnesoid X receptor (FXR) (Wahlström et al., 2016; Molinaro et al., 2018), Takeda G-protein-
coupled receptor 5 (TGR5)) present in the gut and the liver (Holmes et al., 2012; De Aguiar Vallim 

et al., 2013). Secondary bile acids such as deoxycholic acid (DCA), lithocholic acid (LCA), 
ursodeoxycholic acid (UCDA) are known to bind BA receptors such as TGR5, VDR, and exert 

anti-inflammatory effects in the colon (Hylemon et al., 2009; Lefebvre et al., 2009; Ogilvie and 
Jones, 2012; Ridlon et al., 2014; Zhou and Hylemon, 2014; Martinot et al., 2017; Pols et al., 

2017). Their functional role in signaling could result in a beneficial outcome by reducing 
inflammation in inflammatory bowel diseases. 
 

• Vitamin Biosynthesis and Utilization 
Beside the role of gut microbiota in nutrient digestion and energy recovery, they are a potential 
source of vitamins. Microbes in the gut are known to synthesize K2 and B-vitamins such as biotin, 

cobalamin, folate, nicotinic acid, pantothenic acid, pyridoxine, riboflavin, and thiamine (Hill, 1997). 
While dietary vitamins are absorbed in the small intestine, the majority of the microbial-produced 

vitamin uptake takes place in the colon (Ichihashi et al., 1992; Said and Mohammed, 2006). 
Several of the B-vitamin synthetic pathways require the presence of other B-vitamins as 
“coenzyme requirement” in a process called “vitamin cannibalism” as shown in Figure 5. 

 

Figure 5. Schematic representation of the vitamin usage for synthesis of other vitamins. The 
direction of an arrow denotes the direction of vitamin synthesis. 
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1.6.  CURRENT AND FUTURE SOLUTIONS TO MANIPULATE THE GUT 
MICROBIOME 
 

Prebiotics 
Changing diets have led to remarkable changes in the structure and composition of the gut 
microbiome within a definite period. For example, swapping food for two weeks between African 
Americans and rural Africans have led to significant production of butyrate in the African 
Americans consuming a rural diet (O’Keefe et al., 2015). The critical element that has led to 
selective growth of beneficial colonic microorganisms is dietary fiber (i.e., prebiotics). The 
development of a community in the presence of these substrates depends on the carbohydrate 
structure, the enzymatic potential of the microbes in this community to degrade and utilize them, 
and their ability to tolerate the change in the environmental conditions (such as low pH resulting 
from fermentation’s acidic products). However, the selective growth of these species is continued 
as long as they are fed with their favorable substrates (Bindels et al., 2015). 
 
Probiotics and Fecal Microbiota Transplantation 
In a wide range of pathologies and a substantial number of observational studies, the benefits of 
probiotics consumption has been shown by two ways, either through significant statistical results 
or statistically insignificant but with improved clinical phenotypes (Thompson et al., 2017; 
Veronese et al., 2018). There have been debatable concerns with the administration of live 
microorganisms for not being able to establish and exert an effect on the commensal community 
(Kristensen et al., 2016; Walter et al., 2018). Conversely, probiotics are resorted to post-antibiotic 
induced dysbiosis to restore the gut microbial balance (Ekmekciu et al., 2017). However, 
experimental evidence in both mice and humans show that probiotics delay the extent of 
reconstitution of the indigenous microbiome. Alternatively, auto-FMT is a promising approach to 
achieve a rapid and near complete microbiome reconstitution. Furthermore, the human gut 
transcriptome is also reversed towards homeostatic reconfiguration (Suez et al., 2018; Taur et 
al., 2018).  
 
Precision Medicine 
Following the mechanistic validations for the partial correlations between the mucosal and stool 
microbiome, human subjects have exhibited variability in probiotic colonization in two ways, with 
either a permissive (responsive) or resistant (non-responsive) pattern (Zmora et al., 2018). Given 
the diversity in the gut microbiota of subjects with person-specific, country-specific, precision 
medicine could provide promising results (Shapiro et al., 2017). Based on the clinical and 
microbiome profile of an individual, personalized diets could be designed through data-driven 
machine learning algorithms. In connection to this, tailoring of personalized dietary intervention 
has successfully modified high levels of post-prandial blood glucose and further metabolic 
consequences in T2D subjects (Zeevi et al., 2015). A similar approach of personalized dietary 
interventions for a variety of metabolic, inflammatory and complex diseases could be valuable to 
evaluate the nutritional effects of diet on disease development and progression. This could be of 
practical value as it caters sufficient evidence to the scheme of a clinical decision process. 
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2. RESEARCH CHAPTERS 
 
The scientific evolution of the thesis: 

 
Chapter I 
• Analysis of the system – microbe-microbe interaction using network analysis and in vitro 

fermentation. 
 

Chapter II 
• Analysis of the system – metabolic potential of microbial species in a complex community 

using genome-scale models (GEMs) in healthy and diseased subjects. 

• Analysis of the system – microbial interactions in a simplified community using GEMs. 

 

Chapter III 
• Analysis of the system – Functional analysis of microbe-mediated bile acid metabolism with 

bioinformatic tools and omics-data in healthy and diseased subjects. 
 

Chapter IV 

• Analysis of the system – Functional analysis of microbe-mediated vitamin metabolism with 
bioinformatic tools and omics-data in diverse cohorts at a global level. 
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Chapter I – Co-occurrence Network Analysis and in vitro 
Cultivation 
 
PAPER I – In vitro co-cultures of human gut bacterial species as predicted from 
co-occurrence network analysis 
 

OBJECTIVES 
This study aimed: 

• To perform co-occurrence network analysis of microbial community data and identify non-
random co-occurrence patterns 

• To conduct in vitro co-culture experiments between the human gut bacterial species to 
investigate the growth and metabolic outcome of pairwise cultures 

 

MOTIVATION 
Ecological studies using interaction networks and their topologies have revealed that pairs of 

interacting partners determine functionality and robustness in a community. Thereby, it serves as 
a fundamental unit for understanding the productivity and dynamics of a community. However, 

these networks have not been validated adequately to reveal potential interactions (positive or 
negative) between gut bacterial species due to technical limitations and complex interpretation of 
the data (Berry and Widder, 2014). Hence, co-occurrence networks were created from microbial 

sequencing data to identify non-random co-occurrence patterns between bacterial species of a 
microbial community. 
 

ANALYSIS, RESULTS, AND DISCUSSION 
I. Co-occurrence network analysis of microbial community data 

Based on the analysis of 782 human shotgun metagenomes from four different studies, Sweden 

(Karlsson et al., 2013), Europe (Qin et al., 2010), USA (Turnbaugh et al., 2007), and China (Qin 

et al., 2012), species abundances were computed through MEDUSA (Karlsson et al., 2014). For 

the top four abundant genera, co-occurrence networks were created and compared with two 

existing methods: i) Spearman correlation (Spearman, 1904), which has been used for non-
parametric statistical testing to measure correlation, and ii) SparCC method (Kurtz et al., 2015), 

which has been known to offer high-precision detection of linear relationships in a compositional 
dataset. Both the tested methods yielded similar results, and the network generated by 
Spearman correlation is shown in Figure 6. 
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Figure 6. Co-occurrence network of abundant species. The nodes represent microbial species 
from the genera: Bacteroides (blue), Bifidobacterium (yellow), Faecalibacterium (green) and 
Roseburia (maroon). Positive and negative correlations are shown in gray and red lines, 
respectively. The thickness of the edges denotes the level of association based on the value of 
the corresponding Spearman correlation coefficient.  
 

Interpretations of the in silico predictions 
Species of Faecalibacterium and Roseburia exhibit a positive correlation in occurrence as 
indicated in gray lines. Species of Bacteroides except for (Bacteroides pectinophilus) and 

Bifidobacterium exhibit negative occurrence of correlation, as indicated in red lines. As these 
networks are undirected and based on correlation, it provides no information regarding the 

existence of an interaction, or the direction of causality if such an interaction does exist. Thereby, 
it is presumed that the positive and negative correlations describe only the tendency of co-

occurrence between species. A species pair that exhibits a statistically significant positive 
correlation could indicate either a true positive ecological interaction (such as mutualism or 

commensalism) or a preference for shared environmental conditions.  

B. adolescentis L2−32

B. breve UCC2003

B. longum subsp. infantis ATCC 15697 
B. angulatum DSM 20098 

B. animalis subsp. lactis V9

B. bifidum NCIMB 41171
B. dentium ATCC 27679

B. finegoldii DSM 17565

B. fluxus YIT 12057

B. gallicum DSM 20093

B. pseudocatenulatum DSM 20438 

B. sp. 1_1_6

B. pectinophilus ATCC 43243

B. sp. 1_1_30

B. clarus YIT 12056

B. eggerthii 1_2_48FAA
B. helcogenes P 36−108

B. salanitronis DSM 18170

B. coprocola DSM 17136

B. intestinalis DSM 17393

B. plebeius DSM 17135

B. stercoris ATCC 43183

B. coprophilus DSM 18228 

B. fragilis 3_1_12 B. sp. 2_1_56FAA
B. sp. 2_2_4

B. sp. 9_1_42FAA

B. uniformis ATCC 8492

F. prausnitzii A2−165

F. prausnitzii L2−6

F. prausnitzii SL3/3

R. hominis A2−183

R. intestinalis XB6B4 R. inulinivorans DSM 16841

F. prausnitzii KLE1255
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On the other hand, a species pair that exhibits a statistically significant negative correlation could 

indicate either a true negative ecological interaction (such as competition or amensalism) or 
preference for different environmental conditions. The environmental conditions surrounding the 

pair of species could influence to an extent such that one could never proliferate until its favorable 
conditions are met. Ecological interactions could affect the outcome of co-occurrence through 

metabolite exchanges either one way or in both the directions. To identify and understand the 
environmental driver of the co-occurrence patterns, pairs of species were co-cultured in vitro to 

evaluate their growth and metabolic behavior. Based on the predictions, i.e., Bifidobacterium 

adolescentis and Bacteroides thetaiotaomicron were selected to inspect negative correlation, 

while Faecalibacterium prausnitzii and Roseburia inulinivorans were chosen to study positive 
correlation. 

 
II. Evaluation of predicted co-occurrence patterns in vitro 

a. In vitro co-culture between Bifidobacterium adolescentis and 
Bacteroides thetaiotaomicron  

Both the species were cultured in YCGMS (Yeast Casitone Glucose Maltose Starch) growth 

medium in an anaerobic chamber at 37° C Figure 7A and 7B show the growth characteristics of 

each species in mono- and co-cultures.  

 

Figure 7. Growth kinetics, extracellular metabolite concentrations, and pH profile of mono- and 
co-cultures of Bifidobacterium adolescentis and Bacteroides thetaiotaomicron cultured in YCGMS 
(Yeast Casitone Glucose Maltose Starch) medium over 56 hours. P-values of less than 0.01 are 
indicated with asterisks. 
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For B. adolescentis, no significant difference was observed in the copy number of the 16S rRNA 

gene between the mono- and co-culture (Figure 7A). However, for B. thetaiotaomicron, the 
abundance of the 16S rRNA gene copies was significantly different from 8 to 32 hours of growth 

between the co-culture and mono-culture (Figure 7B, Student's t-test, p < 0.01). In Figure 7C, the 
extracellular pH of the co-culture was similar to that of the B. adolescentis mono-culture, and 

different from that of the B. thetaiotamicron mono-culture. Furthermore, the extracellular 
metabolite profile and their concentration levels in the co-culture were more similar to that of the 

B. adolescentis mono-culture than that of the B. thetaiotamicron mono-culture (Figure 7D - 7F). In 
the co-culture and the B. adolescentis mono-culture, acetate, lactate, and formate were the 

metabolites produced in the highest quantities. However, the levels of succinate and propionate 
in the B. thetaiotaomicron mono-culture were higher compared to that in the co-culture. 
 
Around 8 hours of fermentation in the co-culture, there was a dramatic pH drop from 7.2 to 4.0, 
which corresponded to a parallel increase in the concentration of acidic metabolites such as 

acetate, lactate, and formate. In contrast, due to a different route of fermentative metabolism by 
B. thetaiotaomicron, the extracellular pH of the medium reached only 5.8 in its mono-culture 

around 8 hours of fermentation. This observation suggests that the low pH attained in the co-
culture could potentially render an unfavorable environment and thereby affect the growth and 

metabolism of B. thetaiotaomicron in the presence of B. adolescentis irrespective of available 
carbon substrate in the medium. To confirm if pH was a potential cause of the growth inhibition, a 

preliminary pH perturbation experiment was performed. In this experiment, the environmental pH 
was changed from its initial state in two different ways: (i). it was changed from an acidic to basic 

pH, and (ii). it was modified from basic to an acidic pH. Upon doing so, it was observed that the 
condition with acidic pH reduced the abundance of 16S rRNA copies of B. thetaiotaomicron, 

whereas the condition with basic pH resumed its growth by a modest level. In short, the inability 
of one acid-intolerant bacterium growing in the presence of another acid-tolerant bacterium 
resulted in a negative relationship regarding their growth and metabolism towards each other. 

 

b. In vitro co-culture between Faecalibacterium prausnitzii and Roseburia 
inulinivorans 

Both the species have been reported to use acetate as a co-substrate in the growth medium 

(Rivière et al., 2016). Hence, to evaluate their co-occurrence pattern, two different media 
conditions were designed, i.e., one with the acetate named as YCFAGD (Yeast Casitone Fatty 

Acid Glucose Disaccharide) medium and the other one without acetate named as YCGD medium. 

They were cultured in an anaerobic chamber at 37° C. 



 21 

 

Figure 8. Growth kinetics, extracellular metabolite and pH profile of mono- and co-cultures of F. 
prausnitzii and R. inulinivorans cultured in YCFAGD (Yeast Casitone Free Acetate Glucose 
Disaccharide) and YCGD (Yeast Casitone Glucose Disaccharide) medium for 50 hours. A, B, G, 
H. Log10 of 16S rRNA gene copies per ml culture. C, I. pH profile. D-F, J-L. Acetate and butyrate 
profile in two media conditions. 
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Figure 8A, 8B, and 8C show the growth and extracellular pH characteristics of each species in 

mono- and co-culture in YCFAGD medium. The 16S rRNA gene abundance profile and the pH 
profile of F. prausnitzii and R. inulinivorans were similar to that found in their co-culture. Figure 

8D, 8E, and 8F show a similar trend for the acetate consumption and butyrate production over 
time in each of the respective cultures. However, on similar comparison for metabolites as 

described before, in YCGD medium, the growth kinetics in Figure 8G and 8H were identical to 
Figure 8A and 8B. Due to the partial consumption of disaccharides, F. prausnitzii could not 

achieve complete fermentation and hence the YCGD medium (Figure 8C) reached to a final pH of 
around 6.5 compared to 5.8 in YCFAGD medium (Figure 8I). Also, F. prausnitzii mono-culture 

produced acetate (Figure 8J), rather than consuming its own secreted acetate, unlike R. 

inulinivorans in the YCGD medium (Figure 8K) post 8 hours of fermentation. 
 
Under both the media conditions, the species grew together until exhaustion of carbon 
substrates, probably due to an overlap in their preferred pH range. However, the absence of 

acetate did influence the level of butyrate production and consumption of self-secreted acetate. 
To assess if the inoculum density had an impact on the growth outcome of mono- and co-culture, 

both the species were cultured in YCGD medium, with a higher inoculum density of R. 

inulinivorans than F. prausnitzii. The outcome remained the same. These observations implied 

the presence of a positive relationship between this pair of species who share a common pH in 
their extracellular environment. 

 
III. Preliminary assessment of tri-culture for the formulation of synthetic microbial 

consortia 
To verify if these co-occurrence patterns in co-culture could be observed in a tri-culture microbial 

community, three species (i.e., B. adolescentis, F. prausnitzii and B. thetaiotamicron) were 

cultured in YCFAGD medium in an anaerobic chamber at 37°C. The growth performance of each 

species was estimated through the production of a unique or major metabolic product. For 

instance, acetate, butyrate, and succinate were used as a marker to assess the growth B. 

adolescentis, F. prausnitzii and B. thetaiotamicron respectively. 

 
From Figure 9A, 9D, and 9G, the growth characteristics of each species cultured in co- and tri-

cultures are summarized as follows: B. adolescentis began its growth and reached its saturation 
phase around 11-13 hours of fermentation, while F. prausnitzii grew after 13 hours of 

fermentation. B. thetaiotamicron grew moderately only in co-culture with F. prausnitzii. Regarding 
the production of SCFAs as presented in Figure 9B, 9E, and 9H, B. adolescentis showed no 

difference in the concentration of acetate production in its bi- and tri-member co-cultures, while F. 

prausnitzii and B. thetaiotamicron produced a significantly higher concentration of butyrate and 
succinate in the bi-member co-culture as compared to the tri-culture. 
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Figure 9. Growth kinetics, extracellular metabolite, and pH profile of B. adolescentis, B. 
thetaiotamicron, and F. prausnitzii co-cultured in YCFAGD (Yeast Casitone Free Acetate Glucose 
Disaccharide) medium over 30 hours. A, D, G. Log10 of 16S rRNA gene copies per ml culture. B, 
E, H. Acetate, butyrate, and succinate concentration. C, F, I. pH profile of co-cultures in YCFAGD 
medium.  

 

For the pH profiles from Figure 9C, 9F, and 9I, co-cultures with the combination of F. prausnitzii 

and B. thetaiotamicron reached a final pH of 5.5 – 6, whereas the co-culture with B. adolescentis 
and F. prausnitzii reached a final pH of 5.1. Once again, it was observed that co-cultures with 

species of similar pH optima produced metabolites higher than that of their other combination of 
co-cultures. The overall growth and metabolic behavior of the tri-culture was predictable based on 
their respective co-cultures. 

 
This study generated a co-occurrence network based on the species abundance in a microbial 

community. Experimental observations suggest that (i). the growth performance of a species in 
co-culture could be dependent on the type of its partner species present, as their metabolic 

activity might result in metabolite-mediated change in the environmental culture conditions, (ii). 
change in metabolic behavior under varied media composition resulted in different level of end-

products, which underscores the influence of nutrient consumption by the species, and (iii). step-
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by step approach of co-culturing species from bi-member to multi-member could help understand 

and predict the assembly of synthetic microbial communities. Therefore, investigation of co-
occurrence patterns through in vitro pairwise cultivation further verified and recognized the 

importance of these network analyses. 
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Chapter II – Genome-scale Modeling of Microbial 
Communities 
 
PAPER II – Gut microbiota dysbiosis is associated with malnutrition and 
reduced plasma amino acid levels: Lessons from genome-scale metabolic 
modeling. 
 
OBJECTIVES 
This study aimed: 

• To reconstruct well-curated GEMs for representative bacterial species  

• To evaluate the growth performance of GEMs through experimental validations 

• To investigate the metabolic capabilities of GEMs for metabolites such as SCFAs and 
AAs 

 

MOTIVATION 
Different types of malnutrition (severe or acute) have exhibited gut microbial immaturity. 

Comparative 16S taxonomic profiling have revealed significant differences in the gut microbiota of 
malnourished subjects from that of healthy ones (Smith et al., 2013; Subramanian et al., 2014; 
Blanton et al., 2016). However, knowledge related to metabolic differences leading to the 

functional variations in gut microbiota of malnourished was limited. Hence, using genome-scale 
metabolic models (GEMs), this study proposed to examine the metabolic variations in the gut 

microbiota of healthy and malnourished subjects. In this modeling framework, each of the 
abundant gut microbial species was modeled, and examined for their short chain fatty acid and 

amino acid production potential. Through implementation of GEMs and metagenomics, this 
approach presented a prospective way to achieve functional insights into the malnutrition-

associated gut microbiota. 
 

ANALYSIS, RESULTS, AND DISCUSSION 
I. GEMs of representative microbial members in healthy and malnourished 

children 
Gut metagenomes of children from three different countries (Malawi, Bangladesh, and Sweden) 
(Smith et al., 2013; Subramanian et al., 2014; Bäckhed et al., 2015; Blanton et al., 2016) were 

examined for this study. To simplify the modeling framework and understand the metabolic 
potential of bacterial species in a community, species with relative abundance of greater than 

90% were identified from taxonomic studies, from all groups of children at different time-points, 
with a total of 68 species were selected (Figure 10). Among the 68 species, 18, 9, and 22 species 
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were unique in Malawian, Bangladeshi, and Swedish children, respectively. The remaining seven 

species were common among all groups. However, GEMs were reconstructed for 58 of the 68 
species. Ten out of the 68 species were the least abundant. Also, the complete metabolic maps 

could not be built due to the lack of available annotation for related genomes in the public 
databases. Hence, they were excluded from further analysis. Once the draft models for 58 

species were reconstructed, they were manually curated. These curations involved removal of 
unnecessary gap-filled reactions, improving the metabolic annotations for anaerobic growth, and 

enabling the key tasks centering around production of valuable metabolites such as short-chain 
fatty acids and amino acids.  

 

Figure 10. Taxonomic relationship among the 68 selected abundant gut bacterial species in 
healthy and malnourished groups. Bacterial species colored in black are opportunists. Colored 
solid points and circles denote the presence and absence, respectively, of each species in the 
children group (Bangladesh (B), Malawi (M2) and Sweden (S)). In outer two layers, brown and 
blue bars represent the genome size and number of genes, respectively.  
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II. Evaluation of predicted growth rates for six microbial species in vitro 
To examine the accuracy of manual curation to the draft GEMs, the growth rate of bacterial 

species was predicted and verified in vitro. Based on the feasibility of culturing gut bacterial 
species, six species were chosen to validate the in silico predictions. Experimental growth rates 

for Bacteroides thetaiotaomicron (M6), Bifidobacterium adolescentis (M9), Eubacterium rectale 
(M29), Faecalibacterium prausnitzii (M31), Prevotella copri (M41), and Roseburia inulinivorans 

(M43) were compared to the in silico predictions. The simulation of these GEMs was 
demonstrated using the nutrient composition of the YCFA growth medium. As shown in Figure 

11, the growth rates of the GEM predictions were consistent with that of the experimental results. 

 

Figure 11. Experimental validation of the GEM predictions for the growth rate of six gut bacterial 
species cultured in YCFA medium under anaerobic growth conditions. The species are as 
follows: Bacteroides thetaiotaomicron (M6), Bifidobacterium adolescentis (M9), Eubacterium 
rectale (M29), Faecalibacterium prausnitzii (M31), Prevotella copri (M41), and Roseburia 
inulinivorans (M43). 
 

III. Differential estimation of metabolite production potential in the 
representative community members of healthy and malnourished subjects 

To evaluate the metabolic variations for SCFAs and amino acids in the healthy and malnourished 
gut microbial community, manually curated GEMs were analyzed. These GEMs were used to 

predict the production capacities of SCFAs (acetate, propionate and butyrate), and amino acids, 
(which includes L-glutamate, L-glycine, L-alanine, L-lysine, L-aspartate, L-arginine, L-glutamine, 
L-serine, L-methionine, L-tryptophan, L-phenylalanine, L-tyrosine, L-cysteine, L-leucine, L-

histidine, L-proline, L-valine, L-threonine, L-isoleucine, and L-asparagine). In each species, the 
metabolite production potential, i.e., Estimated Maximal Production Potential (EMPP) was 

estimated by multiplying the abundance of the given species and the reaction flux for the 
metabolite production.  
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Figure 12. In silico predictions of estimated maximal production potential (EMPP) of A. short-
chain fatty acids and B. amino acids using GEMs of gut bacteria (on the Y-axis) from Malawian, 
Bangladeshi, and Swedish children (on the X-axis). 
 
On comparison of country-matched Malawian healthy and malnourished subjects, no significant 

difference was observed in their metabolic capacity. But, on comparison of country-matched 
Bangladeshi healthy and malnourished subjects, significant differences were observed between 
them for their EMPP of SCFAs and amino acids (Mann-Whitney U test, p < 0.01 for all 

comparisons). However, when the metabolic diversity was compared between Swedish, 
Malawian and Bangladeshi subjects as presented in Figure 12, the EMPP of the SCFAs and 

amino acids in the gut microbiota of Swedish children were observed to higher than that of the 
Malawian and Bangladeshi children. This observation highlights that country-dependent 

metabolic variations in the gut microbiota of different children groups are suggested to be driven 
by differences in environment and lifestyle (especially dietary choices). Furthermore, reduced 

metabolic diversity has been associated with an increased risk for a dysbiotic gut, which was 
consistent with the reduced microbial diversity in Malawian and Bangladeshi children versus 

healthy Swedish children (Kumar et al., 2016). 
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PAPER III – Uniform randomized sampling of microbial communities. 
 
OBJECTIVES 
This study aimed: 

• To design and implement a random sampling algorithm in microbial communities 

• To study the feasible metabolic phenotypes in microbial communities using GEMs 
• To characterize the metabolic capabilities of several microbial communities comprised of 

representatives of the human gut commensals with experimental validations 
 

MOTIVATION 
As elucidated before, GEMs have been used in modeling of single gut microbial species. They 
could be extended and applied for pairwise or higher community simulations. In a modeling 

investigation of a two-species microbial community, the growth rate of each member, substrate 
utilization and product production profile, and their contribution levels could be computationally 

quantified, provided the relevant experimental data is available. Following to model evaluation, 
they could be used as a predictive tool to model the community framework. Flux through a 

biomass reaction is often selected as an objective function to mimic the cellular physiological 
state, such that bacterial cells tend to maximize their growth rate due to evolutionary pressure. 

However, the possible objective function for a microbial community of a large size is uncertain 
due to lack of knowledge of a proper objective function. Alternatively, one could analyze the 

community-level fluxes in an unbiased way through uniform randomized sampling method, where 
the feasible metabolic phenotypes are sampled in a particular microbial community. However, 

randomly sampling a high-dimensional space is computationally intensive and time-consuming, 
therefore, an alternative coarse-grain approach is to consider only the community level (inputs, 
outputs and linking reactions) reactions and not the internal reactions occurring within a single 

species. Hence, to understand how the community level fluxes distribute and cluster, several 
microbial communities were formulated in the form of a linear programming (LP) problem and 

uniform sampling approach was implemented to investigate the feasible solution space of the LP 
problem. 

 

ANALYSIS, RESULTS, AND DISCUSSION 
I. Sampling of solution space for co-culture between B. adolescentis and F. 

prausnitzii 
The growth dynamics and metabolite concentration changes were investigated over time for B. 

adolescentis and F. prausnitzii co-culture in vitro. B. adolescentis has been regarded as an 

acetate producer, and F. prausnitzii is a known acetate-converting butyrogenic colon bacterium 
(Rios-Covian et al., 2015). As predicted and validated in Chapter I, B. adolescentis model 
produced acetate, and F. prausnitzii model used this metabolite (supplemented in the growth 
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medium) for growth. Therefore, acetate could act as a linking metabolite in the co-culture 

simulations.  
 

On co-culturing B. adolescentis and F. prausnitzii, experimental measurements for the 
concentration of SCFAs were found in the following order: with acetate and lactate being the 

most highly produced metabolites, followed by butyrate and formate. When this co-culture was 
simulated through GEMs, the co-culture model predicted a higher capacity for acetate and lactate 

production followed by that of butyrate and formate (Figure 13A). As predicted, acetate was 
observed to be as a linking metabolite in the topology detection of the co-culture simulation. The 

samples related to this linking reaction have a lower median compared to the samples related to 
the acetate producing reaction (released to the media) (Figure 13A). This implied that the acetate 

produced from B. adolescentis is partly cross-fed to the F. prausnitzii in the co-culture model. As 
predicted, these observations were found to be consistent with experimental co-culture 
evaluation. 

 

Figure 13. Sampling of solution space for co-cultures between B. adolescentis and F. prausnitzii. 
A. Distribution of the community-level metabolic samples. B. Distribution of the biomass 
reactions’ samples. C. Hierarchical clustering of the community-level reactions. 
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Regarding the carbon substrates in the medium, each species had similar substrate uptake rates 

between the two models except for glucose. For glucose, the model predicted that the 
consumption rate of F. prausnitzii was higher than that of B. adolescentis (Figure 13A). However, 

it was noted that even though F. prausnitzii had a higher glucose consumption rate and also 
received acetate as a second carbon source from B. adolescentis, the former had a lower growth 

rate compared to the latter as measured in their in vitro co-culture. When the distribution of the 
biomass reaction flux samples was plotted, B. adolescentis model showed higher growth rate 

capacity compared to that of F. prausnitzii under the same set of constraints (Figure 13B). These 
growth predictions were consistent with the in vitro co-culture data measurements, where B. 

adolescentis had higher growth rate than that of F. prausnitzii. In the clustergram, the biomass 
reaction of B. adolescentis clustered tightly with the biomass reaction of F. prausnitzii, followed by 

the co-culture model’s two outputs, namely ethanol and succinate, and the linking reaction 
(Figure 13C). The tightness of the biomass reaction samples indicates the level of influence on 
each other. 

 

II. Sampling of solution space for co-cultures between B. thetaiotamicron and 
F. prausnitzii 

Similar to the previous simulation, the growth dynamics and metabolite concentration (Figure 

14A) were investigated for co-culture of B. thetaiotamicron and F. prausnitzii in vitro. B. 

thetaiotamicron is an acetate producer (Das et al., 2018), and F. prausnitzii is an acetate 

converting butyrogenic strain. Experimental evaluation of co-culture with these species resulted in 
higher levels of butyrate production compared to that of F. prausnitzii mono-culture. The amount 

of detected acetate in the co-culture was lower compared to B. thetaiotaomicron mono-culture. 
As predicted and validated in the mono-cultures, B. thetaiotaomicron model produced acetate, 

and F. prausnitzii model utilizes this metabolite for growth (Figure 14A). Furthermore, when the 
samples related to the production of these two metabolites from mono-culture versus co-culture 

models were plotted (Figure 14B), the co-culture model predicted higher butyrate production 
capacity than that of its mono-culture model. However, on analyzing the biomass reactions, we 

observed that the acetate producer could reach higher growth rates within the community 
constraints while the butyrate producer of the co-culture has a considerably lower median (Figure 
14C). Regarding clustering of the community-level reactions, the biomass reactions clustered 

tightly with the linking acetate reaction, which suggests that, the clustering pattern is community 
dependent (Figure 14D). The clustering patterns for a simple community consisting of two 

members, one acetate producer and one butyrogenic strain seemed to be dependent on the type 
of strain present in the community. 
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Figure 14. Sampling of solution space for co-cultures between B. thetaiotamicron and F. 
prausnitzii. A. Distribution of the community-level samples. B. Distribution of samples related to 
acetate production in B. thetaiotaomicron and butyrate production in F. prausnitzii in mono and 
co-culture simulations. C. Distribution of the biomass reactions’ samples. D. Hierarchical 
clustering of the community-level reactions. 
 
One common pattern in clustering of the community-level reactions is that in all the co-culture 

simulations, the biomass reactions and the linking acetate clustered together. This pattern could 
point to the fact that there is a commensalistic relationship between the species, as observed in 

this study. Another common observation in the co-culture simulations is the higher capacity of 
growth for the primary degrader strains. The reason behind the dominance of the acetate 

producers might be due to their vast enzymatic arsenal to degrade various complex di- and 
polysaccharides, as for example in case of B. longum at least 8% of the genome is dedicated to 

carbohydrate metabolism (Schell et al., 2002) and this percentage can reach to 20% in case of B. 

thetaiotaomicron (Degnan and Macfarlane, 1995; Xu et al., 2003). It was also observed that the 
acetate released to the media, was higher than that of the linking reaction in all two-member co-

culture simulations. This might be due to the butyrogenic strains’ lower capacity to absorb the 
produced acetate compared to the amount of its production. Altogether, this methodology allowed 

us to investigate the achievable metabolic phenotypes within the boundaries of a microbial 
community, visualize the distribution of samples associated to each community-level reaction and 

detect the reactions that cluster together. 

  

A.        B. 

   
C.        D. 
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Chapter III – Functional Analysis of Bile Acid Metabolism 
 
PAPER IV – Metagenomic analysis of bile salt biotransformation in the human 
gut microbiome 
 
OBJECTIVES 
This study aimed: 

• To identify bile salt biotransformation protein homologs through sequence and domain 
conservation in microbial species 

• To estimate the distribution profile of the identified homologs at phyla level 

• To calculate and compare the abundance of bile salt biotransformation genes between 

healthy and diseased subjects 

• To calculate and compare the abundance of primary and secondary bile acids between 

healthy and diseased subjects 
 

MOTIVATION 
Based on the published studies related to bile acid metabolism, four features have been realized. 
First, IBD subjects differed in gut microbial composition and fecal metabolite profile from healthy 

subjects (Jansson et al., 2009; Le Gall et al., 2011; Bjerrum et al., 2015; Jacobs et al., 2016). 
Second, IBD-associated taxonomic changes included a phylum-level decrease in Firmicutes 

(especially of class Clostridia and family Lachnospiraceae), and phylum-level increase in 
Proteobacteria (especially of family Enterobacteriaceae) (Huttenhower et al., 2014). Third, mouse 

models of inflammation revealed changes in bile acid levels and physiological response mediated 
through a dysbiotic gut microbiome (Marcobal et al., 2013; Wahlström et al., 2016, 2017). Fourth, 

partial set of microbial-mediated bile acid enzymatic genes were assessed to evaluate the role of 
gut microbial contribution in bile acid metabolism (Jones et al., 2008; Gothe et al., 2014; Labbé et 

al., 2014). In this regard, this study aimed to provide a comprehensive view of gut microbial-

mediated bile acid metabolism based on sequence and structural domain conservation. Once the 
entire set of relevant enzymatic homologs were identified, their gene and metabolite abundances 

were compared in the gut microbiota (shotgun metagenomes) of healthy and IBD subjects.  
 

ANALYSIS, RESULTS, AND DISCUSSION 
I. Identification of bile salt biotransformation protein homologs 

Clostridium scindens, and few other Clostridial species have been well characterized for bile acid 

metabolic genes (Ridlon et al., 2006). However, there is very limited experimental knowledge 
related to the growth sensitivity of various species to bile acids. Hence, this study employed 
protein sequences from these well-studied species to identify BSBP homologs in other organisms 
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(Ridlon et al., 2006, 2016) using protein BLAST (Altschul et al., 1990) from the UniProt database 

(UniProt Consortium, 2018).  
 

Protein sequences with known BSB function and non-BSB function were used as test data to 
determine the threshold parameters for BLASTp search. The accuracy of BLASTp was estimated 

to be >92% at e-value < 1e-10, sequence coverage > 70% and sequence identity > 30%. To 
select potential candidate sequences, BSBP sequences from Eggerthella lenta were used as 

positive control, while BSBP sequences from the genus Helicobacter, Prevotella and 
Porphyromonas were used as negative control based on their growth sensitivity tests in the 

presence of bile acids in the culture medium (Shah et al., 1995; Finegold, 1996; Han et al., 1996; 
Itoh et al., 1999; Yokota et al., 2012; Ridlon et al., 2013; Harris et al., 2018). Next, these 

candidate sequences were analyzed for their functional domains using the default GA (gathering 
cut-offs) (Finn et al., 2016). Sequences that had identical domain organization to that with the 
respective query proteins were retained and cross-verified for their functional annotation using 

eggNOG algorithm (Huerta-Cepas et al., 2016) with DIAMOND (Buchfink et al., 2015) as 
mapping mode and retaining other default parameters. Finally, sequences that had passed 

through each of these filtering steps were estimated with a total count 10,613 protein homologs. 
Species from six major phyla were identified to have bile biotransformation protein homologs 

(Table 6). 

Table 6. Distribution of the total number of bile biotransformation protein homologs grouped by 
respective phylum. The values indicate the total number of strains in each category.  

PHYLUM BaiA BaiB BaiCD BaiE BaiF BaiG BaiH BaiI BaiJ BaiK BaiL BSH HSD 

Actinobacteria 86 317 25 538 146 475 67 0 15 68 44 36 182 

Bacteroidetes 158 1 2 1 0 1 2 0 3 0 23 4 264 

Firmicutes 385 13 435 20 96 244 424 2 130 92 576 889 409 

Fusobacteria 5 0 2 0 0 0 2 0 44 0 0 0 11 

Proteobacteria 114 152 92 104 460 73 85 0 31 534 84 2 598 

Verrucomicrobia 1 0 0 1 0 0 0 0 0 0 2 0 2 

 
Based on the distribution pattern of species with Bai or BSH homologs, it could be inferred that 
not necessarily all the species might have each of the structural proteins as compared to the 

reference strain (Table 6). This observation was in line with the pattern from other Clostridial 
species, such as C. hiradonis that carries baiBCDEA2FGHJ while C.sordellii VPI 9048 carries 

only baiCDA2HE (Long et al., 2017). In contrast, species with sequences of less than half of the 
total set of reference proteins might contribute to similar function and substrates resembling that 

of bile acids. 
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II. Differential abundance analysis of bile-salt biotransformation genes 

 The inherent challenging task of metagenomic mapping is to assemble the structural genes of 
the bai operon from whole genome metagenomes without considering a verified reference library 

of bile acid metabolic genes. This makes it difficult to estimate the absolute abundance of the bai 
operon in each species. Hence, for simplification, we assumed that the genes involved in the 

secondary bile acid metabolic pathway (baiA to baiI) are physically unclustered across the 
genome (Devlin and Fischbach, 2015) and thereby estimate the total bile acid biotransformation 

capacity of a microbial community. In the following sections, the differential gene abundance of 
the identified BSBP homologs was calculated by mapping shotgun metagenomes to UniProt 

database (for the list of identified or candidate homologs) and compared against country-matched 
healthy controls in two different IBD cohorts: MetaHIT Spanish cohort (Qin et al., 2010), and 

HMP2 American cohort (The Integrative HMP Research Network Consortium, 2014).  
 

a. Case-control groups 
In the American cohort, the differential abundance analysis was performed in the following two 
steps. First, the genes abundances were compared between healthy and IBD subjects. Second, 
we sectioned the IBD group into two based on their subtypes i.e., Ulcerative Colitis (UC) and 

Crohn’s Disease (CD) subjects. We observed no significant difference for the normalized gene 
abundance of the total BSBGs between the healthy and IBD populations (Figure 15A). However, 

a pairwise comparison between healthy controls and CD subjects of the IBD group, but not UC 
subjects, showed a significant difference (Mann Whitney–Wilcoxon test, p < 0.05) (Figure 15A). 

The mean of the normalized abundance of total BSBGs was lower in the CD subjects (3.68e-05) 
than that of the healthy controls (4.34e-05) (Mann–Whitney–Wilcoxon test, p < 0.05) Figure 15A), 

suggesting a reduced abundance of species with BSB potential in the CD subjects. 
 

For a similar analysis performed in the Spanish cohort, a significant difference was observed for 
the normalized gene abundance of the total BSBGs between healthy and IBD subjects. The 

mean of the normalized abundance of total BSBGs was lower in IBD subjects (7.77e-05) than 
that of healthy controls (1.08e-04) (Mann–Whitney–Wilcoxon test, p < 0.05) Figure 15C), 
suggesting a reduced abundance of species with BSB potential in the IBD subjects. This was 

consistent with previous findings, where similar analysis with a different approach (where only 
three enzymes of bile acid metabolism were considered) was performed on the same set of 

samples (Labbé et al., 2014). However, due to the low sample size of CD subjects, further 
division of the IBD subjects could not be carried out for pairwise statistical comparisons. 

Replication of results in an additional cohort with similar case-control group further validates our 
method workflow and the association between this metabolism and IBD subjects. 
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Figure 15. Normalized abundance of total BSBGs and their phylum (Y-axis) in healthy and IBD 
subjects (X-axis) sampled from A. and B. the USA, and C. and D. Spain. In the USA cohort, 
subjects with Crohn’s disease and Ulcerative colitis are abbreviated as CD and UC respectively). 
The asterisks indicate ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 
(Mann-Whitney Wilcoxon test). 
 
Next, to assess the contribution of phyla accounting for BSBG abundances, the taxonomic 
information for each mapped gene was retrieved, and the relative abundances of each phyla-

level BSBGs were computed accordingly for each group in both the cohort. Genes from 
Firmicutes phylum accounted for the most considerable abundance with BSB potential relative to 

other phyla (Figure 15B and Figure 15D). This observation was in line with the existing data that 
only a subset of species from Firmicutes phylum could metabolize BAs (Gérard, 2013; Ridlon et 

al., 2013). However, the low abundance of these genes, originating from Firmicutes, in IBD 
subjects compared to healthy controls (Mann-Whitney-Wilcoxon test, p < 0.01), further confirms 

that the typical signature of gut microbiome in IBD patients (Rigottier-Gois, 2013; Huttenhower et 

al., 2014; Imhann et al., 2018; Vich Vila et al., 2018). 
 

b. Multi-cohort, multi-country control groups 
Following to country-matched analysis of these genes between case and control groups, healthy 

subjects from different geographical regions were compared against each other. The normalized 
abundances of the total BSBGs among healthy individuals of different countries increased in the 
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following order: USA > China (Qin et al., 2012) > Spain > Denmark for all possible pairwise 

combinations (Figure 16). While individuals from USA showed a significant difference from that of 
Denmark and Spain (Mann Whitney Wilcoxon, p < 0.01), no significant difference was found 

between the healthy individuals of Denmark and Spain (Figure 16). 

 

Figure 16. Normalized abundance of total BSBGs (Y-axis) in healthy individuals sampled from 
Denmark, Spain, China, and the USA (X-axis). The asterisks indicate ns: p > 0.05, *: p <= 0.05, 
**: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 (Mann-Whitney Wilcoxon test). 
 
This observation suggests that dietary and lifestyle choices could be a potential factor in 

impacting the composition of the gut microbiota in general, thus leading to the differences in the 
BSBG abundance at functional level. It also highlights the consideration of demographically 

matched samples as a prerequisite for comparative functional studies. 

 
III. Differential abundance analysis of primary and secondary metabolites 

To verify our predictions if the IBD individuals had reduced levels of secondary BAs 

corresponding to their low abundance of total BSBGs, metabolomics data from the American 
cohort was analyzed. Primary and secondary BAs were sampled from the feces and measured 

with LC-MS (C18 negative ion mode analysis) (Franzosa et al., 2018). BA quantification was 
expressed as relative proportion for each BA metabolite to the total level of BAs. The proportion 
of conjugated primary BAs (i.e., cholate and chenodeoxycholate) and secondary BAs (i.e., 

deoxycholate and lithocholate) were increased and decreased in IBD subjects compared to that 
of healthy controls respectively (Figure 17). The decrease in the level of secondary BAs 

compared to the level of primary BAs suggests a reduction in the microbial potency of BA 
metabolism consistent to the findings at gene level. In connection to this, low levels of secondary 

BAs were measured in IBD subjects who were in the active phase and clinical remission state 
(Duboc et al., 2013). Among different forms of BAs, the proportion of conjugated BA metabolites 

were found at higher levels in IBD subjects than that of healthy controls, which further supports 
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our predictions, i.e., decreased bile acid potency in IBD subjects in comparison to healthy 

controls. 

 

Figure 17. Proportion of conjugated and unconjugated bile acids (Y-axis) in healthy and IBD 
individuals (X-axis) from American cohort. The shape represents the kernel probability density of 
the data across the proportion of each bile acid metabolites (in percentage) along the Y-axis. 
Subjects with Crohn’s disease and Ulcerative colitis are abbreviated as CD and UC respectively. 
The asterisks indicate ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 
(Mann-Whitney Wilcoxon test). 
 
Computation of BA metabolites and BSBGs in a coordinated set of IBD samples showed that a 
reduced abundance of Firmicutes has led to a reduced abundance of BSBGs, thereby reduced 
the conversion of primary to secondary BAs, irrespective of early-onset IBD or in clinical 

remission stage. Beside IBD subjects, cirrhotic patients were also found to have reduced levels of 
secondary BAs and increased levels of conjugated BAs in the feces. This alteration was mostly 

due to the breakdown of BSB bacterial population (due to low-level input of primary BAs in the 
gut) (Kakiyama et al., 2013; Ridlon et al., 2013; Bajaj et al., 2014). Contrarily, colorectal cancer 

has been associated with high physiological levels of secondary BAs (Ajouz et al., 2014). Thus, 
this study proposes that any deviation from the physiological range of secondary BAs could 

indicate a dysfunctional bile salt biotransformation. 
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Chapter IV – Functional Analysis of Vitamin Metabolism 
 
PAPER V – Metagenomic analysis of microbe-mediated vitamin metabolism in 
the human gut microbiome 
 
OBJECTIVES 
This study aimed: 

• To assess the gene-protein-reaction coverage of vitamin pathways in the GEMs of 

abundant bacterial species 

• To estimate the relationship between the abundance of vitamin producers and vitamin 

consumers in a community 

• To calculate the abundances of vitamin biosynthetic and transporter genes between 

healthy and diseased subjects 

• To calculate the abundances of vitamin biosynthetic and vitamin-dependent transcripts 
between healthy and diseased subjects 

 

MOTIVATION 
Conventional and germ-free mice experiments have revealed the contribution of gut microbial-
mediated vitamin metabolism in various studies (Sumi et al., 1977; Hill, 1997; Rossi et al., 2011; 

Degnan et al., 2014). Based on genomic analyses, three features have been observed through 
systematic evaluations. First, the commensal bacteria differed in prevalence for vitamin 

biosynthetic and transporter genes. Second, for some of the species, the pathways were 
identified with incompleteness in their genome. Third, complementary patterns (presence and 
absence of a vitamin pathway) were predicted to exist between a pair of species (Magnúsdóttir et 

al., 2015). This available information provided an opportunity to further expand the field with 
evaluations for the same from metagenomics and metatranscriptomics datasets. These 

evaluations include describing aspects of relationship between vitamin producers and their 
consumers, abundance of these functional genes in fecal metagenomes, and the relationship 

between vitamin production enzymes and vitamin-dependent enzymes in the 
metatranscriptomes. 
 

ANALYSIS, RESULTS, AND DISCUSSION 
I. Genome coverage of vitamin pathways in the abundant gut species 

With the advent of prokaryotic microbial genomics, it is now possible to probe for specific features 

in the genomes of microbial species. Kyoto Encyclopedia of Genes and Genomes (KEGG) is a 
source of a network of enzyme-catalyzed chemical reactions, consisting of the metabolic 

pathways in organisms, manually curated from the literature (Kanehisa et al., 2004). Microbial-



 40 

mediated vitamin metabolic KEGG Orthologies (KOs) were retrieved from KEGG database based 

on the numerous literature studies. Reconstruction of metabolic pathways for the most abundant 
species were inspected to estimate an overview of vitamin metabolic potential in a microbial 

community. 

 

To assess the coverage of vitamin biosynthetic pathways, this study employed our previously 
published repository of human gut bacterial GEMs as described in Chapter II (Kumar et al., 

2018). These models have a gene-protein-reaction (GPR) association component that translates 
gene profiles to reactions through logical associations. All the identified microbial KOs were 

extracted and mapped to the nomenclature of the metabolic models to maintain consistency with 
the reaction identifiers in them (Kanehisa et al., 2011; Arkin et al., 2018). Once the related 

reactions were identified, a list of biochemical reactions for each vitamin category, namely, biotin, 
cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, thiamine, and menaquinone, was 

compiled. Presence and absence of these reactions were evaluated for their coverage and 
pathway conservation across species and populations of each cohort. By pathway coverage, it is 
denoted as the likelihood of all genes required to operate the pathway are present. 

 

 

Figure 18. An overview of categorical metadata from the cohorts employed in this study. 
 
Species abundance of the abundant gut bacterial species were identified in each of the cohort 

(Figure 18). Later on, unique and common species were categorized for the case and control 
groups, and pathway coverage for each of the identified species was plotted (Figure 19). 

Regardless of the health status, riboflavin and pantothenate seemed to be well represented and 
conserved among all the abundant species across the cohorts (Figure 19). This pathway 

conservation could be either due to the limited number of reactions involved in riboflavin pathway 
compared to other vitamin biosynthesis or evolutionary dependence on these vital reactions for 

bacterial cell growth. Contrarily, menaquinone has the least number of species with its 
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biosynthesis pathway present (Figure 19). Perhaps, human gut microbiome might have evolved 

to have a reduced dependence of menaquinone production from the gut microbiota as they fulfill 
their requirements through dietary means (Ichihashi et al., 1992; Davidson et al., 1998). In the 

case of folate and cobalamin, the majority of the reactions involved in its biosynthesis were 
present (Figure 19). Biotin and thiamine were the vitamins with a significant part of their 

biosynthetic reactions with their annotations missing (Figure 19). These missing reactions were 
related to fatty acid metabolism, and the upstream region of the biotin synthesis pathway provides 

a long-chain acyl as the starting point for the biosynthesis. In the case of thiamine, three 
phosphatase reactions involving interconversion of thiamine monophosphate, -diphosphate, -

triphosphate and thiamine were absent (Figure 19). For the vitamins, the incompleteness of their 
biosynthesis pathway as observed in many species was is in line with previous studies; 

suggesting that vitamin biosynthesis could be carried out as complementary tasks between 
several bacteria, each harboring a part of the pathway (LeBlanc et al., 2013). These different 
combinations of functional differences among gut microbial members thus reflect different 

combinations of microbial lineages with a possible impact on synergistic interdependencies within 
themselves and ultimately on the host. 

 

Figure 19. Presence (dark blue) and absence (light blue) of reactions associated with gene 
annotations of vitamin biosynthetic pathways in genome-scale metabolic models (GEMs) of 
abundant gut bacteria. The x-axis represents the reaction IDs associated with each vitamin 
pathway. Y-axis represents the list of abundant gut bacteria that are unique for health, core 
microbial species between groups from each country and unique for disease (as shown in a three 
gradient color scale under each country vertical axis).  
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To investigate the vitamin potential in a population-specific microbiome, similar analysis as 
presented in Figure 19 was performed on the American and Chinese cohort. Figure 20 shows 

higher coverage for riboflavin, pantothenate, and pyridoxine related pathways relative to other 
vitamin pathways. Species of Bacteroides genus, such as B. uniformis, B. stercoris, B. vulgatus, 

B. fragilis, and B. caccae were enriched with a majority of B-vitamin related reactions. The 
abundant species profile differed in the Chinese cohort (Figure 20B), from that of the American 

cohort (Figure 20A), thereby reflecting a difference in their pathway coverage, owing to a 
population-specific (which is mostly due to country variation) gut microbiota. However, in the 

Chinese cohort, species from Firmicutes were high in number compared to American cohort, 
suggesting that based on the Bacteroidetes/Firmicutes ratio, the abundance and function of 

vitamin metabolic genes could be exhibited accordingly. 

 
Figure 20. Relative abundance of vitamin biosynthetic reactions based on the prevalence of 
associated reactions, from GEMs of species from (a) American cohort and (b) Chinese cohort. 
The x-axis represents the reaction IDs associated to each vitamin pathway and on the y-axis the 
list of abundant bacteria is shown. Blue and orange (on the left) represent healthy- and diseased-
associated reaction abundance in each microbial species (on the right) respectively. White color 
in every row represents absence of species in the cohort and the color shade (from dark in top 
towards light shade in the bottom) represents high to low abundance values. 
 

II. The relationship between vitamin producers and vitamin consumers 
It is well-known that vitamins serve as precursors in the biosynthesis of other coenzymes or other 

biochemical reactions driving a diverse set of metabolic reactions in a cell (Monteverde et al., 
2017). Provided this information, absence for a vitamin metabolic pathway renders an organism 

auxotrophic for that specific vitamin (as observed in Figure 19 and Figure 20). For the identified 
vitamin auxotrophs, vitamin uptake from producer organism through transporters becomes a vital 

source of vitamin intake. By mapping metagenomic sequences to the KEGG protein sequences, 
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species with or without biosynthetic and/or transporter-related proteins were identified. Based on 

the prevalence of genes related to vitamin biosynthesis or transporter mechanisms or both, 
species were assigned as either vitamin prototrophs (producers) or vitamin consumers 

(consumers) or producer-consumer (dual) respectively (Figure 21). Then, between each of the 
identified species, a correlational analysis estimated the interaction between vitamin prototrophs 

and consumers. From all possible pairwise combination of 171 species (675 strains), 28.9 % 
were significant and positively correlated, while 8 % were significant and negatively correlated 

(Mann–Whitney test, p < 0.01). 

 

Figure 21. Prevalence of vitamin pathways in human gut microbial species. Each phylum and 
vitamin type are colored, and each microbial species is shown in grey. 
 
Akin to the cycle of food webs, the equation between vitamin producers and auxotrophs cannot 
be analogous as that in predator-prey relationships for a "public good" (vitamin). This is because 

a combination of multiple factors could drive the coexistence of two species. This study observed 
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that pairs of species with both producer-consumer (dual) features were predominant and with a 

tendency to co-occur with each other. This observation was in line with the idea that species 
equipped with a diverse set of functional traits tend to establish resilient communities (McGill et 

al., 2006; de Bello et al., 2010; Lefcheck et al., 2015). However, this study also cautions that the 
positive and negative associations as predicted from the correlation-analysis might not hold in 

every circumstance. For instance, even though Bacteroides thetaiotamicron could produce biotin 
and Bifidobacterium adolescentis encodes an uptake transporter protein for biotin, we found that 

B. thetaiotamicron and B. adolescentis were negatively correlated (Figure 6). In another example 
of positive correlation, Faecalibacterium prausnitzii and Roseburia inulinivorans were predicted to 

produce cobalamin (Magnúsdóttir et al., 2015; Das et al., 2018). These observations suggest that 
there could be a combination of variables involved in driving the species co-occurrence in a 

community. The parameters that drive the cohabitation of species in a specific environment 
seems to support as a significant working hypothesis in the determination of species 
interdependencies, as bacterial species evolve in response to the environmental perturbations 

(Lawrence et al., 2012). 
 
III. Differential gene abundance analysis of vitamin biosynthetic and transporter 

genes 
To estimate if and to which level, the gut microbiome offers functional features that were not 
evolved by its host, the vitamin pathway-related sequences from the metagenomic reads were 

analyzed based on the KEGG annotations. However, as it is assumed that distantly related 
orthologs species seldom exhibits high sequence identity, the mapping accuracy of alignment 

was considered reliable. 
 

a. Case-control groups 
An American cohort with IBD subjects and a Chinese cohort with T2D subjects were analyzed for 
their differential gene abundances (Figure 22). Microbial genes annotated to KOs were grouped 

into the respective type of B and K2 vitamins. On comparing the gene abundances between the 
country-matched groups, the gut microbiota of Chinese T2D subjects differed for most of the 

vitamin types associated with biosynthetic enzymes and transporters in reference to their country-
matched healthy controls (Mann–Whitney test, p < 0.01). On the other hand, American IBD 

subjects were not found to be significantly different in vitamin metabolic gene abundances in 
comparison to their country-matched healthy controls (Figure 22).  
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Figure 22. Differential normalized abundance of vitamin metabolic genes between case and 
control group subjects from the USA and China. The shape represents the kernel probability 
density of the data across different vitamin types are abbreviated as biotin (BIO), cobalamin 
(COB), folate (FOL), menaquinone (MEN), niacin (NIA), pantothenate (PAN), pyridoxine (PYR), 
riboflavin (RIB), thiamine (THI). Suffixes that end with -B and -T are related to biosynthetic and 
transporter related genes respectively. The asterisks indicate ns: p > 0.05, *: p <= 0.05, **: p <= 
0.01, ***: p <= 0.001, ****: p <= 0.0001 (Mann-Whitney Wilcoxon test).  
 

b. Multi-cohort, multi-country control groups 
To evaluate if dietary and lifestyle choices had an impact on the vitamin metabolic potential of the 

gut microbiota, gene abundances of each vitamin categories were compared among healthy 
individuals from four different country populations (Figure 23). Microbial genes annotated to KOs 

were grouped into the respective type of B and K2 vitamins. The abundances for each vitamin ‘s 
biosynthetic and transporter related genes fell within a similar range of border values. However, 

gene abundances of individuals from China and the USA differed significantly from that of 
Denmark and Spain (Mann–Whitney test, p < 0.01) (Figure 23). Although, it seems the genes 

involved in the biosynthetic pathways were higher than their corresponding transport related 
pathways, it is to be noted that functional annotation of these transporters remains challenging as 

they tend to diverge evolutionarily belonging to a diverse class of protein families (Eitinger et al.; 
Rodionov et al., 2009; Jaehme and Slotboom, 2015).  
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Figure 23. Differential normalized abundance of vitamin metabolic genes in healthy individuals 
sampled from four different countries (i.e., USA, China, Denmark, Spain). The shape represents 
the kernel probability density of the data across different vitamin types are abbreviated as biotin 
(BIO), cobalamin (COB), folate (FOL), menaquinone (MEN), niacin (NIA), pantothenate (PAN), 
pyridoxine (PYR), riboflavin (RIB), thiamine (THI). Suffixes that end with -B and -T are related to 
biosynthetic and transporter related genes respectively. The asterisks indicate ns: p > 0.05, *: p 
<= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 (Mann-Whitney Wilcoxon test).  
 
IV. The relationship between vitamin biosynthetic enzymes and vitamin-dependent 

enzymes 
Quantification of vitamin production by bacterial species of the human microbiome using HPLC or 

other traditional methods is challenging. However, metatranscriptomics could provide evidence 
on transcriptional investment or in situ vitamin production to understand the expression level of 

these pathways. Therefore, to investigate the relationship between vitamin synthesis and vitamin-
dependent metabolism, metatranscriptomes were analyzed as computed by HUMAnN2 

(Abubucker et al., 2012). Microbial genes annotated to EC numbers were grouped into the 
respective type of B and K2 vitamins. 
 
On the synthesis side, only biotin, cobalamin, and thiamine were found to be significantly different 

between the metatranscriptomes of healthy and IBD subjects (Mann–Whitney test, p < 0.01) 
(Figure 24). These observations were congruent to that of a previous study where several of 
these vitamins were found to be lower in plasma samples of IBD subjects (Fernandez-Banares et 

al., 1989; Kuroki et al., 1993; Huang et al., 2017). On further inspection of the utilization of these 
three vitamins, the abundance of biotin-dependent transcripts had an opposite pattern to their 
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synthesis transcript level, i.e., high and low abundance levels at metagenomics and 

metatranscriptomics scale in the IBD subjects when compared to healthy controls respectively 
(Figure 24A). Likewise, biotin synthesizers were equivalently high in IBD. This observation 

suggested that it was not only the difference in species abundance that circled two groups apart; 
it was also the functional features of the abundant species that contributed in determining a 

healthy gut microbiome. However, the abundance of thiamine-dependent transcripts had a similar 
pattern to its level of synthesis, i.e., low in IBD subjects compared to healthy controls (Mann–

Whitney test, p < 0.01); while cobalamin showed no difference in the abundance of vitamin-
dependent metabolisms between healthy and IBD subjects (Figure 24B). 

 

Figure 24. Mean relative abundance of (a) vitamin-biosynthetic gene transcripts (-B) and (b) 
vitamin-dependent gene transcripts (-D) in the healthy and IBD subjects from American cohort. 
The shape represents the kernel probability density of the data across different vitamin types are 
abbreviated as: biotin (BIO), cobalamin (COB), and thiamine (THI). The asterisks on the top 
indicate ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001 (Mann-Whitney 
Wilcoxon test).  
 
Although there was no significant difference in the metabolic potential of the gut microbiota in 

American healthy and IBD subjects at metagenomics level, probing into the vitamin-related 
expression level from metatranscriptomics provided the following insights. The ability to discern 
the correlation between the vitamin gene expression and its associated reaction metabolisms in a 

microbial community does not seem straightforward. The variations observed in vitamin synthesis 
and their utilization pattern suggests the presence of non-linear or complex mode of resource 

allocation and reuse of the enzymes. However, these findings do highlight the contribution of gut 
microbiota to human health.  

 
In summary, assuming fecal metagenomics and metatranscriptomics as a representative proxy to 

gain insights into microbe-mediated vitamin metabolism in a broader context, samples from four 
different countries were studied. Ecological relationship between vitamin prototrophs and 

consumers highlighted possible metabolic correlations between species of various phenotypes. 
Species with dual phenotypes predominated amongst other possible combination of species co-

occurrences. Quantitative analysis of the vitamin biosynthetic and transporter related genes 
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between different groups revealed alteration in vitamin metabolic potential of T2D subjects 

(Chinese cohort). However, only a part of B-vitamins was found to differ in their abundance 
between country-matched healthy controls and IBD subjects (American cohort). GEMs deployed 

to visualize the community-level metabolic potential of abundant gut species in diverse cohorts 
reflected the contribution of the population-specific microbial profile to the variation in the 

abundance of these genes. Quantifying the abundance of vitamin biosynthetic enzymes and 
vitamin-dependent enzymes in an IBD cohort in comparison to healthy controls emphasized the 

microbial contribution to human host. 
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CONCLUSIONS 
 
The higher number of unknown than known factors drives the complexity of microbial communities. A 
microbial community consists of several species with diverse kinds of interaction, which makes 

experimental validations of community-wide interactions difficult if possible. Hence, to simplify the 

process of understanding a community-wide network, we constructed a simplified co-culture based on 

the co-occurrence network predictions presented in Paper I. In vitro cultivations are limited as the 

physiological capabilities or ecological niche of the species under investigation are challenging or 

might not be closely related to the wild system. However, as long as the growth medium supports their 

growth, experimental interpretations could be applied to these networks. Chapter I resulted in showing 

how metabolite-mediated pH change and its associated chemical ecology could determine the growth 
and metabolism of a species in a simplified community. 

 

However, from a holistic perspective, mathematical metabolic reconstructions (GEMs) represent the 

topology between different metabolic reactions. When these reactions and pathways form into a 

network, they could be integrated with metagenome-wide omics data. GEMs provide a scaffold upon 

which metagenomics data can be mapped, augmenting the data interpretations with the connectivity 

information encoded within the network architecture. By applying this concept in Paper II, we 
reconstructed GEMs for the abundant gut bacterial species from the healthy and malnourished cohorts 

and verified their predictions in vitro. By mapping the abundance of species to the predicted reaction 

flux values for each reaction that comprised the pathway, metabolic potential of SCFAs and AAs was 

estimated in abundant species. In doing so in Paper II, we observed that the malnourished subjects 

(from Bangladesh and Malawi) were metabolically less diverse than the healthy subjects (from 

Sweden), suggesting how country-dependent diet variations could reflect the microbial diversity and 

thereby the functional diversity between infants with matured and immatured gut microbiome. 

 
Paper III applied the concept of the random sampling of genome-scale metabolic networks to model 

defined gut microbial communities. This method allows consideration of the global level of community 

reactions, excluding the internal reaction fluxes present within the members of a community. Through 

co-culture modeling, we investigated the possible metabolic phenotypes within the sample space. 

Moreover, it identified that acetate producing reaction clustered together with biomass reaction 

samples, which suggests the association of a linking metabolite with the co-culture growth. Although 

the size of microbial communities and the in silico media in the present study is relatively small and 

simple, future research with a larger microbial community in more complex media could be employed 
to understand interactions at an advanced level. This approach can be used to engineer the growth 

and metabolism of a community through modeling to simulate community behaviors. 

 

Next to SCFAs, investigation of second-abundant class of bile acid metabolism in Paper IV was 

primarily driven (i) to profile the distribution of BSBPs based on sequence homology and structure 

conservation, and (ii) to study the abundance of BSBGs in the gut microbiota of healthy and IBD 

subjects. Country-matched metagenomic analysis of shotgun metagenomes revealed a low 
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abundance of BSBGs in the gut microbiota of IBD subjects, from two different cohorts. Parallel to that, 

low abundance of secondary bile acids was found in the fecal metabolome of IBD subjects. These 

observations validate the identified biological insights as gathered from the integrative analysis of 

multi-layer omics data. Future research could address two open questions that arise from this study, 

and those are, (i) which combination of BSBP (Bai/BSH) contributes to bile acid resistance or 

sensitivity? (ii) Experimental methodologies to elucidate the requirement for minimum bai gene set 

could clear the distribution of these genes at least across few gut species. Nonetheless, environmental 
selection of microbial species in the gut could potentially tip a compensated state of immune balance 

in favor of chronic disease in IBD hosts. 

 

In Paper V, exploration of vitamin metabolism in the gut microbiome was undertaken for two reasons: 

(i) connectivity of vitamin pathways with the central carbon metabolic reactions makes it an integral 

functioning system for exploration in the gut microbiome, and (ii) network analysis of gut microbial 

species between vitamin producers and consumers, could reveal interdependencies between species 

of different phenotypes. This study found that the wide prevalence of vitamin metabolic genes across 
the well-known abundant phyla could confer its role as part of the core functional system. Co-

occurrence of bacterial species with both biosynthesis and transporter-related genes predominated 

amongst other possible pairs of the combination. Besides that, metagenomic and metatranscriptomic 

analysis of vitamin-related genes in IBD cohort showed statistically significant differences in their 

expression level but not in their potency than that of the healthy subjects. The nonlinear relationship of 

expression between vitamin synthesis and their utilization level probably suggested a complex mode 

of their usage. Mapping the metagenomics data onto GEMs of abundant species highlighted the 

difference in the population-specific gut microbiome, perhaps mediated through lifestyle and dietary 
choices. However, the presence of partial genome coverage of these pathways stresses if this 

observation was based on lack of annotation or absence of such reactions constituting the pathway. 

 

Altogether, this thesis shows how the net co-occurrence of bacterial species in the succession of a 

microbial community and their functional outcome is determined based on the country-specific dietary 

substrates and metabolism-mediated environmental changes subjected under a specific condition. 

Starting from infants with immature gut microbiota to adults with perturbed gut microbiota, low 
abundance of their metabolic genes contributes to lower functional potential of gut microbial role in 

host health compared to the country-matched healthy controls; revealing the inter-relation between the 

microbial diversity and their functional diversity in various scenarios. 

  



 51 

FUTURE PERSPECTIVES 
 
Microbiome genome-wide association studies have resulted in several variants that influence the 

composition of the gut microbiome (Duvallet et al., 2017). This number will continue to increase in 
future studies. However, which of these factors has a crucial role in disease-causing or health-

promoting effect on the gut microbiome remains a challenging and open question to address. The 
primary challenge is to discriminate microbiome features that are causal for a specific condition 

from those that are a consequence of the disease itself — further followed by distinguishing 
features from confounding factors that show statistical correlation. The secondary challenge is to 

provide an alternative approach to a generic solution that considers high inter-individual variability 
of the gut microbiome.  
 
Manipulation of complex microbial communities has become a primary goal in the field of 
microbiome research with an increasing appreciation of microbial ecosystems that impact human 

health. From an engineering perspective, the gut microbiome is highly “plastic.” Their plasticity 
offers an alternative solution to pharmacological interventions through treatment with the defined 

commensal consortium (Tanoue et al., 2019). Rational design of a synthetic consortium offering 
clinical benefits are formulated based on properties such as gut colonization, repairing of 

microbiome imbalances, and stimulation of targeted immune responses to a specific disease. 
Nevertheless, the challenge is the selection of “correct” bacterial species in designing an effective 

consortium, as a single species has been found to have a positive or negative association in 
different cohorts and conditions. A promising approach would be to identify, test, and verify 

communities with potent pharmacological effects through systematic investigation of human 
clinical intervention studies.  
 
Diet has been a primary driver in influencing the stability of the microbial composition and function 
(Kovatcheva-Datchary et al., 2019). So, based on the microbiome and clinical characteristics of 

an individual, the personalized dietary regimen has the potential of modifying the microbiome. 
However, this kind of intervention requires regular re-evaluation and restructuring of dietary 

design in an individual. These analyses could be done through machine-learning prediction 
algorithms, where the associative trend between nutritional compounds and specific bacterial 

taxa could be identified over time (Zeevi et al., 2015). However, the feasibility and accuracy of 
this approach in a large cohort over longer duration warrants further investigation. Before shifting 

to P4 (Personalized, Predictive, Preventative, and Participatory) medicine from conventional 
therapeutic practices, it is a challenging yet promising task to gather sufficient and necessary 

data to be personalized for a specific treatment (Gutin et al., 2019; Zeevi et al., 2019). 

 
Advancements and parallelized nature of high-throughput omics profiling methods provide a 
holistic view to a system in contrast to a reductionist description. The data-rich nature of the gut 
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microbiome field stems from the high efficiency of omics data generation and complex 

interpretation of these datasets. It is therefore critical to interpret and extract accurate biological 
information through the integration of various data layers. To gain mechanistic insights into the 

underlying biological principles, omics datasets are often integrated with systems modeling and 
network analysis. With this perspective, this thesis has aimed to realize an understanding of the 

growth and metabolism of gut bacterial species. Integrative analysis of metagenomic species 
abundances with co-occurrence network analysis in Chapter I details the interaction between 

bacterial species in a simplified in vitro mixture. Exploitation of top-down and bottom-up approach 
in Chapter II leverages the advantages of metagenomics datasets and GEMs of a microbial 

community. Chapter III captures the biological information of a specialized functional system (bile 
acid metabolism) through assessment of multi-omics datasets. Along similar lines, Chapter IV 

analyzes a core functional system (vitamin metabolism) across diverse conditions through an 
integrative approach. The work described here contributes to a better understanding of the 
emergent properties of the gut microbiome from its parts.  
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