
Thesis for the Degree of Doctor of Philosophy

Deductive Program Analysis
with First-Order Theorem

Provers

Simon Robillard

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
2019

Deductive Program Analysis with First-Order Theorem Provers
Simon Robillard
ISBN 978-91-7905-106-8

© 2019 Simon Robillard

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny series nr 4573
ISSN 0346-718X

Technical Report 169D

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Telephone +46 (0)31-772 1000

Printed at Reproservice, Chalmers University of Technology
Gothenburg, Sweden, 2019

Abstract

Software is ubiquitous in nearly all aspects of human life, including safety-
critical activities. It is therefore crucial to analyze programs and provide
strong guarantees that they perform as expected. Automated theorem
provers are increasingly popular tools to assist in this task, as they can be
used to automatically discover and prove some semantic properties of pro-
grams. This thesis explores new ways to use automated theorem provers
for first-order logic in the context of program analysis and verification.

Firstly, we present a first-order logic encoding of the semantics of
imperative programs containing loops. This encoding can be used to
express both functional and temporal properties of loops, and is particu-
larly suited to program analysis with an automated theorem prover. We
employ it to automate functional verification, termination analysis and
invariant generation for iterative programs operating over arrays.

Secondly, we describe how to extend theorems provers based on the
superposition calculus to reason about datatypes and codatatypes, which
are central to many programs. As the first-order theory of datatypes and
codatatypes does not have a finite axiomatization, traditional means to
perform theory reasoning in superposition-based provers cannot be used.
We overcome this by introducing theory extensions as well as augmenting
the superposition calculus with new rules.

i

ii

Acknowledgements

I would like to thank my supervisor, Laura Kovács, for trusting me with a
PhD position, and for providing the conditions needed to accomplish the
work presented here. These conditions were sometimes challenging, as
we were located in different countries during most of my doctoral studies,
but ultimately the challenges were met. These years have allowed me to
grow into an independent researcher, which is the best that one could
wish from a PhD supervisor.

Meanwhile Wolfgang Ahrendt filled his role of co-supervisor perfectly.
He provided the guidance that I needed, whenever I needed it, and he
allowed me to gather my thoughts during many fruitful discussions.

Wolfgang is also among the many people who make Chalmers the
excellent workplace that it is. I dare not list them all, because the list is
long and I would likely forget someone. Nevertheless, I am convinced that
the research output of the department would not be what it is without
its relaxed atmosphere and the institution of fika.

Jasmin Blanchette gave me the opportunity to work with him at Vrije
Universiteit in Amsterdam. These three months were a very formative
time and a pivotal part of my PhD.

While this thesis bears my name, it would not have been possible
without the efforts of many others. I thank my co-authors for the discus-
sions, the ideas and for sharing the stress in the hours before a deadline.
I also thank Pascal Fontaine and Jeremy Pope for their comments on this
thesis, and Evgeny Kotelnikov for his help with the formatting.

I am also indebted to the people who made it possible for me to even
arrive to this PhD. This includes my parents, who not only supported me
during my early years at the university, but convinced me to spend a few
extra years there, not knowing how literally I would take them.

Lastly, I wish to thank Frédéric Loulergue, who gave me the oppor-
tunity to discover the academic world during my undergraduate studies.
Without his trust and support during those years, I would undoubtedly
not be where I am today.

iii

This thesis was supported by the ERC Starting Grant 2014 SYMCAR
639270, the Wallenberg Academy Fellowship 2014 TheProSE, the Swedish
VR grant GenPro D0497701 and the Austrian research project FWF
S11409-N23.

iv

Contents

1 Introduction 1
1.1 Deductive Program Analysis 2

1.1.1 Abstractions of Programs 2
1.1.2 Program Semantics for Verification 3
1.1.3 Loop invariants . 5
1.1.4 First-Order Logic for Program Verification 6

1.2 First-Order Theorem Proving 7
1.2.1 Resolution . 8
1.2.2 Paramodulation 9
1.2.3 Restricted Calculi 12
1.2.4 Redundancy . 13
1.2.5 Theory Reasoning 14
1.2.6 Implementation of a Theorem Prover 15

1.3 Structure of the Thesis . 16
1.4 Perspectives . 20

2 Reasoning About Loops Using Vampire in KeY 23
2.1 Introduction . 25
2.2 Input Language . 27

2.2.1 Syntax . 27
2.2.2 Semantics . 27

2.3 Invariant Generation Using Symbol Elimination 28
2.3.1 Assertions . 29
2.3.2 Extended Expressions 29
2.3.3 Loop Analysis and Symbol Elimination 30

2.4 Extracting Loop Properties 30
2.4.1 Properties of Scalar Variables 31
2.4.2 Update Properties of Arrays 31
2.4.3 Assignments . 33
2.4.4 Additional Properties 33

2.5 Loop Contract and Correctness 33

v

2.5.1 Pre-conditions . 34
2.5.2 Invariant Filtering 34
2.5.3 Direct Proof of Correctness 35

2.6 Integration with the KeY System 35
2.6.1 Dynamic Logic . 36
2.6.2 Symbolic Execution 36
2.6.3 Integration . 37

2.7 Experimental Results . 37
2.7.1 Invariant Generation 39
2.7.2 Invariant Filtering 39

2.8 Conclusion . 40

3 Loop Analysis by Quantification over Iterations 43
3.1 Introduction . 45
3.2 Preliminaries . 47

3.2.1 First-Order Logic 47
3.2.2 Program Semantics 48
3.2.3 Language of Assertions 49

3.3 Extended Expressions . 50
3.3.1 Syntax and Semantics 50
3.3.2 Relativised Formulas 50
3.3.3 Axiomatization of Valid Loop Properties 51

3.4 Applications of Extended Expressions 53
3.4.1 Verifying Partial Loop Correctness 53
3.4.2 Termination, Safety, Liveness 54
3.4.3 Invariant Generation Via Symbol Elimination . . . 55

3.5 Automated Reasoning with Extended Expressions 57
3.5.1 Avoiding Induction 57
3.5.2 Encoding of Natural Numbers 59
3.5.3 Representation of Arrays 60

3.6 Experiments . 60
3.6.1 Implementation . 60
3.6.2 Experimental Results 61

3.7 Related work . 65
3.8 Conclusion . 68

4 Coming to Terms with Quantified Reasoning 69
4.1 Introduction . 71
4.2 Preliminaries . 74
4.3 The Theory of Finite Term Algebras 75

4.3.1 Definition . 75

vi

4.3.2 Known Results . 76
4.3.3 Other Formalizations 78
4.3.4 Extension to Many-Sorted Logic 78

4.4 A Conservative Extension of the Theory of Term Algebras 79
4.5 An Extended Calculus . 82

4.5.1 A Naive Calculus 82
4.5.2 The Distinctness Rule 83
4.5.3 The Injectivity Rule 83
4.5.4 The Acyclicity Rule 84

4.6 Experimental Results . 84
4.6.1 Implementation . 84
4.6.2 Input Syntax and Tool Usage 85
4.6.3 Benchmarks . 86
4.6.4 Evaluation . 86
4.6.5 Comparison of Option Values 89

4.7 Related Work . 91
4.8 Conclusion . 92

5 An Inference Rule for the Acyclicity Property of Term
Algebras 95
5.1 Introduction . 97
5.2 Term Algebras . 98

5.2.1 First-Order Theory 98
5.2.2 Acyclicity and Induction 99

5.3 First-Order Logic and Superposition 100
5.4 An Inference Rule for Acyclicity 101
5.5 Implementation . 103

5.5.1 Data Structures . 104
5.5.2 Retrieving Premises 105

5.6 Experiments . 106
5.7 Related Work . 110
5.8 Conclusion . 111

6 Superposition with Datatypes and Codatatypes 113
6.1 Introduction . 115
6.2 Syntax and Semantics . 116
6.3 Axioms . 119

6.3.1 Acyclicity . 119
6.3.2 Contexts and Fixpoints 120
6.3.3 Soundness and Completeness 122

6.4 Inference Rules . 125

vii

6.4.1 Superposition . 125
6.4.2 Infiniteness . 125
6.4.3 Distinctness . 126
6.4.4 Distinctness . 126
6.4.5 Distinctness . 127
6.4.6 Injectivity . 127
6.4.7 Acyclicity . 128
6.4.8 Uniqueness of Fixpoints 132

6.5 Refutational Completeness 134
6.6 Saturation Procedure . 143
6.7 Evaluation . 145
6.8 Related Work . 149
6.9 Conclusion . 150

Bibliography 151

viii

Chapter 1

Introduction

Computer systems are now used in a vast array of human activities, from
mundane tasks to safety-critical functions. In many of those applications,
software faults can have important negative consequences, either financial
or human. Just as computer systems have become more prevalent, they
have also become more complex. Avoiding faults in software is more
necessary than ever, but also more difficult.

Traditionally, the goal of detecting and avoiding software faults has
been accomplished with systematic testing. By running a program from
a pre-determined configuration, it is relatively easy to check that the
result produced conforms to the intent of the developer. However this
approach suffers from a major limitation, famously described by Dijkstra:
“Program testing can be used to show the presence of bugs, but never to
show their absence.” Furthermore, testing can only cover a finite number
of situations, whereas even moderately complex programs can run in an
infinite number of different ways. In order to achieve a higher degree of
safety, it is necessary to go beyond testing, and to instead prove that a
program is correct, by use of formal methods based on the theoretical
foundations of programming.

Formal methods have been studied for more than half a century [44,52,
67,88,124]. They offer various mathematical representations of programs
and means to prove some properties of these representations. By using
abstract reasoning, formal methods can ensure that a program behaves
as expected over an infinite domain of input values, and thus help ensure
a degree of software quality that is not achievable with mere testing.
Despite the higher assurance granted by formal methods, they have, for
a long time, only been used on small examples. This is in part because
these methods are often hard to adopt, and remain the prerogative of
experts. Besides the technical difficulty, the sheer amount of work needed
to prove the correctness of large programs can be overwhelming.

In order to overcome these obstacles, we need assistance in the form
of tools to automate (parts of) the proving process. Automated theorem

1

proving – the use of automatic methods to carry out mathematical rea-
soning and prove (or disprove) logical statements – has a history that
precedes the advent of computers. Today, it remains an active field of
research that takes advantage of increased hardware capabilities as well
as theoretical and algorithmic developments to push the boundaries of
what can be proven by computers. Automated theorem provers can be
used to reason about all sorts of mathematical questions, and they are
particularly well suited to problems of program verification, which often
require proving a very large number of relatively simple logical asser-
tions. Proving properties of programs is a challenging task that cannot
be fully automated. Nevertheless, automated systems are able to find
simple proofs without human guidance, and to provide some assistance
in more complex problems. In the context of program verification, such
tools can help reduce the work required to prove correctness, and make
formal methods more viable.

Increasing the success rate of automated theorem provers for program
verification requires a concerted effort between the users of provers and
their developers. The former must make sure that the semantic repre-
sentations of programs are suitable for theorem provers and exploit their
strengths. The latter have to provide features to reduce the burden of en-
coding these representations, and leverage domain knowledge to increase
the performance of provers. This thesis explores both of these avenues of
research.

1.1 Deductive Program Analysis

1.1.1 Abstractions of Programs

A natural way to give a precise description of a programming language
is to describe, from a computational point of view, how its different
syntactic constructs operate. This style of description is called operational
semantics [71, 107].

The nature of the description varies greatly with that of the language.
For example, a functional language will typically be characterized by the
rewrite rules that govern the evaluation of expressions. For an imperative
programming language, we may instead define the effects of its commands
on some idealized memory model. In its simplest form, this memory model
will be a mathematical structure mapping program locations to values.
Then an assignment can be defined as an operation that takes a program
state (including the mapping) and returns an updated program state

2

with a modified mapping. A precise description of a real programming
language will of course require a more complex model [18].

The advantages of operational semantics are based on a close corre-
spondence to the implementation of the language. Programmers will find
the style quite natural and informative, while language developers can
use an operational description of the semantics to implement an inter-
preter with minimal effort. This style of semantics is also needed in the
development of verified compilers [86,93].

The low level of abstraction of operational semantics means that the
mathematical representation of a program includes a number of details
that may not be relevant to the task of program verification, which is
often less concerned with how a program computes than what. Denota-
tional semantics takes a higher-level view of a program, describing it as
a mathematical object, for example a partial function (or more generally
a relation) mapping input to output. This style of semantics can be very
useful to give a description of language features that cannot be fully de-
scribed using a computational representation, such as non-determinism or
concurrency. It is also useful to compare programs in different languages,
as the abstraction is independent of the syntax of the program.

Denotational semantics abstracts many of the computational details
of the programming language, but this often requires more advanced
mathematical concepts that those used for operational semantics. For the
representation of loops and recursive functions, denotational semantics
makes use of fixed-point constructions. This representation is not only
non-computational, but it is also a complex mathematical notion about
which it is difficult to reason automatically.

1.1.2 Program Semantics for Verification

A third way to abstract programs is axiomatic semantics. Here, it is
not the program itself that is represented, but rather its effect on logical
assertions about the program states. Axiomatic semantics is particularly
suited to program verification, where assertions are used to specify the
intended behavior of a program. The most famous example of axiomatic
semantics is Hoare logic [67], whose central syntactic feature is the Hoare
triple

{P}π {Q}

where P and Q are logical assertions about program states, and π is a
program. Informally, such a triple can be understood as “if the program
state satisfies the assertion P before the execution of π, and π terminates,

3

then the state satisfies the assertion Q.” For each program construct, an
axiomatic rule describes how the construct relates to assertions. For ex-
ample, program composition is described by a rule that takes for premises
triples about two programs, and combines them to infer a triple about
their composition:

{P}π1 {Q} {Q}π2 {R}
{P}π1;π2 {R}

Atomic commands correspond to rules without premises. For example
assignments can be axiomatized as:

{P [x← e]}x := e {P}

where P [x← e] denotes the substitution of all occurrences of the variable
x by the expression e in the formula P . For complex program constructs,
it may not be easy to convince oneself that such axioms provide a correct
description. For this reason, it is common to use operational semantics
as a basis to justify the soundness of each rule [42].

Besides the rules describing program constructs, the rule of conse-
quence allows the generalization of triples according to the notion of
consequence in the assertion language:

P =⇒ P ′ {P ′}π {Q′} Q′ =⇒ Q

{P}π {Q}
The rules above form a calculus that can be used to prove that a

Hoare triple is valid, thus guaranteeing that the program satisfies a given
specification. Most of the inference rules in this calculus require the
use of intermediate lemmas. For example, in the rule for composition
above, the assertion Q is present in the premises but not the conclusion.
Consequently, the completeness of the calculus depends on

(i) the axioms themselves;

(ii) the existence of a complete deductive system for assertions intro-
duced by the consequence rule;

(iii) the ability of the assertion language to express the required inter-
mediate lemmas.

Cook [42] defined a suitable notion of relative completeness that isolates
those requirements, and proved that under assumptions (ii) and (iii), a
complete system could be obtained for a Turing-complete language. How-
ever this is not always the case, and many naturally occurring language
constructs prevent the existence of such a system [35].

4

The use of intermediate lemmas in the rules makes the calculus poorly
suited to automated proof search. This problem was partially solved by
Dijkstra [51], who provided a calculus based on predicate transformers to
prove the correctness of programs. A predicate transformer for a given
program is a function on assertions. For example we can make use of
a predicate transformer taking a program π and an assertion Q, and
returning the weakest (i.e., most general) condition that is required to
hold before the exectution of π for Q to be true after that execution. To
prove program correctness, it remains only to show that the actual pre-
condition given in the specification is at least as strong as the condition
returned by the predicate transformer:

P =⇒ pre(π,Q)

Equivalently, it is possible to use predicate transformers based on the
strongest post-condition of a program [101].

1.1.3 Loop invariants

The predicate transformer calculus avoids the issue of intermediate lem-
mas for most program constructs. For example for the composition of
programs, the weakest pre-condition can be computed in two steps:

pre(π1;π2 , Q) = pre(π1,pre(π2, Q))

However the weakest pre-condition is generally not computable in the
presence of loops. The solution adopted by the predicate transformer
calculus is to use a specific kind of intermediate lemma, a loop invariant.
An invariant for a given loop is an assertion whose truth is preserved by
any execution of the loop body. Evidently, if such an assertion is true
in the state where a loop execution starts, it also holds when the loop
terminates. This justifies the definition of the Hoare rule for loops:

{I ∧ C}π {I}
{I}while C do π {I}

The definition of a predicate transformer for loops relies on those loops
being annotated with an invariant, which must be provided by the pro-
gram developer. Coming up with an arbitrary invariant is not difficult:
the always true and always false formulas > and ⊥ fit the definition,
for any program. The challenge is to find an invariant that is strong
enough to imply the post-condition to verify, while also being implied
by the pre-condition. In that sense, the predicate transformer calculus

5

requires a step of “invention” to prove the correctness of programs with
loops, similar to the act of finding an inductive hypothesis to perform a
proof by induction. In program analysis as in inductive theorem proving,
the necessity to come up with new formulas during the proving process
hinders automation.

Given the undecidability results for properties of Turing-complete lan-
guages, finding a fundamental obstacle to automation is not surprising.
Nevertheless, it is possible to use automated methods to generate some
invariants, and increase the degree to which program verification can be
automated. Some of those methods are in some sense complete, but im-
pose strong restrictions on the nature of programs and invariants that are
targeted. For example there exist methods to generate only polynomial
invariants [79] or that require user-provided templates to impose syntac-
tic constraints on the invariants [39,63] generated. Other techniques are
heuristic in nature and instead attempt to generate useful invariants on
a best-effort basis. They are very useful for commonly used but mathe-
matically complex programs such as loops iterating over arrays [45,82].

1.1.4 First-Order Logic for Program Verification

In addition to a representation of the program semantics, an appropriate
mathematical language must be chosen. Even axiomatic semantics, where
logical statements are at the center of the abstraction, is formulated in a
way that is largely independent of the language used for assertions. The
choice of a logical language is largely a balancing act between expressiv-
ity and ease of reasoning, especially in the context of automation. For
example, propositional logic is decidable, and there exists efficient tools
to reason about its problems. However it lacks the ability to describe
infinite domains, a requirement for many tasks of program verification.
First-order logic arguably offers the right level of expressivity to reason
about most programs, thanks to the ability to quantify over the values
manipulated by those programs. This type of quantification is often a
necessity to express meaningful properties of programs. This added ex-
pressivity comes at a cost: first-order logic is not decidable, but merely
semi-decidable.

Higher-order logics provide even more expressivity, but in general
automated tools to reason about them [17, 28] do not perform as well
as their first-order counterpart, especially on large problems. Even for
programming languages that feature higher-order functions, first-order
logic is often sufficient to express most interesting properties. One level
of universal quantification over functions can be simulated by using unin-

6

terpreted function symbols. Deeper higher-order reasoning (e.g., proving
the existence of a function) is rarely needed.

Other approaches use logics that are especially tailored to describe
properties of programs. For example, the language of separation logic [116]
includes operators specifically used to describe properties of memory. Sim-
ilarly, logics with modalities can be used to describe temporal properties of
programs [108] or to embed program fragments in logical statements [65].
Matching logic [121] offers a way to reason directly about the operational
semantics of programs. Automating reasoning in these logics usually
necessitates the development of new techniques and tools. In contrast,
deductive reasoning in first-order logic is a well studied topic, that can
be carried out by efficient tools.

1.2 First-Order Theorem Proving

In order to best employ automated theorem provers for program analysis,
it is necessary to understand how they operate. In this thesis, we focus
on saturation based theorem provers, which work by refutation: checking
the validity of a conjecture, or its entailment by axioms, is reduced to
checking the unsatisfiability of a sentence.

Early methods for refutation in first-order logic [48, 109] work by
enumerating the ground instances of a (Skolemized) sentence until an
inconsistent instance is found. Checking the consistency of a ground
instance is a problem of propositional logic, and therefore decidable. That
technique is a direct application of Herbrand’s theorem, which guarantees
that the process will terminate if the sentence is unsatisfiable. Since the
enumeration depends on the signature of the problem rather than the
sentence itself, the search for a refutation is undirected, and therefore
very inefficient.

A better approach is to use the structure of the problem to find
a refutation. This is the goal of saturation, which works on a clausal
representation of the sentence. Inferences are performed among the set
of clauses, the conclusion added to the set and the process iterated until
(a) the empty clause is derived, yielding a refutation or (b) no more
inferences can be performed, i.e., the set is saturated. If the calculus
used is refutationally complete, and if a fair strategy is used (so that no
inference can be delayed indefinitely), saturation of an unsatisfiable set
of clauses will eventually terminate in (a). Termination in (b) indicates
that the set of clauses is satisfiable, but because first-order logic is semi-
decidable, saturation does not always terminate on satisfiable sets.

7

1.2.1 Resolution

A refutationally complete calculus was proposed by Robinson [119], who
leveraged term unification to extend the principle of propositional resolu-
tion to first-order logic.

In order to present the calculus, let us fix some definitions. An atom
is a formula of the form P (t1, . . . , tn), where P is a predicate symbol and
t1, . . . , tn are terms. A literal is a positive or negative occurrence of an
atom, and a clause is a finite disjunction of literals, viewed as a multiset.
Terms occurring in clauses may feature variables (denoted x, y, z . . .) that
are interpreted as universally quantified. A substitution is a function
from variables to terms. Application of substitutions to variables (and by
extension, to terms, literals and clauses) is denoted in postfix notation. A
substitution θ is a unifier of s and t if sθ = tθ. Moreover, if every unifier
of s and t is an instance of θ, then θ is said to be a most general unifier
(mgu).

The resolution rule is as follows:

L ∨ C ¬L′ ∨ D Res
(C ∨ D)θ

where θ is an mgu of the literals L and L′. Resolution is a generalization
of the principle of modus ponens. It finds contradicting parts of two
clauses and combines the remaining literals to form a new clause, the
resolvent. Like the enumeration method, first-order resolution instanti-
ates the clauses, by means of a unifier. A crucial difference is that the
instantiation is partial: the use of an mgu ensures that the clauses are in-
stantiated in the most general way required to obtain a contradiction, and
no further. This can be seen as combining the two steps of the enumer-
ation method (generating instances, and testing them for inconsistency)
in a single operation.

In addition to the resolution rule, the calculus also includes the fac-
toring rule to remove unifiable literals occurring in the same clause

L ∨ L′ ∨ C Fact
(L ∨ C)θ

where θ is an mgu of L and L′.
To prove the refutational completeness of the calculus, we first focus

on the case where all clauses are ground. The proof is obtained by the
contrapositive: given a saturated set of ground clauses N that does not
contain the empty clause, the set is proven satisfiable by the construction
of a Herbrand model. We assume a total order ≺ on literals and obtain,
by the multiset extension, an order on clauses. The construction of the

8

model starts with an empty Herbrand interpretation – where all atoms
are false – which is then iteratively enriched by considering the clauses in
the order defined above. If a clause is not satisfied by the interpretation,
its maximal literal must occur positively, so the clause has the form L∨C
and C is not satisfied by the interpretation. We can add L to the Herbrand
model without falsifying any of the clauses considered before. This can be
proven by contradiction: if such a clause were falsified, it would have the
form ¬L∨D, with D not satisfied by the interpretation. The two clauses
form the premises of a resolution inference, and since the set N is closed
under resolution, it must contain the conclusion C ∨D. Furthermore, the
conclusion is smaller that the premises, so it must be satisfied by the
model constructed so far, a contradiction.

Having proven the completeness of the calculus on ground clauses, the
proof can be extended to also cover the case of clauses containing vari-
ables. This is accomplished by an argument of lifting, which is essentially
an application of Herbrand’s theorem in the context of clausal formulas.
Given that a Herbrand interpretation is a model of a set of clauses if and
only if it is a model of all of its ground instances, we can prove the satisfi-
ability of a set of clauses by constructing a Herbrand model of its ground
instances, as we have already demonstrated. Perhaps surprisingly, most
of the effort required to prove the completeness of first-order resolution
is spent on the ground (i.e., propositional) case.

For the model construction to be correct, the set of ground instances
must be saturated. To ensure this, we must be able to lift every inference:
if an inference can be performed between ground instances of some clauses,
it must be an instance of an inference that is also possible between those
first-order clauses. This condition holds for all resolution and factoring
inferences, so the saturation of the set of first-order clauses implies the
saturation of the set of its ground instances.

1.2.2 Paramodulation

In many problems of first-order logic, the equality predicate (which we
denote ≈) plays an central role. The equality predicate can be finitely
axiomatized, so that first-order equality problems can be dealt with using
resolution, by including the axioms in the set of clauses to saturate. This is
the standard approach to perform theory reasoning in first-order theorem
provers.

This presents many drawbacks. Firstly, the axiomatization of equality,
although finite, requires a large number of sentences. Along with the three

9

properties of equivalence

∀x. x ≈ x

∀xy (x ≈ y =⇒ y ≈ x)

∀xyz (x ≈ y ∧ y ≈ z =⇒ x ≈ z)

the axioms must also describe the monotonicity of equality under functions
and predicates. For every n-ary function symbol f we have

∀x̄ȳ (x1 ≈ y1 ∧ · · · ∧ xn ≈ yn ⇒ f(x1, . . . , xn) ≈ f(y1, . . . , yn))

and likewise, for every predicate symbol P

∀x̄ȳ (x1 ≈ y1 ∧ · · · ∧ xm ≈ ym ∧ P (x1, . . . , xm) =⇒ P (y1, . . . , ym))

Thus, the axiomatization requires a number of sentences linear in the size
of the problem signature. More importantly, the properties of equality
mean that positive occurrences of the equality predicate are extremely
prolific: they can be used to infer a very large number of clauses, few of
which will eventually be used in the refutation proof. For this reason, the
idea of using a finite axiomatization of equality together with a resolution
based prover is very impractical: for all but the simplest problems, the
search space quickly becomes too large for proofs to be found.

A possible improvement is to treat ≈ as part of the logical language
(rather than the problem signature) and use dedicated rules to capture
its properties. Reflexivity is captured by the equality resolution rule

s 6≈ s′ ∨ C
EqResCθ

where θ is an mgu of s and s′.
The key component of the calculus that captures the remaining prop-

erties is the paramodulation rule [138]:

t ≈ s ∨ C [¬]v[t′] ≈ u ∨ D
Sup

([¬]v[s] ≈ u ∨ C ∨ D)θ

where t′ is not a variable and θ is an mgu of t and t′. By [¬] we denote
the fact that the rule may be applied to either positive or negative literals,
the literal in the conclusion having the same polarity as the one in the
right premise.

10

The completeness of the paramodulation calculus can be proven in
the same fashion as for resolution. Since we assign a specific interpre-
tation to the equality predicate, standard Herbrand interpretations are
impractical. Instead, we now use a term rewriting system R. We assume
a simplification order ≺ on terms, i.e., an order that:

(i) is compatible with term operations: for any terms s, t, u and any
term position p, s ≺ t implies u[s]p ≺ u[t]p;

(ii) is closed under substitution: for any terms s and t and any substi-
tution θ, s ≺ t implies sθ ≺ tθ;

(iii) has the subterm property : for any terms s and t, if s is a proper
subterm of t then s ≺ t.

These properties ensure that the order is well founded. Furthermore, ≺
must be total on ground terms. Each equality atom added to the system
can then be oriented and interpreted as a rewrite rule. A ground literal
s ≈ t is true in this interpretation if and only if the pair (s, t) belongs
to the rewrite relation corresponding to R, denoted s

∗←→R t. By the
properties of the simplification order, this is the case only if there exists
a term u such that s +−→R u and t +−→R u, that is, all ground terms that
are equal in the model defined by R have a unique normal form.

For the ground case, the proof of completeness follows the same pattern
as for the resolution calculus. One complication is that it is more difficult
to guarantee that the addition of a rewrite rule does not falsify previously
considered clauses. The equality factoring rule helps ensure that invariant:

u ≈ t ∨ u′ ≈ s ∨ C EqFact
(u ≈ t ∨ t 6≈ s ∨ C)θ

where θ is an mgu of u and u′.
Transposing the proof of completeness to non-ground clauses poses a

challenge, as some instances of the paramodulation rule cannot be lifted.
For example consider the clauses s ≈ t and P (x) ∨Q(x). Among ground
instances of these two clauses, inferences can be performed, resulting
for example in the conclusion P (t) ∨Q(s). However, since paramodula-
tion cannot occur at variable positions, no first-order inference can be
performed between the two clauses.

Because the grounding of an inference does not include all the in-
ferences that are possible between the groundings of its premises, the
saturation of a set of first-order clauses does not directly imply that the
set of its ground instances is also saturated. To prove completeness, we

11

must observe that the conclusion of a ground instance of a paramodula-
tion inference that cannot be lifted is implied by the (smaller) conclusion
of other instances, and thus not needed to construct the model.

The omission of paramodulation at variable positions is critical for
the efficiency of the calculus, as the rule would otherwise be very pro-
lific. In fact, if the signature of the problem contains at least one func-
tion symbol, we also need to consider paramodulation under variable
positions to ensure that the rule can be lifted: for example, the clause
P (f(f(t)))∨Q(f(f(s))) would also be the conclusion of a ground instance
of paramodulation. Lifting is often a significant challenge in the design
of a calculus for first-order logic. The original presentation of paramodu-
lation [138] relied on paramodulation at variable position, together with
additional axioms (one per function symbol) to obtain completeness, be-
fore the rule could be proven complete without those [27].

1.2.3 Restricted Calculi

An important consideration in techniques for automated theorem proving
is the reduction of the size of the search space, in order for proofs to
be found within reasonable time limits. One way to achieve this is to
limit the number of inferences that can be performed between clauses of
a given set. Such restrictions will limit the expressivity of the calculus, in
the sense that short proofs that could be expressed in the non-restricted
calculus will potentially be lost. On the other hand, the reduced number
of possible inferences limits the number of “guesses” that must be made
in order to derive the empty clause. In the context of automated theorem
proving, the second point vastly outweighs the first.

Ordered resolution is a refutationally complete restriction of resolution.
It makes use of the following observation: to prove the completeness of
resolution, we used a total order on literals, and a positive literal was used
in the construction of the Herbrand model only if it occurred maximally in
a clause. Therefore, resolution inferences need to be performed only when
the positive literal resolved upon is maximal in its clause. Other inferences
may be dropped from the calculus without compromising its refutational
completeness. In order to implement this restriction, the calculus is
parameterized by an order on literals and a selection function that must
return a non-empty set of literals in any non-empty clause [85]. If the
selection function is well-behaved, that is, it always returns a negative
literal or all the maximal literals in a clause, then it is possible to restrict
inferences to selected literals without losing completeness. The notation
L ∨ C indicates that the literal L is selected in the clause.

12

L ∨ C ¬L′ ∨ D
Res

(C ∨ D)σ
s 6≈ s′ ∨ C

EqRes
Cθ

where σ is an mgu of L and L′, θ is an mgu of s and s′, and L is not an equality
literal

t ≈ s ∨ C L[t′] ∨ D
SupP

(L[s] ∨ C ∨ D)θ

t ≈ s ∨ C v[t′] ≈ u ∨ D
Sup+

(v[s] ≈ u ∨ C ∨ D)θ
t ≈ s ∨ C v[t′] 6≈ u ∨ D

Sup−
(v[s] 6≈ u ∨ C ∨ D)θ

where t′ is not a variable, L is not an equality literal, θ is an mgu of t and t′,
sθ � tθ and uθ � v[t′]θ

L ∨ L′ ∨ C
Fact

(L ∨ C)σ
u ≈ t ∨ u′ ≈ s ∨ C

EqFact
(u ≈ t ∨ t 6≈ s ∨ C)θ

where σ is an mgu of L and L′, θ is an mgu of u and u′, sθ � tθ and tθ � uθ

Figure 1.1. The superposition calculus SP .

The same restriction can be applied to paramodulation, but we can
also go further and break the symmetry of equality, in a manner similar
to procedures used to solve equational problems [76]. In the proof of
completeness of paramodulation, we assumed a simplification order that
is total on ground terms, so that ground equalities could be oriented and
treated as rewrite rules. This leads to the observation that paramodula-
tion needs to be performed (on ground clauses) only if s ≺ t and u ≺ v[s].
The generalization of the simplification order to the first-order is neces-
sarily an under-approximation, and cannot be total. So for non-ground
clauses, the restrictions are relaxed to sθ 6� tθ and uθ 6� v[s′]θ. This
restriction of paramodulation gives us superposition [5, 6].

With this last refinement, we can now give a full picture of the su-
perposition calculus, in Figure 1.1. In some presentations, equality is
the only predicate, and the rules Res, Fact and SupP are omitted. This
logic is as expressive: non-equality predicates can be encoded as functions.
Together with a constant ⊥, (dis)equality literals can encode the truth of
those predicates.

1.2.4 Redundancy

Having restricted the search space at the level of literals and terms, we
finally turn our attention to clauses themselves. If we can remove clauses

13

from a set N without affecting its (in)consistency, then doing so will not
affect the refutational completeness of the saturation process (although
some care must be taken not to affect fairness). For this reason, the
calculi used in theorem provers are paired with a notion of redundancy
that describes which clauses may be removed from a set. A general
criteria for redundancy is the following: a clause D is redundant in a set
N if there exist {C1, . . . , Cn} ⊆ N where C1, . . . , Cn |= D and Ci ≺ D for
1 6 i 6 n. Intuitively, redundant clauses are those that will not be used
in the construction of the model.

This criteria is based on the notion of entailment, which is not de-
cidable, so in practice provers have to settle for an (easily computable)
under-approximation of that criteria. For example, tautologies are always
redundant. Another example is subsumption: a clause C subsumes a
clause D if there exists C′ and θ such that D = Cθ ∨ C′.

1.2.5 Theory Reasoning

In many applications of first-order theorem proving, we need to consider
specific mathematical structures. For example in the context of program
verification, integers, arrays, bit vectors or recursive data structures are
common and we need ways to reason efficiently about them.

The most direct way to perform theory reasoning in a saturation
theorem prover is to add theory axioms to the set of clauses to saturate.
In some cases, proof search may be dominated by inferences between
theory axioms and their consequences, neglecting the conjecture. The set
of support strategy [139] can be used to restrict inferences among axioms
and ensure a goal-directed search [111]. This approach is conceptually
simple, does not require any modification to the solver itself, and can be
used with any theory. Even if the theory is not axiomatizable in first-order
logic, a partial axiomatization may be included. This is an easy, if very
incomplete, solution to reason about some problems in non-axiomatizable
theories.

For theories that are axiomatizable in first-order logic only with an
infinite set of axioms, refutationally complete reasoning is more difficult
to reach. It is theoretically possible to modify the saturation algorithm
to interleave the enumeration of axioms and the inference of new clauses,
in a manner that preserves the fairness of the saturation. However, this
would require extensive modification to the prover. An easier solution,
when applicable, is to provide a conservative extension of the theory T .
By using symbols outside of the language of T , it is sometimes possible to
provide a finite axiomatization A of a theory T + such that all theorems

14

of T + in the language of T are also theorems of T . It is then possible to
use that finite axiomatization in the saturation process: for any sentence
F in the language of T , the unsatisfiability of A∧¬F implies that F ∈ T .

Even in cases where a theory has a finite axiomatization, saturation
of the axioms can be very inefficient. We have already given the example
of the theory of equality, which suggests that the use of dedicated infer-
ence rules to replace axioms and perform theory reasoning can lead to
improved performance. Generally, the soundness of these rules (w.r.t. to
the intended interpretations) is easy to prove, but completeness is a dif-
ferent matter. Proving completeness requires the construction of a model
for saturated sets of clauses. In the case of theory reasoning, additional
properties must be checked to ensure that the structure that is built is
not only an interpretation of the clauses, but also of the theory.

More recently, there has been work on combining SMT solvers and first-
order theorem provers to reason about quantified theory problems. The
AVATAR architecture can be used to combine the first-order reasoning
power of superposition with SMT solvers to reason on ground clauses [110].
SMT solvers can also be used to reason about non-ground clauses, by
helping instantiate them [112].

1.2.6 Implementation of a Theorem Prover

Beyond the theoretical foundations presented so far, the success of auto-
mated theorem proving requires the implementation of efficient provers.
Heuristics play an important role in this task. The superposition calculus
presented here can be parameterized in many different ways (simplifica-
tion order on terms, selection functions), and is often extended by ad-hoc
rules.

The design of a saturation algorithm is also crucial. Typically, satura-
tion algorithms follow the given clause method. Clauses are partitioned
in two sets: passive (initially containing all the clauses) and active clauses
(initially empty), with the invariant that the set of active clauses remains
saturated. A passive clause is selected to become the given clause, all
possible inferences between it and active clauses are performed and their
conclusions added to the passive clauses. Lastly the given clause becomes
active, and the process can be repeated until refutation is found or the
set of passive clauses becomes empty. The saturation algorithm must
also perform redundancy elimination and clause simplification: this can
be done forward – using the active clauses to simplify the given clause
– or backward, in which case the given clause is used to simplify active
clauses, that then need to be put back among passive clauses. The im-

15

plementation of those features is often the defining trait of a saturation
algorithm. In some cases, it can even be useful to consider incomplete
saturation strategies, sacrificing theoretical completeness for practical
efficiency [117].

On top of those choices, the developer of a theorem prover faces
many engineering challenges. Even with the effort to eliminate redundant
clauses, it is not uncommon for provers to handle millions of clauses at a
given time. In these conditions, queries for unifiable terms or subsumed
clauses cannot be answered by testing all the candidates iteratively. In-
stead, indexing data structures are used to retrieve terms and clauses as
efficiently as possible [125]. Term order (under substitutions) also needs
to be checked efficiently.

Multiple first-order theorem provers based on the superposition calcu-
lus are available and under active development today, including E [123],
Spass [137], Vampire [84] and Zipperposition [46]. The CASC [127]
and SMT [36] competitions offer an opportunity to observe the latest
developments in the field of automated theorem proving.

1.3 Structure of the Thesis

This thesis describes contributions to the field of program analysis and
verification. It focuses on the use of first-order theorem provers to perform
those tasks, and considers the issue from the point of view of the users
of theorem provers as well as that of their developers. Accordingly, the
thesis is organized along two main axes of research:

• We describe a novel way to encode the semantics of imperative programs
containing loops. This encoding is particularly suited to conducting
program analysis and verification using a first-order theorem prover.
This work is described in Chapters 2 and 3.

• We describe ways to reason about the theories of datatypes and co-
datatypes using a saturation-based theorem prover. These theories
are particularly useful in program analysis, since many programming
languages use these types as the main representation of data. This
work is described in Chapters 4, 5 and 6.

Paper 1: Reasoning About Loops Using Vampire in
KeY

The symbol elimination method is a novel way to generate invariants
that relies on the consequence finding mechanism provided by first-order

16

theorem provers. It was originally introduced in [82]. In the paper repro-
duced in this thesis, we present new extensions of the symbol elimination
technique:

• a new input format: a guarded command language meant to be used
as an intermediate verification language to describe loops in a variety
of programming languages;

• the ability to specify pre- and post-conditions of the loops to be verified:
these can be used to produce stronger invariants, to filter the most
relevant invariants among those generated, or even to perform the
proof of correctness of the loop directly within the tool, rather than
using an external tool;

• the integration of our invariant generation tool in the KeY verification
framework for the Java programming language, which demonstrates
how the guarded command language can be used to describe programs
in mainstream languages;

• Refinements in the static analysis phase of the symbol elimination
process that the quality of invariants generated.

Statement of contribution. This paper is co-authored with Laura
Kovács and Wolfgang Ahrendt. Simon Robillard is the main author.

It was originally published in the peer-reviewed 20th International
Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 20) and presented in Suva, Fiji. It is reproduced here in an
extended version, which includes material published in Proceedings of the
1st and 2nd Vampire workshops.

Paper 2: Loop Analysis by Quantification over Itera-
tions

This paper formalizes the encoding of the semantics of loop programs
that was originally introduced for symbol elimination in [82] and further
extended in the previous paper. It also describes new applications of this
encoding. Contributions include:

• the formalization of the semantics of the language of extended expres-
sions used for symbol elimination;

• an axiomatization of the theory of extended expressions that hold for a
given loop, and a proof of its completeness (up to completeness of the
background theory);

17

• the use of extended expressions to express and verify functional and
temporal properties about programs, in particular partial correctness
and termination;

• a proof of the soundness of the symbol elimination method for invariant
generation;

• experiments with different background theories, in particular arrays
and natural numbers, and the comparison of various provers on these
encodings.

Statement of contribution. This paper is co-authored with Bernhard
Gleiss and Laura Kovács. Simon Robillard is the main author.

It was originally published in the peer-reviewed 22nd International
Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 22) and presented in Awassa, Ethiopia.

Paper 3: Coming to Terms with Quantified Reasoning

Many programming languages manipulate data defined with the use of
algebraic data types. Term algebras provide a concrete semantics for such
data types. The ability to reason efficiently about these algebras is there-
fore crucial to analyze functional programs and verify their correctness.
In the paper reproduced in this thesis, we present ways to reason about
term algebras in a first-order theorem prover. The contributions of this
paper include:

• a conservative extension of the theory of term algebras based on a finite
number of axioms (whereas the theory itself is not finitely axiomatiz-
able);

• inference rules dealing specifically with term algebra symbols, improv-
ing the efficiency of reasoning about problems with term algebras;

• the implementation of the above in the first-order theorem prover Vam-
pire.

Statement of contribution. This paper is co-authored with Andrei
Voronkov and Laura Kovács. Simon Robillard is the main author.

It was originally published in the peer-reviewed Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017) and was presented in Paris, France.

18

Paper 4: An Inference Rule for the Acyclicity Prop-
erty of Term Algebras

Acyclicity is the property of term algebras that prevents their finite ax-
iomatization. Instead of relying on a conservative extension of the theory
to encode the property, this paper proposes an inference rule aimed at
capturing it. The paper contributes:

• the description of a rule to capture the acyclicity property of term
algebras, and a proof of it soundness;

• details of an efficient implementation of the rule, based on term indexing
techniques;

• experimental evidence that the rule outperforms the conservative ex-
tension on hard term algebra problems.

Statement of contribution. Simon Robillard is the sole author of this
paper.

It was originally published in the Proceedings of the 4th Vampire
Workshop and presented in Gothenburg, Sweden.

Paper 5: Superposition of Datatypes and Codatatypes

This paper applies the ideas of a conservative extension of a theory and
an extended superposition calculus to co-algebraic data types. The main
difference between this theory and that of algebraic data types (term
algebras) is that the acyclicity property is replaced by the existence of
unique fixpoints: cyclic terms exists, and observably similar cyclic terms
are equal. The paper also refines the idea of using a calculus to replace
some axioms of algebraic data types. The contributions of this paper are
the following:

• a conservative extension of the theory of co-algebraic data types based
on a finite number of axioms;

• a modification of the acyclicity rule described in the previous paper
that makes it complete, in the presence of some axioms;

• a similar approach for the uniqueness of co-algebraic data type fixpoints;

• rules replacing the axioms of distinctness and injectivity common to
both algebraic and co-algebraic data types, while preserving complete-
ness;

19

• proofs of completeness and soundness of the resulting (modular) calcu-
lus;

• the implementation of the above in the first-order theorem prover Vam-
pire.

Statement of contribution. This paper was co-authored with Jasmin
Blanchette and Nicolas Peltier. Simon Robillard was the instigator of the
paper. The proof of completeness of the calculus is due to Nicolas Peltier.

It was originally published in the peer-reviewed 9th International
Joint Conference On Automated Reasoning and presented in Oxford,
United Kingdom. It is reproduced here in an extended version previously
published as a technical report.

1.4 Perspectives

A recent trend in the world of automated theorem proving is the conver-
gence of two opposite approaches: model construction (SMT solving) and
refutation (saturation-based proving). Historically, the former has been
the preferred way to deal with problems featuring theory reasoning, while
the latter was able to handle full first-order quantification. In practical
applications, problems commonly include both theories and quantifiers.
For this reason, researchers are now trying to bridge the gap in both direc-
tions. State-of-the-art SMT solvers are equipped with means to deal with
quantification [49,60, 61], while saturation-based provers are extended to
reason about various theories, an effort to which this thesis contributes.
The combination of the two approaches in a single prover [110,112] is also
a promising venue of research. Another ongoing development is the exten-
sion of these proving techniques to higher-order logic, for SMT solvers [7]
as well as saturation-based provers [16,20].

Program verification is one of the domains that have benefited the
most from the advances in automated theorem proving. In order to go fur-
ther, we likely need to improve the interface between program verification
tools and general-purpose reasoning engines. Intermediate verification
languages [56, 90] can already be used for this purpose, including with
saturation-based provers [30], but the lack of robustness remains an is-
sue [31]. Furthermore, in the context of program verification, theorem
provers are typically used as trusted black boxes. In order to maximize
reliability, it would be preferable to perform some proof reconstruction,
an approach already adopted when interfacing automated and interactive
theorem provers [24].

20

Automated theorem proving has been a subject of interest since the
early days of computer science. It is a fundamentally challenging task,
but thanks to innovative techniques and increased hardware capabilities,
automated tools can now tackle some non-trivial problems in various
domains of application. In turn, these applications provide the research
community with motivating examples, raise new problematics, and drive
the development of improved tools. This synergy will hopefully continue
and help push the boundaries of the field.

21

22

