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Abstract

Background: Environmental and commensal bacteria maintain a diverse and largely unknown collection of
antibiotic resistance genes (ARGs) that, over time, may be mobilized and transferred to pathogens. Metagenomics
enables cultivation-independent characterization of bacterial communities but the resulting data is noisy and highly
fragmented, severely hampering the identification of previously undescribed ARGs. We have therefore developed
fARGene, a method for identification and reconstruction of ARGs directly from shotgun metagenomic data.

Results: fARGene uses optimized gene models and can therefore with high accuracy identify previously
uncharacterized resistance genes, even if their sequence similarity to known ARGs is low. By performing the analysis
directly on the metagenomic fragments, fARGene also circumvents the need for a high-quality assembly. To
demonstrate the applicability of fARGene, we reconstructed β-lactamases from five billion metagenomic reads,
resulting in 221 ARGs, of which 58 were previously not reported. Based on 38 ARGs reconstructed by fARGene,
experimental verification showed that 81% provided a resistance phenotype in Escherichia coli. Compared to other
methods for detecting ARGs in metagenomic data, fARGene has superior sensitivity and the ability to reconstruct
previously unknown genes directly from the sequence reads.

Conclusions: We conclude that fARGene provides an efficient and reliable way to explore the unknown resistome
in bacterial communities. The method is applicable to any type of ARGs and is freely available via GitHub under the
MIT license.
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Background
Infections caused by antibiotic resistant bacteria are in-
creasing globally, providing a major threat to public
health [1]. Antibiotic resistance can be an intrinsic char-
acteristic of a bacterial species, but in its clinical mean-
ing, it is a trait acquired via mutations in pre-existing
chromosomal DNA or, more commonly, via horizontal
transfer of genes [2]. Environmental communities harbor
a large diversity of antibiotic resistance genes (ARGs)
which can, if mobilized, spread to pathogens either

directly or via commensal bacteria in human and ani-
mals [3–5]. Indeed, many of the clinically relevant ARGs
are believed to originate from environmental bacteria,
together constituting a large and almost unexplored re-
sistance reservoir [6]. Furthermore, it has been shown
that strong selection pressures can enrich the abundance
and diversity of ARGs [7], a phenomenon that has been
especially prominent in environments exposed to high
concentrations of antibiotics [8–10]. It is therefore vital
to investigate the resistome in environmental and com-
mensal bacterial communities, including the large num-
ber of uncharacterized ARGs. This will increase the
understanding of the processes behind the evolution and
mobilization of ARGs into human pathogens and
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facilitate early surveillance and confinement actions be-
fore they reach clinical settings.
Shotgun metagenomics enables analyses of bacterial

communities through sequencing of random fragments
of the collected genomes [11, 12]. Less than 1% of envir-
onmental bacterial species are considered cultivable
using standard methods. Metagenomics therefore pro-
vides a complementary view of a community, including
its ARGs, in comparison with cultivation-based ap-
proaches [13]. With the increasing capacity of massively
parallel sequencing, shotgun metagenomics has rapidly
become cheaper to perform, and data have accordingly
become more accessible [14]. However, metagenomic
data is highly fragmented and is characterized by a wide
range of artifacts and noise [15]. This makes the assem-
bly of larger genomic regions a difficult undertaking, es-
pecially for less abundant bacterial species and strains.
This is especially true for ARGs, which are often present
in regions with repetitive elements and multiple contexts
in, e.g., integrons, transposons, and plasmids. ARGs are
therefore notoriously hard to reconstruct from metage-
nomic data [8, 16, 17]. Therefore, a large diversity of previ-
ously uncharacterized ARGs in metagenomic datasets are
likely to be overlooked by existing analysis pipelines.
Identification of antibiotic resistance genes in bacterial

DNA sequences is often done through alignment-based
homology searches against an ARG reference database
[18–20]. Several reference databases have been designed
for this purpose, including ARDB [21], SARG [22],
CARD [23], and ResFinder [20]. Even though these and
other reference databases contain thousands of charac-
terized ARGs, they only reflect a small proportion of the
total resistome [6]. Moreover, the vast majority of the
annotation pipelines are developed to find known ARGs
and are often not optimized, or even able, to accurately
identify functional resistance genes with low similarity to
known ARGs. This is especially true for metagenomic
data which, due to the short fragment length, is espe-
cially hard to annotate [24–27]. Several methods have
been developed for this purpose, for example,
ARGs-OAP [22], GROOT [28], AmrPlusPlus [29],
MEGAN [30], and ARIBA [31]. However, these methods
only consider reads that can be stringently matched to a
database with known ARGs. The accuracy of existing
methods for finding metagenomic reads from completely
novel genes is therefore unknown and, potentially, low.
Other approaches for detecting ARGs are Resfams [32],
which uses hidden Markov models for increased sensi-
tivity, and PCM [33], which applies machine learning to
incorporate information about the protein structure.
These methods are however designed to work only with
longer fully assembled gene sequences. Recently, dee-
pARG was published as the first method designed to
find novel ARGs directly from shotgun metagenomic

data. deepARG uses a classifier based on artificial neural
networks which makes it able to operate directly on
short sequence fragments [34]. However, deepARG lacks
the functionality to assemble the identified fragments
into full-length ARG sequences. Thus, taken together,
there are no methods for exploration of the resistome
that can identify metagenomic reads from novel ARGs
and then accurately reconstruct their full sequences.
Here we present fARGene, a novel method for identifi-

cation and reconstruction of ARGs directly from meta-
genomic data. fARGene uses probabilistic gene models
optimized to accurately identify previously uncharacter-
ized resistance genes, even if they have a low sequence
similarity to known ARGs. The method operates by first
identifying fragments potentially originating from ARGs
which then are reconstructed into full-length genes. The
method is computationally efficient and does not require
a complete assembly of the entire metagenome, which
makes it applicable to very large sequence datasets. To
demonstrate the method, ARG models representing all
four β-lactamase Ambler classes (A, B, C, and D) were
created and applied to five metagenomic datasets com-
prising more than five billion DNA reads. This resulted
in 221 reconstructed ARGs, of which 58 were previously
not reported (< 70% sequence similarity to any gene in
NCBI Genbank). Furthermore, based on 38 experimen-
tally validated novel ARGs previously reconstructed by
fARGene and tested in earlier studies, > 80% were func-
tional when expressed in Escherichia coli. Finally, we
show that fARGene has superior performance compared
to deepARG and five other methods with a significantly
higher sensitivity for detecting novel β-lactamases. fAR-
Gene is applicable to any class of ARGs and is freely
available via GitHub (https://github.com/fannyhb/far-
gene) under the MIT license, together with documenta-
tion and a tutorial.

Results
The method can be summarized into three main steps
(Fig. 1). fARGene starts with fragmented metagenomic
data as input, which is translated into amino acid se-
quences in all six reading frames. Next, an ARG model
based on Hidden Markov models (HMM), describing
the conserved sequence patterns of the class of resist-
ance genes of interest, is used to score and classify each
metagenomic read (panel 1, Fig. 1). The ARG model has
been specifically optimized for finding novel ARGs in
short read sequence data (see below). Reads that are
identified as potentially originating from a class of ARGs
are retrieved together with their respective read-pair,
quality assessed, and then reconstructed into full-length
sequences using paired-end assembly (panel 2, Fig. 1).
The reconstructed sequences are quality assessed by
classification again, and this time using an ARG model
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optimized for full-length genes (panel 3, Fig. 1). Open
reading frames are finally predicted and nucleotide and
amino acid gene sequences extracted. The method can
also be applied directly to whole genomes and assembled
metagenomic contigs, but in this case, the first step uses
a gene model optimized for full-length genes and the as-
sembly step is not performed.
The method also contains functionality to create

ARG models and optimize their significance thresholds
(Additional file 1: Figure S1). The optimization of the
model aims to achieve high sensitivity to detect meta-
genomic fragments from ARGs, while at the same time
maintaining as high specificity as possible. The specifi-
city is here defined as the ability to not classify frag-
ments from evolutionarily closely related genes without
a resistance phenotype as ARG fragments. The ARG
models are created based on a reference set containing
experimentally validated resistance genes from the class
of interest. The sensitivity is estimated using leave-
one-out cross-validation where genes are consecutively
excluded from the model, randomly fragmented, and
then classified. The specificity is estimated based on
fragments from a negative set of amino acid sequences
from evolutionary closely related genes that does not
induce a resistance phenotype. Both the sensitivity and
specificity are then calculated from the proportion of
correctly classified fragments. The optimal ARG model
threshold score is then finally set based on the trade-off
between sensitivity and specificity. Please refer to the
“Methods” section and Additional file 2: Figure S2 for
full details about the implementation of fARGene.

As a case study, we used fARGene to reconstruct
known and novel resistance genes in metagenomic data
generated by short read DNA sequencing technology.
For this aim, we created and optimized six models cap-
turing the vast majority of genes within the four
β-lactamase classes A, B, C, and D (Additional file 3:
Table S1). β-Lactamases constitutes a diverse set of re-
sistance genes that have a high clinical relevance, which
makes them suitable to evaluate the performance of
fARGene under different scenarios. The class B
β-lactamases where separated into two models to cor-
rectly describe their parallel evolution [35]. Also, class D
β-lactamases were separated into two models to fully
capture the large diversity among these genes (Add-
itional file 4: Figure S3). All models demonstrated per-
fect sensitivity and specificity for full-length genes
(Table 1). For classification of 100 nucleotide long reads,
which clearly is a more challenging task, there was a
trade-off between achieving high sensitivity while still
maintaining high specificity (Fig. 2 and Additional file 5:
Figure S4). The threshold scores for all models except
for B3 β-lactamases were set so that the sensitivity was
high (0.94 to 0.81) while maintaining a specificity above
0.95. For the B3 β-lactamases, which have few known
reference genes, a sensitivity ~ 0.70 was necessary to
achieve a specificity above 0.90 (Fig. 2c). The specificity
of the model was further validated by analyzing (1) the
human genome, (2) sequence reads from the human
genome, and (3) simulated metagenomic reads from 100
bacterial chromosomes where the beta-lactamases had
been removed, for which fARGene did not identify a

Fig. 1 A schematic overview of fARGene. fARGene takes metagenomic paired-end data as input which then are subjected to an ARG model
which classify the reads as coming from a resistance gene or not (panel 1). The paired-end sequences of the positively classified reads are
extracted, quality controlled and then assembled into full-length genes (panel 2). The produced gene sequences are once again classified by the
ARG model (panel 3). The output consists of nucleotide and amino acid sequences of the reconstructed ARGs. The method can also be applied
directly to whole genomes and metagenomic contigs and then the classification, extraction, and assembly of reads are not performed
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single false positive (see the “Methods” section for
full details).
Next, fARGene, using the optimized models, was ap-

plied to five metagenomic datasets comprising approxi-
mately five billion reads (Table 2). In total, 221 (212
unique) full-length ARGs were reconstructed, whereof
163 (74%) were known and 58 (26%) were novel (< 70%
amino acid sequence identity to any previously reported
gene in NCBI Genbank) (Table 3). The highest relative
abundance of full-length genes for class A, C, and D

β-lactamases was found in the metagenome from an
antibiotic-polluted Indian lake [8] (Fig. 3). For class B
β-lactamases, the highest relative abundance was instead
found in oil-contaminated deep-sea metagenomes [36].
Both datasets from the human microbiome demon-
strated high abundance of genes from class A and B
β-lactamases while the levels were lower for class C and
D. The highest relative number of novel genes were dis-
covered in the oil-contaminated deep-sea metagenome
(17 of 20 genes were novel). Furthermore, class D

Table 1 Model performance

Sensitivity Specificity

Model Reference genes Full-length Reads (100 nt) Full-length Reads(100 nt)

Class A 71 1.000 0.897 1.000 0.990

Subclass B1 + B2 35 1.000 0.811 1.000 0.962

Subclass B3 11 1.000 0.722 1.000 0.921

Class C 22 1.000 0.939 1.000 0.991

Class D1 9 1.000 0.904 1.000 0.986

Class D2 20 1.000 0.901 1.000 0.981
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Fig. 2 a–f Results from optimization of six ARG models for the four classes of β-lactamases. Each figure shows the performance of correctly
classifying fragments as ARGs. The green curve shows the sensitivity, i.e. the fraction of correctly classified fragments from true resistance genes,
while the orange curve shows 1-specificity, i.e. the fraction of incorrectly fragment sequences from genes without a resistance phenotype. A
model with good performance should have a high sensitivity while 1-specificity should be low. The dashed line corresponds to the model
threshold selected to have a high sensitivity and an acceptable specificity
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β-lactamases had the highest relative number of novel
genes among the four classes (8 of 18, 44%). A list of all
reconstructed genes and their sequences is available as
Additional file 6: Table S2.
Next, we applied fARGene to both metagenomic reads

and assembled contigs to compare the results. Five sam-
ples were randomly selected from the Human Micro-
biome Project dataset and then analyzed by fARGene.
The five samples were also assembled and the resulting
contigs were then analyzed with fARGene (see the
“Methods” section). For class A β-lactamases, which
were the most abundant genes in these samples, 60
genes were predicted from the assembled contigs while
59 genes were predicted when fARGene was applied dir-
ectly to the reads. Of these were 55 genes identical while
five and four of the genes were uniquely identified from
the contigs and the reads, respectively. The correspond-
ing number for the class B β-lactamases were 11 and 10,
respectively, where nine identical pairs were formed. We
noted, however, that five of the genes differed in length
and were ~ 10 amino acids shorter when reconstructed
directly from the reads. No genes were reconstructed for
class C and D β-lactamase using any of the approaches.
fARgene has previously been applied to reconstruct

ARGs in three separate studies [37–39]. In conjunction
with the respective study, a total of 38 predicted novel
genes were phenotypically tested by synthesis of the
gene sequence followed by cloning and expressing the
gene in an Escherichia coli host. Of the 38 tested genes,
31 (82%) were functional in this host. This includes 18

of 21 (86%) novel metallo-β-lactamase from subclass B1
[37], 6 of 9 (67%) novel qnr genes [38], and 7 of 8 (88%)
novel metallo-β-lactamases from subclasses B2 and B3
[39]. It should be noted that all genes were tested using
their exact assembled sequence and several of the genes
that failed to induce a resistance phenotype contained
codons that are rare in E. coli, suggesting that they may
still be functional in other hosts.
Next, we compared fARGene’s ability to identify novel

ARGs in metagenomic data with five competing
methods: deepARG [34], Resfams [32], ARGs-OAP [22],
GROOT [28], and MEGAN [30]. In contrast to fAR-
Gene, these methods do not have any functionality to re-
construct previously uncharacterized genes from
metagenomic data and therefore we only evaluated the
ability to correctly classify fragments from novel ARGs.
For fARGene, deepARG, ARGs-OAP, and GROOT,
known ARGs were removed (using clusters of 70% se-
quence similarity) from the databases/models of the
methods, and we then measured the ability to correctly
classify 100 nucleotide-long fragments of the excluded
genes. This procedure was repeated for a total of 168
genes from the four classes of β-lactamases. For Resfams
and MEGAN, no genes could be excluded since there
was no functionality to efficiently rebuild the models/
database (see the “Methods” section). The results
showed that fARGene was able to correctly identify sub-
stantially more fragments of all β-lactamase classes, thus
suggesting that it has superior sensitivity (Fig. 4). On
average, fARGene had a sensitivity of 0.87 compared to
0.55 for deepARG and 0.52 for MEGAN (SEED data-
base), which were the second and third best methods.
The difference between fARGene and the other methods
was especially large for ARGs belonging to class B
β-lactamases, where fARGene and the second-best
method for this class (MEGAN SEED database) had a
sensitivity of 0.79 and 0.39, respectively. Taking the New
Delhi metallo-β-lactamase (NDM) gene as an example
[40], fARGene was able to correctly identify 78% of the
fragments while the highest number among all the

Table 2 Datasets used in this study

Dataset Size (nt) # reads Avg. read length Reference

HMP* 4.69 × 1012 4.41 × 1010 96 [12]

Human gut 2.80 × 1011 3.50 × 109 75 [62]

Oil spill 3.36 × 1011 3.33 × 109 101 [36]

Polluted lake 6.76 × 109 6.69 × 107 101 [8]

Wadden sea 8.42 × 109 5.23 × 107 161 [63]

*Human Microbiome Project

Table 3 Results from reconstruction of ARGs

Class A Class B Class C Class D

Reconstructed genes Reconstructed genes Reconstructed genes Reconstructed genes

Total New† Total New† Total New† Total New†

HMP* 91 23 25 8 1 0 2 0

Human gut 52 6 10 3 4 0 4 1

Oil spill 2 1 11 9 0 0 7 7

Polluted lake 3 0 0 0 3 0 3 0

Wadden Sea 1 0 0 0 0 0 2 0

Total 149 30 46 20 8 0 18 8

*Human Microbiome Project
†< 70% sequence similarity against any sequence in NCBI GenBank
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competing methods was only 4.9% (deepARG). The spe-
cificity was estimated for all methods by analyzing 100
bases long-nucleotide fragments of the close homologs
in the negative dataset. Here, three of the methods, dee-
pARG, ARGs-OAP, and Resfams, provided a specificity
of 1 for all gene classes (Fig. 5). The specificity of
GROOT, MEGAN eggNOG database, MEGAN SEED
database, and fARGene was however slightly lower with
average values of 0.98, 0.97, 0.99, and 0.98, respectively.

In addition to the evaluation of short read classification
for the abovementioned methods, we also evaluated the
ability of ARIBA [31] to correctly reconstruct ARGs
from metagenomic reads. Here, one ARG and sequences
with more than 70% amino acid sequence similarity to
that ARG were excluded from the database of ARIBA
and the model of fARGene. Metagenomic reads were
then simulated from the excluded ARG which were ana-
lyzed by ARIBA and fARGene. The results showed that

Fig. 3 Number of reconstructed ARGs per millions reads for the four β-lactamase classes
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Fig. 4 The ability to correctly classify metagenomic fragments for fARGene and five competing methods. The performance of fARGene was
consistently higher than all compared methods (in average, 87% compared to 55%, 7.5%, 52%, 42%, 46%, and 0%, for deepARG, Resfams, MEGAN
SEED, MEGAN eggNOG, ARGs-OAP, and GROOT, respectively)
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fARGene correctly reconstructed all the excluded ARGs
(168 of 168) while ARIBA was unable to reconstruct a
single gene (0 of 168).

Discussion
In this paper, we describe fARGene, a method developed
to identify and reconstruct antibiotic resistance genes dir-
ectly from metagenomic data. The method uses gene
models which incorporates the evolutionarily conserved
patterns of the ARG class of interest and optimizes their
sensitivity and specificity using cross-validation. This en-
sures high performance, even for relatively short metage-
nomic fragments. The high accuracy is further supported
by experimental validation where > 80% of the novel
ARGs predicted by fARGene has shown to induce a resist-
ance phenotype in Escherichia coli. In contrast to other
methods, fARGene offers reconstruction of completely
novel genes directly from sequence reads. fARGene can
be applied to metagenomic sequence data generated by
next-generation sequencing as well as longer sequences,
such as bacterial genomes, plasmids, and assembled con-
tigs. The complete method, including the functionality to
design and optimize novel ARG models, is open source
and freely available at GitHub under the MIT license.
The method was demonstrated by reconstructing

ARGs from class A, B, C, and D β-lactamases from a
comprehensive dataset consisting of metagenomes from
both the environment and the human microbiome.
More than 200 resistance genes were identified, whereof
74% were known while 26% were novel and not available
in public sequence repositories. Novel ARGs were abun-
dant in both the human microbiome and the environ-
mental metagenomes and were particularly high in the

oil-contaminated metagenome where 85% of the recon-
structed genes were previously not reported. Thus, these
results further support the hypothesis of a diverse and,
to a large extent, uncharacterized resistome. Further ex-
ploration of ARGs, especially within uncultivable bac-
teria, is therefore warranted and will likely be crucial to
understand how ARGs evolve, mobilize, and transfer
into pathogens. Increased knowledge of ARGs is also im-
portant for more detailed phylogenetic studies, which is
necessary to further elucidate their evolutionary history
and origins [37, 41]. fARGene was developed to address
these knowledge gaps and can, as demonstrated here, ac-
curately reconstruct both known and novel ARGs from
metagenomic fragments generated by sequencing of bac-
terial communities. fARGene thus provides the means to
more thoroughly analyze the resistome, including its
many unexplored parts that today are overlooked by
existing methodologies. It should, however, be pointed
out that fARGene only can discover genes that share
some degree of homology with previously characterized
ARGs. Genes that provide resistance through completely
new resistance mechanisms and therefore have no se-
quence similarity to known ARGS will be overlooked.
For this purpose, fARGene needs to be complemented
with other molecular techniques such as functional
metagenomics, where novel genes are screened based on
the phenotype they provide, rather than their sequencing
similarity [42, 43].
fARGene applies threshold scores that are optimized

for each ARG model using leave-one-out
cross-validation. This ensures that the method is able to
correctly identify novel resistance genes (high sensitivity)
but at the same time manage to correctly separate them

Fig. 5 The estimated specificity for fARGene and five competing methods. The specificity was estimated from simulated metagenomic fragments
of genes closely related to β-lactamases
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from similar sequences without the desired phenotype
(high specificity). The reference sequences used in the
optimization should be well-characterized, sufficiently
heterogeneous, and, preferably, have an experimentally
verified resistance phenotype. For many forms of resist-
ance genes, such sequences can be retrieved from com-
prehensive and well-curated databases such as CARD
[23] and ResFinder [20]. It should, however, be empha-
sized that the gene models need to be created with some
care in order to achieve as high sensitivity and specificity
as possible. For example, the class of metallo-β-lactamases
is known to have a high sequence diversity [44], and based
on phylogenetic studies, the subclasses B1 and B2 are sug-
gested to have developed the resistance phenotype inde-
pendently of subclass B3 [35]. Thus, there are likely genes
that does not result in a resistance phenotype (e.g., mem-
bers of the much larger metallo-β-lactamase superfamily
[45]) that are more evolutionary close to B1 and B2 than
genes from B3 and vice versa. In fact, when all
metallo-β-lactamases were combined into one single
model, the sensitivity and specificity were reduced signifi-
cantly (results not shown). Thus, classes of ARGs with
parallel evolution and/or an overall high diversity may
need to be separated into several models to ensure max-
imum performance.
Another important aspect in optimizing the ARG

models and in achieving a correct specificity is to select an
appropriate negative gene set. For example, the serine
β-lactamases (A, C, and D) share a common ancestor with
the DD-peptidases [46] which have a similar protein struc-
ture but lack the ability to hydrolyze β-lactams [47]. For
the ARG models presented in this study, a comprehensive
set of DD-peptidases were therefore selected as a negative
set. Metallo-β-lactamases are, on the other hand, phylo-
genetically a part of the large metallo-β-lactamase (MBL)
superfamily, whose members are related to various bio-
logical functions including mRNA processing and DNA
repair [45]. Genes within the MBL superfamily that do not
provide resistance to β-lactams were therefore chosen as a
negative set. Thus, selection of a proper negative set re-
quires knowledge about the evolutionary history of the re-
sistance genes of interest. It should be underlined that
estimating the specificity only from closely related genes
that do not induce any resistance phenotype represents a
“worse case” scenario. Indeed, most of the fragments en-
countered in metagenomes will originate from completely
different genes that are much more evolutionary diver-
gent. However, a critical and common error when predict-
ing novel antibiotic resistance genes is to incorrectly
assign a resistance phenotype to a closely related gene.
We therefore argue that it is important to limit the false
positives and thus calculate the specificity under as ad-
verse conditions as possible. Finally, it should be empha-
sized that even though sensitivity and specificity of

fARGene is high overall, the reconstructed genes should
be considered as computational predictions. Experimental
validation, preferably through expression of the predicted
genes in a bacterial host, is necessary to ensure that the
associated phenotype is induced.
fARGene was compared to six methods for classifying

metagenomic reads, including deepARG which is a method
that uses artificial neural networks for the identification of
reads from novel ARGs. Based on the comparison, fAR-
Gene displayed 17% to 124% higher sensitivity to identify
DNA fragments from novel genes than deepARG, which
was the method with the second-best performance. The
main reason for the high accuracy of fARGene is the use of
more sensitive algorithms for sequence alignment. In par-
ticular, deepARG and MEGAN uses the alignment tool
DIAMOND while ARGs-OAP uses USEARCH to match
metagenomic fragments against a comprehensive reference
database. Similar to the Basic Local Alignment and Search
Tool (BLAST), DIAMOND and USEARCH are seed-based
and have therefore a limited ability to detect more evolu-
tionarily distant genes [48, 49]. Similarly, the methods
GROOTand ARIBA take advantage of fast but highly strin-
gent read mappers (a custom hierarchical local alignment
using hashing-based indexing for GROOT and minimap
[50] for ARIBA). All of these methods are therefore strug-
gling to identify metagenomic reads from genes distantly
related to the ones present in the database. In contrast,
fARGene uses probabilistic ARG models in the form of
profile Hidden Markov models (HMM), which specifically
describe the evolutionary relationship between the ARGs of
interest. Indeed, HMMs has been shown to have superior
accuracy compared to many other alignment-based
approaches [51]. Note, however, that the gene-specific
optimization performed by fARGene is necessary to achieve
a high performance. Resfams, which also are based on
HMMs, had inferior performance to fARGene since their
models are not adapted to analyze short DNA fragments
from novel ARGs. It should, however, be pointed out that
the high sensitivity comes at the expense of a slightly low-
ered specificity. This is addressed in fARGene through an
extra validation step where reconstructed genes are again
compared against the gene model. Since we did not observe
a single misclassification when fARGene was applied to
full-length genes, it is likely that any falsely reconstructed
gene are removed at this stage. Furthermore, it should be
noted that deepARG and many of the other general
methods are, in contrast to fARGene, directly applicable to
a wide range of ARGs without optimizing any significance
thresholds. Thus, the superior performance provided by
fARGene comes at the cost of the additional work needed
to construct and optimize ARG models. In fARGene, this
can, however, be done using the built-in model
optimization functionality, which can be applied to any
ARG class that may be of interest. It should finally be
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pointed out that the evaluation was done only for
beta-lactamases and, even though this is a diverse group of
genes, there is no guarantee that the performance, both in
absolute terms and in relation to other methods, is as high
for all forms of ARGs.
Identification and reconstruction of ARGs from meta-

genomic data are often computationally challenging.
Short read DNA sequences generate an immense num-
ber of fragments which can require very large computa-
tional resources to assemble. In addition, ARGs are
known to appear in many different genetic contexts,
which makes them notoriously hard to assemble. Meta-
genomes are also typically under-sampled, and genes
available only in a low abundance in the microbial com-
munity may therefore be present in the sequence data
but, due to low coverage, missed by the assembly. fAR-
Gene circumvents the issues related to creating a quality
assembly by operating directly on the metagenomic frag-
ments. Instead, in the second step, an assembly is per-
formed utilizing the paired-end structure of the data,
but only on the reads that are classified as coming from
ARGs and their read-pair. Thus, fragments from other
forms of genes and DNA regions, which typically corres-
pond to the vast majority of the metagenomic data, are
excluded from the analysis. This results in a significantly
reduced computational time. Furthermore, when com-
paring predictions of novel ARGs from fARGene applied
directly to metagenomic reads to assembled contigs, the
results were very similar. This shows that the more com-
putationally efficient approach used by fARGenes does
not lead to any considerable reductions in accuracy.
Moreover, fARGene has been designed to fully utilize mod-
ern computer hardware where the input sequence data are
split and processed simultaneously on multiple central pro-
cessing units (CPUs). In fact, fARGene has a computational
complexity that scales almost linearly to the number of
reads (Additional file 7: Figure S5). fARGene can therefore
process large metagenomic datasets (billions of reads)
within a reasonable time on a standard computer.

Conclusions
In conclusion, fARGene is a new method to identify novel
ARGs directly from metagenomic data. In comparison to
competing methods, fARGene offers both superior per-
formance and the ability to reconstruct completely novel
genes directly from sequence reads. fARGene thus facili-
tates the study of ARGs maintained by bacterial communi-
ties and provides the means to significantly expand the
knowledge about the scope and diversity of the resistome.
Further exploration of the resistome is absolutely key for an
increased understanding of the evolutionary processes be-
hind the development, mobilization, and transmission of
resistance genes. This also facilitates early surveillance and

the implementation of improved management strategies to
prevent the spread of new forms of multiresistant bacteria.

Methods
Implementation of fARGene
The implementation of fARGene was done as follows.
Metagenomic data was converted from FASTQ to
FASTA using “seqtk” [52] with parameters “seq –a”.
Then, genomic and metagenomic data was, if not
already amino acid sequences, translated in six reading
frames using EMBOSS transeq version 6.3.1 [53] with
parameters “-frame=6 -table=11 sformat=pearson”. The
translated sequences were then subjected to a profile
HMM using HMMER3’s “hmmsearch” with parameters
“-E 1000 --domE 1000 –domtblout”. The sequence ID,
domain score, envelope start, and envelope end
(“env_start,env_end”) were retrieved from the output of
“hmmsearch” and used to classify sequencing depending
on the alignment length and domain score. A whole
genomic sequence was classified as positive if the do-
main score was higher than the optimized full-length
threshold score. Fragmented sequences were classified
using a length-dependent cutoff as shown below.

domain score
aligned sequence length

>
threshold score
read length

Based on the alignment coordinates (env_start,
env_end), the predicted genes were extracted from the
whole genomic input data using “seqtk subseq”. Finally,
to obtain the open reading frames (ORFs) of the pre-
dicted genes, the predicted genes were extracted to-
gether with 200 bases extra on each side of the
alignment (using the alignment coordinates given by
“hmmsearch”). The extracted sequences were then sub-
jected to Prodigal [54] with parameters “-f gff -p meta”.
The predicted ORFs were once again analyzed with
“hmmsearch” and then, if the predicted ORFs were lon-
ger than a model-dependent length cutoff, provided as
both amino acid sequences and nucleotide sequences.
For the metagenomic data, the reads that were classified
as positives were retrieved with “seqtk subseq”, together
with their read-pair in FASTQ. This was also done for
reads where only one of the reads in the pair was classi-
fied as a positive. The extracted reads then proceeded to
the quality control and adapter removal, performed with
“Trim Galore!” version 0.4.1 [14] with parameter
“--paired”. Then, the reads, including their paired ends,
were assembled using “metaSPAdes” version 3.8.1 [55]
and the assembled contigs were subjected to the profile
HMM using “hmmsearch”. The output from the
“hmmsearch” was parsed and the contigs were classified
using the optimized full-length gene threshold score,
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and the genes classified as positives were retrieved with
“seqtk subseq”, both as nucleotide and amino acid se-
quences. In addition to the retrieved sequences that
aligned to the model, the assembled contigs were ana-
lyzed using NCBI ORFfinder, a tool better suited than
Prodigal to be applied to the often relatively short contigs,
with parameters “-outfmt 1 -ml 200 -s 1 -g 11”, and the
predicted ORFs were then once again subjected to the
profile HMM using “hmmsearch”. The ORFs that passed
the full-length classification and were longer than a
model-specific minimal ORF length were then provided as
both nucleotide and amino acid sequences. The different
gene models used in this study were processed separately.
The methods for model optimization using leave-

one-out cross-validation were implemented as follows.
First, one of the reference sequences from which the
model was to be built of was excluded. The remaining
reference sequences were aligned using ClustalW ver-
sion 2 [56] with default parameters. The aligned se-
quences were then used to build a profile HMM with
HMMER version 3.1b1 [57] using “hmmbuild” and
“hmmpress” with default settings. To estimate the sen-
sitivity of full-length genes, the excluded gene was ana-
lyzed with the profile HMM using HMMER3’s
“hmmsearch”, parameters “--max -E 1000 --domE 1000
–domtblout”. This was repeated for each gene in the
reference sequence dataset. The specificity was esti-
mated by creating a profile HMM of all reference se-
quences using ClustalW version 2 and HMMER version
3.1b1, as described above. Then, a negative sequence
dataset consisting of close homologs to the reference
genes was chosen and analyzed with the model using
“hmmsearch” with the above-described parameters. To
obtain the optimal threshold score, the fraction of iden-
tified genes from both the reference and negative data-
set was plotted as a function of the domain score from
the analysis with “hmmsearch”. The threshold score
was then chosen so that a complete separation of the
reference and negative sequences was obtained.
To optimize the threshold score for fragmented metage-

nomic data, the estimation of sensitivity and specificity was
performed once again, but each gene that was analyzed
with the profile HMMs had been randomly fragmented
into 10,000 reads of length 100 bases each. Here, a
complete separation of the reference and negative reads
was not the objective, but to keep the sensitivity sufficiently
high without letting the specificity drop exceedingly.
Previously published work uses an early version of

fARGene [37, 38]. The method presented in this paper
has however a wide range of fundamental differences
and optimizations. Briefly, the pipeline is now com-
pletely automated, and functionality for creation and
optimization of customized gene models has been imple-
mented. fARGene also makes full use of the paired-end

structure of the data which significantly improves the
gene reconstruction. Additional computational steps
have been added to both the genomic and metagenomic
version, including more accurate ORF prediction, tar-
geted assembly of up and downstream regions around
ORFs, more careful verification of reconstructed novel
ARGs, and instant retrieval of full-length predicted genes as
both nucleotide and amino acid FASTA sequences. Please
refer to https://github.com/fannyhb/fargene for a complete
summary of the functionality of fARGene.

Development of the gene models and processing of data
To create the class A β-lactamase profile HMM, 104 refer-
ence sequences [58] were downloaded and clustered with a
sequence identity cutoff of 70% using USEARCH version 8
[49], parameters “-cluster-fast -id 0.7”. The representative se-
quence for each cluster was then used to create the profile
HMM. The negative sequences used to estimate the specifi-
city were chosen from the close homologs DD-peptidases
[47]. For the class B1 + B2 and B3 of the
metallo-β-lactamases, 35 and 11 representative sequences,
respectively, with a sequence similarity of < 70% to each
other were chosen [37, 59] to build the profile HMMs, while
the negative sequences were chosen from the closest known
homologs, the metallo-β-lactamase superfamily [45]. The
class C profile HMM was based on all reported
plasmid-determined genes together with the chromosomal
genes with a reported ampC-type β-lactamase activity [60].
These genes were clustered at a 70% sequence similarity cut-
off as described for class A, and the resulting 22 representa-
tive sequences were used to create the model. For class D,
all genes reported by Lahey Clinic (https://www.ncbi.nlm.
nih.gov/pathogens/beta-lactamase-data-resources/) as OXA
were clustered at 70% and the representative sequences for
each cluster were used to create a phylogenetic tree. Based
on the tree, the genes were divided into two groups here
called class D1 and class D2, with 9 and 20 representative
sequences, respectively, which were used to create two pro-
file HMMs. In addition, the false positive rate was assessed
by applying fARGene, one time for each model, to the
complete human genome (hg19) and to raw Illumina reads
retrieved from the 1000 genome project, study ERR129
(http://www.internationalgenome.org/). The false positive
rate was furthermore assessed from 100 randomly chosen
bacterial chromosomes that were shown to not contain
β-lactamases by using the models optimized for full-length
genes. The chromosomes were used to simulate metage-
nomic data with ART Illumina version 2.5 [61], parameters
“-l 100 -f 300 -m 300 -qL 93 -s 0 -na -p” which was then an-
alyzed with fARGene parameter “--meta”.
The data used in this study consisted of raw Illumina

sequence reads and were human gut microbiome sam-
ples of 114 individuals [62], the HMP data which con-
sisted of 764 samples from 16 different body sites [12],
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14 samples from oil-exposed bacterial communities in
marine sediments [36], one sample from a lake polluted
by pharmaceuticals [8], and eight samples from a tidal
flat in the German Wadden sea [63]. All datasets were
processed with the above-described method, using the
profile HMMs representing class A, B, C, and D
β-lactamases with optimized threshold scores. The
resulting predicted full-length genes were annotated
using an in-house pipeline which runs BLAST+ version
2.6 [64] against NCBI non-redundant proteins and the
resistance database Resqu (http://www.1928diagnostics.
se/resdb), and genes that had less than 70% amino acid
sequence identity to any previously reported gene were
classified as novel.
To compare fARGene applied to sequence reads to fAR-

Gene applied to assembled contigs, five samples from
HMP were randomly chosen (SRS011084, SRS011239,
SRS011271, SRS013687, and SRS015578). These samples
were then independently assembled using metaSPAdes.
The resulting contigs were analyzed with fARGene using
all β-lactamase models and the full-length threshold.
Then, fARGene was applied to the metagenomic reads of
the same five samples, one at a time using all models. The
resulting predicted genes from the contigs and the se-
quence reads were then combined and clustered using an
amino acid sequence similarity of 100% using USEARCH,
parameters “-cluster-fast -id 1”.

Comparison between fARGene and competing methods
To obtain a fair comparison between fARGene and the com-
peting methods, the same representative genes used to build
and optimize the models of fARGene were also used to esti-
mate the performance of all methods. The comparison with
Resfams was done by downloading the Resfams database
from http://www.dantaslab.org/resfams/ and then using
HMMER3’s “hmmsearch” with parameters “Resfams--
full.hmm --cut_ga --domtblout” on 10,000 randomly created
fragments from each of the genes used in the model creation
of fARGene. The number of identified fragments was then
calculated separately for each β-lactamase class. For the com-
parison against deepARG, one representative gene from any
model was chosen and used as a seed to a DIAMOND
BLASTp search against the deepARG database, parameters
“-k 1000 --id 60 -e 1e-5 --sensitive”. Every sequence that had
more than 70% sequence similarity to the representative gene
were then removed from the deepARG database. The repre-
sentative gene was then randomly fragmented into 10,000
reads of length 100 bases, which were analyzed using dee-
pARG, parameters “--align --type prot --reads”. The proced-
ure was then repeated for each representative gene of each
model and the fraction of identified reads by deepARG was
calculated for each β-lactamase class. To estimate the per-
formance of MEGAN, all representative sequences of one
β-lactamase class at a time were fragmented and compared

to the NCBI NR database using DIAMONDBLASTp,
parameters “-e 0.01”. The resulting DAA files from the
DIAMOND BLASTp were meganized using MEGAN6
community edition, parameters “daa-meganizer -a2t
prot_acc2tax-Nov2018X1.abin -a2eggnog acc2eggnog-
Oct2016X.abin -a2seed acc2seed-May2015XX.abin”. The
meganized DAA files were then loaded into MEGAN, and
the number of correctly classified reads was calculated for
each β-lactamase class using both SEED and eggNOG. Al-
though MEGAN has the ability to perform a gene-centric
protein-alignment assembly on the mapped reads, it includes
no functionality for mapping against resistance databases
such as CARD or Resfams and we therefore only evaluated
the ability to correctly classify fragments.
The comparison against ARGs-OAP was done by first

using one representative gene from any model as a seed
to a BLAST+ BLASTp search against the SARG data-
base (v. 2) with parameters “--max_target_seqs 1000”
and sequences with more than 70% sequence similarity
to the representative gene were removed from the SARG
database. The representative gene was then fragmented
into 10,000 simulated paired-end Illumina sequence reads
of length 100 bases using ART Illumina version 2.5 [61],
parameters “-l 100 -c 5000 -m 300 -qL 93 -s 0 -na -p”.
The simulated metagenomic reads were then analyzed
using the ARGs-OAP stage one pipeline “argoap_pipeli-
ne_stageone_version2”, and the number of retrieved reads
were counted from the output file “extracted.fa”.
The comparison against GROOT was done against the

Resfinder database [20] which was downloaded from https://
bitbucket.org/genomicepidemiology/resfinder.git. One repre-
sentative gene at a time was used as a seed to a BLAST+
BLASTn search against the Resfinder database, and se-
quences that had a sequence similarity of > 70% to the repre-
sentative gene were removed while the excluded gene was
fragmented into simulated paired-end reads with the same
method as for ARGs-OAP. The modified Resfinder database
was then clustered using VSEARCH version 2.10 parameters
“--cluster size –id 0.9 --msaout MSA.tmp” and then ordered
with the command “awk '!a[$0]++ {of="./cluster-" ++fc
".msa"; print $0 >> of ; close(of)}' RS= ORS="\n\n" MSA.tmp
&& rm MSA.tmp” following the GROOT manual. The reads
were then analyzed with GROOT, parameters “align -f
<reads_1.fq>,<reads_2.fq> | groot report -c 1”, and the num-
ber of identified reads was counted.
To compare the performance of fARGene with

ARIBA, the CARD database was downloaded running
ARIBA with parameters “ariba getref card”. Then the
same procedure as for ARGs-OAP and GROOT was ap-
plied where one representative sequence at a time was
used as a seed for a BLAST+ BLASTn search against the
CARD database. Similar sequences were removed from
the database and then the fragmented excluded se-
quence was analyzed with ARIBA, parameters “run
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<fastq1> <fastq2>”, and the number of reconstructed
genes was counted. To get the corresponding number of
reconstructed genes from fARGene, one representative
sequence at a time was excluded from the HMM and
then analyzed with fARGene, parameters “--hmm-model
<modified_model.hmm> --meta” using the same thresh-
old scores as were optimized for the complete models.

Evaluation of the computational efficiency
Benchmarking how fARGene performance scaled with
data size was done using subsets of the human gut data
and with the class A β-lactamase model. The subsets
consisted of 2, 4, 8, 16, 32, and 64 million reads, and the
reads for each subset were taken from the forward and
reverse sequences and split into one forward and one re-
verse subset file. For example, the two million reads sub-
set consisted of two files with one million reads in each.
Benchmarking was performed on a machine with
192 GiB of RAM using one CPU. Then, each subset was
analyzed with the method, and the time was measured
from input to the final assembled predicted genes.

Functional verification of predicted genes
Of the in total 38 experimentally tested genes, 21
metallo-β-lactamase subclass B1 were predicted and tested
by Berglund et al. [37], nine qnr genes were predicted and
tested by Boulund et al. [38], two metallo-β-lactamase sub-
class B2 and seven metallo-β-lactamase subclass B3 were
predicted and tested by Marathe et al. [39]. All genes were
synthetized and then expressed in an Escherichia Coli host.
For the novel metallo-β-lactamases verification, CarbaNP
tests were performed while the qnr genes were assessed
using ciprofloxacin minimum inhibitory concentration
(MIC). Please refer to the respective study for detailed
information.
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